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Abstract In this paper, we assume an environ-
ment with multiple, heterogeneous resources,
which provide services of different capabilities
and of a different cost. Users want to make use of
these services to execute a workflow application,
within a certain deadline and budget. The problem
considered in this paper is to find a feasible plan
for the execution of the workflow which would
allow providers to decide whether they can agree
with the specific constraints set by the user. If
they agree to admit the workflow, providers can
allocate services for its execution in a way that
both deadline and budget constraints are met
while account is also taken of the existing load
in the provider’s environment (confirmed reserva-
tions from other users whose requests have been
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accepted). A novel heuristic is proposed and eval-
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1 Introduction

In Grid or cloud platforms where resource owners
provide services of different capacities and/or of
different prices [4, 18, 23], users may want to use
these services to execute complex applications,
such as workflows [5, 16]. Typically, a user may
require his/her workflow application to complete
within a certain deadline and budget; such re-
quirements are generally recognised as Quality of
Service (QoS) requirements. In analogy to the real
world, a Service Level Agreement (SLA) [14],
which can be regarded as a bilateral contract be-
tween a user and a service provider, is usually
specified to capture the user’s QoS requirements
and act as a guarantee of the expected QoS. If the
terms of the SLA are fulfilled, the user is expected
to pay some fee to the provider. Conversely, if the
terms of the SLA are not fulfilled, the provider
may have to pay some penalty to the user, as
prescribed by the SLA.
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Thus, to establish an SLA, the service provider
must have a way of determining in advance if
it is feasible to fulfil a user’s request. From the
service provider’s point of view, this implies that
there is a need to find a plan for the execution
of every new workflow requesting admission to
and execution on the provider’s resources. Such
a plan will identify feasible reservation slots on
the resources for every task of the workflow in
order to provide an assurance that both the budget
and deadline constraints requested by the user
can be met according to the current load of the
service provider’s resources. We call such a plan
a Budget-Deadline Constrained plan, or, in short,
BDC-plan. The planning procedure to find such
a plan is called BDC-planning. BDC-planning
should be part of the admission control of a user’s
request to execute a workflow. If a BDC-plan is
found, a user’s request can be accepted and a
relevant SLA can be agreed; otherwise, the user’s
request should be rejected.

BDC-planning is important for service- and
market-oriented environments, as its outcome
drives admission control and determines whether
a user’s request should be accepted. BDC-
planning is also a remarkably challenging prob-
lem. First, such a planning problem is NP-
complete [19]. Second, the non-dedicated nature
of resources imposes more difficulties as the con-
tention for shared resources (some of which are
assigned to or reserved by other, already agreed
workloads) needs to be considered during plan-
ning. This suggests that the planner may have to
somehow query resources for their runtime infor-
mation (e.g., the existing load) to make informed
decisions. Moreover, at the same time, BDC-
planning should be performed in short time, be-
cause: (i) users may require a real-time response,
and (ii) the (runtime) information, on which a
planning decision has been made, varies over time
and, thus, a planning decision made using out-of-
date information may not be valid.

The general form of the BDC-planning prob-
lem boils down to bi-criteria DAG planning, as
we assume that every workflow application is rep-
resented by a Directed Acyclic Graph (DAG).
This problem involves the planning process to
optimize two metrics at the same time to meet the
specified constraints (budget and deadline). There

have been quite a few bi-criteria DAG planning
heuristics in the literature [7, 19, 24, 29, 31, 37, 38].
However, some of them do not take the existing
load of resources into account (or modifying them
to do so could be too costly). Moreover, most of
these heuristics have sophisticated designs, such
as guided random research or local search, which
usually require considerably high planning costs.
Such features do not make existing heuristics
particularly suitable for the BDC-planning prob-
lem discussed above (as opposed to the problem
of scheduling a workflow already admitted, in
which case high-cost approaches could be easily
justified). The need for fast and efficient heuris-
tics, suitable for the specific problem of BDC-
planning, which also takes into account existing
load of the resources, motivates the work pre-
sented in this paper.

In the paper, a new BDC-planning heuristic
is proposed with the objective to simultaneously
provide effective BDC-planning and fast planning
time. The proposed heuristic is based on the Het-
erogeneous Earliest Finish Time (HEFT) algo-
rithm [32], which is a well-known list scheduling
heuristic aiming at minimizing the overall exe-
cution time of a DAG application in a hetero-
geneous environment. While being effective at
optimizing makespan, the HEFT algorithm does
not consider the monetary cost and budget con-
straint when making scheduling decisions. In this
paper, the HEFT algorithm is extended in order to
resolve the BDC-planning problem and the new
algorithm is called the Budget-constrained Hetero-
geneous Earliest Finish Time (BHEFT). In the ex-
perimental section of the paper, it is demonstrated
that, for the BDC-planning problem, the pro-
posed heuristic addresses well the aforementioned
challenges. In addition, it performs well com-
pared to sophisticated heuristics, but costs much
less in terms of computation and communication
overheads.

This paper is an extended version of a paper
that first appeared in [40]. The main changes made
in this paper include: (1) a detailed description
of the BDC-planning model with a sequence dia-
gram to depict the BDC-planning procedure has
been added; (2) a more sophisticated example
to illustrate the proposed heuristic has been in-
cluded; (3) a more flexible model to calculate
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execution time and cost without the restriction of
the notion of power (Section 3 in [40]); (4) two of
the four DAGs used in the evaluation in [40], were
replaced by DAGs with a larger number of nodes
to allow the investigation of a wider spectrum of
different workflow types.

In the rest of this paper, related work is re-
viewed in Section 2. The model assumed and a
problem definition are presented in Section 3.
A novel BDC-planning heuristic (BHEFT), as
well as an illustrative example, is described in
Section 4. Experimental details and simulation
results are discussed in Section 5. The paper is
concluded in Section 6.

2 Related Work

Admission control problems have been studied
in various computing platforms where QoS is
considered. Yeo and Buyya [35] investigated the
advance impact of inaccurate runtime estimates
for deadline constrained job admission control
in clusters. Yin et al. [36] proposed a predictive
admission control algorithm to support advance
reservation in equipment Grids. Admission con-
trol issues were also studied as a subproblem
of resource management in Grids which support
SLAs [1, 13]. Nevertheless, none of these pa-
pers takes budget requirements from users into
account; moreover, the applications they target
are not workflows. Cost and deadline constrained
admission control for workflows in IaaS clouds
was studied in [17], where algorithms for both
task scheduling and resource provisioning were
proposed and assessed. However, the resource
model considered in these algorithms consists of
homogeneous virtual machines.

Admission control for workflows in market-
oriented Grids requires bi-criteria DAG planning
techniques. A Grid capacity planning approach
is presented in [27], which aims at producing a
plan for a workflow without reservation conflicts
to optimize resource utilization and multiple QoS
constraints. However, this paper mainly focused
on a 3-layer negotiation mechanism rather than
a planning heuristic itself. The studies in [21, 22]
proposed mapping heuristics to meet deadline
constraints, at the same time minimizing the reser-

vation cost of workflows, but they assumed that
workflow tasks can be multiprogramming, some-
thing not commonly encountered in workflow
scheduling studies [33]. Based on the model of
Utility Grids, the time-cost constrained optimiza-
tion has been studied for meta-scheduling [9–11]
in which planning is considered at application-
level, but applications are assumed to be inde-
pendent rather than task-based and bounded by
dependencies as is the case in workflow DAGs.
Therefore, although they consider both time and
cost constraints in planning, these techniques are
not really applicable for admission control for
workflows.

To resolve the multi-objective (time and cost,
commonly) DAG planning problem, evolutionary
techniques (e.g., genetic algorithms) have been
widely used. Examples can be found in [29, 31,
37, 38]. Although algorithms based on evolu-
tionary techniques normally perform well on op-
timization, they also require significantly high
planning costs and, thus, are naturally too time-
consuming for BDC-planning. Even though an
accelerated genetic algorithm has been proposed
for multi-criteria job scheduling in Grid environ-
ments [12], the application model and constraints
are different to our work. Another multi-objective
scheduling effort for heterogeneous environments
is presented in [8], where a multi-objective list
scheduling (MOLS) algorithm is proposed to find
a solution which dominates or converges to a con-
straint vector (a set of constraint values specified
by the user for several objectives). MOLS differs
from our work on the aim the algorithm wants to
achieve. More specifically, the aim of MOLS is to
find a dominant solution by using Pareto relations.
In contrast, our proposed heuristic focuses on
maximizing the likelihood that a BDC-plan can be
found in the presence of varying user constraints
and existing loads.

There are also bi-criteria scheduling heuris-
tics for workflow applications derived from local
search and list scheduling techniques. Wieczorek
et al. [19] propose a two-phase algorithm (DCA)
to address the optimization problem with two in-
dependent generic criteria for workflows in Grid
environments. The algorithm optimizes the pri-
mary criterion in the first phase, then optimizes
the secondary criterion while keeping the primary
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one within the defined sliding constraint. In [24],
two scheduling heuristics based on guided local
optimization, LOSS and GAIN, were proposed to
adjust a schedule; these may be based on a time-
optimized heuristic or a cost-optimized heuristic,
to meet users’ budget constraints. As an exten-
sion to the DLS algorithm [28], BDLS, presented
in [7], focuses on developing bi-criteria scheduling
algorithms to achieve a trade-off between execu-
tion time and reliability. Based on local search,
DCA and LOSS require a considerable number
of repetitions to obtain a final result. As a list
scheduling heuristic, BDLS may have low com-
plexity. The main planning costs of BDLS arise
from the computation of dynamic priorities when
making scheduling decisions.

However, the key issue with these heuristics
is that they do not consider the existing load
of resources in their assumptions, and thus tend
to produce plans which may lead to reservation
conflicts, i.e., given that one resource can only
execute one task at a time, the planned task may
overlap with the tasks of other workflows which
have already been reserved. With an added com-
munication phase between the planner and service
provider (as will be described in Section 4.3) and
a slight change in algorithm design, these heuris-
tics may be modified in order to produce BDC-
plans without reservation conflicts. In Section 5,
such modified heuristics will be compared with
our proposed heuristic, BHEFT, in terms of both
planning performance and overhead.

To the best of our knowledge, there is no pre-
vious study which attempts to address equally all
four key elements of the BDC-planning problem
at the same time, that is: (i) workflow planning
for (ii) admission control of (iii) market-oriented
environments while (iv) considering dynamically
existing loads in non-dedicated resources. Unlike
the aforementioned works which exhibit draw-
backs with respect to the BDC-planning chal-
lenges mentioned in Section 1, BHEFT is a novel
bi-criteria DAG planning heuristic proposed to
address these challenges. By applying BHEFT,
the planner of a market-oriented environment
is enabled to effectively determine whether a
workflow request should be accepted or not in a
real-time manner so that the establishment of an
SLA can be facilitated.

3 Problem Description

Given a workflow request with budget B and
deadline D, the BDC-planning problem is to map
every workflow task onto a suitable service in-
stance (i.e., a resource) and specify an appropriate
start time for each mapped task so that the overall
cost and execution time of the workflow are within
B and D, respectively. Of course, such a produced
plan cannot overlap with existing reservations. We
note that finding an appropriate start time for
every task results in a reservation for every task on
a specific resource; then, the whole plan consists
of a set of reservation slots for all the tasks. Such
an approach for task execution is commonly used
in practice [20, 26, 29, 30, 34, 37, 39]. As explicitly
shown in [39], such reservations may also include
some slack to provide ample time for the success-
ful execution of each task.

From the service provider’s perspective, there
is an incentive to maximize the number of
workflow requests that are serviced. Thus, as long
as a BDC-plan can be found to satisfy the con-
straints of a new request to execute a workflow, it
is expected that the provider’s admission control
will give consent to the admission of a request.
Therefore, a key objective of a BDC-planning
heuristic is to maximize the likelihood that a
BDC-plan can be successfully found for a given
workflow request, which, in turn, can maximize
the acceptance ratio of admission control for the
provider.

3.1 Notation and Assumptions

The notation used and the assumptions made to
solve the BDC-planning problem are summarized
below:

– A Directed Acyclic Graph (DAG) G is used
to represent the submitted workflow applica-
tion. A DAG consists of a set of nodes V, each
of which denotes a workflow task, and a set of
edges E, each of which denotes a dependency
between two dependent tasks.

– A set of resources, which are assumed to be
heterogeneous (that is, of different capaci-
ties), is given. It is also assumed that each
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resource provides a set of service types and
each task is associated with a particular service
type. For simplicity, it is assumed that each
resource can provide every type of service,
hence it can serve any task of the DAG. Thus,
when task ti runs on resource r j, it means
that task ti uses the service si, j provided by
resource r j.

– For each task of the DAG, ti, on each re-
source, r j, an estimated execution time, de-
noted by eti, j, is known. For each resource,
the price of running on the resource, denoted
by pj, is also known. Then, the cost of run-
ning ti on r j, denoted by costi, j, can be cal-
culated by costi, j = eti, j × pj. In addition, the
amount of data that needs to be transmitted
between tasks is known, as well as the trans-
mission time per data unit between resources.
So the data transmission time, denoted by
dt, between any two allocated tasks can be
determined.

– A user specifies a deadline (that is, the time by
which the whole DAG/workflow must finish),
denoted by D, and budget (that is, the maxi-
mum cost that the user is willing to pay), de-
noted by B. In real practice, users may specify
an earliest start time as well as a latest finish
time. In our setting, without loss of generality,
we can assume that the execution of the appli-
cation starts at time zero.

– In every resource, confirmed reservations
may exist. This is regarded as existing
load denoted by the set of pairs L =
{(st0, f t0), · · · (stk, f tk), · · · }, where st denotes
the start time of a reservation and f t denotes
the finish time of this reservation. Here, it
is assumed that only one service can run at
a time on a resource. Thus, each reservation
reserves the whole resource for a certain pe-
riod of time to execute a task which makes
use of a service instance provided by the
resource.

– The planner has to communicate with
resource owners to produce a plan without
reservation conflicts. We assume that the
planner has to send a Time Slot Query
(TSQ), i.e., ask for a certain length of time
slot on a specific resource, and then the
resource owner responds with the earliest

availability. Here, the alternative of allowing
the planner to retrieve all free time slots of all
resources is not considered, since individual
resource owners may not want their workload,
which may be commercially sensitive, to be
exposed. Let Lp be the existing load of
resource rp, we define TSQ in the form
of fQ(ti, rp, dati,p, dur) = min{(a, b)|(a, b)∩
Lp = ∅, a ≥ dati,p, b = a + dur}, where dati,p

means the time all required data is available
for task ti on resource rp, and dur denotes the
required duration which is considered to be
equal to the estimated execution time eti,p.
For instance, let L1 = {(0, 6), (8, 12), (30, 50)}
and for task 0, dat0,1 = 0 and et0,1 = 3, then it
holds that fQ(0, 1, 0, 3) = (12, 15).

3.2 Planning Model

As indicated above, three different entities are
considered in our model of the BDC-planning
problem: user, planner, and local resource man-
ager(LRM).

A local resource manager (LRM) owns re-
sources and provides particular services available
from its resources. The information related to
these services is registered in a service reposi-
tory to be retrieved by the planner or published
to users. Moreover, the local resource manager
responds to enquiries from the planner about
the availability of a requested time slot on its
resources, information which is needed to make
planning decisions.

A user is the consumer of the provided ser-
vices. To run an application on the resources, the
user needs to submit first a request specifying
the workflow he/she wants to run, as well as the
budget and deadline constraints.

A planner comes up with a plan of how the
submitted workflow can run on the resources
owned by LRMs, taking into account their exist-
ing reservations. The planner does not own any
resource, so it is not supposed to directly schedule
the workflow tasks to the resources. Instead, it
plans based on the retrieved information about
resources from LRMs.

Figure 1 shows how the user, the planner
and the LRMs interact during a BDC-planning
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Fig. 1 Sequence diagram
for BDC-planning

procedure. The protocol can be summarized as
follows:

1. A user submits a workflow request with bud-
get and deadline to the planner.

2. Upon receiving the workflow and associated
constraints, the planner begins planning in or-
der to find possible allocations for all tasks of
the workflow. To do this, the planner needs
to find the earliest finish time of a task on a
particular resource (assuming an earliest start
time). To get this information, the planner
needs to send an enquiry (TSQ) to the LRM
which controls the resource.

3. Once planning completes, the planner checks
whether the constraints can be satisfied and
responds to the user. If any of the constraints
is not met, the workflow request will be re-
jected; otherwise, the workflow tasks will be
reserved according to the planning result and
the user will be notified with acceptance.

It is also assumed that the user will accept the
reservation as long as constraints are met. It is
easy to modify the protocol to cover the case that
even though user constraints are met, the user
may still not proceed with a reservation.

4 Solution of the BDC-Planning Problem

4.1 The Proposed Heuristic

The proposed heuristic, BHEFT, is an exten-
sion of the well-known DAG scheduling heuristic
HEFT by taking a budget constraint into account
when planning tasks. Similar to the original HEFT
algorithm, BHEFT also has two major phases:
task prioritizing and service selection. BHEFT is
shown in Fig. 2.

In the task prioritizing phase, the priorities
of all tasks are computed using upward ranking
which is the same as defined in the original version
of HEFT [32]. The rank of a task i is recursively
defined by

ranki = eti + max
j∈Succ(i)

{
dti, j + rank j

}
(1)

where Succ(i) is the set of the child tasks of task i,
eti is the average execution time of task ti, dti, j is
the average data transfer time of edge ti → t j. In
the case of childless nodes, the rank equals to the
average execution time.

In the service selection phase, the tasks are
selected in order of priority. Each selected task is
allocated to its “best possible” service, of which
the metric may change according to an assess-
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Fig. 2 The BHEFT heuristic

ment of the spare budget which varies as plan-
ning proceeds. For this assessment, three variables
are used: Spare Application Budget (SAB), Cur-
rent Task Budget (CT B), and Adjustment Factor
(AF). Suppose that the kth task is being allocated,
SABk and CT Bk are respectively computed by

SABk = B −
∑k−1

i=0
ci −

∑n−1

j=k
c j (2)

CT Bk = ck + SABk × AFk (3)

where B is the given budget, ci is the reserva-
tion cost of the allocated task i, c j is the average
reservation cost of the unallocated task j over
different resource mappings, n is the number of
tasks. It is not difficult to see that SABk is a value
intended to depict the expected spared budget
when planning task tk, CT Bk is a value intended
to quantify the budget allocated to tk, and AFk is
a value intended to act as a weight that tunes the
impact of SABk on CT Bk. We note that different
values for AFk may lead to different variants of
BHEFT with different results. Apparently, given
certain values of ck and SABk, CT Bk grows as
AFk increases. For a task k, the larger CT Bk is,
the more likely it is that k will be allocated to
a more expensive but more powerful resource.
This is because AFk is used to adjust the amount
of spare budget for the whole workflow (SABk)
given to the current task. A reasonable approach

is to make AFk equal to the ratio between the
average cost of the current task to the sum of the
average costs of the remaining tasks as follows:

AFk =
{

ck/
∑n−1

i=k ci : SABk ≥ 0
0 : SABk < 0

(4)

Based on the allocated budget to task tk, a
set S∗

k is constructed consisting of an af fordable
service for task k, i.e.,

S∗
k = {sx,p|∃sx,p, ck,p ≤ CT Bk} (5)

Then the “best possible” service is selected by the
selection rules as follows:

1. If S∗
k 
= ∅, the affordable service with the ear-

liest finish time is selected;
2. If S∗

k = ∅ and SBA ≥ 0, the service with the
earliest finish time selected;

3. If S∗
k = ∅ and SBA < 0, the cheapest service

is selected;

The algorithm terminates when all tasks, as
ranked in the task prioritizing phase, are
considered.

4.2 An Example

An example workflow with 10 tasks is used here
to illustrate the BHEFT heuristic. The example is
shown in Fig. 3. More specifically: Fig. 3a shows
the structure of the DAG and the amount of
data transferred as a result of each dependence;
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Fig. 3 An example
of BDC-planning

Fig. 3b gives the estimated execution time of each
task on three different resources; Fig. 3c gives
the data transmission cost between different re-
sources; Fig. 3d gives the price for running tasks
on each resource; and Fig. 3e depicts the exist-
ing load (that is, existing reservations, which are
denoted by the shaded part and annotated with
specific start and finish times next to each part)
of each resource.

We note that the arrows in Fig. 3a, denot-
ing a dependence, may cause a delay to transfer
data between two dependent tasks if the tasks
are executed on different resources. This delay
is computed by the product of the amount of
data transferred and the transmission cost. For
example, task 8 needs to transmit 35 units of
data to task 9 and the transmission cost between
resource 0 and resource 2 is 1.40. This means that
if task 8 is executed on resource 0 and task 9 is
executed on resource 2, there will be a delay equal
to 35 × 1.40 = 49 until all the data generated by
task 8 and needed by task 9 is transferred across
resources. We assume that this delay is zero if two

tasks, connected by a dependence, are executed
on the same resource.

Assume a deadline of 250 and a budget of 150.
Then, the steps taken by BHEFT to find a possi-
ble allocation for each task (and, hence, a BDC-
plan) can be summarized as shown in Table 1;
workflow tasks are sorted in the order that they
get planned (as ranked). The values computed for
each planned task clearly suggest how BHEFT
guides the planning to be within budget and dead-
line constraints. For instance, when the first task is
planned, the expected spare budget for the whole
application (represented by SAB0) is less than
zero. Then there is only one affordable service for
task 0, which is provided by the cheapest resource.
When task 8 is planned, there is an abundance of
spare budget, so all three services are affordable.
In this case, for task 8, the service with the mini-
mum execution time can be chosen.

Figure 4 shows the outcome of BDC-planning
using BHEFT on the example DAG. In order
to satisfy the budget constraint in this example,
BHEFT allocates most of the workflow tasks to
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Table 1 An example to illustrate the steps of BHEFT using the workflow in Fig. 3

Taskk Rankk SABk CT Bk AFk S∗
k Selected Start Finish Cost

0 184.51 −20.51 15.13 0.00 s0,1 s0,1 0.0 12.0 3.48
1 147.6 −8.86 22.78 0.00 s1,1, s1,2 s1,2 22.88 53.88 12.4
4 139.51 1.53 10.87 0.08 s4,1, s4,2 s4,2 12.0 47.0 10.15
2 132.40 2.12 17.46 0.14 s2,1, s2,2 s2,1 47.0 58.0 3.19
3 114.49 16.09 11.63 0.10 s3,1, s3,2 s3,2 53.88 65.88 4.8
5 93.56 21.37 27.45 0.24 s5,1, s5,2 s5,2 72.84 105.84 13.2
7 90.96 30.56 34.87 0.34 s7,1, s7,2 s7,1 87.21 123.21 10.44
6 81.40 44.63 37.00 0.40 s6,1, s6,2 s6,2 105.84 130.84 10.0
8 77.22 53.74 33.29 0.40 s8,0, s8,1, s8,2 s8,0 103.68 125.68 20.24
9 34.33 45.06 62.10 1.00 s9,0, s9,1, s9,2 s9,2 177.57 204.57 10.8
The given budget is 150, and sum = 98.70

the cheapest resource R2, while only one task is
allocated to the more expensive resource R0. It
can also be seen that the start time of task 7 and
task 9 relies not only on task dependencies, but
the existing load as well.

Fig. 4 The possible schedule plan generated by BHEFT
using the workflow in Fig. 3

4.3 Extensions to Existing Bi-Criteria Planning
Heuristics

As already mentioned in Section 2, there
are several bi-criteria scheduling heuristics for
workflows, which, however, were not designed
specifically for the BDC-planning problem and
need to be modified to produce BDC-plans. This
means that they need to incorporate a mecha-
nism for obtaining existing reservations from re-
sources, by means of Time Slot Queries (TSQs),
as specified in Section 3.1.

There are two ways for a scheduling heuristic
to produce a plan that avoids reservation conflicts.
One way is to produce an initial plan without con-
sidering the existing reservations and then, using
TSQs, to reallocate the time slot for each mapped
task in the order that tasks are initially scheduled
(essentially, time slots will be shifted towards a
later time, which can fully accommodate the slots
onto a resource). In this case, the communication
costs may be small but the overall performance of
the heuristic may degrade, as a result of longer
makespans. The second way is to modify algo-
rithms to take into account existing reservations,
but this requires more fine-grain changes to the
algorithms. The first approach is less costly and
we used it to extend DCA [19], which already
has a high execution time cost, whereas we used
the second approach to modify LOSS [24] and
BDLS [7] as will be described next.

The basic idea of the LOSS approach [24] is
as follows. The approach uses the schedule pro-
duced by any DAG scheduling heuristic (e.g.,
HEFT [32], HBMCT [25], etc.) as an initial
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assignment. If the cost of this assignment exceeds
the budget, the LOSS routine is invoked. The
approach computes the LOSS weight for each task
to each resource, and recursively re-assigns tasks
until the budget constraint is met or all possible
reassignments have been tried. Here, the LOSS
weight is defined as follows:

LossWeighti, j = Tnew − Told

Cold − Cnew
(6)

where Told and Cold (Tnew and Cnew, respectively)
stand for some time property and cost property
associated with the current assignment (or the
assignment after re-assigning task i to resource
j, respectively). For example, T and C can refer
to the execution time and cost for an individual
task; or they can refer to the makespan and the
overall cost for the whole application. Based on
our experience, using the latter leads to better
performance for LOSS.

Within this setting, in order to ensure the plan
produced by LOSS will not conflict with existing
reservations, we make a simple extension. We
take into account the existing load every time the
LOSS weight is computed. That is to say, given an
assignment of tasks to resources, for each task, the
planner has to communicate with a local resource
manager to get an idea about the earliest finish
time of the task on a particular resource. This
can be realized by using TSQ as introduced in
Section 3.1. Using such an extension, LOSS will
no longer produce a plan conflicting with existing
reservations. However, as LOSS needs to com-
pute the LOSS weight for each task on each re-
source, the computation and communication cost
will be considerably higher with this extension.

The extension of BDLS is similar to that of
LOSS. We change BDLS in such a way that every
time there is a need to compute the earliest finish
time of a task on a resource, TSQ is used.

5 Performance Evaluation

5.1 Experimental Setting

To run the experiments, a job planner and a
set of resources were simulated by Java pro-

grams distributed on computing nodes with Intel
I3 CPU with 3.1 GHz, 2 GB memory and con-
nected through Gigabit Ethernet. The communi-
cation between the job planner and the service
providers was implemented by socket program-
ming. The existing load of resources was also ran-
domly generated for simulation. Given a specific
period between time a and b , the existing load
of each resource p (i.e., Lp) is parameterized by
two pre-specified values: Utilization Rate (UR)
and Average Task Load (ATL). The former is
the ratio of the total reserved time to the whole
period, and the latter is the ratio of the number
of tasks appearing during a certain period to the
length of this period. Then, the average duration
of a reservation slot is RD = UR/ATL; for the
average duration of an idle slot we can use the
formula I D = (1 − UR)/ATL.

The following procedure describes how the ex-
isting load of resource p (Lp) was constructed for
a given period of time, specified by the interval
[a, b ].
1. Set Lp = ∅ and current time CT = a.
2. Randomly determine current state among re-

served and idle with equal probability.
3. If reserved: (a) randomly generate reserved

duration RD by normal distribution with
mean RD and standard deviation RD/2 using
only positive values for RD (RD > 0); (b)
set Lp = Lp ∪ (CT, CT + RD); (c) set CT =
CT + RD; (d) switch current state to idle.

4. If idle: (a) randomly generate idle duration
I D by normal distribution with mean I D and
standard deviation I D/2 using only positive
values for I D (I D > 0); (b) set CT = CT +
I D; (c) switch current state to reserved.

5. Repeat Steps 3 and 4 until CT reaches b .

There were two service providers in the eval-
uation, each of which managed three resources,
hence, there were 6 resources in total. Note that
the model of task execution time and cost in this
paper is different to the model of our earlier work
presented in [40]. Instead of assuming task execu-
tion times and costs are consistent with resource
power as in [40], we assume there is arbitrary
heterogeneity with respect to task execution time.
For each task on each resource, the estimated
task execution times are randomly chosen from
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the interval [10, 100]. For each resource, the price
for running a task on it is randomly chosen from
the interval [0.1, 1]. The period considered for
modelling existing reservations was [0, 5000].

Four types of DAGs, corresponding to real-
world workflow applications, were considered in
the experiments. These are:

– AIRSN [15] with 53 nodes
– LIGO [6] with 77 nodes
– Montage [3] with 98 nodes
– SDSS [2] with 124 nodes

The communication computation ratio (CCR)
was randomly selected from the interval [0.1, 1.0]
and the data amount transmitted between tasks is
randomly generated according to the CCR.

Given a DAG, constraints for reasonable val-
ues for deadline and budget were generated as
follows. For simplicity, a job was always assumed
to start at time 0. The makespan MHEFT was
computed by applying the HEFT algorithm [32]
to the DAG without considering the existing load
of resources. The deadline constraint DC was
considered to be located between the lower bound
LBdc = MHEFT and the upper bound UBdc = 3 ×
MHEFT. A deadline ratio φd was used to depict the
position of DC by DC = LBdc + φd × (UBdc −
LBdc), where 0 ≤ φd ≤ 1.0. For budget constraint,
LBbc was the lowest total cost obtained by
mapping each task to the cheapest service, and
U Pbc, the highest total cost obtained conversely.
Similarly, a budget ratio φb was used to spec-
ify the possible budget constraint BC = LBbc +
φb × (UBbc − LBbc), where 0 ≤ φb ≤ 1.0.

BHEFT was compared with DCA [19],
LOSS [24] and BDLS [7] in the experiments.
As mentioned in Section 3, some modification
is needed to use these heuristics, which do
not consider the existing load of resources, to

produce a contention-free BDC-plan. According
to the evaluation in [19], where existing loads on
resources (and hence TSQ) are not considered,
DCA, which is based on extensive local search,
has the best optimization performance but the
highest time overhead, as opposed to BDLS
which is a static list scheduling heuristic using a
dynamic priority. Therefore, TSQ was introduced
into LOSS and BDLS only, while DCA was
modified as mentioned in Section 3 (that is, a plan
is first generated without considering existing
loads and, then, TSQ is used to reallocate the time
slot allocated to each task to resolve reservation
conflicts).

When showing the experimental results in
figures, the suffix _TSQ was added to the names
of the algorithms which used TSQ, to distin-
guish them from DCA which does not consider
TSQ. The original names, without the suffix, are
used for short in the discussion. In terms of the
configuration of DCA and BDLS, the same set-
tings as used in [19] are adopted, i.e., a memo-
rization table consisting of 100 cells with up to
10 intermediate solutions stored in each cell was
used by DCA, and the parameter δ for BDLS was
determined by a binary search with a maximum
of 15 loop iterations. Furthermore, LOSS3 in [24]
is assumed to represent LOSS. Finally, all heuris-
tics terminate immediately when a BDC-plan is
found.

For each experiment, all of the parameters
except for those which were given and fixed,
were re-initialized at random with the above
specifications. After a heuristic was run, if a BDC-
plan was found, the planning succeeded, oth-
erwise, a failure was reported. To analyze the
performance of each heuristic, the experiment was
repeated multiple times and the metric Planning
Success Rate (PSR) was used, as defined below:

PSR = 100 × number of times for which a BDC-plan was found

number of total repeated times of experiment
(7)

Four sets of experiments were carried out. In
the first one, φd and φb were fixed to be 0.5,
while UR was varied for each resource from 0
to 0.5 in the step of 0.1 with the corresponding

ATL = 0.05 × UR. The experiment was repeated
500 times to observe how the existing load of
resources affected the PSR of each heuristic. In
the second set of experiments, UR was randomly



644 W. Zheng, R. Sakellariou

generated in the interval [0.1, 0.4], and the ATL
was computed correspondingly. φd and φb were
selected from the set {0.25, 0.5, 0.75} to form 9
combinations which covered a wide spectrum of
diverse user requests; the experiment was then
repeated 500 times for each combination. Thus,
the value of PSR was investigated under various
constraints (from tight to relaxed). In the third
set of experiments, we studied the same 9 com-
binations for user requests but for three specific
values of UR. Finally, in the fourth experiment,
the average running time of each heuristic to do
planning was measured. This experiment was re-
peated 100 times for each workflow with various
combinations of constraints.

5.2 Experimental Results

First set of experiments Figure 5 shows the results
of the first set of experiments where the impact
of the existing load of resources is investigated
by considering six values for the Utilization Rate,
UR, from 0 to 0.5. Here, φd and φb are both
fixed to be 0.5 to avoid unnecessary disturbance
caused by setting the user constraints to be too
tight or too relaxed. It can be seen from Fig. 5
that the behaviour of the compared heuristics
in terms of their PSR follows the same pattern
regardless of the type of DAG. BHEFT shows
the best performance in most cases where the
utilization rate is lower than 0.3. When the uti-
lization rate is equal to 0.3, LOSS outperforms
BHEFT. LOSS’s superiority is more profound as
we move from the smallest DAG (AIRSN with
53 nodes) to the largest DAG (SDSS with 124
nodes). Only in the case where SDSS is used and
utilization rate equals 0.3, BDLS performs the
best and clearly better than BHEFT. As expected,
all heuristics perform worse as UR increases. With
a fixed setting of user constraints, it looks like the
performance of LOSS and BDLS is more stable
than BHEFT. In the third experiment, we will see
how, with different constraints, the performance
of these heuristics changes as the utilization rate
grows.

Second set of experiments In the second set of
experiments, the performance of each heuristic
was investigated under various circumstances of

user constraints, from tight to relaxed. As already
mentioned we considered nine combinations of
different types of constraints. Figure 6 shows the
value of PSR for different types of DAG and
different budget-deadline constraints. Again, it
can be seen from Fig. 6 that the behaviour of
the compared heuristics in terms of their PSR
follows the same pattern regardless of the type of
DAG. One interesting observation is that when
both the deadline constraint and the budget con-
straint are tight, for example, φd = 0.25 and φb =
0.25, all four heuristics obtain low PSRs; among
them, BHEFT achieves the best PSR which is be-
tween 40 to 60 %, and LOSS achieves the second
best PSR which is between 30 to 50 %. In addi-
tion, although BHEFT performs worse than either
LOSS or BDLS in some cases, it never performs
clearly worse than both LOSS and BDLS at the
same time. This suggests that BHEFT may be less
sensitive to the tightness of budget and deadline
constraints, compared to LOSS and BDLS. In
fact, when the deadline constraint is tight, BDLS
performs particularly bad; while when the bud-
get constraint becomes tight, LOSS’s performance
degrades significantly. In contrast, BHEFT deals
with the impact of the constraints in a more gra-
cious way.

Third set of experiments In order to consider the
impact of the Utilization Rate in more detail, we
studied the PSR for the nine different combina-
tions of user constraints and three different values
of utilization rate. The results, for two types of
DAG, Montage and LIGO, are shown in Figs. 7
and 8. Once again, BHEFT performed the best
among the competitive heuristics when both dead-
line and budget constraints are tight. The perfor-
mance of DCA, which is the only heuristic that
does not consider the existing load during plan-
ning, degrades dramatically as the utilization rate
grows. This highlights the impact that the existing
load of resources may have on BDC-planning.
With different values of utilization rate, we can
again observe that BHEFT is less sensitive to the
variance of constraints than LOSS and BDLS. As
expected, when the Utilization Rate is low, that
is when there is little existing load on resources,
and the constraints for budget and deadline are
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Fig. 5 First set of
experiments: PSR with
different utilization rate
of resources

(a) AIRSN, 53 nodes

(b) LIGO, 77 nodes

(c) Montage, 98 nodes

(d) SDSS, 124 nodes
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Fig. 6 Second set of
experiments: PSR with
different types of
constraints

(a) AIRSN, 53 nodes

(b) LIGO, 77 nodes

(c) Montage, 98 nodes

(d) SDSS, 124 nodes
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Fig. 7 Third set of
experiments: PSR with
different utilization rates
and constraints for
Montage

(a) Montage, Utilization Rate = 0.2

(b) Montage, Utilization Rate = 0.3

(c) Montage, Utilization Rate = 0.4

relaxed (e.g., φd = 0.75 and φb = 0.75), all heuris-
tics perform equally well.

In the first, second, and third set of expriments,
we compared the four competing heuristics in a
total of 114 different cases. We also counted how
each of the four heuristics ranked in comparison
to the others. To do this, first we excluded those
cases where none of the heuristics obtained a
PSR over 10 %. Such cases exist when: (i) the

Utilization Rate is 0.4 or 0.5 in Fig. 5; and (ii) φd =
0.25 in Figs. 7c and 8c. Then, a total of 100 cases
remained. In these 100 cases, for each heuristic,
we count how many times the heuristic ranks
first, second, third or fourth. The relevant count
is denoted by R1, R2, R3 and R4, respectively, in
Table 2. Note that two or more heuristics can
share the same rank if there is a tie. Finally, an
average ranked value, AR, is obtained by comput-
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Fig. 8 Third set of
experiments: PSR with
different utilization rates
and constraints for LIGO

(a) LIGO, Utilization Rate = 0.2

(b) LIGO, Utilization Rate = 0.3

(c) LIGO, Utilization Rate = 0.4

ing AR = (R1 + 2R2 + 3R3 + 4R4)/100.0 for each
heuristic. As shown in Table 2, the results clearly
indicate that BHEFT outperforms other competi-
tors on average.

Fourth set of experiments In the fourth experi-
ment, the execution time needed by each algo-
rithm to obtain a planning result was studied.
Figure 9 shows how the running time of each

heuristic varies over diverse types of DAG and
constraint settings. It is not surprising that, in most
of the cases, LOSS has the highest time costs due
to the overhead caused by numerous TSQs. It
can be easily imagined that some other sophisti-
cated algorithms, such as DCA or genetic algo-
rithms, if using TSQ when scheduling, may need
even more time compared to LOSS. Our results
suggest that even LOSS may not be scalable to
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Table 2 Ranking count results for the first, second and
third set of experiments

Heuristic R1 R2 R3 R4 AR

BHEFT 39 51 10 0 1.71
DCA 0 2 26 72 3.70
LOSS 36 27 36 1 2.02
BDLS 44 14 23 19 2.17

large applications and too time-consuming for on-
line workflow planning. Although not using TSQ,
the DCA heuristic considered in the experiment
still has an execution time comparable to BDLS,
and this is significantly higher than BHEFT. The
latter two algorithms, BDLS and BHEFT, are
both based on list scheduling, but BHEFT needs
evidently less running time than BDLS due to
simpler computation and the fact that less commu-
nication is needed when making scheduling deci-
sions. Furthermore, BHEFT is the most scalable
in terms of the growth of DAG size (and poten-
tially the number of resources which is considered
constant in this experiment). As can be seen in
the graph, when planning SDSS with 124 nodes
on 6 resources, BHEFT only needs around 0.08 s
on average. This suggests that BHEFT copes
well with the real-time requirements of workflow
planning.

5.3 Summary of Observations

The experimental results lead to the following
observations:

– The existing load of resources may have sig-
nificant impact on BDC-planning. Directly ap-
plying a heuristic that does not consier the
existing load of resources in job planning (e.g.,
DCA) may result in a significant degradation
of PSR. In contrast, BHEFT, which takes
the existing load of resources into account, is
able to achieve a significant improvement on
the success rate of finding a BDC-plan which
simultaneously satisfies deadline and budget
constraints.

– Some guided local search heuristics (for exam-
ple, LOSS) may sometimes perform slightly
better than BHEFT, but at a higher execution
time cost and, thus, they are naturally non-
scalable as the size of DAG increases. Such
heuristics are not suitable for BDC-planning
with real-time requirements.

– Compared to the results in our previous
work [40], where task execution times and
costs were assumed to be consistent with the
resource power, the performance of BHEFT
and DCA is similar in the evaluation of this
paper too, where task execution times and
costs are assumed to be arbitrary. The notable

Fig. 9 Fourth set of
experiments: execution
time for each heuristic
with different DAGs and
user constraints
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exception is LOSS, which performs much bet-
ter when task execution times and costs are as-
sumed to be arbitrary. This is possibly because
of its use of the weight (6), which can easily
take into account differences of cost and exe-
cution. This implies that LOSS may be better
used in computing environments where there
is inconsistent heterogeneity even though fur-
ther investigation is required to support this.

– In the context of BDC-planning, simple list
scheduling bi-criteria heuristics (for example,
BHEFT and BDLS) may be as effective as
more sophisticated heuristics based on exten-
sive local search, such as DCA.

– With low running cost, BHEFT seems to be
a good choice satisfying the requirements of
BDC-planning.

6 Conclusion and Future Work

BDC-planning is required before an SLA is es-
tablished in order to guarantee that a service
provider can meet the SLA without risking its
failure. This paper proposed BHEFT, a novel
low-cost bi-criteria heuristic based on the well-
known DAG scheduling heuristic HEFT, to fulfill
the specific requirements of BDC-planning. The
experimental results suggest that BHEFT appears
to be at least as effective, or even more so than
other existing sophisticated bi-criteria workflow
scheduling heuristics, and has a lowest execution
time cost and good scalability. It also appears
that BHEFT can effectively and efficiently find
a BDC-plan under various circumstances of con-
straints, from tight to more relaxed. Thus, the use
of BHEFT can enable a quick admission control
decision (i.e., a judgement of whether or not a
submitted user request is acceptable), and make
it possible to automate the creation of an SLA
(from the provider’s point of view) over diverse
user constraints.

Based on the work in this paper, further work
could try to examine the performance of BHEFT
using different DAGs, settings of resources, and
possibly a different core DAG scheduling heuris-
tic (that is, not HEFT). Further experiments
could also investigate how BHEFT can cope with

significant overestimations or underestimations
of task execution time and assess its robustness
against such uncertainties.
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