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Predicting Peptides That Bind to MHC Molecules
Using Supervised Learning of Hidden Markov Models
Hiroshi Mamitsuka*
C&C Media Research Laboratories, NEC Corporation, Kawasaki, Kanagawa, Japan

ABSTRACT The binding of a major histo-
compatibility complex (MHC) molecule to a
peptide originating in an antigen is essential
to recognizing antigens in immune systems,
and it has proved to be important to use com-
puters to predict the peptides that will bind to
an MHC molecule. The purpose of this paper is
twofold: First, we propose to apply supervised
learning of hidden Markov models (HMMs) to
this problem, which can surpass existing meth-
ods for the problem of predicting MHC-binding
peptides. Second, we generate peptides that
have high probabilities to bind to a certain
MHC molecule, based on our proposed method
using peptides binding to MHC molecules as a
set of training data. From our experiments, in a
type of cross-validation test, the discrimina-
tion accuracy of our supervised learning
method is usually approximately 2–15% better
than those of other methods, including back-
propagation neural networks, which have been
regarded as the most effective approach to this
problem. Furthermore, using an HMM trained
for HLA-A2, we present new peptide sequences
that are provided with high binding probabili-
ties by the HMM and that are thus expected to
bind to HLA-A2 proteins. Peptide sequences
not shown in this paper but with rather high
binding probabilities can be obtained from the
author (E-mail: mami@ccm.cl.nec.co.jp). Pro-
teins 33:460–474, 1998. r 1998 Wiley-Liss, Inc.
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INTRODUCTION

An important role of immune systems is to detect
antigens originating in foreign (or self) organiza-
tions. This process is known to be regulated by a
major histocompatibility complex (MHC) molecule,
which can bind to a peptide corresponding to a part

of foreign (or self) proteins. An MHC molecule bind-
ing to a peptide presents the peptide to a T-cell
receptor on the surface of a cell, so that the receptor
can recognize the peptide (antigen) (Rammensee et
al., 1993). In short, the binding of an MHC molecule
to a peptide is an essential step in the functioning of
an immune system. However, not all peptides are
capable of binding to an MHC molecule, and hence it
is important to determine which peptides can bind to
a given MHC molecule, for various purposes. (About
1 in 100–200 peptides are said to bind to an MHC.)
For example, for designing effective peptide vac-
cines, it is necessary to find out what peptides can
bind to each of the distinct MHC molecules of various
patients.

This problem of predicting peptides that bind to
MHC molecules has been extensively investigated
since around the late 1980s or early 1990s. However,
experimental approaches for determining the bind-
ing ability of peptides requires time-consuming and
costly steps, e.g., synthesis of peptides and measur-
ing their binding ability. This feature of biochemical
assays has made it extremely difficult for experimen-
tal researchers to determine thoroughly the se-
quences of peptides binding to MHC proteins. In
striving to attain greater efficiency in performing
such investigation, efforts are being made to use
computers in predicting peptides that will bind to an
MHC molecule (or activate T-cell proliferation), and
what is now desired is a new precise computational
approach to this problem (Gulukota et al., 1997).

Existing computational approaches can be roughly
classified into two types: 1) methods that use a
number of peptides whose binding ability is experi-
mentally determined; and 2) methods that do not.

An example of the second category is one using a
protein threading approach usually used for predict-
ing protein 3D structures (Altuvia et al., 1995). This
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approach predicts the peptides that fit into an MHC
groove, using a table representing the preference of
sterically neighboring amino acid pairs, which is
already prepared in the context of protein 3D struc-
ture prediction (Bowie et al., 1991; Sippl, 1990). On
the other hand, our method belongs to the first
category, and hence, we regard existing methods in
the category as previous work of our method. Previ-
ous work can be classified into the following three
categories, according to the models used: 1) simple
motifs; 2) detailed motifs (matrix models); and 3)
artificial neural networks.

The simplest method uses a sequence motif as a
predictor, which is determined from a large number
of existing known binding peptides (Falk et al., 1991;
Rammensee et al., 1995). The specific amino acids
appearing in a motif are called anchor residues, e.g.,
an HLA-A2-restricted peptide motif of nine residues
has Leu at the second and Val at the ninth position
as its anchor residues. Such a motif can be character-
ized as one that focuses on partial frequent sequence
features (patterns) of the peptides having the ability
to bind to an MHC molecule (Margalit et al., 1987;
Rothland and Taylor, 1988). However, such simple
partial information of binding peptides has proved to
be insufficient to explain the comprehensive binding
ability of a given peptide (e.g., Ruppert et al., 1993;
Bouvier and Wiley, 1994).

Further modification of the motifs reaches a ma-
trix model as a predictor, in which each column
corresponds to a position of a certain length of
peptides, and each row corresponds to an amino acid
(Parker et al., 1994; Kondo et al., 1995; Davenport et
al., 1995; Brusic et al., 1997b; Gulukota et al., 1997).
Each entry of the matrix indicates a kind of binding
strength of an amino acid at a position specified by a
row and a column, respectively. These entries are
calculated from actual values obtained from bio-
chemical assays. The matrix can be recognized as a
detailed version of a sequence motif, but this repre-
sentation assumes that each residue of a peptide
independently relates to peptide binding to MHC
molecules.

In response to this shortcoming of matrix models,
layered neural networks have been used to discrimi-
nate binding peptides from non-binding ones (Bisset
and Fierz, 1993; Brusic et al., 1994; Adams and
Koziol, 1995; Gulukota et al., 1997). Parameters
within a neural network are trained by the back-
propagation algorithm with a number of peptides
whose binding ability is already known, and the
trained network (hereafter termed backpropagation
neural network) predicts whether a given unknown
peptide can bind or not. Gulukota et al. (1997)
reported that the performance of the backpropaga-
tion neural networks exceeds those of matrix models
and motifs in discriminating peptides that bind to an
MHC molecule from other peptides.

There are three major problems in the previous
work that has been published. The first of these is
that all these methods assume that the size of
peptides that bind to MHC molecules is fixed, though
actually the length of peptides that bind to MHC
molecules is variable and can range from 8 to more
than 20 residues. Thus, existing methods cannot
predict the binding ability of a peptide whose length
is longer or shorter than that of the peptides used in
training, and thus, available training and test data
are extremely limited. The second problem is that
both matrix models and motifs present only one
sequence pattern in the given set of data that will
bind to an MHC molecule. They cannot extract
multiple sequence patterns hidden in a given set of
data separately, even if each of them has sufficient
binding ability. The third problem occurs with neural
networks. Even though these networks are able to
learn such multiple sequence patterns in a given set
of data automatically, the network parameters are
given only as real-valued weights attached to edges
connecting nodes in the network. Consequently, the
weights cannot present any understandable training
results.

To overcome the shortcomings of the previous
methods, we propose to apply supervised learning of
a hidden Markov model (HMM), which has been
widely used in the fields of speech recognition (Rabi-
ner, 1989; Lee, 1989) and computational molecular
biology (Churchill, 1989; Baldi et al., 1994; Krogh et
al., 1994; Eddy, 1996).

HMMs are suitable for representing time-series
sequences (strings) having flexible lengths, and since
the early 1990s they have been vigorously applied to
the problem of automatically aligning multiple bio-
logical sequences. As HMMs can deal with data
having a variety of lengths, they can solve the first of
the above problems. In our experiments, we use a
fully connected HMM, which can automatically di-
vide multiple sequence patterns hidden in a given
set of data into separate patterns. Thus, our HMM
will be able to solve the second of the problems.
Furthermore, a trained HMM can be presented as a
comprehensible form, just like a sequence profile
derived from multiple sequence alignment. This
feature of HMMs enables them to solve the third of
the problems.

The most popular learning algorithm of an HMM
is the Baum-Welch algorithm (or the forward-
backward algorithm). This algorithm, which belongs
to a class of unsupervised learning, is a local optimi-
zation algorithm for maximum likelihood settings of
probability parameters of a given model. Most ap-
proaches using HMMs in the computational biology
field have trained their models based on this unsuper-
vised learning algorithm. However, we here use a
supervised learning algorithm that allows us to train
an HMM with a set of data in which each sequence
has its own target value (Mamitsuka, 1996, 1997).
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This is because each sequence dealt with here is
obtained through biochemical experiments, and
hence has its own value indicating to what degree it
can bind to an MHC molecule or activate T-cell
proliferation.

Furthermore, the structure of an HMM used in
this paper is different from the one used in the
previous HMM-based approaches (e.g., Krogh et al.,
1994). The earlier HMM (hereafter termed align-
ment HMM) was proposed for the purpose of aligning
given multiple sequences, and it can be recognized as
a so-called left-to-right type HMM in which an edge
starting from a state must go to a state on the right
side of the state or to the state itself. However, as
mentioned earlier, the HMM we use is a fully con-
nected HMM in which any transition between two
states is allowed, except for a transition from the
starting state to the finishing state and transitions
from the finishing state to any other states. Roughly
speaking, the alignment HMM represents only a
single sequence pattern of given training data. On
the other hand, a fully connected HMM should be
able to represent more than one sequence pattern
hidden in a set of given training data, because there
is no constraint in the structure of a fully connected
HMM.

In our experiments, we focused on HLA-A2, which
is a human MHC class I molecule, because it is an
important MHC molecule that has been widely stud-
ied in the context of immunology (e.g., Matsumura et
al., 1992; Bjorkman and Burmesister, 1995); as a
result, a larger amount of peptide data exists related
to this than for other types of MHC molecules. The
main purpose of this paper is to present peptides
that have the potential to bind to this MHC mol-
ecule, using a supervised learning algorithm of an
HMM and currently available data. We also present
two HMMs trained by peptides that bind to HLA-DR1
and HLA-DR4, which are human MHC class II
proteins, since we can obtain a large number of these
peptides from a currently available database.

Two experiments were performed. First, we veri-
fied the discrimination ability of our supervised
learning method compared with other two methods,
i.e., a backpropagation neural network and the Baum-
Welch learning of an HMM. In this experiment, we
used actual peptide data in association with their
real-valued ability to activate T-cell proliferation;
these data were obtained from the MHCPEP data-
base developed by Brusic et al. (1997a). The experi-
ment was performed by conducting a cross-valida-
tion test while varying the proportion of training
data to all obtained data. The result of this experi-
ment shows that at any proportion of training data
to all data, the average discrimination accuracy of
our method is approximately 2–15% better than
other methods, i.e., the Baum-Welch reestimation of
fully connected or alignment HMMs and the back-
propagation neural network, which so far has been

regarded as the most accurate method in predicting
MHC binding peptides.

Second, for each of three MHC proteins, including
HLA-A2, we used all data obtained from the
MHCPEP database and trained 100 HMMs using
the data with our supervised learning algorithm.
Out of the 100 models trained for an MHC protein,
we chose the one that could explain the data best and
showed the HMM. Using the model trained by the
data of HLA-A2, we randomly generate peptides that
are expected to have a high ability to bind to
HLA-A2, but that are not yet known. From this
experiment, we ascertained that an HMM trained by
our algorithm captures frequent sequence patterns
in training data separately, and found that the
extracted patterns include not only existing motifs of
MHC binding peptides but also new sequence pat-
terns, each of which characterizes a part of the
training peptides.

MATERIALS AND METHODS
Hidden Markov Models

We here briefly review an HMM. For more detailed
information, interested readers should consult Rabi-
ner (1989).

The structure of an HMM consists of states and
one-directional edges, each of which connects two
states. An HMM has two types of parameters, i.e.,
transition probabilities and symbol generation prob-
abilities, and contains three types of states, i.e.,
normal states, starting states, and finishing states.
In an HMM, a transition between two states is
repeated starting from a starting state and finishing
to a finishing state. The transition probability, which
is the probability of moving from a state to a state
when the two states are connected by an edge, is
attached to the edge, and the symbol generation
probability, which is the probability of emitting a
symbol at a state except starting and finishing
states, is attached to the state. Note that the extent
to which state i is dependent on one of the states
connected to state i, say state j, is given by the
transition probability attached to the edge connect-
ing from state j to state i.

Here, let a given HMM be H, the transition
probability from state i to state j be ai j, and the
symbol generation probability of symbol c at state j
be bj(c). They must satisfy the following equations:

0 # ai j , bj(c) # 1, o
j

ai j 5 1, o
c

bj(c) 5 1. (1)

When a new sequence is given to HMM H, we can
calculate ‘‘forward’’ and ‘‘backward’’ probabilities from
the transition probabilities ai j and symbol genera-
tion probabilities bj(c). Let the given s-th symbol
sequence be Os, the length of Os be ls, and the t-th
symbol of Os be Ot

s, i.e., Os 5 O 1
s . . . Ols

s .
We can define forward probability at

s( j), which is
the probability that the model generates the first t
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symbols of the input sequence Os and arrives at
state i. When the HMM H has only one starting state
and one finishing state, the forward probability
can be iteratively calculated from transition prob-
abilities and symbol generation probabilities, as
follows:

at
s( j ) 5 o

i
ai jbj(Ot

s )at21
s (i ) (t 5 1, . . . , ls),

a0
s ( j ) 5 1, if j can be the starting state, and

a0
s ( j ) 5 0, if not.

als11
s ( j ) 5 o

i
ai jals

s (i ).

Similarly, we can define backward probability
bt

s(i), which is the probability that the model will
generate the rest (all but the first t symbols) of the
input sequence Os given that it is now at state i. For
the HMM H with one starting state and one finishing
state, the backward probability can be calculated
from transition probabilities and symbol generation
probabilities, as follows:

bt
s(i ) 5 o

j
ai jbj(Ot11

s )bt11
s ( j )(t 5 ls 2 1, . . . , 0),

bls
s (i ) 5 o

j
ai jbls11

s ( j ),

bls11
s (i ) 5 1, if i can be the finishing state, and

bls11
s (i ) 5 0, if not.

With these probabilities, one can calculate the
probability that sequence Os is generated by the
HMM H, i.e., P(Os 0H, ls), as follows:

P(Os 0H, ls) 5 o
i

als11
s (i )bls11

s (i )

5 o
i

a0
s(i )b0

s(i ). (2)

However, when given a sequence, the probability
that the sequence is generated by an HMM is
typically calculated by the Viterbi algorithm, which
is obtained by replacing S by max in calculating
forward probability at

s(i).

An Algorithm for Supervised Learning

As mentioned in the Introduction, the most popu-
lar learning algorithm of an HMM is the Baum-
Welch algorithm (or the forward-backward algo-
rithm). This algorithm is a local optimization
algorithm for the maximum likelihood settings of the

probabilities of a given HMM, when a set of data that
should be represented by the model is given.

Our supervised learning algorithm is also a local
optimization algorithm, and it gradually minimizes
the difference between the real probability of given
training data and its target probability. Thus, this
algorithm allows us to deal with a set of data in
which each peptide sequence has its own real-valued
true score of binding to MHC molecules (or activat-
ing T-cell proliferation). We here briefly review our
supervised learning algorithm used in this paper.
Interested readers should consult Mamitsuka (1996)
and Mamitsuka (1997) for further information.

As a preliminary step, we use the forward and
backward probabilities to define the following two
types of probabilities g and j, which are used to
describe our learning algorithm.

gt
s(i ) 5

at
s(i )bt

s(i )

P(Os 0H )
, (3)

jt
s(i, j ) 5

at
s(i )ai jbj(Ot11

s )bt11
s ( j)

P (Os 0H )
(t 5 0, . . . , ls 2 1),

jls
s (i, j ) 5

als
s (i)ai jbls11

s ( j )

P(Os 0H )
. (4)

Here gt
s(i) corresponds to the probability of being in

state i at time t given the sequence Os and the model
H, and similarly jt

s(i, j) indicates the probability of
being in transition from state i to state j at time t
given the Os and the H.

First, we introduce the real-valued parameters vi j

and nj(c), which can be replaced with probability
parameters ai j and bj(c), respectively, as follows:

ai j 5
elvi j

o
k

elvik
, bj(c) 5

elnj (c)

o
k

elnj(k)
,

where l is a constant.
When given HMM H and a set of training se-

quences, let the number of the training sequences be
n, the real probability of the s-th sequence be ps, i.e.,
ps 5 P(Os 0H , ls), and the target probability of the
s–th sequence be p*s. Furthermore, let the difference
between the real probability of the s-th sequence and
its target probability be Ds, and the difference Ds is
defined as Ds 5 ds

2 where ds 5 log ( p*2/ps).
We here define function gs as follows:

gs 5
Dmax 2 Ds

Dmax
,

where Dmax is a constant and satisfies Dmax .
Ds(s 5 1, . . . , n). The function gs is maximized to be
1 as the difference Ds reduces to zero. Hence, we
define the following energy function E and try to
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minimize it in our algorithm. Note that general
unsupervised learning based on maximum likeli-
hood uses E 5 Ss 2 log ps instead of Eq. (5). We thus
can obtain the updating rules of unsupervised learn-
ing by removing the term ds /(Dmax 2 Ds) from the
updating rules of our supervised learning.

E 5 o
s

2 log gs . (5)

To minimize the function E, we use a gradient-
descent learning algorithm and optimize the real-
valued parameters, vi j and nj(c).

Below, we show the updating rules for the param-
eters vi j and nj(c), which are mathematically derived
according to the gradient-descent.

vi j
new 5 vi j

old 1 Cao
s

ds

(Dmax 2 Ds)

· o
t51

ls

[jt
s(i, j ) 2 aijgt

s(i )],

vj(c)new 5 vj(c) old 1 Cb o
s

ds

(Dmax 2 Ds)

· o
t51

ls

[gt
s( j )Ot

s5c 2 bj(c) gt
s( j )],

where Ca and Cb are constants.

RESULTS
Data and Parameters

We obtained peptide sequences and their ability to
bind to MHC molecules (and activate T-cell prolifera-
tion) from the MHCPEP database developed by
Brusic et al. (1997a). Out of the 9,827 peptides in the
current version of the database, there are 1,008 that
are relevant to HLA-A2 molecules, which is the
largest number among the peptides noted in the
database. HLA-DR1 and HLA-DR4 are the only
other MHC molecules to which more than 400 pep-
tides noted in the database are individually related.

Thus, we consider not only HLA-A2 but also
HLA-DR1 and HLA-DR4 in our experiments.

In the MHCPEP database, there are two types of
measures used in evaluating the ability of peptides,
i.e., ability to bind to MHC molecules (binding pep-
tides) and activating T-cell proliferation (activating
peptides). Each peptide can be assigned one of six
labels to indicate its ability: ‘‘none (NO),’’ ‘‘yes and
little (YL),’’ ‘‘yes and moderate (YM),’’ ‘‘yes and high
(YH),’’ ‘‘yes and unknown,’’ and ‘‘unknown.’’ Out of
the six labels, we use only four (NO, YL, YM, and YH)
because the peptides whose labels are unknown
cannot be dealt with by our supervised learning
method, in which the binding and activating ability
of each peptide needs to be real-valued. Table I
shows the number of peptides relevant to the MHC
molecules dealt with in our experiments. The table
shows all data obtained from the MHCPEP, and thus
any bias in the data is a result of the choice of
sequences by experimenters, and not by the author
of this paper. From the table, it can be seen that
there were no peptides with NO binding ability, and
that the total number of binding peptides exceeds
that of activating peptides in all the MHC molecules
in the table.

To represent the peptide data obtained, we use a
fully connected HMM, in which there is one starting
state and one finishing state and any transition
between two states (except that between the starting
and finishing states and between the finishing state
and any others) is allowed. In training the HMM, our
supervised learning algorithm needs to attach the
target probability to each peptide in our data. When
the parameters of the fully connected HMM of N
states are assumed to be uniform distributions [i.e.,
ai j 5 (1/N ) (i, j 5 1, . . . , N ) and bj(c ) 5 1/M
( j 5 1, . . . , M )], the probability that a sequence of
length l is generated by the HMM is given as 1/N
(1/M )l from Eq. (2), where M is the number of symbol
types. In consideration of this calculation and based
on a preliminary experiment, we fixed the target
probability of a given peptide of length l to be L0.05 if

TABLE I. Number of Peptides Relevant to HLA-A2, HLA-DR1,
and HLA-DR4,All of WhichAre Obtained From the MHCPEP Database†

NO YL YM YH Total

a. HLA-A2
Binding 0 138 162 172 472
Activating 79 (53) 17 (6) 46 (13) 57 (30) 199 (102)

b. HLA-DR1
Binding 0 93 152 166 411
Activating 0 17 11 1 29

c. HLA-DR4
Binding 0 130 165 225 520
Activating 16 20 4 0 40

†Number of peptides of nine residues are shown in parentheses.
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the peptide is in the YH class, L0.1 if it is YM, L0.2 if it
is YL, and L2.0 if it is NO, where L 5 1/N (1/M )l.

Although the length of the peptides obtained shown
in Table I ranges from 7 to 25, most of the peptides
are 9–13 residues long. Actually, in the binding
peptides relevant to HLA-A2, 434 peptides (91.9% of
the total) are 9–13 residues long; in particular, the
number of nonamer peptides is 192, and they occupy
61.9% of the total. However, the peptides relevant to
HLA-DR1 and HLA-DR4 are relatively longer than
those relevant to HLA-A2 molecules. The most fre-
quent length of the former peptides is 13, and such
peptides account for 37.2% (153 out of 411) and
51.2% (266 out of 520) of all peptides related to
HLA-DR1 and HLA-DR4, respectively. Thus, we fix
the number of states of HMMs at 22 for HLA-A2, and
32 for HLA-DR1 and HLA-DR4. (Note that the
number includes a starting state and a finishing
state, neither of which generates any symbols.) As
the number of states is set at roughly twice the
length of most peptides in training examples, the
HMMs are expected to extract separately multiple
sequence patterns hidden in the data.

Comparing Our Supervised Learning
of HMMs With Other Methods
in a Type of Cross-Validation
of Discriminating Sequences

We compare the performance of our supervised
learning algorithm of an HMM with those of two
other methods. The first of the two is a backpropaga-
tion neural network, which has been used in predict-
ing MHC binding peptides and is regarded as the
most effective approach. The second is the Baum-
Welch algorithm, i.e., the most popular learning
algorithm of an HMM. Using the Baum-Welch, we
tested two types of HMMs, i.e., fully connected and
alignment HMMs. A fully connected HMM is one in
which any pair of states is connected, except for the
pair of the starting and finishing states. On the other
hand, an alignment HMM is a type of left-to-right
HMM and was proposed for aligning multiple se-
quences and presenting their sequence profiles
(Krogh et al., 1994).

Data

In this experiment, testing is done by binary
prediction, i.e., YES or NO. Thus, we use activating
peptides relevant to HLA-A2, because there are no
non-binding data in any of the three MHC molecules
used, and the amount of activity data of other MHC
molecules is too small to be used as training data
here. (Basically, there is no non-binding peptide in
the MHC database, because it gathers peptides that
bind to MHC proteins. Thus, among the peptides in
the database, even those that cannot activate T-cell
proliferation will bind to MHC proteins. In other
words, such peptides can be regarded as false-
positive data if peptides that can activate T-cell

proliferation are called positive data. In this sense,
the discrimination experiment performed here is a
severe test.)

As backpropagation neural networks are used in
the comparisons, all peptides used here are of nine
residues, since all previous work based on backpropa-
gation neural networks uses only nonamer peptides.
The predictive performance must be measured by
discriminating whether a given unknown peptide
has a certain ability or not. Thus, we use the
activating peptides of HLA-A2, for which Table Ia
shows the number of peptides used in this experi-
ment.

Note that the three methods differ in data usage.
Our method uses four types of targets, i.e., YH, YM,
YL, and NO. On the other hand, backpropagation
neural networks are trained by two types of target
values, i.e., YES or NO, as done in Gulukota et al.
(1997), and the Baum-Welch algorithm uses only the
target value of YES (YH, YM, YL) since it is an
unsupervised learning algorithm.

Backpropagation neural network

We here briefly explain the network used in our
experiment, which is the same as the one used by
Gulukota et al. (1997).

The network has three layers, i.e., an input, a
hidden, and an output layer, each of which consists of
a fixed number of nodes. The numbers of input,
hidden, and output nodes are 180(5 20 3 9), 50, and
1, respectively. A set of 20 nodes in the input layer,
each of which corresponds to one of 20 types of amino
acids, corresponds to one of nine residues in a given
peptide. When a peptide is given, only one node in
the set of 20 nodes outputs 1 and the other 19 nodes
in the set output 0. Any two nodes between input and
hidden layers and between hidden and output layers
are connected by a one-directional edge, to which a
weight is attached.

Let the output value of the j-th node be xj and the
weight attached to the edge connecting from the i-th
node to the j-th node be wi j. We calculate the xj in
the hidden and output layers as follows:

xj 5 f 1o
i

wi jxi2 , (6)

where the function f is a sigmoid function satisfying

f (x) 5
1

1 1 e2x
. Weights wi j are trained by the

general backpropagation learning algorithm (Rumel-
hart, et al., 1986). In this learning, 1 is given as a
teaching signal for the output value of this network if
a given training peptide is a positive example; other-
wise 0 is given, and the backpropagation minimizes
the squared error-loss at the output node by a gradient
descent algorithm. In prediction, when a new peptide is
given, the output value of the output node, which can
be calculated from Eq. (6), is given to the peptide.
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Alignment HMM

Figure 1 shows the structure of an alignment
HMM, which has a particular structure consisting of
three types of states, i.e., matching (M1, M2, M3 in
Fig. 1), insertion (I0, I1, I2, I3 in the figure), and
deletion (D1, D2, D3 in the figure) states. In the
HMM, a matching state is a normal state that emits
a symbol according to a probability distribution
attached to the state, whereas an insertion state
emits a symbol according to a fixed uniform distribu-
tion and a deletion state does not emit any symbol
[see Krogh et al. (1994), Baldi et al. (1994), or Eddy
(1996) for the details of the HMM].

In our experiment, the number of matching states
is fixed at 20, which is the same as the number of
states in the fully connected HMM used in the
experiment, except for its starting and finishing
states. The number of deletion and insertion states
(20 and 21, respectively) is automatically deter-
mined from the number of matching states.

Baum-Welch algorithm

The Baum-Welch reestimation rules for ai j and
bj(c) are easily derived from the two probabilities g
and j in Eqs. (3) and (4) as follows:
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Experimental procedure

We randomly divide each set of peptides of four
classes into two, i.e., training and test, with a certain
proportion of training data to all obtained data, and
repeat this random division five times, that is, we
generate five random sets of training and test data
for a given proportion.

In training, we randomly generate five HMMs (or
backpropagation neural networks) having different
initial parameter values. For each of the five, we
repeatedly train it and use it to predict unknown test
data five times, with the five respective random sets
of training and test data already generated. Thus, a
total of 25 trials are done at a given proportion of
training data to all data. We vary the proportion of
training data to the whole data from 50% to 90% at
10% intervals.

In testing, we measure the performance of each
method by binary prediction, i.e., predicting whether
a given peptide belongs to any of YH, YM, and YL
(i.e., YES) or NO. In this prediction, we consider the
highest prediction accuracy (hereafter, termed HPA)
for test data that can be obtained by changing a
cut-off value (which classifies test examples into two
classes, i.e., YES and NO) for the output values of the
test peptides. We calculated 25 HPAs for all 25 trials,
and the performance of our method is evaluated by
their average.

Learning curves

Figure 2 shows the learning curves of our super-
vised learning algorithm of HMMs and of backpropa-
gation neural networks. As shown in the figure, the
average HPA of the former is approximately 5–10%
better than that of the latter at any proportion of
training data to all data. From this result, we can say
that in discriminating given new peptides, the perfor-
mance of our supervised learning of HMMs exceeds
that of a backpropagation neural network, which so
far has been regarded as the most effective approach
to this problem.

Parameter updating in learning each of HMMs
and neural networks is repeated until the changes in
their parameters become smaller than a certain
preset amount. Figure 3 shows an actual example of

Fig. 1. Alignment hidden Markov model.

Fig. 2. Comparing our supervised learning of hidden Markov
models with backpropagation neural networks.
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the variation of HPAs of test data until the param-
eter updating is stopped. In the example, the two
learning methods use an identical set of training and
test data, at which the size of the training data is
approximately the same as that of the test data. The
figure shows that the HPA of each method reaches its
upper limit before the parameter updating is stopped
and that the HPA of an HMM is always better than
that of a backpropagation neural network, despite
minor training problems such as overtraining.

Figure 4 shows the learning curves of our super-
vised learning algorithm of fully connected HMMs
and the Baum-Welch algorithm of fully connected or
alignment HMMs. This figure indicates that the
fully connected HMM is able to improve greatly the
average HPA obtained by the alignment HMM, and
that our supervised learning can further improve the
HPA obtained by the Baum-Welch. The average HPA
of fully connected HMMs trained by our method is

always approximately 2–15% better than those of
fully connected and alignment HMMs trained by the
Baum-Welch.

Figures 2–4 clearly demonstrate that our method
surpasses all the methods used for comparison pur-
poses.

Predicting Peptides That Bind
to MHC Molecules
Data

We focus on HLA-A2 protein, but we also attempt
to use peptides that can bind to HLA-DR1 and
HLA-DR4. The number of peptides relevant to activ-
ity is considerably smaller than that for binding to
any MHC protein, and hence we here consider
binding peptides only. Thus, the data used here have
only three types of labels, i.e., YH, YM, and YL, and
constitute a set of positive examples, which can bind
to MHC molecules.

Experimental procedure

We train an HMM by our supervised learning
algorithm using all data of an MHC molecule, and
we repeat this training 100 times with random
different initial parameter values. Out of the 100
trained HMMs, we choose the one that provides the
minimum value of function E [see Eq. (5)] for all
training data of peptides that can bind to an MHC
molecule.

Next, we perform a random walk on the chosen
HMM trained by peptides that bind to HLA-A2
protein. We start at the starting state of the HMM
and randomly choose a state to transit depending on
the transition probabilities attached to the edges
from the starting state; after moving to a state, we
again randomly choose a symbol depending on the
symbol generation probability distribution attached
to the state. We repeat this state transition and
symbol generation until the transition reaches the
finishing state. This random walk finally generates a
string (symbol sequence) and the score of the se-
quence, which is obtained by multiplying all the
probabilities used for generating the sequence on
state transition and symbol generation of the walk.
Roughly speaking, we can regard the score as the
probability of the sequence given the model, as the
Viterbi algorithm is used in predicting the probabil-
ity.

We repeat the random walks 100,000 times, and
out of the 100,000 sequences generated, we remove
those that have already been noted in the MHCPEP
database and those that are composed of only one
type of amino acid. Out of the sequences generated,
we extract only the sequences that are nine residues
long, because, as mentioned earlier, such peptides of
nine residues occupy more than 60% of all the
peptides relevant to HLA-A2 and thus we expect
that most experimental researchers are interested in
the nonamer peptides. We sort the processed se-

Fig. 3. Variation of HPA as number of iterations increases. The
number of iterations is represented as the ratio to the number of all
iterations obtained when a preset stopping condition is satisfied.

Fig. 4. Comparing our supervised learning with Baum-Welch.
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quences in descending order of scores and select
10,000 of them from the top down.

Finally, we repeat the above process five times. We
sort the five sequences of 10,000 obtained in descend-
ing order of scores and select the top 100.

HLA-A2

Figure 5 shows the HMM that provides the lowest
value of function E for all training peptides that bind
to HLA-A2 protein, in 100 HMMs trained by our
supervised learning algorithm using the same data.

Note that the HMM automatically extracts roughly
two different patterns hidden in the peptides used as
training data. One major pattern is states 1 = 2 =
4 = 7 = 9 = 12 = 14 = 17 = 20, and the other
relatively minor pattern is states 1 = 2 = 3 = 5 =
8 = 11 = 13 = [(18(= 19 = 20)) or (16 = 20)]. As
shown in Figure 5, a number of variations can be
incorporated in the second pattern, but no change is
allowed in the first pattern except for the last state.

States 2 and 20, which can be used in the two
patterns, coincide with two anchor residues of a
nonamer HLA-A2-restricted motif reported by Falk
et al. (1991). In the motif, anchors are Leu at position
2 and Val at position 9, and these have high probabili-
ties at states 2 and 20, respectively.

In the first pattern, all states except for the two
states corresponding to anchor residues have broad
symbol generation probability distributions, in which
the largest probability value is at maximum 0.13.
Furthermore, such distributions at states 4, 7, 9, 12,
and 14 are similar to each other, and in them, Gly,
Leu, and Pro always have relatively high probabili-
ties. This result is consistent with a report by Sette

et al. (1991), in which positions 3–5 in a nonamer
HLA-A2 motif have the same amino acid propensity.
This indicates, however, that neither the motif nor
the first pattern can capture any distinct feature of
this portion, and thus it will be difficult for them to
predict accurately (or discriminate) peptides that
bind to HLA-A2 protein.

On the other hand, the second pattern presents a
clearer sequence pattern hidden in the training data.
In particular, the transition of states 5 = 8 = 11 =
13 is connected by edges, at any of which a transition
probability of 1.0 is attached, and this indicates that
the transition is certainly hidden in training peptide
data. Actually, an epitope found in influenza matrix
protein (Gotch et al., 1988) contains the amino acid
sequence Phe-Val-Phe-Thr, which can be generated
with a high probability by this transition. The se-
quence is found in 49 of the total 472 peptides used
as training data, and this is one of the most frequent
patterns in HLA-A2 binding peptides. Note that the
sequence Phe-Val-Phe-Thr is found in a different
position in each of the 49 training peptides. Out of
the 49 peptides, the numbers in which the sequence
starts at the fourth, fifth, sixth, seventh, and eighth
positions are 3, 23, 20, 2, and 1, respectively.

We can find other frequent sequence patterns in
the second. For example, the longer sequence
Leu-Gly-Phe-Val-Phe-Thr, which can be generated
by states 2 = 3 = 5 = 8 = 11 = 13 with a high
probability, is found in 36 peptides in the training
data. Similarly, the sequence Thr-Leu-Thr-Val, which
can be generated by states 13 = 18 = 19 = 20, is in
33 peptides in training data, and Ala-Ala-Ala, i.e.,
(Ala)3, generated by state 16 only, is found in 38 of

Fig. 5. Main part of HMM representing peptides binding to
HLA-A2. Only edges whose transition probabilities exceed 0.1 and
the top three symbols (at maximum), whose symbol generation
probabilities exceed 0.05 at each state, are shown. The edge

having the largest transition probability of the probabilities at-
tached to edges starting from a state is shown by a thick line, and
states are numbered 1 to 20 from left to right and from top to
bottom.
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training data. All frequent sequence patterns, which
are revealed by the HMM of Figure 5, are shown in
Table IIa. The table indicates that each portion of the
second pattern in the HMM captures hidden fea-
tures in the training data.

Table III shows the top 100 peptides obtained by
our random generation process described above and
whose binding ability is so far unknown. Most of the
100 peptides obtained have the pattern that is
supposed to be generated by states 5 = 8 = 11 = 13,
and this indicates that most of the peptides gener-
ated belong to the second pattern presented by the
HMM of Figure 5.

HLA-DR1 and HLA-DR4

Figure 6 shows the HMM that provides the lowest
E value for all training peptides that bind to
HLA-DR1 protein. Note that the figure shows only
31 states, and the remaining state is not used to
represent peptides that bind to HLA-DR1.

A nonamer motif of HLA-DR1 binding peptides
presented by Hammer et al. (1992, 1993) has Tyr or
Phe at position 1 and Leu or Met at position 4. We
guess that this motif appears in our HMM by regard-
ing states 6 and 16 as positions 1 and 4 in the motif,
respectively. However, a state transition including

TABLE II. Patterns That Can Be Generated by HMMs of HLA-A2, HLA-DR1,
and HLA-DR4 With High Probabilities and ThatAre Frequently

Seen in Peptides of Training Data†

Pattern State transition No. of peptides

a. HLA-A2
GILGF 3 = 6 = 2 = 3 = 5 33
ILGFVF 6 = 2 = 3 = 5 = 8 = 11 34
LGFVFT 2 = 3 = 5 = 8 = 11 = 13 36
GFVFTL 3 = 5 = 8 = 11 = 13 = 18 36
FTLTV 11 = 13 = 18 = 19 = 20 30

b. HLA-DR1
AAAAA 2 = 2 = 2 = 2 = 2 39
PKYVKQN 3 = 5 = 6 = 24 = 18 = 20 = 22 34
KYVKQNT 5 = 6 = 24 = 18 = 20 = 22 = 25 33
YVKQNTL 6 = 24 = 18 = 20 = 22 = 25 = 26 34
VKQNTLK 24 = 18 = 20 = 22 = 25 = 26 = 27 31
KQNTLKL 18 = 20 = 22 = 25 = 26 = 27 = 28 31
QNTLKLA 20 = 22 = 25 = 26 = 27 = 28 = 29 32
NTLKLAT 22 = 25 = 26 = 27 = 28 = 29 = 25 33
QYIKANS 3 = 5 = 8 = 5 = 9 = 12 = 15 31
YIKANSK 5 = 8 = 5 = 9 = 12 = 15 = 18 31
IKANSKF 8 = 5 = 9 = 12 = 15 = 18 = 20 31
KANSKFI 5 = 9 = 12 = 15 = 18 = 20 = 8 30
NSKFIG 12 = 15 = 18 = 20 = 8 = 11 32
SKFIGI 15 = 18 = 20 = 8 = 11 = 14 32
FIGITE 20 = 8 = 11 = 14 = 29 = 25 30
EKASSVF 3 = 5 = 9 = 12 = 15 = 17 = 20 32
KASSVFN 5 = 9 = 12 = 15 = 17 = 20 = 22 31
ASSVFNV 9 = 12 = 15 = 17 = 20 = 22 = 17 31
SSVFNVV 12 = 15 = 17 = 20 = 22 = 17 = 24 31
EKKIA 3 = 5 = 7 = 14 = 29 32
KKIAKM 5 = 7 = 14 = 29 = 18 = 21 30
KIAKME 7 = 14 = 29 = 18 = 21 = 3 30
IAKMEKA 14 = 29 = 18 = 21 = 3 = 5 = 9 30
AKMEKAS 29 = 18 = 21 = 3 = 5 = 9 = 15 30

c. HLA-DR4
AAAAAA 1(3) = 1(3) = 1(3) = 1(3) = 1(3) = 1(3,5) 39
AAYAAA 1(3) = 1(3) = 1 = 1(3) = 1(3) = 1(3,5) 43
AAAKAAA 1(3) = 1(3) = 1(3) = 1 = 1(3) = 1(3) = 1(3,5) 37
KAAAAAA 1(3) = 1(3) = 1(3) = 1(3) = 1(3) = 1(3) = 1(3,5) 32
KYVKQNTL 4 = 6 = 9 = 11 = 15 = 17 = 18 = 19 34
YVKQNTLK 6 = 9 = 11 = 15 = 17 = 18 = 19 = 11 35
VKQNTLKL 9 = 11 = 15 = 17 = 18 = 19 = 11 = 15 33
KQNTLKLA 11 = 15 = 17 = 18 = 19 = 11 = 15 = 17 34
QNTLKLAT 15 = 17 = 18 = 19 = 11 = 15 = 17 = 18 34

†The patterns presented here are those that are longer than three and are found in more than 30
peptides in the respective training data. If longer patterns, including those that satisfy the above
requirement, are found in more than 30 sequences, only the longest one of them is described.
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these two states, i.e., states 6 = 10 = 13 = 16, is
merely a part of the entire HMM shown in Figure 5.
Thus, we can say that the HMM finds other patterns
that are different from the existing motif.

Actually, each portion of the HMM presents a
sequence pattern that is frequently found in training
data. For example, the sequence Glu-Lys-Ala-Ser,

which can be generated by states 3 = 5 = 9 = 12
with a high probability, is contained in 40 peptides,
the sequence Ser-Ser-Val-Phe-Asn, from states 12 =
15 = 17 = 20 = 22, is found in 34 peptides, and the
longer sequence Asn-Thr-Leu-Lys-Leu-Ala, from
states 22 = 25 = 26 = 27 = 28 = 29, is found in 38
peptides.

TABLE III. Top 100 Peptides of Nine Residues That Bind to HLA-A2 Protein,
Generated by HMM of Figure 5

Peptide Probability Peptide Probability

1 GILGFVETL 25.13036 51 AGFRETLRV 25.86142
2 GILGDVETL 25.21152 52 GGFVETLTV 25.86222
3 GILGDVFTL 25.26656 53 KLGFVFTLL 25.86632
4 LGFVETLRV 25.47421 54 LLGDVFTQL 25.86781
5 KGFVETLRV 25.47863 55 GILGFVFSL 25.87013
6 GILGFRFTL 25.50243 56 GFVFTLLRV 25.87366
7 GILGDRETL 25.52856 57 GDVFTQLRV 25.87957
8 KGFVFTLRV 25.53366 58 FGDVFTLRV 25.88431
9 LGDVETLRV 25.55537 59 LLGDVETLL 25.88803

10 KGDVETLRV 25.55979 60 LLGFVFTRV 25.88970
11 GILGDRFTL 25.58359 61 GILGDVESL 25.89625
12 GFVETLRTL 25.58546 62 AGDVFTLTV 25.89778
13 LGDVFTLRV 25.61040 63 LLLGFVETL 25.89835
14 KGDVFTLRV 25.61482 64 GDVETLLRV 25.89978
15 GFVFTLRTL 25.64049 65 GFRETLRTL 25.90249
16 GGFVETLRV 25.64502 66 ALGFVETRV 25.90484
17 AGDVFTLRV 25.68058 67 IGDVFTLRV 25.90625
18 LGFVETLTV 25.69142 68 GILGDVENL 25.90660
19 KGFVETLTV 25.69584 69 GGFVFTLTV 25.91726
20 GGFVFTLRV 25.70005 70 KLGDVETRV 25.92025
21 GILWFVFTL 25.71087 71 GDVETQTQL 25.94344
22 GDVFTLRTL 25.72165 72 RGFVETLRV 25.94488
23 GGDVETLRV 25.72618 73 GILAAAAAV 25.94896
24 KLGFVETQL 25.73604 74 GIMGFVETL 25.95025
25 GILWDVETL 25.73699 75 TGDVETLRV 25.95214
26 WILGDVETL 25.73699 76 GLGFVFTQL 25.95746
27 GFVETQLRV 25.74338 77 ALGDVETLL 25.95820
28 FGFVETLRV 25.74811 78 GFVETQLTV 25.96058
29 KGFVFTLTV 25.75087 79 GILGDVFNL 25.96164
30 AGFVETLTV 25.76159 80 GGFRETLRV 25.96205
31 IGFVETLRV 25.77005 81 FGFVETLTV 25.96532
32 LGDVETLTV 25.77257 82 LLGDVFTRV 25.97086
33 GGDVFTLRV 25.78121 83 KLGDVFTRV 25.97528
34 KLGFVFTQL 25.79107 84 GILGEVETL 25.97586
35 LGFRETLRV 25.79124 85 GFVETLRVL 25.97601
36 GILWDVFTL 25.79203 86 GLGFVETLL 25.97768
37 KGFRETLRV 25.79566 87 LLLGDVETL 25.97951
38 ALGFVETQL 25.80179 88 YLAAAAAAV 25.98183
39 FGFVFTLRV 25.80315 89 GDRETLRTL 25.98365
40 LLGFVETLL 25.80687 90 KLLGDVETL 25.98393
41 KLGFVETLL 25.81129 91 ALGDVETRV 25.98600
42 LLGDVETQL 25.81278 92 GILGDVHTL 25.99664
43 AGFVFTLTV 25.81663 93 GGDVFTLTV 25.99842
44 KLGDVETQL 25.81720 94 GDVFTQTQL 25.99848
45 GDVETQLRV 25.82453 95 LWFVETLRV 25.99968
46 LGDVFTLTV 25.82761 96 RGFVFTLRV 25.99992
47 KGDVFTLTV 25.83203 97 KWFVETLRV 26.00410
48 FLAAAAAAV 25.85104 98 FLGFVETQL 26.00552
49 IGDVETLRV 25.85121 99 GFVFTQLTV 26.01562
50 GFVFTLTTL 25.85770 100 CLAAAAAAV 26.02506

470 H. MAMITSUKA



The strength of a dependency between two states
in an HMM that are connected by an edge is repre-
sented by a transition probability attached to the
edge, and this indicates that the HMM can capture a
pair of two neighboring amino acids, i.e., a two-letter
string, which is frequently seen in training data.
This feature allows an HMM to represent these
frequent sequence patterns by a sequence of states.

It is interesting to note that the combinations of
the sequence patterns generated by HMMs with
high probabilities are not necessarily found in the
training data. For example, although a combination
of the first and second examples described above, i.e.,
Glu-Lys-Ala-Ser-Ser-Val-Phe-Asn, is found in 28 pep-
tides of the training data, a combination of the
second and third, i.e., Ser-Ser-Val-Phe-Asn-Thr-Leu-
Lys-Leu-Ala, cannot be found in the training data
and even the center part of this combination, i.e.,
Phe-Asn-Thr, is not contained in the training data.
This is because a state in an HMM depends only on
the states from which edges with high transition
probabilities connect to the state. Thus, there is no
substantial dependency between two states in a
sequence of states generating a string, if the two do
not generate two neighboring amino acids in a
frequent sequence. However, we can say that HMMs

that allow us to extract frequent two-letter strings in
training data provide new combinations of the strings
that correspond to unknown peptides expected to
bind to an MHC protein.

Figure 7 shows the HMM that provides the lowest
E value for all training data of peptides that bind to
HLA-DR4 protein. This figure also uses only 26
states to represent the peptides that bind to
HLA-DR4, and roughly two patterns, i.e., states 1, 3
and 5 and others, are shown in the figure.

The first pattern is represented by only three
states, any of which generates Ala with the highest
probability among all 20 types of amino acids. This
feature is similar to state 2 in Figure 6. Actually,
(Ala)n is one of the popular sequence patterns in
training data for HLA-DR1 and HLA-DR4. A partial
sequence (Ala)5 is found in 39 and 51 peptides in
training data of HLA-DR1 and HLA-DR4, respec-
tively, and (Ala)6 is also found in 29 and 39 peptides,
respectively.

On the other hand, an HLA-DR4-restricted non-
amer motif presented by Hammer et al. (1993) and
Sette et al. (1993), is Leu, Ile, Val, Trp, or Tyr at
position 1 and Thr at position 5. We can find the
motif in the second pattern of Figure 7, if we regard

Fig. 6. Main part of HMM representing peptide binding to HLA-DR1. The thresholds used for
omitting edges and symbols are the same as those used in Figure 5. We attach ‘‘All’’ to a state at
which no symbol generation probability exceeds 0.1.
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states 6 and 18 in the HMM as positions 1 and 5 in
the motif.

Table IIb and c, respectively, show all frequent
sequence patterns of length longer than three that
are revealed by the HMMs of Figures 6 and 7.

DISCUSSION AND CONCLUSIONS

From our computer experiments in discriminating
unknown sequences, we have shown that the perfor-
mance of our supervised learning algorithm of a
hidden Markov model (HMM) surpasses that ob-
tained by either a backpropagation neural network,
which up to now has been regarded as the most
effective approach to predicting MHC binding pep-
tides, or the Baum-Welch updates of an HMM.
Furthermore, we trained a fully connected HMM by
our supervised learning algorithm, and used it to
predict new peptides that will bind to MHC mol-
ecules. We believe that the peptides predicted here
and the HMMs trained by our supervised learning
algorithm provide useful information for further
research into the MHC molecules dealt with here.

Note that the patterns extracted and represented
by the HMMs do not necessarily contain all patterns
that can bind to the MHC molecules dealt with here.
There are at least two reasons for this. First, the
amount of data used here is extremely limited as

well as biased, because existing peptide data have
not been randomly experimentally investigated, even
though the data used here are all derived from a
currently available database. To put it concretely,
some patterns that can actually bind to MHC mol-
ecules may not be contained in our training data,
and thus the peptides predicted by the HMMs are
limited to those having patterns similar to existing
patterns having binding ability. Second, the struc-
ture and parameters of a trained HMM depend on its
initial parameters, since our learning algorithm of
an HMM is a local optimization algorithm. Thus, a
trained HMM may not include a pattern hidden in a
given set of data. To avoid this in our experiments as
much as possible, we repeated the training of an
HMM for a given set of training data, and we
evaluated the performance by the average of the
repetition or chose the best HMM from the results of
the repetition, as the occasion demanded.

However, the more training data are obtained, the
larger the number of sequence patterns HMMs will
be able to extract. This means we will be able to use
HMMs and our supervised learning algorithm to
extract frequent sequence patterns even in other
MHC proteins of which only an extremely small
amount of data is known at present, if a larger

Fig. 7. Main part of HMM representing peptide binding to HLA-DR4. The thresholds used for
omitting edges and symbols are the same as those used in Figure 5.
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number of peptides that bind to MHC molecules are
investigated in the future.

Figures 2–4 indicate that a fully connected HMM
achieved a higher discrimination accuracy than those
of both a backpropagation neural network and an
alignment HMM. One important reason for this
result is derived from the characteristics of both the
data we used and the structures of the models that
learn the data.

Concretely speaking, when four-letter substrings
of ABCDE, i.e., ABCD and BCDE, are given as
positive training data, an HMM, especially a fully
connected HMM, can extract the common portion of
them (i.e., BCD) with ease, while it is rather difficult
for backpropagation neural networks to do so with
complete accuracy because B, C, and D are all
located at different positions in the two strings.
Actually, on the binding of an MHC to a peptide, it is
known that a peptide longer than nine can be
entirely contained in an MHC groove (e.g., Collins et
al., 1994). The data dealt with in this paper are also
expected to include such sequences, and, as men-
tioned earlier, the Phe-Val-Phe-Thr pattern begins
at variable positions in HLA-A2 binding peptide
data. Hence, this result implies that a model dealing
with only a peptide of a fixed length will not be an
effective approach to the problem of predicting pep-
tides that bind to MHC proteins.

Furthermore, when other four-letter substrings of
FGHI J, i.e., FGHI and GHI J, are added to the
positive training data, a fully connected HMM can
extract two common patterns of them (i.e., BCD and
GHI) separately. However, it is rather difficult for an
alignment HMM to capture them separately, and
thus it will learn a mixture of the two patterns,
because the structure of the HMM was proposed for
the purpose of aligning a number of sequences as a
single pattern (i.e., a sequence profile), as seen in
Figure 1. Note that if only two strings, ABCD and
FGHI, are given as positive training data, both a
backpropagation neural network and a fully con-
nected HMM will be able to learn the two patterns
separately, while it will be difficult for an alignment
HMM to do so for the same reason. Our experimental
results indicate that actually each set of peptides
contains multiple (more than one) patterns, as shown
in Figures 5–7.

In view of these considerations, we can say that a
fully connected HMM is the most suitable represen-
tation model among the three we compared. Further-
more, in the test, our supervised learning algorithm
worked effectively for the data we used, in which
each peptide sequence has its own target value.

In our experiment for obtaining unknown peptides
having a high possibility of binding to HLA-A2, we
randomly generated peptides using 1 HMM chosen
out of 100 HMMs, each of which was trained by all
available peptides that bind to HLA-A2, and we
presented the top 100 by sorting the peptides. The

peptides ranked below 100, the peptides that are
longer or shorter than nine, and the peptides gener-
ated by the HMMs of Figures 6 and 7 in the same
procedure as done for HLA-A2 can be obtained from
the author.

Finally, we would like to emphasize that the
trained HMMs can be used to find epitopes in a given
new sequence, e.g., a human immunodeficiency virus
protein, just as existing motifs are used for the same
purpose (Meister et al., 1995). We believe that the
trained HMMs are useful for this purpose as well.
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