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Abstract

The Lovász local lemma is a powerful and well-studied probabilistic technique useful

in establishing the possibility of simultaneously avoiding every event in some collec-

tion. A principle limitation of the lemma’s application is that it requires most events

to be independent of one another. The lopsided local lemma relaxes the require-

ment of independence to negative dependence, which is more general but also more

difficult to identify. We will examine general classes of negative dependent events

involving maximal matchings of uniform hypergraphs, partitions of sets, and span-

ning trees of complete graphs. The results on hypergraph matchings (together with

the configuration model of Bollobás) yield asymptotically the number of regular, uni-

form hypergraphs avoiding small cycles. Finally, we work toward a characterization

of hypergraphs for which the matching paradigm is guaranteed generate negative

dependent events.
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Chapter 1

The Lopsided Local Lemma

1.1 Dependency Graphs and the Local Lemma

A collection of events is avoidable whenever the probability that no event in the

collection occurs is nonzero. In the language of probability, a collection of events A1,

. . . , An is avoidable precisely when Pr
(∧n

i=1Ai
)
> 0.

Any finite collection of mutually independent events is avoidable (provided, of

course, no event occurs with probability 1); the probability of avoiding the collection

is ∏n
i=1 Pr

(
Ai
)
, which is greater than zero.

The requirement of mutual independence is quite stringent. We might expect the

collection can still be avoided as long as the events do not depend strongly on one an-

other. The Lovász local lemma makes this intuition precise by providing restrictions

on the interdependence of events sufficient to guarantee the possibility of avoiding

the collection. Erdős and Lovász [13] first introduced this idea to establish the exis-

tence of a certain hypergraph coloring. Subsequent generalizations culminated in the

customary version appearing, for example, in Alon and Spencer [2].

A key component in the lemma is the dependency graph, which is a simple

graph ([n], E) whose edges are situated such that the each event Ai is independent

of the event algebra generated by the collection {Aj | ij /∈ E}.

The dependency graph is a convenient way to organize information about possible

dependencies among the events. For example, suppose we want to know the relation-

ship between the event A1 and some other events in our collection. If there is an
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edge between A1 and another event, the graph contains no information about their

relationship. If we consider a collection of non-neighbors of A1, however, the graph

tells us that A1 is independent of the event algebra generated by the non-neighboring

events.

Trivially, a complete graph is always a dependency graph. Such a graph is useless,

however, since it contains no information about the events. At the other extreme, a

dependency graph with no edges tells us we are dealing with a collection of mutually

independent events. In practice, therefore, we hope to produce a dependency graph

that is as sparse as possible, since this tells us the collection in question is very much

like a collection of mutually independent events.

The Lovász local lemma asserts a collection is avoidable whenever there is a corre-

sponding dependency graph together with an intricate upper bound on the probability

of each individual event. In fact, it provides an explicit lower bound on the probability

of avoiding the collection. A symmetric version (that is, one in which the probability

of every event is given the same upper bound) of the lemma was first introduced by

Erdős and Lovász [13] to address a question about hypergraph 2-colorability, which

we will discuss later. Subsequently, Spencer [26, 27] presented various generalizations

of the lemma in his work on Ramsey numbers. Presented below is a slight weakening

of the customary version appearing in Alon and Spencer [2]. (In that text, the local

lemma and the lopsided version to come are both written in terms of digraphs rather

than graphs. The topics herein will not require this additional generality.)

Lemma 1.1 (Lovász Local Lemma). Let A1, . . . , An be events with dependency graph

([n], E). If there are numbers x1, . . . , xn ∈ [0, 1) such that

Pr (Ai) ≤ xi
∏
ij∈E

(1− xj)

for all i, then

Pr
(

n∧
i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0.

2



1.2 2-Coloring Hypergraphs

Erdős and Lovász [13] provide an upper bound on the maximum degree of a properly

2-colorable hypergraph can contain. Their idea was to color the vertices uniformly at

random with two colors and impose conditions under which the random process would

produce a proper coloring with nonzero probability. They developed the symmetric

version of the local lemma as a tool to aid in the analysis of the resulting probability

space.

Lemma 1.2 (Lovász Local Lemma, Symmetric Version). Let A1, . . . , An be events

with dependency graph of maximum degree d. If

• Pr (Ai) ≤ p for all i and

• ep(d+ 1) ≤ 1,

then

Pr
(

n∧
i=1

Ai

)
> 0.

(The symmetric version follows from the Lemma 1.1 by setting each xi = 1
d+1 and

using the fact that
(
1− 1

d+1

)d
> 1

e
.)

Let H be a hypergraph in which every edge contains at least k vertices and

color the vertices uniformly at random with two colors. Our ambient probability

space will therefore contain all possible 2-colorings (both proper and improper) of

the vertices of H weighted uniformly. For each edge f ∈ E(H), define the event Af

to be the collection of all 2-colorings in which the edge f is monochromatic. The

event ∧f∈E(H) Af thus contains all 2-colorings in which no edge is monochromatic.

That is, it contains all proper 2-colorings. We are therefore interested in determining

when Pr
(∧

f∈E(H) Af
)
> 0, which can be approached via the local lemma.

First, notice the events in the collection {Af | f ∈ F} are mutually independent

whenever F is a collection of disjoint edges of H. The graph G with V (G) = E(H)
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and

E(G) = {fg | f and g share a vertex in H}

is therefore a dependency graph whose maximum degree is the same as the maximum

degree of H.

By hypothesis, every edge of H has at least k vertices, so Pr (Af ) ≤ 1
2k−1 , which we

take as our value for p in the lemma. It remains to maximize d under the constraint

ep(d+ 1) < 1, which works out to d =
⌊

2k−1

e
− 1

⌋
.

Theorem 1.3. Let H be a hypergraph in which every edge contains at least k vertices.

If H has maximum degree at most 2k−1

e
− 1, then H is 2-colorable.

Before leaving this problem behind, notice we could only apply the local lemma

by ensuring that “most” events were independent. We will see later that the lopsided

local lemma can be applied in spaces where there is no independence among the

events.

1.3 Negative Dependency Graphs and the Lopsided Local Lemma

The Lovász local lemma allows us to detect avoidability if there is only some indepen-

dence among the events (provided we can discover a dependency graph and suitable

numbers xi). Erdős and Spencer [14] analyzed the proof and determined that one

can still detect avoidability even if there is no independence among the events.

In the following definition, let N(v) denote the set of neighbors of the vertex v

together with v itself. A negative dependency graph for a collection of events A1,

. . . , An is a simple graph ([n], E) whose edges are situated such that the inequality

Pr
Ai

∣∣∣∣∣∣
∧
j∈S

Aj

 ≤ Pr (Ai) (1.1)

holds for each i ∈ [n] and every subset S of N(i) (excluding those S for which

the event ∧j∈S Aj has probability zero, in which case the conditional probability is

4



undefined). Stated in this way the inequality might be crudely summarized to say

that the probability of an event falls when some of its non-neighbors do not occur.

Alternative formulations of Inequality 1.1 arise from straightforward algebraic

manipulation. As before, we assume i ∈ [n] and S ⊆ N(i) are arbitrary, except

that we do not consider collections S for which the conditioning event (if any) has

probability zero. The first two are the conditional probabilities

Pr
∧
j∈S

Aj

∣∣∣∣∣∣ Ai
 ≤ Pr

∧
j∈S

Aj


and

Pr
(
Ai
)
≤ Pr

 ∧
j∈S∪{i}

Aj

∣∣∣∣∣∣
∧
j∈S

Aj

 .
Our final formulation takes the form of the correlation inequality

Pr (Ai) Pr
∨
j∈S

Aj

 ≤ Pr
Ai ∧ ∨

j∈S
Aj

 .
A collection of events may satisfy the inequalities above even though no two events

are independent, as we describe in the next section.

The lopsided local lemma differs from the previous version only by replacing “de-

pendency graph” with “negative dependency graph”. Since every dependency graph

is a negative dependency graph (but not vice versa), the lopsided version is strictly

more general. It was first introduced by Erdős and Spencer [14] with regard to

Latin transversals and independently by Albert, Frieze, and Reed [1] in their work

on Hamiltonian cycles. The lemma as it appears below is due to Ku [17] and appears

as a remark in Alon and Spencer [2].

Lemma 1.4 (Lopsided Local Lemma). Let A1, . . . , An be events with negative de-

pendency graph ([n], E). If there are numbers x1, . . . , xn ∈ [0, 1) such that

Pr (Ai) ≤ xi
∏
ij∈E

(1− xj)

for all i, then

Pr
(

n∧
i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0.

5



Proof. Take as granted for a moment that

Pr
Ai

∣∣∣∣∣∣
∧
j∈S

Aj

 ≤ xi (1.2)

for any strict subset S of [n] and any i /∈ S.

The conclusion of the lopsided local lemma follows from this claim by observing

Pr
(

n∧
i=1

Ai

)
= Pr

(
A1
)
· Pr

(
A2

∣∣∣ A1
)
· · ·Pr

An
∣∣∣∣∣∣
n−1∧
j=1

Aj


≥

n∏
i=1

(1− xi)

> 0.

It remains to establish Inequality 1.2, which we accomplish by induction on |S|.

When |S| = 0, the claimed inequality reduces to Pr (Ai) ≤ xi, which is provided by

the hypotheses of the lopsided local lemma. For |S| > 0, set S1 = {j ∈ S | ij ∈ E}

and S2 = S \ S1. Now,

Pr
Ai

∣∣∣∣∣∣
∧
j∈S

Aj

 =
Pr
(
Ai ∧

∧
j∈S1 Aj

∣∣∣ ∧k∈S2 Ak
)

Pr
(∧

j∈S1 Aj
∣∣∣ ∧k∈S2 Ak

) .

We will bound the numerator and denominator separately.

For the numerator, we have

Pr
Ai ∧ ∧

j∈S1

Aj

∣∣∣∣∣∣
∧
k∈S2

Ak

 ≤ Pr
Ai

∣∣∣∣∣∣
∧
k∈S2

Ak


≤ Pr (Ai)

≤ xi
∏
j∈S1

(1− xj),

where the second inequality comes from the fact that Ai is negative dependent of the

collection {Ak | k ∈ S2}.

For the denominator, write S1 = {j1, . . . , jr} (if it is empty, the denominator is

6



equal to 1). Now,

Pr
 r∧
`=1

Aj`

∣∣∣∣∣∣
∧
k∈S2

Ak


= Pr

Aj1
∣∣∣∣∣∣
∧
k∈S2

Ak

 · Pr
Aj2

∣∣∣∣∣∣ Aj1 ∧
∧
k∈S2

Ak

 · · ·Pr
Ajr

∣∣∣∣∣∣
r−1∧
`=1

Aj` ∧
∧
k∈S2

Ak


≥

r∏
`=1

(1− xj`),

where the inequality holds by the induction hypothesis (in each factor, we condition

on an intersection of fewer than |S| events).

Combining the two bounds,

Pr
Ai

∣∣∣∣∣∣
∧
j∈S

Aj

 =
Pr
(
Ai ∧

∧
j∈S1 Aj

∣∣∣ ∧k∈S2 Ak
)

Pr
(∧

j∈S1 Aj
∣∣∣ ∧k∈S2 Ak

)
≤
xi
∏
j∈S1(1− xj)∏

j∈S1(1− xj)

= xi,

which proves the claim.

1.4 Counting Derangements

A derangement is a permutation having no fixed point. It is well known that the

number of derangements on the set [N ] is the integer nearest to N !
e
[15]. The lopsided

local lemma gives this value as an asymptotic lower bound. (Using the forthcoming

machinery of positive dependency graphs, Lu and Székely [21] obtained this as an

asymptotic upper bound, as well.)

In the uniform probability space containing all permutations on the set [N ], let

Ai denote the collection of all such permutations having i as a fixed point. The

event ∧Ni=1Ai contains precisely those permutations having no fixed point (that is,

the derangements on [N ]).

7



No pair of distinct events Ai and Aj are independent, since

Pr (Ai ∧ Aj) = (N − 2)!
N ! = 1

N2 −N
,

while

Pr (Ai) Pr (Aj) = (N − 1)!
N ! · (N − 1)!

N ! = 1
N2 .

For this reason, the local lemma fails in the worst possible way. Remarkably, the lop-

sided local lemma succeeds in the best possible way, allowing for an edgeless negative

dependency graph.

Theorem 1.5. In the uniform probability space containing all permutations on the

set [N ], let Ai denote the collection of all such permutations having i as a fixed point.

The graph with vertex set [N ] and no edges is a negative dependency graph for the

events {A1, . . . , AN}.

Lu and Székely [20] prove a more general statement about random injections, of

which the theorem above is a simple case. Before presenting an alternative proof, let

us take a moment to see why we might expect it to hold for just two events. Asking

whether Pr
(
A1

∣∣∣ A2
)
is less than or equal to Pr (A1) can be phrased as follows: Does

the knowledge that the element 2 is not a fixed point reduce the likelihood that the

element 1 is a fixed point? The fact that 2 is not a fixed point means it is slightly

more likely than usual that it is mapped to 1, so it is slightly less likely than usual

that 1 is a fixed point.

Proof of Theorem 1.5. Without loss of generality, we will establish the inequality

Pr
 k∧
j=1

Aj

∣∣∣∣∣∣ AN
 ≤ Pr

 k∧
j=1

Aj


for any k ∈ [N − 1], which is defined to be∣∣∣AN ∧ ∧kj=1Aj

∣∣∣
|AN |

≤

∣∣∣∧kj=1Aj
∣∣∣

N ! .

8



Now, AN is the collection of permutations on the set [N ] having N as a fixed point, so

|AN | = (N − 1)!. Clearing denominators, we are left with establishing the inequality

N

∣∣∣∣∣∣AN ∧
k∧
j=1

Aj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
k∧
j=1

Aj

∣∣∣∣∣∣ ,
which we achieve by the following combinatorial argument.

Since all permutations belonging to AN ∧
∧k
j=1Aj have N as a fixed point, we may

view the event as the collection of all permutations on the set [N −1] having no fixed

points in the set [k]. The event ∧kj=1Aj is the collection of all permutations on the

set [N ] also having no fixed points in the set [k]. Denote these collections by AN−1

and AN , respectively.

For any σ ∈ AN−1, define σi for each i ∈ [N ] via

σi(j) =



N if j = i

σ(i) if j = N

σ(j) otherwise.

Each σi is distinct, since σi(N) 6= σj(N) whenever i 6= j. Moreover, distinct

permutations σ and τ belonging to AN−1 must differ in at least two coordinates, so

σi 6= τj for any i and j. Finally, since σ has no fixed points in [k], neither does σi for

any i (recall that N /∈ [k]), which means each σi belongs to AN . Taken together, we

conclude N |AN−1| ≤ |AN |, as desired.

With an edgeless negative dependency graph in hand, we can take each xi = 1
N

in the lopsided local lemma, since

Pr (Ai) = 1
N

= xi = xi
∏
ij∈∅

(1− xj).

The lopsided local lemma concludes

Pr
(
N∧
i=1

Ai

)
≥

N∏
i=1

(
1− 1

N

)
=
(

1− 1
N

)N
,

which converges to 1
e
. Therefore, N !

e
is an asymptotic lower bound for the number of

derangements on the set [N ].
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1.5 Asymptotic Enumeration with the Lopsided Local Lemma

For asymptotic analysis, we will be interested in sequences of problems in which the

size of the events and/or the ambient probability space depends on some parameter

tending toward infinity. For example, the events “at least one head” or “at least
√
N heads” in the probability space of all possible outcomes of N coin flips induce a

sequence of problems when N grows without bound. We will denote such a growing

probability space by ΩN to emphasize that its size depends on N . Lu and Székely

[21] provide conditions under which an asymptotic lower bound for Pr
(∧n

i=1Ai
)
can

be obtained from the lopsided local lemma. Notice Pr (Ai) will depend on N even if

the event Ai does not explicitly reference N , since the size of the ambient probability

space ΩN grows with N .

Theorem 1.6 (Lu, Székely 2011). Let A1, . . . , An be events in a probability space

ΩN with negative dependency graph ([n], E) and set µ = ∑n
i=1 Pr (Ai). If there is ε

(depending on N) such that

• Pr (Ai) < ε for all i,

•
∑
j:ij∈E

Pr (Aj) + 2 Pr2(Aj) < ε for all i, and

• εµ tends to zero as N tends to infinity,

then

Pr
(

n∧
i=1

Ai

)
≥ (1− o(1))e−µ.

Negative dependency graphs are more general but also more difficult to identify

than dependency graphs. Lu, Székely, and the author [19] explored conflict graphs

in several disparate classes of combinatorial objects, which has been a successful

avenue in discovering negative dependency graphs. For the sake of concreteness,

we will define the conflict graph separately in each of the sections on hypergraph

10



matchings, set partitions, and spanning trees, which are the classes of combinatorial

objects with which we will be concerned.

To obtain an asymptotic upper bound for Pr
(∧n

i=1Ai
)
, Lu and Székely [21] in-

troduced the ε-near positive dependency graph. In the event that the lower

and upper bounds match in the limit, one obtains an asymptotic expression for the

probability of interest.

For events A1, . . . , An and ε ∈ (0, 1), an ε-near positive dependency graph ([n], E)

is one in which

• Pr(Ai ∧ Aj) = 0 whenever ij ∈ E and

• the inequality

Pr
Ai

∣∣∣∣∣∣
∧
j∈S

Aj

 ≥ (1− ε) Pr(Ai)

holds for each i and any subset S of N(i) (excluding those S for which the

event ∧j∈S Aj has probability zero, in which case the conditional probability is

undefined).

Notice the reversal in the direction of the inequality (as compared with the nega-

tive dependency graph) results in an upper bound on Pr
(∧n

i=1Ai
)
.

Theorem 1.7 (Lu, Székely 2011). If A1, . . . , An are events with an ε-near positive

dependency graph, then

Pr
(

n∧
i=1

Ai

)
≤

n∏
i=1

[1− (1− ε) Pr (Ai)] .

With some extra restrictions, this upper bound meets the lower bound in 1.6

asymptotically.

Corollary 1.8. Let A1, . . . , An be events with an ε-near positive dependency graph

in a probability space growing with N and set µ = ∑n
i=1 Pr (Ai). If both εµ and

11



∑n
i=1 Pr2(Ai) tend to zero as N tends to infinity, then

Pr
(

n∧
i=1

Ai

)
≤ (1 + o(1))e−µ.

Proof. Theorem 1.7 gives

Pr
(

n∧
i=1

Ai

)
≤

n∏
i=1

[1− (1− ε) Pr (Ai)]

= exp
(

n∑
i=1

log [1− (1− ε) Pr (Ai)]
)
.

Using the fact that

log(1− x) = −
∞∑
k=1

xk

k

for |x| < 1, we write

log [1− (1− ε) Pr (Ai)] = −
∞∑
k=1

(1− ε)k Prk(Ai)
k

for each i. Now,

−
n∑
i=1

∞∑
k=1

(1− ε)k Prk(Ai)
k

= −
n∑
i=1

(1− ε) Pr(Ai)−
n∑
i=1

∞∑
k=2

(1− ε)k Prk(Ai)
k

= −
n∑
i=1

(1− ε) Pr(Ai)−
n∑
i=1

O
(
Pr2(Ai)

)
= −

n∑
i=1

(1− ε) Pr(Ai)−O
(

n∑
i=1

Pr2(Ai)
)
.

Substituting into the exponential, we have

Pr
(

n∧
i=1

Ai

)
≤ exp

(
n∑
i=1

log [1− (1− ε) Pr (Ai)]
)

= exp
(
−

n∑
i=1

(1− ε) Pr(Ai)−O
(

n∑
i=1

Pr2(Ai)
))

= exp (−µ) exp
(
εµ+O

(
n∑
i=1

Pr2(Ai)
))

= exp (−µ) (1 + o(1)).

12



In a sequence of problems satisfying the conditions of both Theorem 1.6 and

Corollary 1.8, we can conclude Pr
(∧n

i=1Ai
)

is asymptotic to e−µ. If we further

assume that the ambient probability space is equipped with the counting measure,

then multiplying by the size of the space gives an asymptotic expression for the

number of outcomes avoiding the events A1, . . . , An.

Corollary 1.9. Let A1, . . . , An be events in a uniform probability space ΩN equipped

with the counting measure and set µ = ∑n
i=1 Pr (Ai). If the conditions of both Theorem

1.6 and Corollary 1.8 are satisfied, then∣∣∣∣∣
n⋂
i=1

Ai

∣∣∣∣∣ = (1 + o(1))|ΩN |e−µ.

13



Chapter 2

Lopsided Local Lemma for Hypergraph

Matchings

2.1 Introduction

An s-matching (or simply matching) in an s-uniform hypergraph is a collection of

vertex-disjoint edges (each containing s vertices) and ismaximal provided no strictly

larger matching contains it. Let Ω denote the uniform probability space consisting

of all maximal matchings of some underlying s-uniform hypergraph H. Our primary

objective in this section will be to define a conflict graph for events in Ω (analogous

to the one defined in Chapter 3 for set partitions) and present some conditions under

which it is a negative dependency graph.

For a particular matchingM , define AM to be the collection of all maximal match-

ings extending M . More precisely,

AM = {L ∈ Ω |M ⊆ L}.

We call the collection AM the canonical event for the matching M to emphasize

its interpretation as an event in the probability space Ω. Two matchings conflict

whenever their union is not again a matching, and two canonical events conflict when

the matchings used to define them conflict.

Finally, let M be any collection of s-matchings. The conflict graph for the

collection {AM | M ∈ M} of canonical events is a simple graph whose vertex set is

M. Two matchings are adjacent in this graph if and only if they conflict.

14



Figure 2.1 Canonical event for single-edge matching in K6.

2.2 Example Conflict Graph

Take the complete graph on six vertices to be the underlying graph (a graph is a 2-

uniform hypergraph). The single-edge matching B is pictured in Figure 2.2 together

with its canonical event AB, which consists of the three maximal (indeed, perfect)

matchings containing the edge B. The edges incident to a vertex of B are not pic-

tured to emphasize the fact that they cannot possibly be including in any matching

containing B. For this reason, there is a natural bijection between the outcomes of

the canonical event AB and the collection of perfect matchings of the complete graph

on four vertices.

Unrelated to the previous example, consider the three matchings K, L, and M

in the complete graph on six vertices pictured in Figure 2.2. The matchings K

and M conflict, because their union is not again a matching. The canonical events

(not pictured) AK and AM are disjoint, since no perfect matching extends both the

matchings K andM simultaneously. Similarly, the matchings L andM conflict. The

matchings K and L do not conflict, since their union is itself a matching (indeed, a

perfect matching). The conflict graph for the these events is therefore the graph with

15



Figure 2.2 Matchings K, L, and M , respectively.

vertex set {K,L,M} and edge set {KM,LM}.

2.3 Negative Dependency Graph

For the enumeration of regular uniform hypergraphs in Chapter 5, the underlying

graph will be a complete uniform hypergraph, in which case the conflict graph is

always a negative dependency graph [19].

Theorem 2.1 (Lu, M, Székely 2012). Let M be any collection of matchings in a

complete uniform hypergraph. The conflict graph for the collection {AM | M ∈ M}

of canonical events is a negative dependency graph.

At this point our interest in hypergraph matchings is two-fold. In Chapter 5, we

apply the theorem above (together with other tools) to the asymptotic enumeration

of regular uniform hypergraphs. In Chapter 6, we pursue the classification of the

underlying hypergraphs for which the theorem above holds.

2.4 Positive Dependency Graph

Let M be a collection of matchings in the complete s-uniform hypergraph on N

vertices with negative dependency graph (M, E), and let δ be a positive real number.

(For the moment, we may suppose that s and δ are both fixed, but later applications

will allow these to grow slowly with N .) Such a collection is δ-sparse provided

16



no matching from M is a subset of another matching from M and the following

inequalities are satisfied for every matching M ∈M and every edge e ∈ E:

• Pr (AM) < δ

•
∑

L:LM∈E
Pr (AL) + Pr2(AL) < δ

•
∑
L:e∈L

Pr (AL) + Pr2(AL) < δ

•
∑

L∈MM

Pr
N−s|M |

(AL) + Pr2
N−s|M |

(AL) < δ,

where

MM = {L \M | L ∈M, L 6= M,L ∩M 6= ∅, L does not conflict with M}.

A collection in which every matching contains at most k edges is k-bounded.

Theorem 2.2. Let M be a collection of matchings in a complete s-uniform hyper-

graph. If M is δ-sparse and k-bounded, then the conflict graph for the canonical

events {AM |M ∈M} is also an ε-near positive dependency graph.

The precise relationship between the parameters k, s, δ, and ε is deferred to

Section A.2.

2.5 Asymptotics for Avoiding Matchings

Let ΩN be the uniform probability space of maximal matchings of a complete uniform

hypergraph. In this space, the expression Pr
(∧

M∈MAM
)
denotes the probability that

a maximal matching chosen uniformly at random from ΩN contains no submatching

belonging to the set M. According to Theorem 2.1, the conflict graph for any col-

lection of canonical matching events is a negative dependency graph. Theorem 2.2

gives some restrictions onM under which we are assured the conflict graph is also a

positive dependency graph. Theorem 1.6 and Corollary 1.8 give further restrictions to

17



ensure nice asymptotic behavior. We gather here all these conditions into one place

to derive an asymptotic expression for Pr
(∧

M∈MAM
)
. Take note that expressions

such as Pr (AM) will depend on N since the size of the ambient probability space ΩN

depends on N .

Theorem 2.3. Let ΩN denote the uniform probability space of perfect matchings of

Ks
N , the complete s-uniform hypergraph on N vertices. Let r and ε both depend on

N , where r is a positive integer and ε is a real number eventually lying in the interval

(0, 1
16). Let M be a k-bounded collection of matchings in Ks

N in which no matching

is a subset of another. For any matching M ∈M, define the canonical event

AM = {L ∈ ΩN |M ⊆ L}.

Set µ = ∑
M∈M Pr (AM). Finally, suppose the following inequalities are satisfied for

every matching M ∈M and every edge e of Ks
N :

• Pr (AM) < ε

•
∑

L:L,Mconflict
Pr (AL) < ε

•
∑

L∈M:e∈L
Pr (AL) < ε

•
∑

L∈MM

Pr
N−sk

(AL) < ε

If, in addition, ksε = o(1), then

Pr
( ∧
M∈M

AM

)
= e−µ+O(ksεµ). (2.1)

Furthermore, if ksεµ = o(1), then

Pr
( ∧
M∈M

AM
)

= (1 +O(ksεµ)) e−µ.

The proof (like the statement) is technical, and we relegate it to Section A.2. We

will make use of this result in Chapter 5, wherein we establish a bijection between a

certain class of matchings and hypergraphs avoiding small cycles.
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Chapter 3

Negative Dependency Graphs for Set Partitions

Let Ω denote the uniform probability space consisting of all partitions of some un-

derlying set X. (Equivalently stated, Ω contains all perfect matchings of complete

nonuniform hypergraph on the vertex set X in which edges of the matching are not

required to have the same size.) Our primary objective in this section will be to define

a certain type of conflict graph for events in Ω and present some conditions under

which it is a negative dependency graph.

3.1 Introduction

A partial partition is a collection of disjoint subsets of the underlying set X. (A

partial partition may in fact fully partition the set X.) For a particular partial

partition P , define AP to be the collection of all (ordinary) partitions extending P .

More precisely,

AP = {Q ∈ Ω | P ⊆ Q}.

(We are using the ordinary subset relation, not the refinement relation.) We call

the collection AP the canonical event for the partial partition P to emphasize its

interpretation as an event in the probability space Ω. Two partial partitions conflict

whenever their union is not again a partial partition, and two canonical events conflict

when the partitions used to define them conflict.

Finally, let P be any collection of partial partitions of the set X. The conflict

graph for the collection {AP | P ∈ P} of canonical events is a simple graph whose

vertex set is P . Two partitions are adjacent in this graph if and only if they conflict.
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Table 3.1 Partial partitions of [5]
and corresponding canonical events.

Partial Partition Canonical Event

P 12 | 3 AP
12 | 3 | 45
12 | 3 | 4 | 5

Q 14 | 2 AQ
14 | 2 | 35
14 | 2 | 3 | 5

R 12 | 45 AR 12 | 3 | 45

In this section we are concerned with characterizing the collections {AP | P ∈ P}

of canonical events for which the conflict graph is a negative dependency graph. In

other words, for what collections P of partial partitions does the inequality

Pr
AP

∣∣∣∣∣∣
∧

AQ∈S
AQ

 ≤ Pr (AP )

hold for each P ∈ P and every subset S of N(P )? (In this instance, N(P ) is the

subset of P containing precisely those partial partitions that do not conflict with P .)

3.2 Example Conflict Graph

Consider the underlying set X = [5] and the partial partitions P , Q, and R defined

in Table 3.2. (The notation, for example, 12 | 3 is shorthand for {{1, 2}, {3}}.)

The partial partitions P and Q conflict, since P ∪ Q = 12 | 3 | 14 | 2 is not a

collection of disjoint subsets. Notice the canonical events AP and AQ are disjoint.

Similarly, the partial partitions Q and R conflict. On the other hand, the partial

partitions P and R do not conflict, since P ∪R = 12 | 3 | 45 is itself a partial partition

(in fact, it is an ordinary partition). The conflict graph for the associated canonical

events is therefore the graph with vertex set {P,Q,R} and edge set {PQ,QR}.

3.3 A Class of Counterexamples

For convenience, let us henceforth assume that the underlying set of the partitions is

[N ], write ΩN to denote the space of all partitions of [N ], and write Pr
N

(·) to denote
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the probability is taken with respect to the space ΩN .

The conflict graph need not be a negative dependency graph for arbitrary collec-

tions P of partial partitions. Indeed, a counterexample exists for every N , but the

construction presented there seems to rely on the fact that each partial partition is

quite large with respect to the underlying set. To present the counterexamples, we

introduce N th Bell number BN [4, 5, 24], which is the number of partitions of an

N -element set.

Let the size N of the underlying set be given. For each i ∈ [N ], let Pi denote the

partition of [N ] \ {i} into singletons. We have

Pr
N

(
N∧
i=1

APi

)
= Pr

N

 N∨
i=1

APi

 = BN − 1
BN

,

since the only partition extending any of the Pi is the partition of [N ] into singletons.

On the other hand, the partition of [N + 1] into singletons extends any of the Pi.

Each Pi is also extended by the partition containing only singletons except for the

block {i, N + 1}. Thus we have,

Pr
N+1

(
N∧
i=1

APi

)
= Pr

N+1

 N∨
i=1

APi

 = BN+1 − (N + 1)
BN+1

.

Before proceeding, we will need the fact that

Pr
N

(
N∧
i=1

APi

)
> Pr

N+1

(
N∧
i=1

APi

)
.

Begin with the fact that (N + 1)BN > BN+1 for all integers N (see Appendix B).

Now,

(N + 1)BN > BN+1

−BN+1 > −(N + 1)BN

BN+1BN −BN+1 > BN+1BN − (N + 1)BN

BN − 1
BN

>
BN+1 − (N + 1)

BN+1

Pr
N

(
N∧
i=1

APi

)
> Pr

N+1

(
N∧
i=1

APi

)
,
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as desired.

Introduce now another partial partition P = {{N + 1}}. We have

Pr
N+1

(
N∧
i=1

APi

∣∣∣∣∣ AP
)

= Pr
N

(
N∧
i=1

APi

)

> Pr
N+1

(
N∧
i=1

APi

)
,

violating the condition of negative dependence. Thus, the conflict graph for the events

AP , AP1 , . . . , APN
is not a negative dependency graph in the space ΩN+1.

3.4 Results

For a collection P of partitions of [N ], let a(P) denote the average number of blocks

among the partitions belonging to P . That is,

a(P) =
∑
P∈P |P |
|P|

.

For example, it is known that a(ΩN) = BN+1
BN
− 1 (see Appendix B). The conflict

graph is a negative dependency graph for collections P that are “coarse” enough in

the sense that the average number of blocks of its corresponding canonical events is

smaller than the average over all partitions.

The following lemma will be useful for establishing negative dependency graphs

in collections of coarse partial partitions. Notice the conclusion is for the entire

collection P of partial partitions and says nothing about subcollections.

Lemma 3.1. Let P be a collection of partial partitions of [N ]. If

a

( ⋂
P∈P

AP

)
≥ BN+1

BN

− 1

or, equivalently,

a

( ⋃
P∈P

AP

)
≤ BN+1

BN

− 1,
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then

Pr
N

( ∧
P∈P

AP

)
≤ Pr

N+1

( ∧
P∈P

AP

)
.

Proof. For convenience, let PN = ⋂
P∈P A

N
P and PN+1 = ⋂

P∈P A
N+1
P , where the

superscript denotes the size of the underlying set. Given any partition P ∈ PN , one

can form a partition belonging to PN+1 either by adjoining the block {N + 1} to P

or by introducing the element N + 1 to any existing block of P . From this we see

∣∣∣PN+1
∣∣∣ ≥ ∑

P∈PN

(|P |+ 1)

=
∣∣∣PN ∣∣∣+ ∑

P∈PN

|P |

=
(

1 +
∑
P∈PN |P |
|PN |

) ∣∣∣PN ∣∣∣
=
(
1 + a

(
PN

)) ∣∣∣PN ∣∣∣
≥
(

1 + BN+1

BN

− 1
) ∣∣∣PN ∣∣∣

= BN+1 Pr
(
PN

)
,

so Pr
(
PN+1

)
≥ Pr

(
PN

)
.

A heavy-handed way to ensure sufficient coarseness is to require every block ap-

pearing in P be large enough. It turns out a block size of logN is large enough, and

empirical data suggests this is as small as possible. The proof of this fact relies on

Canfield’s formulation [9] of Moser and Wyman’s asymptotic expression for the Bell

numbers [23].

Lemma 3.2 (Canfield 1995). Let r be the unique real solution of the equation rer = N

(that is, r = LambertW0(N)). The identity

BN+h = (N + h)!
rN+h · exp (er − 1)

(2πB)1/2 ·(
1 + P0 + hP1 + h2P2

er
+ Q0 + hQ1 + h2Q2 + h3Q3 + h4Q4

e2r +O(e−3r)
)
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holds uniformly for h = O(logN) as N tends to infinity, where

B = (r2 + r)er,

P0 = −2r4 + 9r3 + 16r2 + 6r + 2
24r(r + 1)3 ,

P1 = −r
2 + 3r + 1
2r(r + 1)2 ,

P2 = − 1
2r(r + 1) ,

Q0 = 4 + 24r + 100r2 − 636r3 − 588r4 − 384r5 − 143r6 − 12r7 + 4r8

1152r2(r + 1)6 ,

Q1 = 6 + 32r + 56r2 + 135r3 + 101r4 + 37r5 + 6r6

48r2(r + 1)5 ,

Q2 = 20 + 90r + 190r2 + 105r3 + 20r4

48r2(r + 1)4 ,

Q3 = 5 + 15r + 5r2

12r2(r + 1)3 , and

Q4 = 1
8r2(r + 1)2 .

The factor of r = LambertW(N) proves troublesome in the asymptotic analysis,

so we make use of the following bounds [16].

Lemma 3.3 (Hoorfar, Hassani 2008). For every x ≥ e, we have

log x− log log x+ 1
2

log log x
log x ≤ LambertW(x) ≤ log x− log log x+ e

e− 1
log log x

log x

with equality only for x = e.

Lemma 3.4. Set k = dlogNe and let c be any constant. The inequality

BN+1

BN

− BN+1−c`

BN−c`
> 1

holds for all sufficiently large N and any ` ≥ k.

Proof. The case ` = k is handled by a Maple worksheet [22] making use of the

Moser-Wyman expansion of the Bell numbers and the Hoorfar-Hassani bound on the

LambertW function. The sequence BN+1−c`

BN−c`
is nonincreasing in ` [12], which gives the

desired conclusion for any ` ≥ k.
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Theorem 3.5. Set k = dlogNe and let c be any constant. If P is a collection

(possibly depending on N) of partial partitions of a sufficiently large set [N ] such that

every partial partition P ∈ P contains at most c blocks and every block contains at

least k elements, then the conflict graph for {AP | P ∈ P} is a negative dependency

graph.

Proof. Let P ∈ P and let Q be any subcollection of P that does not conflict with P .

Our ultimate goal is to establish

Pr
N

 ∧
Q∈Q

AQ

∣∣∣∣∣∣ AP
 ≤ Pr

N

 ∧
Q∈Q

AQ

 . (3.1)

To that end, define QP = {Q \ P | Q ∈ Q}. Let ‖P‖ denote the number of ground

elements (not blocks) appearing in the partial partition P and assume, without loss of

generality, that these elements are N−‖P‖+1, . . . , N . Since P does not conflict with

Q, any block of P is either identical to or disjoint from any block of Q ∈ Q. Hence,

the ground elements appearing in partial partitions belonging to QP are elements of

the set [N − ‖P‖].

Now, if ∅ ∈ QP , then there is nothing to show (the lefthand side of Inequality 3.1

evaluates to zero). Otherwise, let {cQP
| QP ∈ QP} be nonnegative weights such that

∑
QP∈QP

cQP
= 1

and

a

 ⋃
QP∈QP

AQP

 =
∑

QP∈QP

cQP
a (AQP

) .

Fix an arbitrary partial partition QP ∈ QP and denote its blocks by B1, . . . , Bj.

Each of the Bi contains at least k elements. In what follows, we use a superscript

N on a collection of partial partitions to denote the number of ground elements over

which the partitions are to be formed. Repeated application of Lemma 3.4 and the
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monotonicity of the sequence BN+1
BN

give

a
(
ANQP

)
= j + a

(
ΩN−‖QP ‖
N−‖QP ‖

)
= j − 1 + BN+1−‖QP ‖

BN−‖QP ‖

< j − 2 + BN+1−‖QP \{B1}‖

BN−‖QP \{B1}‖

< j − 3 + BN+1−‖QP \{B1,B2}‖

BN−‖QP \{B1,B2}‖

...

< j − (j + 1) +
BN+1−‖QP \{B1,...,Bj}‖

BN−‖QP \{B1,...,Bj}‖

= BN+1

BN

− 1.

for all sufficiently large N .

As QP was selected arbitrarily from QP , we can write

a

 ⋃
QP∈QP

AQP

 =
∑

QP∈QP

cQP
a (AQP

)

<
∑

QP∈QP

cQP

(
BN+1

BN

− 1
)

= BN+1

BN

− 1.

Finally, we return to the negative dependency inequality 3.1. Repeated application
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of Lemma 3.1 gives

Pr
N

 ∧
Q∈Q

AQ

∣∣∣∣∣∣ AP
 = Pr

N−‖P‖

 ∧
QP∈QP

AQP


≤ Pr

N+1−‖P‖

 ∧
QP∈QP

AQP


≤ Pr

N+2−‖P‖

 ∧
QP∈QP

AQP


...

≤ Pr
N

 ∧
QP∈QP

AQP


≤ Pr

N

 ∧
Q∈Q

AQ

 .

3.5 Failed Attempt via Injection

Let M be a partial partition and M be a collection of partial partitions that does

not conflict with M . The correlation inequality presented in Section 1.3 would ask

us to verify

Pr (AM) Pr
( ∨
L∈M

AL

)
≤ Pr

(
AM ∧

( ∨
L∈M

AL

))
,

which is equivalent to

|AM |
∣∣∣∣∣ ⋃
L∈M

AL

∣∣∣∣∣ ≤ BN

∣∣∣∣∣AM ∩
( ⋃
L∈M

AL

)∣∣∣∣∣ .
A radically different approach to verifying this inequality would be to establish an

injection f from the set {
(P,Q) | P ∈ AM , Q ∈

⋃
L∈M

AL

}

(which has cardinality equal to the left-hand side) into a set of cardinality no larger

than the right-hand side. We describe below one such attempt and demonstrate
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where it comes short of achieving the desired goal. Notice that the inequality cannot

possibly be verified in full generality, since there are counterexamples for every N . It

is the author’s hope that a similar approach can be made to work for appropriately

restricted collections of partial partitions.

Given a partial partition R, let supp(R) denote the collection of all ground el-

ements appearing in R. When speaking of the restriction of a partial partition to

another, we may write R �S to mean R �supp(S). Empty blocks arising as a result of

restriction are discarded.

Let C = [N ] \ supp(M) (“C” for “complement”). We will say a block B of a

partial partition is

• a type M block whenever B �M= B �[N ],

• a type C block whenever B �C= B �[N ], and

• a mixed block if it is neither type M nor type C.

In other words, if we first restrict our attention only to elements of [N ] (there

will be other kinds of elements to consider later), then type M blocks contain only

elements of M , type C blocks contain no elements of M , and mixed blocks contain a

mixture of the two kinds of elements.

Let now P ∈ AM and Q ∈ ⋃L∈M be given and let (P,Q) 7→ (P ′, Q′) under f .

To obtain P ′ from P :

1. Remove all type M blocks from P . (Since P ∈ AM , this is just P \M .)

2. Insert all type M blocks of Q into P .

3. For each mixed type block B of Q, let `B = min(B �C) and insert into P the

block (B �M) ∪ {̂̀B}, where ̂̀B denotes a duplicate, but distinguishable, copy

of `B.
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For the purposes of the function f , duplicate elements will always correspond to

elements of C, so we define Ĉ = { ̂̀ | ` ∈ C} as the collection of possible duplicate

elements.

To obtain Q′ from Q:

1. Remove all type M blocks from Q.

2. Replace each mixed type block B of Q with B �C .

3. Insert all blocks of M into Q.

(As an example of the behavior of f , consider M = 1|23, P = 1|23|4|56, and Q =

13|26|45. The procedure described above gives P ′ = 13|26̂|4|56 and Q′ = 1|23|45|6.)

Lemma 3.6. The function f is injective.

Proof. Let f(P1, Q1) = (P ′1, Q′1) = (P ′2, Q′2) = f(P2, Q2). We show (P1, Q1) =

(P2, Q2).

Since P ′1 = P ′2, it follows that P ′1 �C= P ′2 �C , and so

P1 = P ′1 �C ∪M

= P ′1 �C ∪M

= P2.

Since Q′1 = Q′2, it follows that Q′1 \M = Q′2 \M , and so Q1 �C= Q2 �C . Now,

every type M block of P ′1 = P ′2 is also present in both Q1 and Q2. Every mixed block

B of P ′1 = P ′2 contains an element ̂̀∈ Ĉ, and so there is B1 ∈ Q1 and B2 ∈ Q2 such

that ` belongs to both B1 and B2 and B1 �M= B2 �M= B \{ ̂̀}. Since Q1 �C= Q2 �C ,

we know also that B1 �C= B2 �C , and thus B1 = B2. As this holds for all mixed

blocks of P ′1 = P ′2, we have Q1 = Q2.

It remains to verify the inequality

|AM |
∣∣∣∣∣ ⋃
L∈M

AL

∣∣∣∣∣ ≤ BN

∣∣∣∣∣AM ∩
( ⋃
L∈M

AL

)∣∣∣∣∣ .
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Since f is injective, we have∣∣∣∣∣
{

(P,Q) | P ∈ AM , Q ∈
⋃
L∈M

AL

}∣∣∣∣∣ ≤
∣∣∣∣∣
{
f((P,Q)) | P ∈ AM , Q ∈

⋃
L∈M

AL

}∣∣∣∣∣ .
Observe that, if (P,Q) 7→ (P ′, Q′) under f , then Q′ ∈ AM ∩ (⋃L∈MAL), since M

does not conflict withM. Hence, there are at most |AM ∩ (⋃L∈MAL)| possible Q′.

The desired inequality would follow by showing, for each fixed Q′0 ∈ AM∩(⋃L∈MAL),

we have

|{P ′ | (P ′, Q′0) ∈ im(f)}| ≤ BN .

Unfortunately, this inequality is not true. Fixing Q′0 only restricts what elements

of Ĉ can be applied as labels in a P ′ under f . The available labels are precisely the

minimum elements of type C blocks of Q′0. Since Q′0 can have as many as N − 1 type

C blocks, the fact that Q′0 is fixed can be of little help.

For a concrete example, let M = {{1}}, M contain only the partial partition

{{2}}, and Q′0 be a partition of [N ] into singletons. The partition P ∈ AM may be

any partition having the singleton block {1}. The partition Q ∈ A{{2}} that would

map to Q′0 under f may be the partition of [N ] into singletons or any partition that is

singletons except for the block {1, i} for i /∈ {1, 2}. If Q is of the former type, then the

resulting P ′ may be any partition having the singleton block {1}, of which there are

BN−1 possibilities. If Q is of the latter type, then P ′ may be any partition containing

the block {1, î} for i 6= 2, of which there are (N − 2)BN−1 possibilities. In total, this

gives (N − 1)BN−1 possible P ′ that may appear with Q′0 under f . Since BN−1
BN
∼ r

N

(where r is the solution to the equation N = rer) [11], we have (N−1)BN−1
BN

∼ r, which

grows without bound in N . Hence,

|{P ′ | (P ′, Q′0) ∈ im(f)}| > BN

for large N . (In fact, it is already true for N = 5.)
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3.6 Further Research

In light of the class of counterexamples in Chapter B, one cannot guarantee even

asymptotically that the conflict graph for an unrestricted collection {AP | P ∈ P}

of canonical events is a negative dependency graph. The known counterexamples

seem to rely on the fact that the set of ground elements of partial partitions in the

collection P is quite a large subset of [N ]. Empirical evidence suggests that a negative

dependency graph always exists when this is not the case.

Conjecture 3.7. Let P be a collection of partial partitions of [N0]. For sufficiently

large N , the conflict graph for {AP | P ∈ P} is a negative dependency graph in the

probability space ΩN .

While possibly true, this conjecture carries with it the unfortunate restriction that

only members of ΩN whose support lies in [N0] can be forbidden via the lopsided local

lemma.

In Chapter 5, we make use of the lopsided local lemma to derive asymptotics

for the number of hypergraphs avoiding small cycles. It was the author’s intent to

derive a similar expression for the number of partitions avoiding small blocks. For

this application, we are interested only in the collection P defined by

P = {{B} : B ⊂ [N ], |B| ≤ m}

for some fixed (or perhaps slowly growing) integer m. Showing that the conflict graph

for this collection is a negative dependency graph would be an important step toward

proving the following conjecture about partitions having no small blocks.

Conjecture 3.8. The number of partitions of [N ] whose smallest block is of size m

is asymptotic to

BN exp
(
−

m−1∑
k=1

(
N

k

)
BN−k

BN

)

(assuming restricted growth of m as a function of N).
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The conjecture is correct whenm = 2, for which it claims the number of singleton-

free partitions of [N ] is asymptotic to BN exp
(
−N BN−1

BN

)
. The number of such par-

titions can be expressed exactly as ∑N
i=1(−1)N−iBi using Lemma B.2. Dividing both

sides by BN , we show 1
BN

∑N
i=1(−1)N−iBi and exp

(
−N BN−1

BN

)
converge to the same

value. For both calculations, we make use of Canfield’s expansion for the Bell num-

bers.

For the former,

1
BN

N∑
i=1

(−1)N−iBi = BN−1

BN

(
N∑
i=1

(−1)N−i Bi

BN−1

)

= BN−1

BN

(
1 +O

(
BN−2

BN−1

))

= BN−1

BN

(
1 +O

(
r

n

))
= r

n
(1 + o(1)) .

For the latter,

exp
(
−NBN−1

BN

)
= exp

−r · 1
1 + poly(r)

er


= exp

(
−r

(
1−O

(
poly(r)
er

)))
,

since 1
1±x ∼ 1∓ x as x→ 0. Continuing,

exp
(
−r

(
1−O

(
poly(r)
er

)))
= exp

(
−r +O

(
poly(r)
er

))

= exp (−r) exp
(
O

(
poly(r)
er

))

= r

n
(1 + o(1)).
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Chapter 4

Negative Dependency Graphs for

Spanning Trees

The probability spaces we defined for hypergraph matchings and set partitions have

in common that a partial object (partial matching and partial partition, respec-

tively) does not conflict with any maximal object (maximal matching and partition,

respectively) in its corresponding canonical event. This useful property lends itself

immediately to the use of induction, since every maximal object splits nicely into the

partial object and its extension. The proofs presented on hypergraph matchings rely

on the fact that we can extend a partial matching M to a maximal one by taking

the disjoint union of M together with any maximal matching of the vertices missed

by M . Similarly, we extend a partial partition P to a full partition by taking the

disjoint union of P together with any partition of the ground elements missed by P .

In this section, we define a natural space in which a partial object (forest) conflicts

with every maximal object (spanning tree) in its canonical event. As a result, the

maximal objects do not split nicely into the disjoint union of a partial object together

with its extension.

4.1 Introduction

A cycle in a simple graph is a sequence of vertices and edges v1, e1, v2, e2, . . . , vk,

ek (k ≥ 3) in which ei = {vi, vi+1} for each i (where we understand vk+1 to be v1). A

forest is a cycle-free graph, and a tree is a connected forest. (Notice each connected
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component of a forest is a tree.) Given an underlying graph G, we say a tree T is a

spanning tree of G whenever the vertex set of T coincides with the vertex set of G.

Let Ω be the uniform probability space containing all spanning trees of KN , the

complete graph on N vertices. For any forest F contained in KN , define the canon-

ical event AF to be the collection of all spanning trees of KN containing F . That

is,

AF = {T ∈ Ω | F ⊆ T}.

Two forests F1 and F2 (both contained in KN) conflict whenever there are trees

T1 ⊆ F1 and T2 ⊆ F2 such that T1 and T2 are neither identical nor disjoint.

Finally, let F be any collection of forests contained in KN . The conflict graph

for the collection {AF | F ∈ F} is a simple graph whose vertex set is F . Two forests

are adjacent in this graph if and only if they conflict.

4.2 Example Conflict Graph

Take K4, the complete graph on four vertices, to be the underlying graph. Figure

4.2 depicts a forest contained in K4 composed of two disjoint edges. The canonical

event for this forest consists of the four spanning trees of K4 that contain it as a

subgraph. Notice every spanning tree in the canonical event conflicts with the forest

that defined it.

Unrelated to the previous example, consider the three forestsD, E, and F pictured

in Figure 4.2 with K8 as the underlying graph. The forests D and F conflict, since the

leftmost component of D is neither identical to nor disjoint from the single component

of F . Similarly, the forests E and F conflict in the lower component of E. The forests

D and E do not conflict, since any two components (one from D and one from E)

are either identical or disjoint. The conflict graph for the associated canonical events

is therefore the graph with vertex set {D,E, F} and edge set {DF,EF}.
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Figure 4.1 Forest in K4 and its canonical event.

Figure 4.2 Forests D, E, and F , respectively.
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4.3 Results

The main result of this section is that the conflict graph for any collection of forests

is a negative dependency graph.1

Theorem 4.1. Let F be any collection of forests in KN . The conflict graph for the

collection {AF | F ∈ F} of canonical events is a negative dependency graph.

We first prove two lemmata. The first counts the number of spanning trees of

KN that contain a given forest (i.e. the size of a canonical event). When the forest

is edgeless, the lemma gives the familiar result of Cayley [29] that the number of

spanning trees of KN is NN−2.

Lemma 4.2. Let F be a forest in KN with connected components T1, . . . , Tk on t1,

. . . , tk vertices, respectively. The number of spanning trees of KN containing F is

given by

NN−2
k∏
i=1

ti
N ti−1 .

Proof. Contracting the components of F to single vertices reduces the number of

vertices by ti − 1 for each component Ti. Setting N ′ = N − ∑k
i=1(ti − 1), this

contraction transforms a spanning tree of KN into a spanning tree of KN ′ . Label

the vertices of KN ′ by vi, where the vertices v1, . . . , vk resulted from the contraction

of the components T1, . . . , Tk, respectively, and the vertices vk+1, . . . , vN ′ were not

covered by F in KN .

Menon’s theorem [18] states that the number of spanning trees of KN ′ in which

each vertex vi has degree ri is given by the multinomial coefficient(
N ′ − 2

r1 − 1, . . . , rN ′ − 1

)
.

We must also determine how many spanning trees of KN contract to a fixed

spanning tree T ′ of KN ′ . Let us fix our attention on a single component, say T1, of F .

1Results in this section are joint work with Lu and Székely.
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If the degree of v1 in KN ′ is to be r1, then there must be r1 edges from KN \ T1 into

T1. Each of the r1 edges has t1 choices for its endpoint in T1, resulting in tr1
1 possible

assignments of the edges. Any two such assignments are indistinguishable after the

contraction of T1. Multiplying now across all components, we find there are ∏k
i=1 t

ri
i

spanning trees of KN whose contraction results in T ′.

The previous two paragraphs show that the number of spanning trees of KN

containing F is given by

∑
r1+···+rN′=2(N ′−1)

(
N ′ − 2

r1 − 1, . . . , rN ′ − 1

)
k∏
i=1

tri
i .

Assigning ri ← ri + 1 for each of the indices of summation, we write instead

∑
r1+···+rN′=N ′−2

(
N ′ − 2

r1, . . . , rN ′

)
k∏
i=1

tri+1
i

=
k∏
i=1

ti
∑

r1+···+rN′=N ′−2

(
N ′ − 2

r1, . . . , rN ′

)
k∏
i=1

tri
i .

Let now tk+1 = · · · = tN ′ = 1. Invoking the Multinomial Theorem, the expression

above becomes

k∏
i=1

ti
∑

r1+···+rN′=N ′−2

(
N ′ − 2

r1, . . . , rN ′

)
N ′∏
i=1

tri
i

=
k∏
i=1

ti

 N ′∑
i=1

ti

N ′−2

=NN ′−2
k∏
i=1

ti

=NN−2
k∏
i=1

ti
N ti−1 .

Two forests are in strong conflict whenever they are not vertex disjoint. As a

preliminary version of Theorem 4.1, we show that the strong conflict graph (i.e. the

conflict graph that uses the definition of strong conflict) is a negative dependency

graph.
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Lemma 4.3. Let F be any collection of forests in KN . The strong conflict graph for

the collection {AF | F ∈ F} of canonical events is a negative dependency graph.

Proof. Let us be given a forest F ∈ F and any subcollection G of F containing forests

that are not in strong conflict with F . We seek to establish the correlation inequality

formulation of negative dependence introduced in Section 1.3, namely

Pr (AF ) Pr
 ∨
G∈G

AG

 ≤ Pr
AF ∧ ∨

G∈G
AG

 . (4.1)

(In fact, we will prove equality.) By inclusion-exclusion, we have

Pr
 ∨
G∈G

AG

 =
∑
H⊆G
H6=∅

(−1)|H|−1 Pr
( ∧
H∈H

AH

)

and

Pr
AF ∧ ∨

G∈G
AG

 =
∑
H⊆G
H6=∅

(−1)|H|−1 Pr
(
AF ∧

∧
H∈H

AH

)
.

We claim

Pr (AF ) Pr
( ∧
H∈H

AH

)
= Pr

(
AF ∧

∧
H∈H

AH

)
(4.2)

for every nonempty subset H of G, which will establish the correlation inequality 4.1.

The event ∧H∈HAH consists precisely of spanning trees that contain ⋃H∈HH as

a subgraph. Denote this union by H ′, so that ∧H∈HAH = AH′ .

If H ′ contains a cycle, then the corresponding event is empty, and both sides of

Equation 4.2 evaluate to zero.

Assume now that H ′ is a forest. Let f1, . . . , fr denote the sizes of the connected

components of F and similarly h1, . . . , hs for H ′. From Lemma 4.2, we have

Pr (AF ) =
NN−2∏r

i=1
fi

Nfi−1

NN−2 =
r∏
i=1

fi
N fi−1

and

Pr (AH′) =
NN−2∏s

i=1
hi

Nhi−1

NN−2 =
s∏
i=1

hi
Nhi−1 .
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Since F is not in strong conflict with any of the forests belonging to H, we know F

is vertex disjoint from H ′. Thus, F ∪H ′ has components of size f1, . . . , fr, h1, . . . ,

hs. Again by Lemma 4.2, we have

Pr (AF ∧ AH′) =
NN−2∏r

i=1
fi

Nfi−1
∏s
j=1

hj

Nhj−1

NN−2 =
r∏
i=1

fi
N fi−1

s∏
j=1

hj
Nhj−1 ,

which establishes Equation 4.2.

We now return to the proof of Theorem 4.1.

Proof of Theorem 4.1. Let us be given a forest F ∈ F and any subcollection G of

F containing forests that are not in conflict with F . We seek to establish yet an-

other formulation of negative dependence. Starting with the correlation inequality

introduced in Section 1.3, we may derive the equivalent expression

Pr (AF ) Pr
 ∨
G∈G

AG

 ≤ Pr
AF ∧ ∨

G∈G
AG


Pr (AF )

1− Pr
 ∧
G∈G

AG

 ≤ Pr
AF ∧ ∨

G∈G
AG


Pr (AF )− Pr (AF ) Pr

 ∧
G∈G

AG

 ≤ Pr
AF ∧ ∨

G∈G
AG


Pr (AF )− Pr

AF ∧ ∨
G∈G

AG

 ≤ Pr (AF ) Pr
 ∧
G∈G

AG


Pr
AF ∧ ∧

G∈G
AG

 ≤ Pr (AF ) Pr
 ∧
G∈G

AG

 .
If F is vertex disjoint from every G ∈ G, then Lemma 4.3 finishes the proof.

Otherwise, write GF = G \ F for each G ∈ G. Write also GF = {GF | G ∈ G}. Since

F does not conflict with any G ∈ G, it follows that F is vertex disjoint from every
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member of GF . Now,

Pr
AF ∧ ∧

G∈G
AG

 = Pr
AF ∧ ∧

GF∈GF

AGF


= Pr (AF ) Pr

 ∧
GF∈GF

AGF

 (by Lemma 4.3)

≤ Pr (AF ) Pr
 ∧
G∈G

AG

 .

Even though we showed equality in 4.1, this is not enough to conclude the strong

conflict graph is a dependency graph. To establish the mutual independence required

for a dependency graph, we still need to show that AF is independent of the event

algebra generated by {AH | H ∈ H}, which would allow events such as AH to appear

in 4.1. This can be accomplished with the following lemma.

Lemma 4.4. Let A be a collection of events and let A be any event belonging to A.

If

Pr
(
A ∧

∧
B∈B

B

)
= Pr (A)

∏
B∈B

Pr (B)

for any subcollection B of A, then A is independent of the event algebra generated by

A.

Proof. Since we know A is independent of any subset of A, it remains to show that

we still have independence even when some events from A are complemented.

We proceed by induction on |B|. If B contains a single event B, then

Pr
(
A ∧B

)
= Pr (A)− Pr (A ∧B)

= Pr (A)− Pr (A) Pr (B)

= Pr (A) (1− Pr (B))

= Pr (A) Pr
(
B
)
.
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Assume now that A is independent of any subset of size j of the event algebra

generated by B. For convenience, we show A is independent of the event algebra

generated by {B1, . . . , Bj+1}. To accomplish this, we begin a second induction on the

number of complemented events. There is nothing to show it none of the events are

complemented. Assume now independence holds when there are at most k comple-

mented events. Let Xi ∈ {Bi, Bi} and assume in the following that Xi = Ai for at

most k of the indices. Invoking both induction hypotheses, we have

Pr
A ∧Bj+1 ∧

j∧
i=1

Xi

 = Pr
A ∧ j∧

i=1
Xi

− Pr
A ∧Bj+1 ∧

j∧
i=1

Xi


= Pr (A)

j∏
i=1

Pr (Xi)− Pr (A) Pr (Bj+1)
j∏
i=1

Pr (Xi)

= Pr (A)
j∏
i=1

Pr (Xi) (1− Pr (Bj+1))

= Pr (A) Pr
(
Bj+1

) j∏
i=1

Pr (Xi) .
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Chapter 5

Enumeration of Regular Uniform Hypergraphs

5.1 Configuration Model for Hypergraphs

Our concern with maximal matchings stems from its application to the configura-

tion model of Bollobás [7], which allows one to project a perfect matching of a certain

collection of points to a multihypergraph. A multihypergraph differs from a hyper-

graph in that a single edge e may contain repeated vertices and the edge e may itself

be repeated in the edge set. For example, the collection {{u, u, v}, {u, v, w}, {u, v, w}}

can be the edge set of a multihypergraph with vertex set {u, v, w}, but not a hyper-

graph. We will be concerned only with configurations that result in an r-regular,

s-uniform multihypergraph, which we describe below. Note that in a multihyper-

graph, we count vertices with multiplicity when defining “regular” and “uniform”.

1. Let U be a set containing Nr distinct minivertices partitioned into N classes

each of size r. The ith such class (i ∈ [N ]) will be associated with the vertex vi

in the hypergraph H after identifying its elements through a projection.

2. Choose uniformly at random a perfect s-matching M of the minivertices in U .

3. Each edge ofM is a collection of s minivertices, each corresponding to partition

classes with (not necessarily distinct) indices i1, . . . , is. For all such edges of

M , add the edge {vi1 , vi2 , . . . , vis} to the hypergraph H.

Figure 5.1 illustrates a perfect 2-matching on 4 · 3 minivertices, which projects

to a 3-regular, 2-uniform hypergraph (that is, a graph) on four vertices. We will
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Matching Multihypergraph

Figure 5.1 Configuration projecting to 3-regular, 2-uniform
multihypergraph on four vertices.

later be concerned with configurations that result in a simple hypergraph, which is a

hypergraph containing no 1-cycles and no pair of edges containing precisely the same

vertices (such edges are called repeated edges). The graph in the figure has both a

1-cycle (involving the top vertex) and a pair of repeated edges (involving the left and

bottom vertices).

5.2 Cycles in Hypergraphs

We define a k-cycle in a hypergraph as follows:

• A 1-cycle is a single edge with a repeated vertex.

• A 2-cycle is a pair of edges whose intersection contains at least two vertices.

• For k ≥ 3, a k-cycle is a collection e1, . . . , ek of edges for which there are

distinct vertices v1, . . . , vk such that ei ∩ ei+1 = {vi} for all i (where ek+1 is

understood to be e1).

For example, the edges {x, a, b, y}, {y, c, d, z}, and {z, e, f, x} form a 3-cycle in a

4-uniform hypergraph.
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For k ≥ 3, the definition given above coincides with the usual meaning of “loose

cycle”. For k = 2, we have a loose cycle whenever the pair of edges intersect in exactly

two vertices. We later call such a cycle a “proper” 2-cycle, while the other 2-cycles

are “degenerate”.

(Tight cycles and Berge cycles are two other well-studied types of hypergraph

cycles [25]. Every tight cycle is a union of 2-cycles, and every Berge cycle either

contains a 2-cycle or is itself a k-cycle for some k. As we will see later, the definition

given above captures these two notions of cycle so far as regards our present purpose.)

5.3 Applying the Lopsided Local Lemma

For the moment, let r, s, and g be fixed integers. (We will later see that these

parameters may be allowed to grow slowly with N .) Fix a set U containing Nr

minivertices (with s dividing Nr) partitioned into N classes each of size r. We wish

to give an asymptotic expression for the number of r-regular, s-uniform hypergraphs

with girth at least g, which are the hypergraphs having no k-cycle for k < g. (Under

this definition of girth, a graph of girth g ≥ 3 will contain no tight cycles and no

Berge cycles that are not themselves k-cycles.) To accomplish this via the lopsided

local lemma, let M contain all matchings whose projection is precisely a cycle of

size less than g. In the uniform probability space ΩNr of all perfect s-matchings of

U , the expression Pr
(∧

M∈MAM
)
is the probability that a perfect matching does

not contain a submatching belonging to the collection M. From the perspective of

the configuration model, we may interpret this instead as the probability that an r-

regular, s-uniform multihypergraph on N vertices chosen uniformly at random from

among all such multihypgergraphs will have girth at least g.

Lu and Székely [21] give a detailed summary of the history of the enumeration

of graphs by girth. The count given here introduces three primary advancements

over the existing literature. Firstly, we enumerate r-regular, 3-uniform hypergraphs,
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while existing results focus on the 2-uniform (that is, the graph) case. Secondly,

r and g are allowed to grow slowly with N (as is made precise in the theorem).

Finally (and perhaps most importantly), verifying the hypotheses of Theorem 2.3 in

this probability space can be accomplished with elementary counting techniques and

careful estimation.

In the following result, the exponential factor on the left estimates the proba-

bility that a randomly chosen regular uniform multihypergraph has girth at least

g, while the quotient of factorials on the right counts exactly the number of such

multihypergraphs on N vertices. The proof is deferred to Chapter C.

Theorem 5.1. In the configuration model, assume g ≥ 1, r ≥ 3, and

(2r − 2)2g−3g3 = o(N). (5.1)

The probability that an r-regular, 3-uniform multihypergraph chosen uniformly at ran-

dom has girth at least g is

(1 + o(1)) exp
− g−1∑

i=1

(2r − 2)i
2i

 .
If g ≥ 3, then the number of simple r-regular, 3-uniform hypergraphs on N vertices

with girth at least g is

(1 + o(1)) exp
− g−1∑

i=1

(2r − 2)i
2i

 (rN)!
6rN/3

(
rN
3

)
!(r!)N

.

In fact, letting C be a subset of {3, 4, . . . , g − 1}, the number of simple r-regular,

3-uniform hypergraphs whose cycle lengths do not belong to C is

(1 + o(1)) exp
(

1− r − (r − 1)2 −
∑
i∈C

(2r − 2)i
2i

)
(rN)!

6rN/3
(
rN
3

)
!(r!)N

.

With extra care in the analysis, the same tools should allow us to enumerate

s-uniform multihypergraphs, where s may grow slowly with N .
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Conjecture 5.2. In the configuration model, assume g ≥ 1, r ≥ 3, s ≥ 2 and

(s− 1)2g−3(r − 1)2g−3g3 = o(N). (5.2)

The probability that an r-regular, s-uniform multihypergraph chosen uniformly at

random has girth at least g is

(1 + o(1)) exp
− g−1∑

i=1

(s− 1)i(r − 1)i
2i

 .
If g ≥ 3, then the number of simple r-regular, s-uniform hypergraphs on N vertices

with girth at least g is

(1 + o(1)) exp
− g−1∑

i=1

(s− 1)i(r − 1)i
2i

 (rN)!
(s!)rN/s

(
rN
s

)
!(r!)N

.

In fact, letting C be a subset of {3, 4, . . . , g − 1}, the number of simple r-regular,
3-uniform hypergraphs whose cycle lengths do not belong to C is

(1 + o(1)) exp

(
−

(s− 1)(r − 1)
2

−
(s− 1)2(r − 1)2

4
−
∑
i∈C

(s− 1)i(r − 1)i

2i

)
(rN)!

(s!)rN/s
(

rN
s

)
!(r!)N

.

5.4 Further Research

We discussed here only the complete uniform hypergraph, but the configuration model

is considerably more flexible. Chapter 6 discusses other hypergraphs for which the

conflict graph is always a negative dependency graph. Using an appropriate configu-

ration, one can attempt asymptotic enumeration by girth of any class of graphs for

which negative and positive dependency graphs can be found. In particular, it is

reasonable to suspect that the complete s-uniform, s-partite hypergraph will support

this sort of analysis.
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Chapter 6

Perfect Matching Hosts

Throughout this chapter, the ambient probability space Ω will consist only of perfect

(rather than simply maximal) matchings of some underlying hypergraph. For a given

matching L, the canonical event

AL = {M ∈ Ω | L ⊆M}

will therefore contain only perfect matchings. Recall that the conflict graph for the

collection {AM |M ∈M} of canonical events is a negative dependency graph, where

M may be any collection of matchings in a complete uniform hypergraph. We call

a hypergraph H a perfect matching host whenever we can write “H” in place of

“complete uniform hypergraph” in the previous sentence.

Notice that any hypergraph that has no perfect matchings has the property that

|AL| = 0 for any partial matching L. For such a hypergraph, the inequality

Pr
(
AL

∣∣∣∣∣ ∧
M∈M

AM

)
≤ Pr (AL)

is satisfied trivially, since both sides always evaluate to zero. For this reason, we wish

only to characterize perfect matching hosts having at least one perfect matching.

6.1 General Results

A hypergraph is connected if, for any two vertices u and v, there is a sequence e1,

. . . , ek of edges such that u ∈ e1, v ∈ ek, and ei ∩ ei+1 is nonempty for i ∈ [k − 1].
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When we say that a subhypergraph F of H is a perfect matching host, we mean it

is a perfect matching host in its own right (without reference to H) in the probability

space containing all perfect matchings of F .

In light of the following theorem, we need only be interested in connected perfect

matching hosts.

Lemma 6.1. A hypergraph is a perfect matching host if and only if each of its con-

nected components is.

Proof. To establish the leftward implication, let H be the disjoint union of connected

components C1, . . . , Ck, each of which is a perfect matching host. Let L be any partial

matching of H and letM be a collection of partial matchings that does not conflict

with L. Given any collectionX of perfect matchings, letXj = {M∩E(Cj) |M ∈ X}.

We have

Pr
(
AL

∣∣∣∣∣ ∧
M∈M

AM

)
=

∣∣∣AL ∩ ⋂M∈MAM
∣∣∣∣∣∣⋂M∈MAM

∣∣∣
=

k∏
j=1

∣∣∣∣(AL ∩ ⋂M∈MAM
)j∣∣∣∣∣∣∣∣(⋂M∈MAM

)j∣∣∣∣
=

k∏
j=1

∣∣∣∣AjL ∩ ⋂M∈M (
AM

)j∣∣∣∣∣∣∣∣⋂M∈M (
AM

)j∣∣∣∣ .

Now, since each component Cj is a perfect matching host, we have∣∣∣∣AjL ∩ ⋂M∈M (
AM

)j∣∣∣∣∣∣∣∣⋂M∈M (
AM

)j∣∣∣∣ ≤

∣∣∣AjL∣∣∣
|Ωj|
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for each j. Thus,

Pr
(
AL

∣∣∣∣∣ ∧
M∈M

AM

)
=

k∏
j=1

∣∣∣∣AjL ∩ ⋂M∈M (
AM

)j∣∣∣∣∣∣∣∣⋂M∈M (
AM

)j∣∣∣∣
≤

k∏
j=1

∣∣∣AjL∣∣∣
|Ωj|

= |AL|
|Ω|

= Pr (AL) .

For the rightward direction, suppose some component Cj fails to be a perfect

matching host. That is, there is a matching L of Cj and a collectionM of matchings

of Cj that does not conflict with L but

Pr
(
AL

∣∣∣∣∣ ∧
M∈M

AM

)
> Pr (AL)

in the uniform probability space Ωj of all perfect matchings of Cj.

Let L′ be any perfect matching of H that contains L. Such a perfect matching

must exist, since there must be a perfect matching of the component Ci extending

L (otherwise, the negative dependency inequality could not have been violated) and

each component Ci with i 6= j has some perfect matching (since we are only interested
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in hypergraphs with at least one perfect matching). We have

Pr
(
AL′

∣∣∣∣∣ ∧
M∈M

AM

)
=

∣∣∣AL′ ∩ ⋂M∈MAM
∣∣∣∣∣∣⋂M∈MAM

∣∣∣
=

∣∣∣∣AjL ∩ ⋂M∈M (
AM

)j∣∣∣∣∣∣∣∣⋂M∈M (
AM

)j∣∣∣∣
>

∣∣∣AjL∣∣∣
|Ωj|

= |AL
′|

|Ωj|

≥ |AL
′|

|Ω|

= Pr (AL′) ,

so H is not a perfect matching host.

The following lemma is quite useful in showing a hypergraph is not a perfect

matching host by directly violating the inequality Pr
(
AL

∣∣∣ AM) ≤ Pr (AL). We

give a more general statement in terms of events in any probability space, and then

specialize it to conflict graphs in the space of perfect matchings.

Lemma 6.2. Let A and B be nonempty events and let G be a graph having (at least)

A and B as vertices. If A and B are not adjacent in G and A ⊆ B, then G is not a

negative dependency graph.

Proof. Since ∅ 6= A ⊆ B, the probability Pr
(
A
∣∣∣ B) is defined. We have

Pr
(
A
∣∣∣ B) =

∣∣∣A ∩B∣∣∣∣∣∣B∣∣∣
= |A|∣∣∣B∣∣∣ (since A ⊆ B)

>
|A|
|Ω|

= Pr (A) .
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The inequality uses the assumptions that |A| 6= 0 and |B| < |Ω| (since B 6= ∅).

Corollary 6.3. If there are partial matchings L and M of a hypergraph H such that

• L and M do not conflict,

• AL, AM 6= ∅, and

• AL ⊆ AM ,

then H is not a perfect matching host.

The second condition says there is a perfect matching of H that extends L and a

perfect matching of H that extends M , respectively. The third condition says every

perfect matching that extends L will conflict with M .

A hypergraph is k-randomly matchable provided every partial matching con-

taining at most k edges can be extended to a perfect matching. A randomly match-

able hypergraph is one that is k-randomly matchable for all k.

Lemma 6.4. If a perfect matching host is 1-randomly matchable, then it is randomly

matchable.

Proof. Let H be a 1-randomly matchable perfect matching host. We show, by induc-

tion on k, that it is k-randomly matchable for all k.

The hypergraph H is 1-randomly matchable by hypothesis. Assume now it is

k-randomly matchable for k ≥ 1. Suppose (for contradiction) there is a matching M

containing k + 1 edges that does not extend to a perfect matching. Choose any edge

e of M and write M = M ′ ∪ {e}. Observe

• M ′ and {e} do not conflict,

• AM ′ , A{e} 6= ∅ (by inductive hypothesis and by assumption, respectively), and

• AM ′ ⊆ A{e} (since no perfect matching extends M).
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Having met the conditions of Corollary 6.3, we must conclude that H is not a perfect

matching host, which is contrary to our assumption. Hence, M extends to a perfect

matching. As M was arbitrary, we see that any partial matching containing k + 1

edges extends to a perfect matching, which completes the induction.

The preceding lemma is useful because it allows us to partition the edges of a

perfect matching host H into the set A of edges belonging to at least one perfect

matching and the set B containing edges belonging to no perfect matching. Suppose

we are given a matching L and a collection M of matchings that does not conflict

with L. In order for H to be a perfect matching host, it must satisfy

Pr
(
AL

∣∣∣∣∣ ∧
M∈M

AM

)
≤ Pr (AL) .

If L contains an edge of B, then AL is empty, and so both sides of the inequality are

zero. If any of the M ∈ M contains an edge of B, then AM = Ω, and so may be

omitted from the intersection. Thus, we may assume that the matchings belonging to

M contain only edges from A. Let H[A] denote the subhypergraph whose edge set is

A and whose vertex set is the support of the edges in A. Since H is a perfect matching

host, we may conclude that H[A] is a (possibly disconnected) perfect matching host,

since these are the only edges that have any bearing on the negative dependence

inequality. Since H[A] is 1-randomly matchable by construction, Lemma 6.4 implies

H[A] is randomly matchable.

Theorem 6.5. A hypergraph H is a perfect matching host if and only if H[A] is a

(possibly disconnected) randomly matchable perfect matching host, where A contains

all edges of H that belong to at least one perfect matching.

6.2 2-Uniform Perfect Matching Hosts via Random Matchability

Sumner [28] has shown the connected randomly matchable 2-uniform hypergraphs

(that is, graphs) are precisely K2N and KN,N for all N . Lu and Székely have shown
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K2N [21] and KN,N [20] are, in fact, perfect matching hosts. (Indeed, that the former

is a perfect matching host is a special case of Theorem 2.1.) Taken together with

Lemma 6.4, we may deduce the following corollary.

Corollary 6.6. A connected, 1-randomly matchable graph is a perfect matching host

if and only if it is K2N or KN,N .

We wish to drop the requirement of 1-random matchability. As before, let G be a

graph and write E(G) = A∪B, where each edge of A belongs to at least one perfect

matching and no edge of B does. In light of Theorem 6.5 and Corollary 6.6, we know

that the induced subgraph G[A] is a disjoint union of even cliques (a complete

graph on an even number of vertices) and balanced bicliques (a complete bipartite

graph whose partite sets are of equal size). It remains to characterize how the edges

of B can be situated between the components of G[A], which is the main result of

this section.

Theorem 6.7. A graph G is a perfect matching host if and only if there is a partition

of the edges into sets A and B such that the induced subgraph G[A] is a disjoint union

of even cliques and balanced bicliques and there is no subset F of the edges of B such

that

• F has an even number of vertices in common with each even clique of G[A] and

• for any balanced biclique of G[A], F has an equal number of vertices in common

with both of its partite sets.

In the figures, the induced subgraph G[A] is the disjoint union of a K6, K8, and

K5,5 (represented as circles and a rectangle, respectively). The edges of B are shown

explicity. The first figure demonstrates a perfect matching host, since no subset of

B meets the conditions stated in the theorem above. The second figure fails to be
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Figure 6.1 Perfect matching host
(no F as described in theorem).

Figure 6.2 Not a perfect matching
host, as evidenced by red edges.

a perfect matching host, since the edges highlighted in red meet the K6 in an even

number of vertices and each partite set of the K5,5 in one vertex.

6.3 2-Uniform Perfect Matching Hosts via Corollary 6.3

In the previous section, we characterized the 2-uniform perfect matchings hosts by

relying on Sumner’s results on randomly matchable graphs. In this section, we derive

the conclusion of Corollary 6.6 instead by repeated application of Lemma 6.3.

Lemma 6.8. If a graph is a connected, 1-randomly matchable perfect matching host

of order 2N , then it contains KN,N as a subgraph.

Proof. Let G be a connected, 1-randomly matchable perfect matching host of order

2N and fix a perfect matching M of G (one must exist, since G is 1-randomly match-

able). The idea of the proof will be to look at certain induced subgraphs of G and
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conclude which edges must be present in these induced subgraphs based on Lemma

6.3. In the end, we will find these required edges form a KN,N subgraph.

To begin, choose two edges e1 and e2 from the perfect matching M . Denote the

vertices of each ei by ui and vi. We will choose these edges in such a way that the

induced subgraph G[{u1, u2, v1, v2}] is connected (which can always be done, since G

is connected). Without loss of generality, assume u1 is adjacent to u2.

Now, for the application of Lemma 6.3, write R = M \ {e1, e2} and S = {u1u2}.

Observe

• R and S do not conflict,

• AR 6= ∅ (since M extends R), and

• AS 6= ∅ (since G is 1-randomly matchable).

Now, if v1v2 is not an edge of G, then we would have AR ⊆ AS. Taken together

with the previous observations, we would conclude that G is not a perfect matching

host via Lemma 6.3. In order to avoid contradiction, it must be that the edge v1v2 is

present in G.

We have shown so far that G contains a K2,2 subgraph. We show next how to

“grow” this K2,2 subgraph into a K3,3, from which it will be evident how to proceed

from any Ks,s to Ks+1,s+1 until finally all of G contains a Kn,n subgraph.

Choose an edge e from the matching M with endpoints u and v such that the

induced subgraph G[{u, u1, u2, v, v1, v2}] is connected (which can always be done,

since G is connected). Without loss of generality, let u be adjacent to u1. For brevity,

we show in a table how the vertices u and v are forced to link with K2,2 subgraph.

As before, we demonstrate two matchings R and S and discover the existence of a

new edge in G under threat of Lemma 6.3.
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R S Edge Gained

M \ {e, e1} {uu1} vv1

M \ {e, e1, e2} ∪ {uu1} {v1v2} vu2

M \ {e, e1, e2} ∪ {u1u2} {vv1} uv2

Theorem 6.9. A connected, 1-randomly matchable graph is a perfect matching host

if and only if it is K2N or KN,N .

Proof. Let G be a connected, 1-randomly matchable graph of order 2N that is a also

perfect matching host. We have already shown that KN,N is a subgraph of G, and it

is known that KN,N is indeed a perfect matching host [20]. Suppose now KN,N is a

proper subgraph of G. Let M be a perfect matching of the KN,N subgraph. Choose

two edges e1 and e2 from the perfect matching M . Denote the vertices of each ei

by ui and vi. We will choose these edges in such a way that the induced subgraph

G[{u1, u2, v1, v2}] contains a K4 minus an edge (which can always be done, since Kn,n

is a proper subgraph of G). Without loss of generality, assume u1 is adjacent to u2.

Now, for the application of Corollary 6.3, take R = M \ {e1, e2} and take S =

{u1u2}. Arguing as before, the corollary implies the edge v1v2 is present in G.

We have shown so far that G contains a K4 subgraph. We show next how to

“grow” this K4 subgraph into a K6, from which it will be evident how to proceed

from any K2(s−1) to K2s until finally G = K2n.

Choose an edge e from the matching M with endpoints u and v such that the

induced subgraph G[{u, u1, u2, v, v1, v2}] is connected (which can always be done,

since G is connected). Without loss of generality, let u be adjacent to u1. For brevity,

we show in a table how the vertices u and v are forced to link up with the rest of the

vertices, so that G[{u, u1, u2, v, v1, v2}] = K6.
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R S Edge Gained

M \ {e, e1} {uu1} vv1

M \ {e, e1, e2} ∪ {uu1} {v1v2} u2v

M \ {e, e1, e2} ∪ {u1u2} {vv1} uv2

M \ {e, e1, e2} ∪ {u1v2} {u2v} uv1

M \ {e, e1, e2} ∪ {u2v1} {uv2} u1v

M \ {e, e1, e2} ∪ {v1v2} {u1v} uu2

M \ {e, e1, e2} ∪ {u1u2} {uv1} vv2

6.4 Further Research

This section addressed the characterization of perfect matching hosts, for which the

ambient probability space contains only perfect matchings. In Theorem 2.1, we

showed that a complete uniform hypergraph is a matching host when the ambient

probability space contains merely maximal matchings. The first two lemmata hold

in this more general space, but the concept of a 1-randomly matchable hypergraph

makes no sense in the context of maximal matchings. Indeed, any edge of any hyper-

graph belongs to a maximal matching trivially. A characterization of matching hosts

in the more general space may need a new insight.

Even in the more restrictive setting of perfect matching hosts, we were able to

characterize only the graph case aided by Sumner’s result on randomly matching

graphs. Extending his proof even to 3-uniform hypergraphs has proved challenging.

In the figure, we present a seemingly exotic 3-uniform, randomly matchable hyper-

graph that is a perfect matching host. (In the figure, each solid line indicates a triple

of vertices. The colors are merely to aid in recognizing the edges and convey no addi-

tional information.) Even if a full characterization of such hypergraphs is unwieldy, it
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Figure 6.3 3-uniform, randomly matchable perfect
matching host.

may be interesting to determine what additional restrictions are necessary to narrow

the class to just the complete and complete multipartite hypergraphs.
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Appendix A

Details for Hypergraph Matchings

A.1 Preliminaries

We review some needed facts from Lu and Székely [21]. Throughout this chapter,

expressions of the form y(γ)k should be read as (y(γ))k. The notation PrN+s(·) means

that the event should be considered in the probability space ΩN+s. If no subscript is

present, then it is assumed that the event belongs to the probability space ΩN .

Lemma A.1 (Lu, Székely 2011).

1. For 0 ≤ γ ≤ 1/4, the equation

1 = ye−γy

has a unique solution in 1 ≤ y ≤ 2 and defines a function y(γ).

2. The function y(γ) is equal to −LambertW0(−γ)/γ, where LambertW0 is the

principal branch of the compositional inverse of xex.

3. As the Taylor series of LambertW0(γ) is convergent for |γ| < 1/e, so is the

Taylor series of y(γ).

4. The function y(γ) is strictly increasing on [0, 1/4].

5. For γ → 0, we have

y(γ) = 1 + γ + 3
2γ

2 + 8
3γ

3 + 125
24 γ

4 + 54
5 γ

5 +O(γ6).
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6. For 0 ≤ γ ≤ 1/4, we have

1 + γ + 3
2γ

2 ≤ y(γ) ≤ 1 + γ + 3
2γ

2 + 66γ3.

Theorem A.2 (Lu, Székely 2011). Let A1, . . ., An be events with negative dependency

graph ([n], E). Let us be given any ε with 0 < ε < 1/4. If

Pr(Ai) < ε and
∑
j:ij∈E

Pr(Aj) + 2 Pr2(Aj) < ε (A.1)

for every i, then

Pr
∧
i∈S

Ai

∣∣∣∣∣∣
∧
j∈T

Aj

 ≥ ∏
i∈S

(1− Pr(Ai)y(ε))

for any disjoint subsets S and T of [n]. In particular, we have

Pr
(

n∧
i=1

Ai

)
≥ exp

(
−

n∑
i=1

Pr(Ai)y(ε)−
n∑
i=1

Pr2(Ai)y(ε)2
)
.

Lemma A.3.

1. An s-matching L belongs to AM if and only if there are edges e ∈ L and f ∈M

such that 1 ≤ |e ∩ f | ≤ s− 1.

2. A pair of s-matchings L and M conflict if and only if AL and AM are disjoint.

3. If the s-matchings L and M do not conflict, then

AM\L ⊆ AM and AM ∩ AL = AM\L ∩ AL.

Proof. The contrapositive of the first claim says that L belongs to AM if and only if

every pair of edges e ∈ L and f ∈ M are either identical or disjoint, which another

way of saying that the s-matching L extends M .

The contrapositive of the second claim says that L and M do not conflict if and

only if there is an s-matching common to both AL and AM . If L and M do not

conflict, then their union is again an s-matching, and so there will be a maximal
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s-matching extending both. Conversely, if there is an s-matching extending both L

and M , it must be that L ∪M is itself a s-matching.

In the third claim, let K be an s-matching that conflicts with M \L. By the first

claim, there is e ∈ K and f ∈M \L ⊆M witnessing the conflict, and so K conflicts

with M , as well.

In the final claim, we may understand the collections as

AM ∩ AL = {K ∈ Ω | K conflicts with M but not with L}

and

AM\L ∩ AL = {K ∈ Ω | K conflicts with M \ L but not with L}.

We have shown the latter is a subset of the former. For the other inclusion, the edge

e ∈ M that witnesses conflict with K does not belong to L, so it must belong to

M \ L.

A.2 Proofs of Theorems 2.2 and 2.3

Lemma A.4. LetM be a collection of s-matchings in Ks
N with negative dependency

graph (M, E). If there is ε ∈ (0, 1
5) such that

• Pr(AM) ≤ ε,

•
∑

L∈M:LM∈E
Pr (AL) + 2 Pr2(AL) < ε, and

•
∑

L∈M:e∈L
Pr(AL) + 2 Pr2(AL) < ε

for each M ∈M and each e ∈ E(Ks
N), then

Pr
N+s

( ∧
M∈M

AM

)
≤ y(ε)2(s−1) Pr

N

( ∧
M∈M

AM

)
.

Proof. Let S denote the collection of all subsets of [N + s− 1] of size s− 1. For each

S ∈ S, define

BS = {M ∈M |M does not conflict with the edge S ∪ {N + s}}.
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Lu and Székely [21] have shown

Pr
N+s

( ∧
M∈M

AM

)
= 1(

N+s−1
s−1

) ∑
S∈S

Pr
N

 ∧
M∈BS

AM

 . (A.2)

We will apply the first part of Theorem A.2 with the collectionsM\BS and BS.

The collection BS contains those matchings fromM whose support is disjoint from

S, while M \ BS contains those matchings whose support meets S. Our goal is to

show
Pr
(∧

M∈MAM
)

Pr
(∧

M∈BS
AM

) = Pr
 ∧
M∈M\BS

AM

∣∣∣∣∣∣
∧

M∈BS

AM

 ≥ y(ε)−2(s−1). (A.3)

Theorem A.2 gives

Pr
 ∧
M∈M\BS

AM

∣∣∣∣∣∣
∧

M∈BS

AM

 ≥ ∏
M∈M\BS

(1− Pr(AM)y(ε)) .

If the product on the righthand side is empty, then we have nothing to prove, so we

assume otherwise.

Without loss of generality, let S = [s − 1]. For each vertex i of S, pick an

edge ei belonging to some matching Mi ∈ M \ BS such that i is a vertex of ei. (If

there is a vertex of S with no such edge, then we simply disregard that vertex.) By

definition, every matching belonging to M \ BS meets S. Hence, every matching

belonging to M \ BS either contains one of the ei or conflicts with one. Letting

Mi = {M ∈M \ BS | ei ∈M}, we have

M\BS ⊆
s−1⋃
i=1
Mi ∪

s−1⋃
i=1

N(Mi),

where N(Mi) contains the neighbors of Mi in the negative dependency graph (that

is, those matchings ofM that conflict with Mi).

Now,

∏
M∈M\BS

(1− Pr(AM)y(ε))

≥
s−1∏
i=1

∏
M∈Mi

(1− Pr(AM)y(ε))
∏

M∈N(Mi)
(1− Pr(AM)y(ε)) .
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Observe 1− x ≥ e−x−x
2 for x ∈ (0, 1/2). Since ε < 1

5 , we have

P (AM)y(ε) < ε
(

1 + ε+ 3
2ε

2 + 66ε3
)
<

1
2 ,

where y(ε) is bounded by Theorem A.1. We may therefore write
∏

M∈Mi

(1− Pr(AM)y(ε))

≥
∏

M∈Mi

exp
(
−Pr (AM) y(ε)− Pr2(AM)y(ε)2

)

= exp
− ∑

M∈Mi

Pr (AM) y(ε)−
∑

M∈Mi

Pr2(AM)y(ε)2


= exp

−y(ε)
 ∑
M∈Mi

Pr (AM) +
∑

M∈Mi

Pr2 y(ε)


≥ exp
−y(ε)

 ∑
M∈Mi

Pr (AM) +
∑

M∈Mi

2 Pr2(AM)


≥ exp
−y(ε)

 ∑
M∈M:ei∈M

Pr (AM) +
∑

M∈M:ei∈M
2 Pr2(AM)


> exp (−y(ε)ε)

= y(ε)−1

for each i.

We may similarly derive
∏

M∈N(Mi)
(1− Pr(AM)y(ε)) ≥ y(ε)−1

for each i.

Multiplying the bounds together gives
∏

M∈M\BS

(1− Pr(AM)y(ε))

≥
s−1∏
i=1

∏
M∈Mi

(1− Pr(AM)y(ε))
∏

M∈N(Mi)
(1− Pr(AM)y(ε))

≥
s−1∏
i=1

y(ε)−2

≥
s−1∏
i=1

y(ε)−2(s−1),
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which finally establishes Condition (A.3).

Combining Conditions (A.2) and (A.3), we have

Pr
N+s

( ∧
M∈M

AM

)
= 1(

N+s−1
s−1

) ∑
S∈S

Pr
N

 ∧
M∈BS

AM


≤ 1(

N+s−1
s−1

) ∑
S∈S

Pr
N

( ∧
M∈M

AM

)
y(ε)2(s−1)

= y(ε)2(s−1) Pr
N

( ∧
M∈M

AM

)
.

We now restate Theorem 2.2 in full detail.

Theorem 2.2. Let M be a collection of matchings in a complete s-uniform hyper-

graph. If M is δ-sparse and k-bounded, then the conflict graph for the canonical

events {AM |M ∈M} is also an ε-near positive dependency graph with

ε = 1− y(2δ)−2k(s−1) exp
(
−δy(2δ)− δ2y(2δ)2

)
(A.4)

and therefore

Pr
( ∧
M∈M

AM

)
≤

∏
M∈M

(
1− Pr (AM) y(2δ)−2k(s−1) exp

(
−δy(2δ)− δ2y(2δ)2

))
.

(A.5)

Proof. We show first that the conflict graph G is an ε-near positive dependency graph

for the prescribed ε. Theorem 1.7 together with (A.4) will finish the proof of (A.5).

For the first part of the definition, L is adjacent to M in G if and only if L and

M conflict. By Lemma A.3, we have Pr(AL ∧ AM) = 0.

Given any F ∈M and a subset S of N(F ), we need to prove

Pr
(
AF

∣∣∣∣∣ ∧
M∈S

AM

)
≥ (1− ε) Pr(AF ),

which is equivalent to

Pr
( ∧
M∈S

AM

∣∣∣∣∣ AF
)
≥ (1− ε) Pr

( ∧
M∈S

AM

)
.
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Let SF = {M \F |M ∈ S}. Observe that ∅ /∈ SF sinceM is δ-sparse. Note that

Pr
( ∧
M∈S

AM

∣∣∣∣∣ AF
)

=
Pr
(∧

M∈S AM ∧ AF
)

Pr(AF ) (A.6)

=
Pr
(
AF ∧

∧
M∈S AM\F

)
Pr(AF )

= Pr
 ∧
M∈SF

AM | AF

 . (A.7)

Now,

Pr
N

 ∧
M∈SF

AM | AF

 = Pr
N−s|F |

 ∧
M∈SF

AM

 (A.8)

= Pr
N

 ∧
M∈SF

AM

 |F |∏
j=1

PrN−sj
(∧

M∈SF
AM

)
PrN−s(j−1)

(∧
M∈SF

AM
)

(by Lemma A.4) ≥ Pr
N

 ∧
M∈SF

AM

 |F |∏
j=1

y(2δ)−2(s−1)

≥ Pr
N

 ∧
M∈SF

AM

 y(2δ)−2(s−1)k. (A.9)

For any M that does not conflict with F , Lemma A.3 gives AM\F ⊆ AM . Letting

SF = {M \ F |M ∈ S}, we have

Pr
(∧

M∈SF
AM

)
Pr
(∧

M∈S AM
) =

Pr
(∧

M∈S AM\F
)

Pr
(∧

M∈S AM
)

=
Pr
(∧

M∈S AM\F ∧ AM
)

Pr
(∧

M∈S AM
) (A.10)

=
Pr
([∧

M∈S,M∩F 6=∅AM\F
]
∧
[∧

M∈S AM
])

Pr
(∧

M∈S AM
)

= Pr
 ∧
M∈SF \S

AM

∣∣∣∣∣∣
∧
M∈S

AM

 . (A.11)
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Now apply the first part of Theorem A.2 with SF \ S and S to obtain

Pr
 ∧
M∈SF \S

AM

∣∣∣∣∣∣
∧
M∈S

AM


≥

∏
M∈SF \S

(1− Pr (AM) y(2δ))

≥
∏

M∈SF

(1− Pr (AM) y(2δ))

≥ exp
− ∑

M∈SF

Pr(AM)y(2δ)−
∑

M∈SF

Pr2(AM)y(2δ)2


≥ exp

(
−δy(2δ)− δ2y(2δ)2

)
. (A.12)

Finally, we have

Pr
( ∧
M∈S

AM

∣∣∣∣∣ AF
)

by (A.6-A.7) = Pr
 ∧
M∈SF

AM

∣∣∣∣∣∣ AF


by (A.8-A.9) ≥ Pr
 ∧
M∈SF

AM

 y(2δ)−2(s−1)k

by (A.10-A.11) = Pr
( ∧
M∈S

AM

)
Pr
 ∧
M∈SF \S

AM

∣∣∣∣∣∣
∧
M∈S

AM

 y(2δ)−2(s−1)k

by (A.12) ≥ Pr
( ∧
M∈S

AM

)
e−δy(2δ)−δ2y(2δ)2

y(2δ)−2(s−1)k.

Thus, the negative dependency graph G is also a ε-near positive dependency graph.

The proof is finished by Theorem 1.7.

The expression Pr
(∧

M∈MAM
)
can be bounded from below by Theorem A.2 and

bounded from above by Theorem 2.2, which can be combined to obtain asymptotics

under the appropriate conditions.

Theorem 2.3. Let ΩN denote the uniform probability space of perfect matchings of

Ks
N , the complete s-uniform hypergraph on N vertices. Let r and ε both depend on

N , where r is a positive integer and ε is a real number eventually lying in the interval
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(0, 1
16). LetM be a an k-bounded collection of matchings in Ks

N in which no matching

is a subset of another. For any matching M ∈M, define the canonical event

AM = {L ∈ ΩN |M ⊆ L}.

Set µ = ∑
M∈M Pr (AM). Finally, suppose the following inequalities are satisfied for

every matching M ∈M and every edge e of Ks
N :

• Pr (AM) < ε

•
∑

L:L,Mconflict
Pr (AL) < ε

•
∑

L∈M:e∈L
Pr (AL) < ε

•
∑

L∈MM

Pr
N−sk

(AL) < ε

If, in addition, ksε = o(1), then

Pr
( ∧
M∈M

AM

)
= e−µ+O(ksεµ).

Furthermore, if ksεµ = o(1), then

Pr
( ∧
M∈M

AM
)

= (1 +O(ksεµ)) e−µ.

Proof. Let G be the conflict graph for the collection {AM | M ∈ M} of canonical

events. By Theorem 1.1, the graph G is a negative dependency graph. Note that the

condition (A.1) in Theorem A.2 is satisfied with 2ε instead of ε, where ε is from the

conditions of Theorem 2.3. Applying Theorem A.2, we have

Pr
( ∧
M∈M

AM

)
≥ exp

(
−

∑
M∈M

Pr(AM)y(2ε)−
∑
M∈M

Pr2(AM)y(2ε)2
)

> exp
(
−

∑
M∈M

Pr(AM)y(2ε)−
∑
M∈M

Pr(AM)εy(2ε)2
)

= exp
(
−µ

(
1 + 3ε+O(ε2)

))
.
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Now we consider the upper bound. Note thatM is 2ε-sparse and k-bounded. By

Theorem 2.2, we have

Pr
( ∧
M∈M

AM

)

≤
∏

M∈M

(
1− Pr(AM) exp

(
−2εy(4ε)− (2ε)2y(4ε)2

)
y(4ε)−2(s−1)k

)

≤ exp
(
−

∑
M∈M

Pr(AM) exp
(
−2εy(4ε)− (2ε)2y(4ε)2

)
y(4ε)−2(s−1)l

)

= exp
(
−µ exp

(
−2ε−O(ε2)

)
y(4ε)−2(s−1)k

)
,

where we use y(4ε) = 1 + 4ε+O(ε2).

Focusing now on the factor of y(4ε)−2(s−1)k, we have

y(4ε)−2(s−1)k = exp (−2(s− 1)k log(y(4ε)))

= exp
(
−2(s− 1)k log(1 + 4ε+O(ε2)

)
= exp

(
−2(s− 1)k(4ε+O(ε2))

)
= exp

(
−8ε(s− 1)k −O(ε2sk))

)
.

Returning now to the main term, we have

Pr
( ∧
M∈M

AM

)
= exp

(
−µ exp

(
−2ε−O(ε2)

)
y(4ε)−2(s−1)k

)
= exp

(
−µ exp

(
−2ε−O(ε2)− 8ε(s− 1)k −O(ε2sk)

))
= exp

(
−µ(1− (8(s− 1)k + 2)ε+O(ε2s2k2))

)
.

Combining the lower bound and the upper bound above, we obtain equation (2.1).
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Appendix B

Useful Facts About Bell Numbers

Throughout, let BN denote the number of partitions of the set [N ] (the N th Bell

number), B∗N denote the number of singleton-free partitions on [N ], and S(N, k)

denote the number of partitions of [N ] into exactly k nonempty subsets (the Stirling

numbers of the second kind).

Lemma B.1. The inequality

2BN < BN+1 < (N + 1)BN .

holds for all N ≥ 2.

Proof. Bouroubi [8] gave a proof via the generating function

BN(x) =
N∑
k=0

S(N, k)xk.

We give an argument from first principles instead.

Given any partition P of [N ], one can form at least two distinct partitions of

[N + 1] by introducing the element N + 1 either as a singleton or by inserting it into

an existing block of P . Since P has at least one but at most N blocks, we can create

at least two but at most N + 1 distinct partitions in this way. The result follows

by applying this operation to all BN partitions of [N ] and noticing that distinct

partitions P and Q cannot be mapped to the same partition of [N + 1].

Lemma B.2. The identity

BN = B∗N+1 +B∗N

holds for all N .
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Proof. This identity was first observed by Becker [3] in the context of a certain

difference equation. Another interesting treatment of the result comes from Bern-

hart [6] in the context of noncrossing partitions. We prove the equivalent statement

B∗N+1 = BN − B∗N . Notice the lefthand side counts the partitions of the set [N + 1]

that do not have singletons, and the righthand side counts the partitions of the set

[N ] that do have singletons. Given a partition of the former type, create a partition

of the latter type by splitting the block containing the element N + 1 into singletons

and removing the element N + 1. This operation defines a bijection between the two

collections, thus establishing the desired identity.

Lemma B.3. The average number of blocks in a partition of [N ] is BN+1
BN
− 1.

Proof. Canfield [10] and Engel [12] prove this fact using identities relating the Bell

number the the Stirling numbers of the second kind. For example, it is well known

that BN = ∑N
k=1 S(N, k) and S(N + 1, k) = kS(N, k) + S(N, k − 1). By convention,

S(N, k) = 0 whenever k /∈ {1, . . . , N}. Let aN(Ω) denote the average number of

blocks in a partition of [N ]. Making use of the aforementioned identities, we find

aN(Ω) =
∞∑
k=1

kS(N, k)
BN

=
∞∑
k=1

S(N + 1, k)− S(N, k − 1)
BN

= BN+1 −BN

BN

= BN+1

BN

− 1.

A proof avoiding (direct) reference to Stirling numbers is provided by observing

that every partition of [N + 1] is formed in exactly one way from an appropriately

chosen partition of [N ] with the element N + 1 as a singleton or inserted into an
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exsiting block. Thus we have

BN+1 =
∑
P∈ΩN

(|P |+ 1)

BN+1 −BN =
∑
P∈ΩN

|P |

BN+1 −BN

BN

=
∑
P∈ΩN

|P |
BN

BN+1

BN

− 1 = aN(Ω).
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Appendix C

Proof of Theorem 5.1

Lemma C.1. The number of perfect s-matchings of the complete s-uniform hyper-

graph on sN vertices is
(sN)!

(s!)NN ! .

Proof. For fixed s, let fs(N) be the number of perfect s-matchings of the complete

s-uniform hypergraph on sN vertices. Fixing some vertex v, there are
(
sN−1
s−1

)
ways to

form the edge containing v. Since sN − s = s(N − 1) vertices remain to be matched,

we have the recurrence

fs(N) =
(
sN − 1
s− 1

)
fs(N − 1),

fs(0) = 1.

Iteration gives

fs(N) = (sN)!
(s!)NN ! .

Theorem 5.1. In the configuration model, assume g ≥ 1, r ≥ 3, and

(2r − 2)2g−3g3 = o(N). (C.1)

The probability that an r-regular, 3-uniform multihypergraph chosen uniformly at ran-

dom has girth at least g is

(1 + o(1)) exp
− g−1∑

i=1

(2r − 2)i
2i

 .
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If g ≥ 3, then the number of simple r-regular, 3-uniform hypergraphs on N vertices

with girth at least g is

(1 + o(1)) exp
− g−1∑

i=1

(2r − 2)i
2i

 (rN)!
6rN/3

(
rN
3

)
!(r!)N

.

In fact, letting C be a subset of {3, 4, . . . , g − 1}, the number of simple r-regular,

3-uniform hypergraphs whose cycle lengths do not belong to C is

(1 + o(1)) exp
(

1− r − (r − 1)2 −
∑
i∈C

(2r − 2)i
2i

)
(rN)!

6rN/3
(
rN
3

)
!(r!)N

.

Proof. We prove the first claim. To prove the second claim, only (C.3) has to be

adjusted.

Recall the following definition of j-cycle in a hypergraph:

• A 1-cycle is a single edge with a repeated vertex.

• A 2-cycle is a pair of edges whose intersection contains at least two vertices.

• For j ≥ 3, a j-cycle is a collection e1, . . . , ej of edges for which there are distinct

vertices v1, . . . , vj such that ei ∩ ei+1 = {vi} for all i (where ej+1 is understood

to be e1).

For i = 1, . . . , g − 1, letMi be the set of (partial) matchings of U = [rN ] whose

projection gives precisely a cycle of length i.

Matchings inM1 project to single edges having either exactly two or exactly three

repeated vertices. There are (N)2
(
r
2

)
r matchings of the former type and N

(
r
3

)
of the

latter type.

Matchings in M2 project to pairs of edges having either exactly two or exactly

three vertices in common. There are 1
2

(
N
3

)
r3(r− 1)3 two-edge matchings of the latter

type. The former is the case i = 2 in the next paragraph.

The cases so far enumerated are degenerate. Recall that a simple 3-uniform hy-

pergraph is one in which every edge contains three distinct vertices and any pair of
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edges intersect in at most two vertices. In a simple 3-uniform hypergraph, a typical

i-cycle (i ≥ 2) contains 2i distinct vertices. Of these vertices, i of them belong to

exactly one edge, and the other i belong to exactly two edges. The vertices can be

selected and placed on a cycle in 1
2i(N)2i ways. Each vertex belonging to exactly one

edge can arise from r different minivertices. Each vertex belonging to exactly two

edges can arise from r(r − 1) ordered pairs of minivertices. Putting this together,

the number of matchings whose projection gives precisely a nondegenerate i-cycle for

i ≥ 2 is given by 1
2i(N)2ir

2i(r − 1)i.

Summarizing, we have

• |M1| = (N)2
(
r
2

)
r +N

(
r
3

)
= 1

2(N)2r
2(r − 1)

(
1 + r−2

3(N−1)r

)
,

• |M2| = 1
4(N)4r

4(r− 1)2 + 1
2

(
N
3

)
r3(r− 1)3 = 1

4(N)4r
4(r− 1)2

(
1 + r−1

3(N−3)r

)
, and

• |Mi| = 1
2i(N)2ir

2i(r − 1)i

for i ≥ 3.

The bad events for the negative dependency graph are the union of matchings

M = ⋃g−1
i=1 Mi.

Recall rN is divisible by 3. For positive integers j, define

(rN)3j,3 = (rN)3j∏j−1
i=0 (rN − 3i)

.

Observe (rN)3j,3 is a product of 2j integers.

For fixed 1 ≤ i ≤ g − 1 and each M ∈Mi , we have

|AM | =
(rN − 3i)!

6 rN−3i
3

(
rN−3i

3

)
!
.

Taken together with the fact that the total number of perfect 3-matchings on rN

vertices is
(rN)!

6 rN
3
(
rN
3

)
!
,
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we obtain

Pr (AM) = 2i
(rN)3i,3

. (C.2)

Now,

∑
M∈M

Pr (AM) =
g−1∑
i=1

∑
M∈Mi

Pr (AM)

= 1
2(N)2r

2(r − 1)
(

1 + r − 2
3(N − 1)r

)
· 2

(rN)3,3

+ 1
4(N)4r

4(r − 1)2
(

1 + r − 1
3(N − 3)r

)
· 4

(rN)6,3

+
g−1∑
i=3

1
2i(N)2ir

2i(r − 1)i · 2i
(rN)3i,3

=
g−1∑
i=1

(2r − 2)i
2i

(
1 +O

(
i2

N

))

=
(

1 +O

(
g2

N

)) g−1∑
i=1

(2r − 2)i
2i . (C.3)

The collection M is (g − 1)-bounded by construction. Let also ε = K(2r−2)g−2g3

N

for a large constant K. We verify the conditions of Theorem 2.3.

For item 1,

Pr (AM) = 2i
(rN)3i,3

≤ 2g−1

(rN − 1)(rN − 2)

< ε.

We verify item 2 in cases.

We first bound the size of the set {L ∈M1 | L and M conflict} for fixedM ∈M.

Recall matchings inM1 project to single edges having at most two distinct vertices.

To construct a matching L ∈M1 that conflicts withM , choose the first minivertex of

L from among the minivertices of M to ensure conflict, which can be done in at most

3(g − 1) ways. After this, there are fewer than rN choices for the second minivertex

of L and 2(r − 1) choices for the third (since the minivertices belong to at most two

78



different vertices). Thus, we have

|{L ∈M1 | L and M conflict}| ≤ 6(g − 1)rN(r − 1).

We now bound the size of the set {L ∈ Mi | L and M conflict} for each fixed

i ≥ 2. First, select a minivertex u from among the minivertices of M to ensure

conflict, which can be done in at most 3(g − 1) ways. Select two other minivertices

v and w to join with u in at most rN(N − 1)r ways. Finally, decide whether v

will be a minivertex belonging to exactly one or exactly two edges of L. (In the

former case, we will call v the “first” minivertex. In the latter case, we will call u the

“first” minivertex. In either case, w is the “last” minivertex.) Multiplying everything

together, the first triple of L can be formed in at most 6(g − 1)rN(N − 1)r ways.

The second triple carries with it the restriction that its first minivertex must belong

to the same vertex as the last minivertex of the previous triple. The second triple

can therefore be formed in at most (r − 1)(N − 2)r(N − 3)d ways. Carry on in

this way until the ith triple is to be formed, which can be accomplished in at most

(r − 1)(N − 2i+ 2)r(r − 1) ways, since it carries the further restriction that its final

minivertex must belong to the same vertex as the first minivertex in the first triple.

Multiplying all these choices together gives

|{L ∈Mi | L and M conflict}| ≤ 6(g − 1)(N)2i−1r
2i−1(r − 1)i

for each i ≥ 2.
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Now,

∑
L:L,M conflict

Pr (AL) =
g−1∑
i=1

∑
L∈Mi:L,M conflict

Pr (AL)

≤
g−1∑
i=1

6(g − 1)(N)2i−1r
2i−1(r − 1)i · 2i

(rN)3i,3

≤ 12(g − 1)
rN − 1

g−1∑
i=1

(2r − 2)i
(

1 +O

(
i2

N

))

≤ 12g2(2r − 2)g−1

rN − 1

(
1 +O

(
g2

N

))

< ε

for large N .

Now we verify item 3. Fix any edge e of Ks
N . We wish to bound the size of the

set

{L ∈M | e ∈ L},

which we write as the disjoint union

g−1⋃
i=1
{L ∈Mi | e ∈ L}.

There is at most one matching in the collectionM1 that contains e, since all such

matchings contain exactly one edge.

For degenerate 2-cycles, we must form a second edge using the three vertices

appearing in the edge e. The minivertices can thus be chosen in at most (r − 1)3

ways. For proper 2-cycles, we can count as in the verification of item 2 to obtain at

most 3(N − 3)r(r− 1)2 cycles. (Recall, in a non-degenerate cycle, each edge has two

vertices of degree two and one vertex of degree one. The factor of 3 above comes from

the freedom to choose any of the three minivertices of e to project to the degree one

vertex.) In total, we have

|{L ∈M2 | e ∈ L}| ≤ 3Nr(r − 1)2.
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For i ≥ 3, all i-cycles are proper, so we proceed as before to obtain

|{L ∈Mi | e ∈ L}| ≤ 3(N)2i−3r
2i−3(r − 1)i.

Now,

∑
L∈M:e∈L

Pr (AL)

=
g−1∑
i=1

∑
L∈Mi:e∈L

Pr (AL)

≤ 2
(rN)3,3

+
g−1∑
i=2

3(N)2i−3r
2i−3(r − 1)i · 2i

(rN)3i,3

≤ 2
(rN − 1)(rN − 2) + 6

(rN − 1)(rN − 2)(rN − 4)

g−1∑
i=2

(2r − 2)i
(

1 +O

(
i2

N

))

≤ 2
(rN − 1)(rN − 2) + 6g(2r − 2)g−1

(rN − 1)(rN − 2)(rN − 4)

(
1 +O

(
g2

N

))

≤ 8g(2r − 2)g−1

(rN − 1)(rN − 2)

(
1 +O

(
g2

N

))

< ε

for large N .

Finally, we verify item 4. For any F ∈M, we estimate
∑

M∈MF

Pr
rN−3k

(AM). Recall,

MF = {M \ F |M ∈M,M 6= F,M ∩ F 6= ∅, F does not conflict with M}.

If the projection of F is a 1-cycle, thenMF = ∅ (every matching M ∈ M either

conflicts with F or is identical to F ), so there is nothing to do.

Now we assume the projection of F is an i-cycle Ci with 2 ≤ i ≤ g − 1. Let

M = M ′\F be such thatM ∈MF andM ′ projects to a j-cycle Cj with 2 ≤ j ≤ g−1.

If M ′ projects to a degenerate 2-cycle (i.e. two identical edges), then M ′ \ F = ∅ for

any M ′ under consideration. This this case increases the cardinality of MF by at

most one, so we may disregard it in our asymptotic analysis.

We need a definition before proceeding. Let {eα}pα=1 be a collection of edges of

Ks
N and write eα = {vα1 , . . . , vαs } for each α. The collection forms a loose path of
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length p (hereinafter, p-path or simply path) provided the only equalities among

the vertices are vαs = vα+1
1 for each α ∈ [p− 1]. Thus, there are exactly p− 1 vertices

that belong to two edges of the p-path and the rest belong to only one edge. For

example, the edges {a, b, c}, {c, d, e}, and {e, f, g} form a loose path of length 3 in

K3
N , where each distinct letter denotes a distinct vertex. Notice that a p-path in a

3-uniform hypergraph contains 2p+ 1 distinct vertices.

The minivertices in M ′ ∩ F form, after projection, a collection of loose paths P1,

. . . , Pt in Ci ∩ Cj. (A path may consist of a single edge.) Let m denote the total

number of edges among all the paths. Fixing these paths (and the edges in M ′ ∩ F ),

we must choose some additional ` vertices to make Cj. In fact, we can specify the

value of ` exactly in terms of j, t, and m. The cycle Cj contains a total of 2j distinct

vertices. Since each p-path has 2p+ 1 distinct vertices, it follows that the t paths in

total represent 2m+ t distinct vertices. We conclude ` = 2j − 2m− t.

Momentarily regarding the paths as featureless points, the vertices and paths can

be arranged on the cycle in 1
2(`+t)(`+ t)! ≤ (`+ t− 1)! ways.

Each path may be integrated into the cycle in eight ways. First, we choose which

of the paths ends will be the “left” end (that is, the end that will be set adjacent

to the paths neighbors to the left on the cycle). Next, the leftmost edge of the path

must have a vertex in common with the edge of Cj to its left. There are two free free

vertices from which to choose. Similarly, there are two choices for the rightmost edge

of the path. Multiplying these choices yields the eight possibilities.

Taking all this together, the number of possible cycles Cj with t fixed paths is at

most

8t
(
N

`

)
(`+ t− 1)!

for fixed j, t, and m.

Now, the minivertices defining M ′ ∩ F are fixed, but we have some freedom to

choose the minivertices defining M . The t paths of M ′∩F break the edges of M into
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t paths, as well (the “gaps” between each path). Let mq denote the number of edges

belonging to the qth gap, so that ∑t
q=1mq = j −m. There are

∏
q=1

r2mq−1(r − 1)mq+1

choices for the minivertices that will form M after projection. We have r choices for

each minivertex in the qth path excluding the two endpoints (since the first of these

minivertices has already been fixed by M ′ ∩F ), of which there are 2mq− 1. We have

r− 1 choices for each minivertex belonging to the intersection of two edges including

the two endpoints, of which there are mq + 1. Multiplying the choices together, we

have

∏
q=1

r2mq−1(r − 1)mq+1 = r2(j−m)−t(r − 1)j−m+t

= r`(r − 1)j−m+t

possible matchings M ′ defining Cj with M ′ ∩ F fixed.

To specify the t fixed paths, fix some orientation of Ci and choose 2t vertices v1,

. . . , v2t from among the vertices of Ci that belong to exactly two edges of Ci. There

are exactly i such vertices. From this collection, we can specify the paths P1, . . . , Pt

in two ways. One way to specify the paths is to take Pγ to be all edges of Ci between

the vertices v2γ−1 and v2γ for 1 ≤ γ ≤ t (where “between” means “starting with v2γ−1

and ending at v2γ according to the fixed orientation”). The second way is to take Pγ

to be all edges of Ci between the vertices v2γ and v2γ+1 (where we understand v2t+1

to be v1).

There are j−m edges belonging toM = M ′\F . Since Equation (C.2) is decreasing

83



in i, we obtain

Pr
rN−3(g−1)

(AM) ≤ 2j−m
(rN − 3(g − 1))3(j−m),3

≤ 2j−m
(rN − 3(g − 1)− 3(j −m) + 1)2j−2m

≤ 2j−m
(rN − 6g)2j−2m

= 2j−m
(rN − 6g)`+t .

Summarizing, we have

∑
M∈MF

Pr
rN−3(g−1)

(AM)

≤
g−1∑
j=2

b i
2c∑
t=1

i−1∑
m=t

2
(
i

2t

)
8t
(
N

`

)
(`+ t− 1)!r`(r − 1)j−m+t 2j−m

(rN − 6g)`+t

≤ 2
g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
8t(r − 1)t

i−1∑
m=t

(
N

`

)
(`+ t− 1)!r`(r − 1)−m 2−m

(rN − 6g)`+t .

Since `+t−1 = 2j−2m−1, we have (`+t−1)! = `!(`+t−1)t−1 ≤ `!(2j−2m)t−1,

which gives

∑
M∈MF

Pr
rN−3(g−1)

(AM)

≤ 2
g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
8t(r − 1)t

i−1∑
m=t

(N)`(2j − 2m)t−1r`(r − 1)−m 2−m
(rN − 6g)`+t

≤
g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
24t(r − 1)t(j − t)t−1

i−1∑
m=t

(N)`r`(r − 1)−m 2−m
(rN − 6g)`+t .

There is an absolute upper bound K1 >
Nt(N)`r

`+t

(rN−6g)`+t . Making use of this estimate,

84



we have

∑
M∈MF

Pr
rN−3(g−1)

(AM)

≤ K1

g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
24t(r − 1)t(j − t)t−1

i−1∑
m=t

(rN)−t(r − 1)−m2−m

= K1

g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
24t(r − 1)t(j − t)t−1(rN)−t

i−1∑
m=t

(r − 1)−m2−m

= K1

g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
24t(r − 1)t(j − t)t−1(rN)−t

i−1∑
m=t

(2r − 2)−m

< K1

g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
24t(r − 1)t(j − t)t−1(rN)−t

∞∑
m=t

(2r − 2)−m

= K1

g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
24t(r − 1)t(j − t)t−1(rN)−t(2r − 2)−t

∞∑
m=0

(2r − 2)−m

= K1

g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
23t(j − t)t−1(rN)−t · 1

1− (2r − 2)−1

≤ K2

g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i

2t

)
23t(j − t)t−1(rN)−t

= K2

g−1∑
j=2

2j(r − 1)j
b i

2c∑
t=1

(
i
2t

)
j − t

(
8(j − t)
rN

)t
.

For large N , the last summation has the largest term at t = 1. To see this, write

f(t) =

(
i
2t

)
j − t

(
8(j − t)
rN

)t

and consider

f(t)
f(t+ 1) = (2t+ 2)(2t+ 1)Nr(j − t)t−1

8(i− 2t)(i− 2t− 1)(j − t− 1)t

≥ N(j − t)t−1

8(i− 2t)(i− 2t− 1)(j − t− 1)t

≥ N

8(i− 2t)(i− 2t− 1)(j − t− 1)

≥ N

8g3 ,
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which is greater than 1 for large N .

Replacing f(t) with f(1) and summing at most g terms, we have
∑

M∈MF

Pr
rN−3(g−1)

(AM)

≤ K2

g−1∑
j=2

2j(r − 1)jg i(i− 1)
2(j − 1)

8(j − 1)
rN

= K3

g−1∑
j=2

2j(r − 1)jg i(i− 1)
rN

≤ K3

g−1∑
j=2

2j(r − 1)jg3

rN

= K3g
3

rN

g−1∑
j=2

2j(r − 1)j

= K3g
3

rN

g−1∑
j=2

(2r − 2)j

≤ K3g
3

rN
2 (2r − 2)g−1

≤ K4(2r − 2)g−2g3

N

< ε.

To apply Theorem 2.3, we need kε = o(1) and kµε = o(1). We know k < g and

chose ε = K(2r−2)g−2g3

N
(where we take K = K4).

We claim µ = O
(

(2r−2)g−1

g

)
. Starting with µ ≤ ∑g−1

i=1
(2r−2)i

2i , we write

g−1∑
i=1

(2r − 2)i
2i =

b g−1
2 c∑
i=1

(2r − 2)i
2i +

g−2∑
i=d g−1

2 e

(2r − 2)i
2i +

g−1∑
i=g−1

(2r − 2)i
2i

and show that each piece is O
(

(2r−2)g−1

g

)
.

The first summation contains
⌊
g−1

2

⌋
terms, each of which is at most (2r−2)b

g−1
2 c,

so
b g−1

2 c∑
i=1

(2r − 2)i
2i ≤

⌊
g − 1

2

⌋
(2r − 2)b

g−1
2 c.

Now, ⌊
g − 1

2

⌋
(2r − 2)b

g−1
2 c = O

(
(2r − 2)g−1

g

)
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if and only if

g2 = O
(

(2r − 2)d
g−1

2 e
)
.

The latter claim holds since g2 is polynomial in g, while (2r − 2)d
g−1

2 e ≥ 4d
g−1

2 e

represents exponential growth in g.

For the second summation,

g−2∑
i=d g−1

2 e

(2r − 2)i
2i ≤ 1

2
⌈
g−1

2

⌉ g−2∑
i=d g−1

2 e
(2r − 2)i

≤ 1
2
⌈
g−1

2

⌉ · (2r − 2)g−1 − 1
(2r − 2)− 1

≤ 1
2
⌈
g−1

2

⌉ · (2r − 2)g−1

= O

(
(2r − 2)g−1

g

)
.

Finally, the last summation contains only the single term (2r−2)g−1

2(g−1) = O
(

(2r−2)g−1

g

)
.

Returning to Theorem 2.3, we have

kε <
K(2r − 2)g−2g4

N

and

kεµ <
K(2r − 2)2g−3g3

N

We may therefore apply Theorem 2.3 provided (2r − 2)2g−3g3 = o(N), which is

assumed in Condition (C.1). The neglection of error in (C.3) is also allowed by

(C.1).
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