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1. Introduction     

The infrastructure-less and the dynamic nature of mobile ad hoc networks (MANETs) 
demands new set of networking strategies to be implemented in order to provide efficient 
end-to-end communication. MANETs employ the traditional TCP/IP structure to provide 
end-to-end communication between nodes. However, due to their mobility and the limited 
resource in wireless networks, each layer in the TCP/IP model requires redefinition or 
modifications to work efficiently in MANETs. One interesting research area in MANETs is 
routing. Routing is a challenging task and has received huge attention from researches. Due 
to the adaptive and dynamic nature of these networks, the Swarm Intelligence approach is 
considered a successful design paradigm to solve the routing problem. Swarm intelligence is 
a relatively new approach to problem solving that takes inspiration from the social 
behaviours of insects and of other animals. In particular, the collective behaviour of ants 
have inspired a number of methods and techniques among which the most studied and the 
most successful is the general purpose optimization technique known as Ant Colony 
Optimization (ACO) meta-heuristic. ACO takes inspiration from the foraging behaviour of 
some ant species. These ants deposit a chemical substance called pheromone on the ground in 
order to mark some favourable path that should be followed by other members of the 
colony. This behaviour has led to development of many different ant based routing 
protocols for MANETs. In this chapter, a description of swarm intelligence approach and 
ACO meta-heuristic is given, an overview of a wide range of ant based routing protocols in 
the literature is proposed and finally other applications related to ACO in MANETs and 
new directions are discussed. 

2. The swarm intelligence approach 

Swarm Intelligence (Bonabeau et. al, 1999) is a property of natural and artificial systems 
involving multiple individuals interacting with each other and the environment to solve 
complex problems exhibiting a collective intelligent behaviour. Examples of systems studied 
by swarm intelligence are colonies of ants and termites, schools of fish, flocks of birds, herds 
of land animals. Some human artifacts also fall into the domain of swarm intelligence, 
notably some multi-robot systems, and also certain computer programs written to solve 
optimization and data analysis problems. 
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Swarm intelligence has a multidisciplinary character. It is usual to divide swarm intelligence 
research into two areas according to the nature of the systems under analysis: in natural swarm 
intelligence research biological systems are studied while in artificial swarm intelligence 
human artifacts are studied. A different classification of swarm intelligence research can be 
given based on the goals that are pursued: it is possible to identify a scientific and an 
engineering stream. The goal of the scientific stream is to model swarm intelligence systems in 
order to understand the mechanisms allowing a system to behave in a coordinated way as a 
result of local individual-individual and individual-environment interactions. On the other 
hand, the goal of the engineering stream is to employ the biological behaviours in order to 
design systems able to solve problems of practical relevance.  
The typical swarm intelligence system has the following properties:  • it is composed of many individuals;  • the individuals are either all identical or belong to a few typologies;  • the interactions among the individuals are based on simple behavioural rules that make 

use of local information exchanged directly or via the environment;  • the overall behaviour of the system results from the interactions of individuals with 
each other and with their environment. 

The characterizing property of a swarm intelligence system (Tarasewich & MecMullen, 
2002) is its capability to act in a coordinated way without the presence of a coordinator. In 
nature there are many examples of swarms performing some collective behaviour without 
any individual controlling the group. Wasps build nests with a highly complex internal 
structure that is well beyond the cognitive capabilities of a single wasp. Termites build nests 
whose dimensions can reach many meters of diameter and height. When compared to a 
single termite, which can measure as little as a few millimetres, these nests are huge. Schools 
of fish and flocks of birds are other examples of highly coordinated groups. Scientists have 
shown that these elegant behaviours can be understood as the result of a self-organized 
process where there is no leader and each individual bases its movement decisions solely on 
locally available information: the distance, the perceived speed, and the direction of 
movement of neighbours. 
The most interesting swarm-level behaviours belongs to ants. What is fascinating is that ants 
are able to discover the shortest path to a food source and to share that information with 
another ants through stigmergy (Deneubourg et al., 1990; Dorigo et al., 1999). Stigmergy is a 
form of indirect communication used by ants in nature to coordinate their problem-solving 
activities. Ants realize stigmergetic communication by depositing on the ground a chemical 
substance called pheromone that induces changes in the environment which can be sensed by 
other ants. From the observation of real ant colonies, ant algorithms were inspired and 
applied to many different optimization problems.  
The main advantages of the swarm intelligence approach compared with a classical 
approach are the following: • flexibility: the group can quickly adapt to a changing environment; • robustness: even when one ore more individuals fails, the group can still perform its tasks; • self organisation: the group needs relatively little supervision or top down control. 
These properties make swarm intelligence a successful design paradigm. 

2.1 Ant foraging behaviour 

The observation of ant’s behaviour inspired the implementation of different optimization 
algorithms (Bonabeau et al., 2000). An ant colony is able to find the shortest path between 
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the nest and a food source using simple local decisions. Ants use a signalling 
communication system based on the deposition of pheromone over the path it follows, 
marking a trail. Pheromone is a hormone produced by ants that establishes a sort of indirect 
communication among them. 
An ant foraging for food lay down pheromone over its route. When this ant finds a food 
source, it returns to the nest reinforcing its trail. Other ants in the proximities are attracted 
by this substance and have greater probability to start following this trail and thereby laying 
more pheromone on it. This process works as a positive feedback loop system because the 
higher the intensity of the pheromone over a trail, the higher the probability of an ant start 
travelling through it. The following example (see Fig. 1) will show how this process leads 
the colony to optimize a route: 
 

 

Fig. 1. Two ants exploring the shortest path 

Suppose two ants, called A and B, were randomly searching for food when they found two 
different routes between the nest and the source. Since the route chosen by ant B is shorter, 
first ant B will reach food. Going back to the nest, ant B will choose the same path laying 
more pheromone over it. When ant A will also find the food, it will choose the path with the 
higher pheromone concentration to reach the nest. So, ant A will follow the same B’s path to 
the nest. As the process continues, the pheromone concentration on this trail will increase 
while the longest route will be discarded because of the pheromone evaporation process. 
When more paths are available from the nest to a food source, a colony of ants may be able 
to exploit the pheromone trails left by the individual ants to discover the shortest path from 
the nest to the food source and back. 

2.2 ACO meta-heuristic 

The ant colony foraging behaviour has attracted a lot of attention in combinatorial 
optimization problems, and has been reverse-engineered in the context of Ant Colony 
Optimization (ACO) meta-heuristic (Deneubourg et al., 1990). A meta-heuristics is a set of 
algorithmic concepts that can be used to define heuristic methods applicable to a wide set of 
different problems. In other words, a meta-heuristic is a general purpose algorithmic 
framework that can be applied to different optimization problems with relatively few 
modifications. Examples of meta-heuristics include simulated annealing (Cern'y, 1985), tabu 
search (Glover & Laguna, 1997), iterated local search (Lourenço et al., 2002), evolutionary 
computation (Dorigo et al. 2006), and ant colony optimization (Dorigo et al. 1996; Dorigo et 
al., 1999; Dorigo & Stützle, 2004). 
In ACO, a number of artificial ants build solutions to an optimization problem and exchange 
information on the quality of these solutions via a communication scheme that is 
reminiscent of the one adopted by real ants. 
The computational resources are allocated to a set of relatively simple agents (artificial ants) 
that communicate indirectly by stigmergy. Artificial ants have been enriched with some 
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capabilities which do not find a natural correspondence in order to make them more 
effective and efficient. In particular, the use of a colony of cooperating individuals, an 
(artificial) pheromone trail for local stigmergetic communication, a sequence of local moves 
to find shortest paths, and a stochastic decision policy using local information and are 
stemmed from real ants. The other features which do not find their counterpart in real ants 
are the following:  

• artificial ants live in a discrete world and their moves consist of transitions between 
discrete states; 

• artificial ants have an internal state containing the memory of the ant past actions; 

• artificial ants deposit an amount of pheromone which is a function of the quality of the 
solution found; 

• artificial ants timing in pheromone laying is problem dependent and often does not 
reflect real ants behaviour;  

• to improve overall system efficiency, ACO algorithms can be enriched with extra 
capabilities like lookahead, local optimization, backtracking, and so on, that cannot be 
found in real ants.  

In ACO algorithms a finite size colony of artificial ants with the above described 
characteristics collectively searches for good quality solutions to the optimization problem 
under consideration. The complexity of each ant is such that even a single ant is able to find 
a (probably poor quality) solution. High quality solutions are only found as the emergent 
result of the global cooperation among all the agents of the colony concurrently building 
different solutions. 
The model of a combinatorial optimization problem is used to define the pheromone model 
of ACO. A pheromone value is associated with each possible solution component and the set 
of all possible solution components is denoted by C. In ACO, an artificial ant builds a 
solution by traversing a fully connected construction graph Gc(V,E), where V is a set of 
vertices and E is a set of edges. This graph can be obtained from the set of solution 
components C in two ways: components may be represented either by vertices or by edges. 
Artificial ants move from vertex to vertex along the edges of the graph, incrementally 
building a partial solution. Additionally, ants deposit a certain amount of pheromone on the 
components; that is, either on the vertices or on the edges that they traverse. The amount Δτ 
of pheromone deposited may depend on the quality of the solution found. Subsequent ants 
use the pheromone information as a guide toward promising regions of the search space. 
The ACO meta-heuristic algorithms is the following: 
 
Set parameters, initialize pheromone trails 
SCHEDULE_ACTIVITIES 
    ConstructAntSolutions 
    ApplyLocalSearch {optional} 
    UpdatePheromones 
END_SCHEDULE_ACTIVITIES 
After initialization, the meta-heuristic iterates over three phases: at each iteration, a number 
of solutions are constructed by the ants; these solutions are then improved through a local 
search (this step is optional), and finally the pheromone is updated. 
The interest of the scientific community in ACO meta-heuristic has risen sharply. Different 
ACO algorithms have been proposed in the literature (Dorigo et al. 1996; Dorigo et al., 1999; 
Dorigo & Stützle, 2004). Although ACO has been applied in many combinatorial 
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optimization problems this chapter focuses on surveying ACO approaches in networks 
routing and load-balancing. In the following sections the most relevant ACO algorithms for 
routing and load balancing problems will be analyzed.  

2.3 Approaches to mitigate stagnation 

A major weakness of ACO algorithms is the stagnation in which all ants are taking the same 
position. Stagnation occurs when a network reaches its convergence (or equilibrium state) 
(Sim & Sun, 2003); an optimal path p0 is chosen by all ants and this recursively increases an 
ant’s preference for p0. This may lead to the congestion of p0 and to a dramatic reduction of 
the probability of selecting other paths. These two consequences are undesirable for a 
dynamic network since p0, becoming congested, may become nonoptimal and disconnected 
due to network failure. Moreover, other nonoptimal paths may become optimal due to 
changes in network topology, and new or better paths may be discovered. 
To alleviate the stagnation problem of ACO algorithms, different approaches have been 
proposed (Dorigo & Stützle, 2004) and can be categorized as follows: 

• pheromone control; 

• pheromone-heuristic control; 

• privileged pheromone laying. 
Pheromone control adopts several approaches to reduce the influences from past experience 

and encourages the exploration of new paths or paths that were previously nonoptimal: 

evaporation, aging, limiting and smoothing pheromone.  

The approach called evaporation is typically used in conjunction with ACO in order to 

reduce the effect of past experience. Evaporation prevents pheromone concentration in 

optimal paths from being excessively high and preventing ants from exploring other (new 

or better) alternatives. In each iteration, the pheromone values τi,j in all edges (i,j) are 

discounted by an evaporation factor called p.  

Additionally, past experience can also be reduced by controlling the amount of pheromone 

deposited for each ant according to its age. This approach is known as aging. In aging, an ant 

deposits lesser and lesser pheromone as it moves from a node to another one. Aging is 

based on the rationale that “old” ants are less successful in locating optimal paths since they 

may have taken longer time to reach their destinations. Both aging and evaporation prefer 

recent encouraging discoveries of new paths that were previously nonoptimal. 

Limiting pheromone mitigate stagnation by limiting the amount of pheromone in every path. 

By placing an upper bound τmax on the amount of pheromone for every edge (i,j), the 

preference  for optimal paths over nonoptimal paths is reduced. A variant of such an 

approach is pheromone smoothing, in which the amount of pheromone along an edge is 

reinforced as follows:  

 ( ')i, j i, j max i, jτ t τ (t) δ (τ τ (t))= + ⋅ −  (1) 

where δ is a constant between 0 and 1. It can be noticed that as τi,j→τmax, a smaller amount of 

pheromone is reinforced along an edge (i,j) .While evaporation adopts a uniform discount 

rate for every path, pheromone smoothing places a relatively greater reduction in the 

reinforcement of pheromone concentration on the optimal path(s). Consequently, 

pheromone smoothing seems to be more effective in preventing the generation of dominant 

paths. 
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Pheromone-heuristic control configures ants so that they do not solely rely on sensing 
pheromone for their routing preferences. This can be accomplished by configuring the 
probability function Pi,j for an ant to choose an edge (i,j) using a combination of both 
pheromone concentration τi,j and heuristic function ηi,j. ηi,j is function of the cost of edge 
which may include factors such as queue length, distance, and delay . Pi,j at time t is given as 
follows:  

 

┚┙
i, j i, j

i, j ┚┙
i, j i, j

[τ (t)] [η ]
P (t)

[τ (t)] [η ]

⋅= ⋅∑  (2) 

where ┙ and ┚ represent the respective adjustable weights of τi,j and ηi,j. The routing 
preferences of ants can be altered by selecting different values of ┙ and ┚. If ┙ > ┚, ants 
choose paths with more optimistic heuristic values. 
By adopting the policy of privileged pheromone laying, a selected subset of ants to have the 
privilege to deposit extra or more pheromone on the best paths (in terms of trip time and 
length). This approach reduces the probability of ants reinforcing stagnant paths that are 
nonoptimal or congested.  

3. ACO routing algorithms 

ACO routing algorithms (Dorigo et al., 1999) are a subset ACO algorithms which model the 
behaviour of insect swarms to solve the routing problem.  
ACO routing algorithms show a number of interesting properties compared to traditional 
routing algorithms. Firs of all, they are adaptive by means of continuous path sampling and 
probabilistic ant forwarding which leads an interrupted exploration of the routing 
capabilities. Moreover, they are robust because routing information is the result of the 
repeated sampling of paths. The use of sampling implies that routing information is based 
on direct measurements of the real network situation, which enhances its reliability. 
In the following subsections, the main ACO algorithms solving the routing problem will be 
discussed. In order to illustrate the differences between them clearly, the example of the 
travelling salesman problem will be analyzed.  
In the TSP (Dorigo & Gambardella, 1997) a set of locations (e.g. cities) and the distances 
between them are given. The problem consists of searching a closed tour of minimal length 
that visits each city once and only once. To apply ACO to the TSP, the graph is defined by 
associating the set of cities with the set of vertices of the construction graph. Since in the TSP 
it is possible to move from any given city to any other city, the construction graph is fully 
connected and the number of vertices is equal to the number of cities. The lengths of the 
edges between the vertices are proportional to the distances between the cities represented 
by these vertices and pheromone values and heuristic values are associated with the edges 
of the graph. Pheromone values are modified at runtime and represent the cumulated 
experience of the ant colony, while heuristic values are problem dependent values that, in 
the case of the TSP, are set to be the inverse of the lengths of the edges. The ants construct 
the solutions as follows. Each ant starts from a randomly selected city (vertex of the 
construction graph) and at each construction step it moves along the edges of the graph, 
keeping a memory of its path. In subsequent steps ant chooses among the edges that do not 
lead to vertices that it has already visited. A solution will be constructed once an ant has 
visited all the vertices of the graph. At each construction step, an ant probabilistically 
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chooses the edge to follow among those that lead to yet unvisited vertices. The probabilistic 
rule is biased by pheromone values and heuristic information: the higher the pheromone 
and the heuristic value associated to an edge, the higher the probability an ant will choose 
that particular edge. Once all the ants have completed their tour, the pheromone on the 
edges is updated. Each of the pheromone values is initially decreased by a certain 
percentage. Each edge then receives an amount of additional pheromone proportional to the 
quality of the solutions to which it belongs (there is one solution per ant). This procedure is 
repeatedly applied until a termination criterion is satisfied.  

3.1 AS: Ant System  

Ant system (AS) (Fenet & Hassas, 1998) was the first ACO algorithm to be proposed in the 
literature. The pheromone values are updated by all the ants that have completed the tour. 
Solution components, denoted with ci,j, are the edges of the graph, and the pheromone 
update for τi,j, that is, for the pheromone associated to the edge joining cities i  and j, is 
performed as follows: 

 
m

k
i, j i, j i, j

k 1

τ Δττ (1 ρ)
=

⋅ + ∑← −  (3) 

Where (0,1]ρ ∈  is the evaporation rate, m is the number of ants, and k
i, jΔτ is the quantity of 

pheromone laid on edge (i,j) by the k-th ant: 

 
k

ki, j

1
if k th ant travels onedge(i, j)

LΔτ
0 otherwise

⎧ −⎪= ⎨⎪⎩
 (4) 

where Lk is the tour length of the k -th ant.  
In order to construct the solutions, the ants traverse the construction graph and make a 
probabilistic decision at each vertex. The transition probability of the k-th ant moving from 
city i to city j is given by: 

 

┚┙
i, j i, j p

k┚┙
p i, j i, j

pi, j k c N(s )i, j k

τ η
if j N(s )

τ ηP(c |s )

0 otherwise

∈

⎧ ⋅ ∈⎪⎪ ⋅∑= ⎨⎪⎪⎩
 (5) 

where p
kN(s ) is the set of components that do not belong yet to the partial solution p

ks of ant 

k, and parameters ┙ and ┚ control the relative importance of the pheromone versus the 

heuristic information ηi,j=1/di,j, where di,j is the length of component ci,j.  

3.2 Ant Colony System 

The Ant Colony System algorithm (Dorigo & Gambardella, 1997) was proposed as an 
improvement over the original AS algorithm. The first relevant difference between ACS and 
AS is the decision rule used by the ants during the construction process. Ants in ACS use the 
so-called pseudorandom proportional rule: the probability for an ant to move from city i to city 
j depends on a random variable q uniformly distributed over [0,1], and a parameter q0 ; if q ≤ 

www.intechopen.com



 Mobile Ad-Hoc Networks: Applications 

 

252 

q0, then, among the feasible components, the component ┚
i, j i, jτ η that maximizes the product is 

chosen; otherwise, the same equation as in AS is used. This rather greedy rule, which 
favours exploitation of the pheromone information, is counterbalanced by the introduction 
of a diversifying component: the local pheromone update (Ducatelle et al., 2005). The local 
pheromone update is performed by all ants after each construction step. Each ant applies it 
only to the last edge traversed:  

 0(1i, j i, jτ ) τ τϕ ϕ= − ⋅ + ⋅  (6) 

where (0,1]ϕ∈  is the pheromone decay coefficient, and τ0 is the initial value of the 

pheromone. The interesting goal of the local update is to diversify the search performed by 
subsequent ants during one iteration. In fact, decreasing the pheromone concentration on 
the edges as they are traversed during one iteration encourages subsequent ants to choose 
other edges and hence to produce different solutions. This also prevents that several ants 
produce identical solutions during one iteration. Additionally, because of the local 
pheromone update in ACS, the minimum values of the pheromone are limited.  
As in AS, also in ACS at the end of the construction process a pheromone an offline 
pheromone update is performed. This update is performed only by the best ant and only 
edges visited by the best ant are updated, according to the equation:  

 (1 best
i, j i, j i, jτ ) τ τρ ϕ← − ⋅ + ⋅Δ  (7) 

where best
i, j bestΔτ 1 / L= if the best ant used edge (i,j) in its tour, best

i, jΔτ 0= otherwise. Lbest can be 

set to either the length of the best tour found in the current iteration (Lib) or the best solution 

found since the start of the algorithm (Lbs). 

3.3 MMAS: MAX-MIN Ant System  

MAX-MIN ant system (MMAS) algorithm (Stützle & Hoos, 1998) is another improvement of 
the original AS algorithm. Unlike AS, only the best ant adds pheromone trails, and the 
minimum and maximum values of the pheromone are explicitly limited (in AS and ACS 
these values are limited implicitly as a result of the algorithm working rather than a value 
set explicitly by the algorithm designer).  
The pheromone update equation (applied, as in AS, to all the edges) is the following:  

 (1 best
i, j i, j i, jτ ) τ τρ← − ⋅ + Δ  (8) 

where best
i, j bestΔτ 1 / L=  if the best ant used edge (i,j) in its tour, best

i, jΔτ 0= otherwise. As in 

ACS, Lbest  can be set (subject to the algorithm designer decision) to either the length of the 

best tour found in the current iteration (Lib) or the best solution found since the start of the 

algorithm (Lbs), or to a combination of both.  

The pheromone values are constrained between a max value τmax and a minimum value τmin 

by verifying, after they have been updated by the ants, that all pheromone values are within 

the imposed limits: τi,j is set to τmax if τi,j > τmax and to τmin if τi,j < τmax. The minimum value τi,j < 

τmin is most often experimentally chosen (however, a theory about how to define its value 

analytically has been developed). The maximum value τmax may be calculated analytically 

using the optimum ant tour length value. For the TSP, )*
maxτ 1 / ( Lϕ= ⋅ , where L* is the 

www.intechopen.com



Meta-heuristic Techniques and Swarm Intelligence in Mobile Ad Hoc Networks   

 

253 

length of the optimal tour. If L* is not known, it can be approximated by Lbs. It is important 

to underline that the value of the trails is set to τmax, and that the algorithm is restarted when 

no improvement can be observed for a given number of iterations (Stützle, 1999).  

3. ACO routing algorithms for MANETs 

A mobile ad-hoc network (MANET) is a set of mobile nodes which communicate over radio. 
These networks have an important advantage, they do not require any existing 
infrastructure or central administration. Therefore, mobile ad-hoc networks are suitable for 
temporary communication links.  
Due to the limited transmission range of wireless interfaces, usually communication has to 
be relayed via intermediate nodes. Thus, in mobile multi-hop ad-hoc networks each node 
also has to be a router. To find a route between different endpoints is a major problem in 
mobile multi-hop ad-hoc networks. Many different approaches to handle this problem were 
proposed in literature (Buruhanudeen et al., 2007), but so far no routing algorithm has been 
suitable for all situations. 
Analyzing some important features of mobile ad-hoc networks, the following considerations 
explain why ant algorithms could perform well in these networks: 

• Dynamic topology: this property is responsible for the unfulfilling performances of 
many classical routing algorithms in mobile ad-hoc networks. The ant algorithms are 
based on autonomous agent systems imitating individual ants. This allows a high 
adaptation to the current topology of the network. 

• Local information: in contrast to other routing approaches, the ant algorithms make use 
of local information; no routing tables or other similar information have to be 
transmitted to other nodes of the network. 

• Link quality: it is possible to integrate the connection/link quality into the computation 
of the pheromone concentration, especially into the evaporation process. This will 
improve the decision process with respect to the link quality.  

• Support for multi-path: each node has a routing table with entries for all its neighbours. 
Adding the information about the pheromone concentration, the decision rule for 
selection of the next node could be based on the pheromone concentration at the current 
node. 

In this section, an overview of the main ant based routing algorithms proposed explicitly for 
MANETs will be presented. 
Ad hoc Networking with Swarm Intelligence (ANSI). ANSI is a reactive routing protocol 

(Rajagopalan & Shen, 2005) which defines two kinds of mobile agents called forward reactive 

ants and backward reactive ants. The routing tables in ANSI contain an entry for each 

reachable node and next best hop while the ant decision tables store the pheromone values. 

In ANSI, the forward reactive ants are generated only when a node has to transmit data to 

another node. The forward reactive ants are broadcast while the backward reactive ants 

retrace the path of forward reactive ants and update the pheromone values at the nodes. The 

data packets choose the next hop deterministically i.e., the hop which contains the largest 

pheromone value is chosen as the next hop.  

Ant-colony-based Routing Algorithm (ARA). ARA is another reactive routing protocol 
(Günes & Spaniel, 2003) for MANETs. The routing table entries in ARA contain pheromone 
values for the choice of a neighbour as the next hop for each destination. The pheromone 
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values in the routing tables decay with time and the nodes enter in a sleep mode if the 
pheromone in the routing table has reached a lower threshold. As in ANSI, route discovery 
in ARA is performed by two kind of mobile agents: forward ants and backward ants. 
During route discovery, the forward and backward ant packets characterized by unique 
sequence numbers to prevent duplicate packets, are flooded through the network by the 
source and destination nodes, respectively. The forward and backward ants update the 
pheromone tables at the nodes along the path for the source and destination nodes 
respectively. At the end of the route discovery process for a particular destination, the 
source node does not generate new mobile agents for the destination instead the route 
maintenance is performed by the data packets. 
Probabilistic Emergent Routing Algorithm (PERA). Also in PERA (Baras & Mehta, 2003) 
route discovery is performed by forward and backward ants. These ant agents create and 
adjust probability distribution at each node for the node's neighbours. The probability 
related to a neighbour reflects the relative likelihood of that neighbour forwarding and 
eventually delivering the packet. Each forward node contains the IP address of its source 
node, the IP address of the destination node, a sequence number, a hop count field and a 
dynamically growing stack The stack contains the information about the nodes traversed by 
the forward ant and the times at which the nodes have been traversed. When a node does 
not have a record of a route to a destination, it creates a forward ant and the node pushes its 
own IP address on to the stack of the forward ant as well as the time at which the ant is 
created. Henceforth, the node keeps sending forward ants periodically to the destination for 
as long as a route is required. When a forward node reaches the destination, the destination 
node creates a new backward ant. It uses the information contained in the forward ant on 
the reverse path to modify the probability distribution at each node and update routing 
tables to reflect the current status of the network. Since the forward ant is broadcast at the 
source and intermediate nodes, each forward ant will cause the broadcast of multiple 
forward ants, several of which may find different paths to the destination, generating 
multiple backward ants.  
POSition based ANT colony routing algorithm (POSANT). POSANT is a reactive routing 
algorithm (Kamali & Opatrny, 2008) based on ant colony optimization and location of 
nodes. This protocol is able to find optimum or nearly optimum routes when a given 
network contains nodes with different transmission ranges. Each node is assumed to be 
aware of its position, the position of its neighbours and the position of the destination node. 
A route in POSANT is searched only when there is a collection of data packets that are to 
sent from a source node to a destination node. Sending the data packets will start after a 
route from source to destination is established. Before that, only forward and backward ants 
are being exchanged. In order to minimize the time that POSANT spends to find a route 
while keeping the number of generated ants as small as possible, information about the 
position of nodes is used as a heuristic value. Neighbours in POSANT are partitioned into 
three zones in dependence of the position. The use of location information as a heuristic 
parameter results in a significant decrease of the time required to establish routes from a 
source to a destination. Moreover, having a short route establishment time, POSANT 
reduces greatly the number of control messages. POSANT has also a higher delivery rate 
with a shorter average packet delay than other position based routing algorithms.  
Ant Routing Algorithm for Mobile Ad hoc networks (ARAMA). ARAMA (Hossein & 
Saadawi, 2003) is a proactive routing algorithm. As in other ACO algorithms for MANETs, 
the forward ant has to collect path information. However, in ARAMA, the forward ant takes 
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into account not only the hop count factor but also the links local heuristic along the route 
such as the node's battery power and queue delay. ARAMA defines a value called grade, 
calculated by each backward ant, which is a function of the path information stored in the 
forward ant. At each node, the backward ant updates the pheromone amount of the node's 
routing table, using the grade value. The protocol uses the same grade to update pheromone 
value of all links. In ARAMA the route discovery and maintenance overheads are reduced 
by controlling the forward ant's generation rate.  
HOPNET. This is a hybrid ant colony optimization routing protocol (Wanga et al., 2008) 
based on ants hopping from one zone to the next. HOPNET is highly scalable for large 
networks compared to other hybrid protocols. The HOPNET algorithm consists of the local 
proactive route discovery within a node's neighbourhood and reactive communication 
between the neighbourhoods. The network is divided into zones which are the node's local 
neighbourhood. A routing zone consists of the nodes and all other nodes within the 
specified radius length measured in hops. A node may be within multiple overlapping 
zones and zones could vary in size. The nodes can be categorized as interior and boundary 
(or peripheral) nodes with respect to the central node. Each node has two routing tables: 
Intrazone Routing Table (IntraRT) and Interzone Routing Table (InterRT). The IntraRT is 
proactively maintained so that a node can obtain a path to any node within its zone quickly. 
This is done by periodically sending out forward ants to sample path within its zone and 
determine any topology changes. Once a forward ant reaches a destination, a corresponding 
backward ant is sent back along the path discovered. The InterRT stores the path to a node 
beyond its zone. This source routing table is setup on demand as routes outside a zone is 
required. The peripheral nodes of the zone are used to find routes between zones. For small 
number of nodes, due to the constant movement of border nodes, new routes have to be 
determined continuously resulting in more delay than other hybrid routing protocols. 
Distributed Ant Routing (DAR). In DAR (Rosati et al. 2008) routes are created on-demand, 
in order to have a low routing signalling load. Forward ants collect information only about 
the identities of the crossed nodes and move towards the destination choosing the next hop 
only on a pheromone basis. The amount of pheromone deposited by backward ants on each 
crossed link is constant. In DAR, in each node the routing tables are stochastic: next hop is 
selected according to weighted probabilities, calculated on the basis of the pheromone trails 
left by ants. When a node receives a datagram with destination d, if the routing entry for d is 
available, then the datagram is forwarded. Otherwise, the datagram is buffered and forward 
ants are sent out at constant rate rae (ant emission rate) in order to search a path to d. The 
forward ant goes to each node according to the probabilities for the next hop in the routing 
table at the current node. Thus, the forwarding of the forward ant is probabilistic and allows 
exploration of paths available in the network. Datagrams are routed deterministically based 
on the maximum probability at each intermediate node from the source node to the 
destination node. This process creates a complete global route by using local information. 
The simplicity of the protocol could be helpful in achieving seamless routing in networks 
constituted by heterogeneous elements. 
Ant-based Distributed Route Algorithm (ADRA). In ADRA (Zheng et al., 2008) ants move 
across the network between randomly chosen pairs of nodes. Along the path, ants deposit 
simulated pheromones as a function of their hop distance from their source node, the 
quality of the link, the congestion encountered on their journey, the current pheromones the 
nodes possess and the velocity at which the nodes move. The node also ages the link by 
pheromones evaporating. An ant selects its path at each intermediate node according to the 
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distribution of simulated pheromones at each node. In order to accelerate the convergence 
rate of the congestion problem and the shortcut problem, the parameters are given with 
different weight values to update the probability routing table. The ADRA system exhibits 
many attractive features of distributed control. 
Ant-based Energy Aware Disjoint Multipath Routing Algorithm (AEADMRA). Earlier 
research has proposed several unipath routing protocols for MANETs. However, due to the 
dynamic topology of these networks, the single path is easily broken leading to a new route 
discovery process and an increase in both delay and control overhead. AEADMRA (Wu et 
al., 2007) was proposed to alleviate these problems. This algorithm is based on swarm 
intelligence and especially on the ant colony based meta-heuristic. AEADMRA has been 
designed to enable path accumulation in route request/reply packets and discover multiple 
energy aware routing paths with a low routing overhead. 
ImProved Ant Colony Optimization algorithm for mobile ad hoc NETworks (PACONET). 
PACONET is a reactive routing protocol (Osagie et al., 2008) which also uses two kinds of 
agents: forward ant (FANT) and backward ant (BANT). The FANT explores the paths of the 
network in a restricted broadcast manner in search of routes from a source to a destination. 
The BANT establishes the path information acquired by the FANT. These agents create a 
bias at each node for its neighbours by leaving a pheromone amount from its source. Data 
packets are stochastically transmitted towards nodes with higher pheromone concentration 
along the path to the destination. FANTs also travel towards nodes of higher concentration 
but only if there is no unvisited neighbour node in the routing table. The rows of the routing 
table represent the neighbours of a node and the columns represent all the nodes in the 
network. Each pair (row, column) in the routing table has two values: a binary value 
indicating if the node has been visited and the pheromone concentration. All possible paths 
are explored to find the best path towards the destination. The node with the highest 
pheromone is chosen as the next hop after the FANT has determined that it has not visited 
the node before. 
AntHocNet. This is a hybrid routing protocol (Caro et al. 2004) consisting of both reactive 
and proactive components. Nodes do not maintain routes to all possible destinations at all 
the times and generate mobile agents only at the beginning of a data session. The mobile 
agents search for multiple paths to the destination and these paths are set up in the form of 
pheromone tables indicating their respective quality. During the course of the data session, 
the paths are continuously monitored and improved in a proactive manner.  

4. ACO techniques in load balancing  

Routing problem in MANET is very challenging and difficult due to the mobility of nodes. 
Ant colony optimization is an efficient optimization technique used to find the optimum 
shortest route in the ad-hoc network. However, other problems has to be addressed in order 
to obtain full efficiency. Network congestion is one of these problems and is present when 
load is not perfectly balanced. In this case the simple implementation of ant behaviour is not 
sufficient and some adjustments have to be applied. Load-balancing becomes one of the 
important issues since the network performance such as network throughput and end-to-
end delay can be improved if the loads are well balanced. In the following subsections some 
ACO algorithms for load balancing, improving efficiency and stability of classical ACO 
algorithms, will be described.  
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4.1 ABC: Ant Based Control  

Ant based control system (ABC) (Schoonderwoerd et al., 1996) was designed to solve the 
load-balancing problem. Each row in the pheromone table represents the routing preference 
for each destination, and each column represents the probability of choosing a neighbour as 
the next hop. Along the paths, incoming ants update the entries in the pheromone table of a 
node. In order to mitigate stagnation, three approaches are adopted: 

• aging; 

• delaying; 

• noise. 
Aging is designed to discourage ants from following the trails of an ant that has travelled a 
longer path to some destination. In contrast to evaporation, aging may induce an ant to 
select a nonoptimal link, if the path from a node to its destination is very long. Used in 
conjunction with aging, delaying is designed to reduce the flow rates of ants from a 
congested node to its neighbours. By slowing down the ants originating from a congested 
node, the amount of pheromone they deposit reduced with time because of the aging 
process. Noise approach enables ants to choose a path randomly not taking into account the 
influence of the pheromone table. Thus, ants can explore new and better routes, particularly 
in dynamic networks.  
In one of the ramifications of the ABC system (Guérin, 1997), smart ants are adopted to 
enhance performance. While in classic ABC an ant updates only the entry corresponding to 
the source node in the pheromone table of each node it passes, smart ants update all the 
entries in the pheromone table at each node. By performing more pheromone updates at 
every intermediate node, smart ants are more complex but fewer smart ants are needed in 
order to achieve the same routing purpose.  
In another ramification of the ABC system (Subramanian et al., 1997), two kinds of ants are 

proposed: regular ant and uniform ant. Regular ant uses the accumulated cost of a path to 

determine the amount of pheromone to deposit. A regular ant that travels a higher cost path 

to a destination node deposits lesser pheromone. Unlike regular ants, uniform ants choose 

their next nodes in a random way. Moreover, while regular ants use the accumulated cost in 

the direction from source to destination, uniform ants use the accumulated cost in the 

reverse direction to establish the amount of pheromone to deposit.  

4.2 Ant-Net 

Ant-Net algorithm (Caro & Dorigo, 1997) was originally designed for routing in packet-

switched networks. Unlike traditional routing algorithms which focused on shortest path 

routing, AntNet aims to optimize the performance of the entire network. In AntNet, forward 

ants are launched at regular intervals from a source node Ns to a destination node Nd to 

discover a feasible low-cost path. Backward ants travel from Nd to Ns to update pheromone 

tables at each intermediate node. From Ns to Nd, a forward ant selects the next hop node Ni 

using a random scheme that take into consideration of both the probability of choosing Ni, 

called Pid and a heuristic correction factor Ini. While Ini depends on the queue length at Ni, Pid 

is a selection probability which can be viewed as a pheromone concentration that can be 

reinforced by other ants. 

As a forward ant travels from source node to destination node, it collects statistics such as 
the local data traffic condition on each intermediate node and the trip time to reach Ni. 
When a forward ant arrives at destination, a backward ant will be activated. This ant 
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updates the probabilistic pheromone table at each intermediate node Ni and the estimated 
trip time for the path Ns - Ni. Backward ants update the selection probability by determining 
the goodness of the trip times of forward ants, and the amount of reinforcement using a 
squash function.  
The goodness of the trip time is a relative measure determined comparing the current trip 
time to the current statistical estimates and the confidence interval of the best trip time. The 
squash function is a nonlinear function that is more sensitive in rewarding solutions with 
higher goodness values.  
This algorithm (called Ant-Net-CL) alleviates the problem of stagnation. However, using 
both forward and backward ants generally doubles the routing overhead. 
In another version of Ant-Net, called Ant-Net-CL (Caro & Dorigo, 1998) forward ants travel 
from a source to a destination in high priority queues, and backward ants estimate the trip 
time (by size of queuing data, links’ bandwidth and delay), update local traffic statistics, and 
determine and deposit the amount of probability to reinforce. Since backward ants 
determine the amount of reinforcement using real time statistics, the routing information is 
comparatively more accurate and up-to-date. 
Another ramification of AntNet (Baran & Sosa, 2000) is characterized by the five following 
distinguishing features from AntNet: 
1. intelligent initialization of AntNet; 
2. intelligent pheromone updates after link or node failures; 
3. use of noise to mitigate stagnation; 
4. deterministic rather than probabilistic selection of a node; 
5. restricting the number of ants inside a network. 
The first feature was included to regulate the exploration ants in the initial stage. The 

original entries in a routing table consist of a uniform distribution of probabilities which 

may not reflect the states of the network. Taking into consideration the a-priori knowledge 

of the network, ants in this work are configured to select neighbouring nodes with a higher 

initial probability. While AntNet did not consider situations of link failures, this version 

suggests that in case of link failures, the corresponding probability of a link that fails will be 

set to zero and will be distributed evenly among the remaining neighbouring nodes. The 

third feature deals with noise, where some ants select paths uniformly without considering 

the effect of pheromone concentration. The fourth feature uses a deterministic approach for 

the selection of the next hop. However, this approach may lead to a possible infinite 

looping. The fifth feature suggests to fix an upper bound in number of ants inside a 

network. Although restricting the number of ants may reduce routing overhead and 

possible congestion, it also places a restriction on the frequency of launching ants which 

may lead to possible reduction in the adaptiveness of the routing algorithm. 

4.3 ASGA (Ant System with Genetic Algorithm) and SynthECA (Synthetic Ecology of 
chemical Agents) 

Ant system with genetic algorithm (ASGA) was designed to solve problems of point-to-
point, point to multipoint and cycle (multipath) routing in circuit-switched networks (White 
et al. 1998). In ASGA explorer ants are used to update pheromone tables. Although similar 
to AntNet, explorers travel in a round trip, but unlike backward ants in AntNet, explorers 
deposit the same amount of pheromones in their return trips. In addition, evaporation 
agents and pheromone heuristic control were used to mitigate stagnation. The genetic 
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algorithm was added to increase the adaptivity of ants. For instance, if the best path is 
congested, it increases the likelihood of ants to find an alternative path. However, unlike the 
ABC system, ASGA was not designed to solve the load-balancing problem in circuit- 
switched networks. 
Subsequently, in order to solve this problem, ASGA was generalized to a framework called 
Synthetic ecology of chemical agents (SynthECA) (White, 2000). SynthECA was also designed to 
solve other problems such as fault location detection in circuit-switched networks. Although 
SynthECA was not designed with any specific type of ants, all ants in SynthECA are 
characterized with a combination of the following: 

• emitters; 

• receptors; 

• chemistry; 

• migration decision function; 

• memory. 
Emitters are used to generate different types of chemical pheromone. Pheromones are 
represented by strings such as “1100” or “10#1.” While each type of pheromone corresponds 
to a genotype, each string corresponds to a chromosome in GA. Pheromone is generated by an 
emitter decision function (EDF). As in GA, the operations of crossover and mutation are 
applied in the EDF to evolve the pheromone types. With various pheromone types and 
pheromone reactions, ants can be designed to send and sense more types of signals in their 
stigmergic communication. 
In order to sense local pheromone changes generated by emitters, a receptor is used. Using 
receptor detection function (RDF), a receptor senses different types of pheromone. By 
configuring ants with different EDFs and RDFs, more sophisticated pheromone 
manipulation techniques such as privileged pheromone laying and pheromone heuristic 
control can be realized. 
Chemistry is a set of rules (inspired by GA) that specifies pheromone reactions. In SynthECA, 
ants use pheromone reactions to send out control information to other ants. In the set of 
rules, five types of pheromone reactions are specified as follows: 
1. X→“nothing:” this is similar to evaporation; 
2. X+Y→Y: this is applied when two ants are competing for a path and only one ant will 

prevail; 
3. X+Y→Z: this rule is used to report the status of network resources (e.g., poor 

connection quality); 
4. X+Y→X+Z: this rule, in computational terms, represents a conditional construct. A 

pheromone type Y is transformed into another type of pheromone Z in the presence of a 
specific type of pheromone X; 

5. X+Y→W+Z: this rule allows two ants X and Y to jointly communicate both inhibitory 
(e.g., W) and excitatory (e.g., Z) messages to other ants.  

While a migration decision function is a set of rules determining the next hop of an ant, 
pheromones (i.e., labels and concentrations) and the state of an ant are stored in the ant’s 
memory. 
Using a combination of the above five components, several types of ants such as route finding 
agent (RFA), connection monitoring agent (CMA) and fault detection agent (FDA) can be 
configured to solve different networking problems.  RFAs include explorers, allocators and 
deallocators. An explorer is used to find a path from a source to a destination and is 
configured with an emitter for a single type of pheromone and three receptors for sensing 
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pheromone, measuring link costs and detecting quality of links. Using a probability 
function, an explorer chooses a path taking into account the pheromone and the cost of the 
path. Travelling from source to destination, explorer records all the nodes it passed. When it 
reaches destination, it returns to via the same path and deposits pheromone along the way, 
which may influence the pheromone concentration of other types. Explorers are also 
programmed to also take into consideration the quality/reliability of the link. While an 
allocator is used to obtain link resources, a deallocator release resources previously acquired 
by an allocator. 
CMA’s are activated if the quality of service changes. A CMA evaluates the quality of a link 
using local traffic statistics and it deposits a special type of pheromone (called q-chemical) to 
indicate the quality of the associated link. CMAs use q-chemical to indirectly communicate 
the quality of links to FDAs while they circulate the network for diagnostics purposes. 

4.4 MACO: Multiple Ant Colony Optimization 

In MACO (Sim & Sun, 2003), more than one colony of ants are used to search for optimal 
paths, and each colony of ants deposits a different type of pheromone represented by a 
different colour. Although ants in each colony respond to pheromone from its own colony, 
MACO is augmented with a repulsion mechanism preventing ants from different colonies to 
choose the same optimal path. In order to establish connections between two gateways, two 
groups of mobile agents (e.g., MAG1 and MAG2), acting as routing packets, construct, 
manipulate and consult their own routing tables. In MACO, each group of mobile agents 
corresponds to a colony of ants, and the routing table of each group corresponds to a 
pheromone table of each colony. Even though MAG1 and MAG2 may have their own 
routing  preferences, they also take into consideration the routing preferences of the other 
group. While the routing preferences of ants are recorded in their pheromone tables, the 
routing preferences of mobile agents are stored in their routing tables. In constructing its 
routing table, MAG1 (respectively, MAG2) consults the routing table of MAG2 (respectively, 
MAG1) in order to avoid routing packets to those paths that are highly preferred by the 
other group. This increases the chance of distributing data traffic. By adopting the MACO 
approach, it may be possible to reduce the likelihood that all mobile agents establish 
connections using only the optimal path. The advantage of using MACO is that it is more 
likely to establish connections through multiple paths to help balance the load but does not 
increase the routing overhead.  

5. Applications and new directions 

The works surveyed in the previous sections addressed the application of swarm 
intelligence and in particular ACO algorithms to solve the routing problem and/or load 
balancing in MANETs. However, ACO algorithms have been applied to solve different 
kinds of problems in MANETs. Reduction of power consumption is one of these important 
issues in ad hoc wireless networks. Mobile nodes are powered by battery and an efficient 
utilization of battery energy is very important. When a node exhausts its available energy, it 
ceases to work and the lack of mobile nodes can result in network partitioning. In recent 
years, some improvement in ACO routing algorithms were proposed in order to reduce the 
communication load related to energy spent with communications (De Rango & Tropea, 
2009; Zyiadi et al., 2009; Li & Shi, 2009). In (De Rango & Tropea, 2009) has been proposed a 
novel routing algorithm able to satisfy multiple metrics for a multi-objective optimization 
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like end-to-end delay, load balancing and energy savings. Innovation factor of this proposal 
has been the pheromone updating policy and the joint metric used. 
The demand for quality of services (QoS) in MANETs suggested also the development of 
QoS routing strategies computing paths that are suitable for different type of traffic 
generated by various applications while maximizing the utilizations of network resources. 
The main problem to be solved by QoS routing algorithm is the Multi-Constraint Path 
problem. Instead of using a shortest path algorithm based on statically configured metrics, 
as in traditional routing protocols, the algorithm must select several alternative paths that 
are able to satisfy a set of constraints regarding, for instance, end-to-end delay bounds and 
bandwidth requirements. Several approaches (Shokrani & Jabbehdari, 2009; Liu et al., 2007; 
Liu et al. 2008, Zhang & Li, 2008) have been proposed to address the complexity of multi-
constrained path computation problem using ACO approach. 
Another interesting issue in MANETs, in which has been employed the behavioural 
principle present in ant colonies, is address management. In ad-hoc networks, address 
management is a particularly tough challenge, because of their dynamically changing 
topology, and the sort of events that occur in their environment. In (Pachon & Madrid, 2009) 
has been proposed a solution to this problem, involving the self-organization and 
emergency principles governing the behaviour of ant colonies.  
All the works presented in this chapter show how swarm intelligence and in particular the 
behaviour of ant colonies have inspired a number of successful methods and techniques to 
solve different problems in MANETs. However, the potential of this distributed intelligent 
technique is more clear when applied to other dynamic network scenarios. In (De Rango et 
al., 2008), for example, has been showed how minimum hop count and load balancing 
metrics based on ant behaviour over a HAPs mesh can lead to a better management of the 
system resources and an increase in the number of calls admitted by the system. This is only 
one example of the wide range of applications covered by swarm intelligence techniques 
which underlines the importance of this approach in communication networks. 
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