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AbstractWe propose a novel image segmentation technique using the robust, adaptive least k-th ordersquares (ALKS) estimator which minimizes the k-th order statistics of the squared of residuals.The optimal value of k is determined from the data and the procedure detects the homoge-neous surface patch representing the relative majority of the pixels. The ALKS shows a bettertolerance to structured outliers than other recently proposed similar techniques: Minimize theProbability of Randomness (MINPRAN) and Residual Consensus (RESC). The performance ofthe new, fully autonomous, range image segmentation algorithm is compared to several othermethods.Index Terms|robust methods, range image segmentation, surface �tting
1 IntroductionA range image provides geometric information about the object independent of the position,direction, and intensity of light sources illuminating the scene, or of the re
ectance properties ofthat object. Many object recognition algorithms using range images as input were proposed [1].To recognize a 3D object, �rst its range image has to be segmented into homogeneous regions.Uncorrupted range images can be approximated reasonably well by a piecewise polynomialsurface, and thus a homogeneous region corresponds to a polynomial surface patch.There are two \traditional" approaches toward segmentation of piecewise polynomial data.In the region-based range image segmentation methods �rst the pixels having similar propertiesare grouped together. For example, Besl [2] classi�ed the pixels as belonging to one of eightsurface types depending on the sign of the Gaussian and mean curvature. The range image wasthen segmented using a variable-order surface �tting algorithm. In the edge-based methods,1



on the other hand, �rst the discontinuities are extracted and the segmentation is then guidedby the obtained contours. For example, Fan et al. [5] extracted edges based on the principalcurvature and segmented the image using a heuristic post-processing.Signi�cant e�ort is required to compare the performance of di�erent range segmentationmethods. In [8] a rigorous framework was developed (including ground truth based quantitativemeasures) and four traditional techniques for segmentation into planar patches were evaluated.None of the methods provided superior performance under all the evaluation criteria.Robust estimation techniques [12] can also be used to recover the parameters of a surfacepatch. The percentage of tolerated outliers determines the breakdown point of the estimator.The two most frequently used classes of robust estimators are the M-estimators and the family ofhigh breakdown point (close to 0.5) techniques. The least median of squares (LMedS) estimatoris the best known from the latter class. See [18] for an introductory text on robust estimatorswith an emphasis on LMedS. The breakdown point of the M-estimators cannot exceed forarbitrary sparse range data 0.3, however, for most noise processes corrupting the inliers theM-estimators being a weighted least squares type technique with data dependent weights, aremore e�cient than LMedS.Koivunen and Pietik�ainen [10] compared the performance of M-estimators (the algorithmproposed in [3]), and least trimmed squares estimator (a high breakdown point technique).Roth and Levine [20] proposed a Hough transform type evidence accumulation method, similarwith the computation of LMedS. The idea of using subsets of the data is also at the basis ofthe Residual Consensus method proposed by Yu et al. [23]. Boyer et al. [4] developed a rangesegmentation system in which an M-estimator is used as the main computational module. Theerror norm used in [11] provides bounded sensitivity to outliers, i.e., the method can also beregarded as a robust approach.The breakdown point of any one-step robust estimator cannot exceed 0.5. That is, theinliers must be the absolute majority in the data in order to be able to recover for arbitrary2



outliers and without additional assumptions, their underlying model. This condition cannot besatis�ed in a range image, and many segmentation algorithms therefore start by detecting seedregions. The homogeneity of the seed regions is established with high con�dence, and the �nalsegmentation is obtained by extending these regions using robust estimators and/or heuristicse.g., [4], [11].However, it is possible to design multi-step procedures which can recover, in the lack of anya priori information, the model parameters representing the relative majority of homogeneouspixels in the window of analysis. These procedures tolerate more than half of the data beingoutliers, i.e., the apparent breakdown point exceeds 0.5. It must be emphasized that thisbreakdown point does not have the same meaning as that of a one-step robust estimator, i.e.,as it is used in statistics.In Section 2 we propose a multi-step procedure, the adaptive least k-th order squares (ALKS)estimator, and compare its performance with two other procedures described in the literature:Minimization of the Probability of Randomness (MINPRAN) [22], and Residual Consensus(RESC) [23]. In Section 3, a range image segmentation technique based on ALKS is describedand its performance compared with several other methods.2 Adaptive Least k-th Order Square EstimatorLet ri; i = 1; � � � ; n; be the residuals associated with the data points in the window, i.e., thedi�erence between the given observation and the value predicted by the estimated model. (Forconvenience we use a single index for the data points.) The least median of squares estimator(LMedS) �nds the model parameters which minimize (r2)k:n, where the subscript means thek-th largest residual in the ascendingly ordered list, and k is equal to [n=2] + [(p+ 1)=2] ([�] isthe integer part operator), with p being the number of parameters of the model ([18], p.124).The LMedS estimator will always return a model representing at least 50 percent of the data3



points.In the Random Sample Consensus (RANSAC) method [6] (very similar to LMedS thoughdeveloped earlier [12]) a model is validated by yielding more residuals within a predeterminedtolerance band than a cardinality threshold. Through setting the width of the tolerance bandand the lower bound on the number of points within it, the user can optimize performance.Stewart [22] generalized the principle behind RANSAC. He assumed that the outliers are uni-formly distributed and, for a given tolerance band, the estimated model is the one which yieldsthe least uniformly distributed residuals within. The Minimize the Probability of Randomness(MINPRAN) technique searches across the joint space of tolerance band width and the numberof points it can contain.Like all high breakdown point estimation methods, the Residual Consensus (RESC) method[23] also starts with randomly selecting the minimal number of data points from which themodel parameters can be computed. The residuals relative to the model are computed forall the data points and the inliers are selected based on Gaussian noise assumption. Thecompressed histogram of the inliers' residuals is then used to derive a criterion which is biasedtoward increased number of inliers with small residuals. The criterion incorporates two userde�ned parameters.Adaptively selecting the point set of the relative homogeneous majority, however, can alsobe achieved with the help of a robust estimator. The least k-th order squares (LKS) uses anarbitrary p < k < n in the minimization and belongs to the family of least quantile of squaresestimators ([18], p.124). Taking into account both the explosion and the implosion de�nitionsof the breakdown point [19], we obtain that the LKS estimator has the theoretical breakdownpoint of min � kn ; 1� kn�.The computation of LKS is similar to the well-known technique for LMedS (e.g., [12],[18]). A p-tuple is chosen randomly from the data to de�ne a model hypothesis. Using all thecomputed model parameters except the intercept, the residuals of this partial model, ui are4



computed. The residuals are then sorted in ascending order and the location of the shortestwindow containing at least k residuals is found. Letdl;k = u(l+k�1):(n�p) � ul:(n�p)2 (1)be the half-width of the corresponding window. The procedure is repeated for several p-tuples.Their number can be established based on simple probabilistic considerations ([18], p.197). Thep-tuple yielding the smallest dl;k, denoted d̂k, provides the LKS estimate of the model.The standard deviation of the noise corrupting the inliers, i.e., the robust estimate of thenoise variance can be approximated asŝk = d̂k��1[0:5(1 + k=n)] (2)where the compensation factor in the denominator assumes Gaussian distribution for the inliernoise, and ��1[�] is the argument of the normal cumulative density function having the valueinside the bracket. The normality of the inlier distribution is not a necessary condition, a roughestimate of how the compensation factor depends on k su�ces. Because of the �nite samplesize n, the compensation factor is not valid for very small, or very large (close to n) values ofk. Once ŝk is determined the inliers are discriminated as having residuals jri;kj � 2:5ŝk.The optimum value of k must be derived from the data. For any given k the variance ofthe normalized error, �2k, is computed�2k = 1qk � p qkXi=1 �ri;kŝk �2 = 1̂s2k Pqki=1 r2i;kqk � p = �̂2kŝ2k ; (3)where only the residuals of the qk points declared inliers by the LKS estimator are used. Theoptimum value of k is chosen as the one yielding the smallest �2k. Note that the inliers areselected based on ŝk, and therefore the distribution of �2k is di�cult to determine even for theideal case, homogeneous data corrupted with Gaussian noise. The adaptive procedure usingLKS with k chosen by minimizing (3), will be referred to in the sequel as ALKS.5



To analyze the behavior of the selection criterion (3) assume �rst that the data is homoge-neous, i.e., all the n data points belong to the same homogeneous patch corrupted with i.i.d.zero-mean noise having standard deviation �. The robust estimate ŝk is then an underestimateof � for all values of k. This observation (supported by extensive simulations) agrees with theremark of Rousseeuw for LMedS scale estimation ([18], p.202). The amount of underestimationis signi�cant for small k, which is a positive artifact since it compensates for small samplesize e�ects in computing (3). The underestimation decreases monotonically with increasing k.Given the stochastic nature of the processes, all the properties should be regarded as true withhigh probability.For homogeneous data, �̂2k is the unbiased sample variance of the noise (3), and therefore itis close to �2 once k is large enough. Thus, the criterion (3) compares a nonrobust and a robustestimate of the noise variance. Since �̂2k (belonging to the least squares family of estimators)is more e�cient than ŝk, the underestimation of � by the latter is the predominant e�ect tilllarge k values. For homogeneous regions the criterion (3) has its minimum for larger k-s, andalmost all data points are classi�ed as inliers.Let us now consider nonhomogeneous data. The n � m inliers are corrupted with i.i.d.zero-mean noise having standard deviation �, and the remaining m points are outliers. Theinliers provide the largest homogeneous region, but can represent only a relative majority inthe data. The outliers can be structured as well, as is the case in the piecewise polynomialsurface approximation of range images.First k � n � m. Assume that the LKS estimator returns an unbiased estimate of themodel for the inliers. This always can be achieved by using enough p-tuples. It is important torecognize that the residuals of the n�m inliers are distributed over the entire range of the noise.As k increases (but remains less or equal than n�m) the estimate ŝk increases monotonicallysince residuals signi�cantly larger than � are used in (1). The phenomenon, an artifact ofthe data nonhomogeneity, was analyzed in details in [15] and can cause high breakdown point6



estimators to loose their robustness properties for low signal-to-noise ratios. Thus it is expectedthat for k � n �m the criterion (3) decreases monotonically as k increases. The observationwas veri�ed by extensive simulations. Once k > n�m, at least one data point in the windowis an outlier and the estimated model is never correct. Most of the n�m residuals of the inlierpoints increase signi�cantly, yielding an increase of the criterion (3).As a simple example consider a noisy step edge analyzed under the linear (planar) model.When k � n�m the residuals of the inlier points are bounded by the noise, i.e., j ri;k j< 2:5�.When k > n�m and the noise is signi�cant, the linear �t bridges across the step and the samepoints have now a linear error term added to their residuals yielding a large jump in the valueof �̂2k. For normal noise and k � n�m the estimate �̂2k is �2 distributed, while when k > n�m,obeys a noncentral �2 distribution whose mean is increased with the noncentrality parameterof the distribution ([16], p.42).The estimate ŝk is also corrupted when the window of analysis (1) contains outliers. How-ever, the increase of ŝk is much less than that of �̂k since only the di�erence of two residuals andnot their squared sum is used. Thus, once k exceeds the size of the inlier region, the criterion�2k is expected to increase signi�cantly. A theoretically possible failure is worth mentioning. Ifseveral extreme outliers are present in the data, ŝk can become so large that the minimum ofthe criterion is produced at an incorrect k. However, for real data the pixel domain is boundedand such a situation cannot happen.The above qualitative analysis also shows one of the limitations of the criterion (3). If, forvalues of k just exceeding n�m the change in the structure of the residuals is not very abrupt,the criterion may not yield the minimum at the correct k. In the noisy step-edge exampleit happens when the signal-to-noise ratio, the step height relative to �, is small [15]. Morecomplex piecewise surfaces (like a roof edge, or a double step) are more prone to errors sincethere are more data points close to an erroneous �t. The \bridging �ts problem" of the robustestimators [21], [22] is another aspect of the same phenomenon. As will be shown below, the7



ALKS procedure is less sensitive but not immune to adverse conditions.To compare the performance of ALKS with that of other estimators, least squares (LS),LMedS, MINPRAN and RESC, four piecewise linear one-dimensional synthetic signals of in-creasing complexity were generated. Each signal contained 100 data points corrupted withzero-mean, i.i.d. Gaussian noise having standard deviation �. A percentage � of the datapoints was also corrupted with impulse noise uniformly distributed in the range of (0, 100).Line. Points (1{100): y = x� 1. � = 5. � = 0:5.Step. Points (1{55): y = 30; (56{100): y = 60. � = 3. � = 0:2.Roof. Points (1{55): y = x� 1; (56{100): y = 109� x. � = 2. � = 0:2.Double-step. Points (1{40): y = 20; (41{65): y = 40; (66{100): y = 60. � = 1. � = 0:1.In Fig. 1 the four signals are shown. The ALKS procedure used 500 p-tuples for each value of k.This number can be reduced signi�cantly without performance deterioration. Also, similar to[9], the same samples can be used for di�erent k-s. Only the multi-step procedures RESC andALKS show correct results across all the cases. However, RESC requires user tuned parametersfor optimal performance, while ALKS is entirely data driven.The behavior of the ALKS estimator is shown in Fig. 2. Nineteen uniformly spaced valuesof the index � = k=n were de�ned between 0.05 and 0.95. The four signals were generated1000 times and the ALKS procedure was applied to recover the largest homogeneous region.In Fig. 2a the dependence of �2k on the index �, averaged over the 1000 trials, is shown. Theminimum of �2k is always close to the percentage of the largest homogeneous region in the signals.Note how the steepness of the change depends on the structure of the signal. The change isleast abrupt for the roof signal where the transition between the two regions is continuous. Theprobabilities of detection are shown in Fig. 2b. The spread of the signi�cant probability valuesis small and thus the recovery of the largest homogeneous region is robust.8



3 Range Image Segmentation with ALKSThe ALKS procedure can be used as the computational module for a robust range imagesegmentation algorithm. Since the ALKS estimator detects the relative majority the algorithmcan start by de�ning the �rst processing window as the entire image. This eliminates the needfor heuristic procedures often involved in �nding the seed regions.The order of the polynomial surface used as model is an important consideration in rangeimage analysis: planar, quadratic or cubic [4]. We have found that higher order surfaces canbe accurately approximated when the segmentation is based only on planar surfaces, but useshigh breakdown point estimators. If necessary, the planar patches then can be fused using theadequate model order. The increased number of degrees of freedoms of a higher order modeloften can yield undersegmentation artifacts. For example, a spatial roof edge (a crease) will befused under a quadratic surface model. The only systematic study of the performance of rangeimage segmenters [8] also used planar patches.The ALKS based range image segmentation algorithm can be summarized as follows:1. De�ne the region to be processed as the largest connected component of unlabeled pixels.At the start, this means the entire image. The connected component algorithm from [7],vol. 1, Sec. 2.3.5, was used.2. Apply the ALKS procedure to the selected region and discriminate the inliers.3. Label the largest connected component of inliers as the delineated homogeneous patch.4. Re�ne the model parameter estimates by a least squares �t to the inliers.5. Repeat steps 1{5 till the size of the largest connected component is less than a threshold(100 pixels was used in the implementation).6. Eliminate the isolated outliers surrounded by inliers. An unlabeled pixel is allocated tothe class of the majority of its labeled four-connected neighbors.9



The range image segmentation algorithm was tested on both synthetic and real 256� 256range images. The real images were captured by a range �nder of the Seoul National University.The range �nder uses the active triangulation method [17], and a resolution is 0.1 mm bothfor the interpixel distances and depth values. The raw images were interpolated with cubicsurfaces to compensate for information loss due to shadow e�ects and nonlinear sampling alongthe row direction. The background and the objects have signi�cantly di�erent dynamic ranges,the former being automatically set to zero.The �rst processing steps of the segmentation algorithm for a real range image are shownin Fig. 3. The original range image (Fig. 3a) has a restricted set of values between 7142 and8242 (out of a total possible variation of 0 to 65535). The image was transformed into 
oatrepresentation and to emphasize the tolerance of the algorithm to missing data (outliers), wasalso corrupted with 10% impulse noise bounded only by the machine precision (�1030; 1030),(Fig. 3b). When applied to the entire image, the segmentation algorithm chooses the back-ground as the �rst region (Fig. 3c). The next detected region is the largest one from the object(Fig. 3d). After a total of 9 iterations all the image is segmented. The labeled image (Fig. 3e)is shown before the impulse noise (isolated pixels) were removed. The reconstructed image(Fig. 3f) is close to the original, the mean square error is only 3.43 for 58784 pixels. (Theremaining 6752 pixels are unclassi�ed.) The segmentation (using 500 three-tuples per LKS it-eration, and 19 steps for the index �) took less than 2 minutes on an Indigo 2 Silicon Graphicsworkstation.In Fig. 4 the segmentation of three di�erent range images are shown. Slightly distortedboundaries appear near the junction of surfaces, and the higher order surfaces are split into anumber of planar patches. Note however, that the main boundaries of these objects are correctand thus, if needed, the quadratic surfaces can be recovered by further processing.It is of importance to compare the performance of the algorithm with that of other robustrange image segmentation methods. We have chosen three such methods. The �rst two are10



typical for the spatial and feature space based approaches, and the third one is the alreadymentioned RESC technique [23].As a robust segmentation method which emphasizes the spatial information provided byadjacent pixels, the robust region growing algorithm of Meer et al. [13] was implemented. Theimage was divided into nonoverlapping 15�15 blocks within which 7�7 windows were used forlocal processing. The algorithm starts by de�ning the inlier/outlier dichotomy for each block.At subsequent iterations the inlier regions are used as seed regions for the adjacent regions ina robust merging and/or outlier conquering procedure. All the other user set values of thealgorithm were the same as in [13]. The dual approach toward segmentation is by clusteringin the space of the surface parameters. Large homogeneous regions should yield well de�nedclusters in this space. The robust clustering technique described in [9] was implemented. A15� 15 window was used to locally estimate with an M-estimator the three parameters of theplanar model. The other user set values were the same as in [9]. The implementation of theRESC technique followed the description in [23].In Fig. 5 the results of these segmentation algorithms for the real range image in Fig. 3aare shown. For proper comparison small region elimination and merging procedures are notperformed for any of the four methods. The black regions are pixels which did not acquirea label when the algorithm stopped. The region growing (Fig. 5a) and the RESC (Fig. 5c)algorithms show many incorrect regions near vertices or where the change of depth is verysteep. The clustering algorithm (Fig. 5b) yields a large number of unlabeled pixels in thesteep region as an artifact of the relative large window used in estimating the local parameters.The ALKS based algorithm (Fig. 5d) provides the most satisfactory segmentation results at asomewhat lower computational cost.The performance evaluation work for range image segmentation algorithms [8] provides alarge set of standard data together with the ground truth. We have used an image from theABW family (Fig. 6a) whose segmentation ground truth is Fig. 6b. The results of two methods11



analyzed in [8], the UB and USF algorithms with the parameters as described in the paper,are shown in Figs. 6c and 6d. They were taken from their web sites. The result for the ALKSsegmenter is shown in Fig. 6e. There is one clear mistake in the segmentation, several facesof the right object are fused. However, this error can be recovered by further processing. Thelabels associated with the delineated regions are given in Fig. 6f. The mean square error ofall the �ts, except labels 5 and 8, were between 0.299 (label 10) and 0.914 (label 4). Theremaining two labels had much larger �tting errors, 3.344 (label 5) and 5.298 (label 8). Thelatter is a region poorly captured by the sensor as the ground truth (Fig. 6b) also illustrates.The regions with high �tting errors can now be separated and thus analyzed with increasedsensitivity. Since the goal of the comparison was to contrast the raw ALKS method with moretraditional techniques, this processing step was not implemented. It must be emphasized, thatthe ALKS result is obtained without any user set tuning parameter (beside minimum regionsize) while the traditional methods require a search for the optimal set of thresholds [8].4 DiscussionThe adaptive least k-th order squares procedure described in this paper is designed to handlepiecewise structured data, a case frequently met in computer vision. Its advantage relative totraditional techniques or similar multi-step robust procedures (like MINIPRAN or RESC) isits lack of embedded a priori assumptions. There are no parameters to be tuned for optimalperformance, and the outliers can have arbitrary structure. While the inliers are assumed tobe corrupted by normal noise, this hypothesis has practically no in
uence on the results asexamples with real images have shown.Inspired by an earlier version of the ALKS procedure, Stewart developed the MUSE (mini-mum unbiased scale estimator) technique [14]. The MUSE operator detects the homogeneouspatch corresponding to a relative majority in the processing window, by seeking the value of12



k for which the k-th ordered residual (normalized by the expected value of the correspond-ing order statistic of the standard residual distribution) is minimum. The MUSE techniqueputs the emphasis on the nature of the inlier distribution and requires a lookup table for thescale estimator correction. In the ALKS approach the optimal region size is determined bycomparing a robust and a nonrobust estimate of the noise variance and not based on a singleresidual. Extensive theoretical analysis and simulations have shown [14] that MUSE will failaround signal-to-noise ratios at which the performance of MINIPRAN, ALKS or RESC alsodecline. For a step signal, this will appear close to a step height of 8�.Range image segmentation in particular, and robust analysis of image structures underthe piecewise polynomial surface model in general, are di�cult problems with the currentlyavailable solutions being not general enough to be able to handle arbitrary data. A possibleway toward further progress is to overcome some of the inherent limitations of high breakdownpoint robust estimation techniques.AcknowledgementWe would like to thank Chuck Stewart from Rensselaer Polytechnic Institute for discussionswhich signi�cantly improved the initial version of the algorithm, Adam Hoover from Universityof South Florida for helping with the USF database, and Prof. S.U. Lee from Seoul NationalUniversity for providing the range images. This work was supported in part by the EngineeringResearch Center for Advanced Control and Instrumentation (KOSEF), Seoul National Univer-sity, Seoul, Korea. Peter Meer acknowledges the support of the National Science Foundationthrough the grant IRI-9210861.References[1] F. Arman and J. K. Aggrawal, \Model-based object recognition in dense-range images {A review," ACM Computing Surveys, vol. 25, no. 1, pp. 5{43, Mar. 1993.[2] P. J. Besl, Surfaces in Range Image Understanding. New York: Springer-Verlag, 1988.[3] P. J. Besl, J. B. Birch, and L. T. Watson, \Robust window operators," Machine Visionand Applications, vol. 2, pp. 179{192, 1989.13
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(a) (b)

(c) (d)Figure 1: Comparison of �ve line �tting methods. See text.

(a) (b)Figure 2: Performance analysis of the adaptive LKS. (a) Dependence of the optimality criterionon the index. (b) Probabilities of detection. 16



(a) (b)

(c) (d)

(e) (f)Figure 3: Processing of a range image. (a) Original image. (b) Noisy image. (c) First regiondetected (the black region is not processed at this iteration). (d) Second region detected. (e)Labeled image (impulse noise retained). (f) Reconstructed image (impulse noise removed).17



(a) (b)

(c) (d)

(e) (f)Figure 4: Segmentation of three real range images corrupted with impulse noise.18



(a) (b)

(c) (d)Figure 5: Comparison of segmentation results for the real range image in Figure 3a. (a) Meeret al. (b) Jolion et al. (c) Yu et al. (d) ALKS.
19



(a) (b)

(c) (d)

(e) (f)Figure 6: Comparison of the segmentation results for the ABW image from the USF database.(a) Range image. (b) Segmentation ground truth. (c) Result of the UB algorithm. (d) Resultof the USF algorithm. (e) Result of the ALKS algorithm. (f) Label allocation in the ALKSresult. 20


