
Combining Nearest Neighbor Classi�ers Through Multiple FeatureSubsetsStephen D. Bay�Department of Information and Computer ScienceUniversity of California, IrvineIrvine, CA 92697, USAsbay@ics.uci.eduAbstractCombining multiple classi�ers is an e�ectivetechnique for improving accuracy. There aremany general combining algorithms, such asBagging or Error Correcting Output Coding,that signi�cantly improve classi�ers like deci-sion trees, rule learners, or neural networks.Unfortunately, many combining methods donot improve the nearest neighbor classi�er.In this paper, we present MFS, a combiningalgorithm designed to improve the accuracyof the nearest neighbor (NN) classi�er. MFScombines multiple NN classi�ers each usingonly a random subset of features. The ex-perimental results are encouraging: On 25datasets from the UCI Repository, MFS sig-ni�cantly improved upon the NN, k near-est neighbor (kNN), and NN classi�ers withforward and backward selection of features.MFS was also robust to corruption by irrele-vant features compared to the kNN classi�er.Finally, we show that MFS is able to reduceboth bias and variance components of error.1 INTRODUCTIONThe nearest neighbor (NN) classi�er is one of the old-est and simplest methods for performing general, non-parametric classi�cation. It can be represented by thefollowing rule: to classify an unknown pattern, choosethe class of the nearest example in the training set asmeasured by a distance metric. A common extension�Research performed while at the University of Water-loo, Department of Systems Design Engineering, Waterloo,Ont., N2L 3G1, Canada.

is to choose the most common class in the k nearestneighbors (kNN).Despite its simplicity, the NN classi�er has many ad-vantages over other methods. For example, it can learnfrom a small set of examples, can incrementally addnew information at runtime, and often gives competi-tive performance with more modern methods such asdecision trees or neural networks.Since its inception by Fix and Hodge (1951), re-searchers have investigated many methods for improv-ing the NN classi�er, but most work has concen-trated on changing the distance metric or manipulat-ing the patterns in the training set (Dasarathy, 1991).Recently, researchers have begun experimenting withgeneral algorithms for improving classi�cation accu-racy by combining multiple versions of a single classi-�er, also known as a multiple model or ensemble ap-proach. The outputs of several classi�ers are combinedin the hope that the accuracy of the whole is greaterthan the parts. Unfortunately, many combining meth-ods do not improve the NN classi�er at all.For example, in Breiman's (1996) experiments withBagging, he found no di�erence in accuracy betweenthe bagged NN classi�er and the single model ap-proach. His results suggest that other combiningmethods that involve any signi�cant degree of resam-pling or replication of patterns will not work with theNN classi�er. Kong and Dietterich (1996) also con-cluded that Error Correcting Output Coding (ECOC),a method of combining classi�ers by decomposingmulti-class problems into multiple two-class problems,will not improve classi�ers that use local informationbecause of high error correlation. For example, withthe NN classi�er we predict the class of the closest pat-tern. This pattern is the same in all of the two-classproblems, and hence if it gives an incorrect prediction,all the predictions in the ECOC ensemble will be in-



correct 1.In this paper, we present a new method of combiningnearest neighbor classi�ers with the goal of improv-ing classi�cation accuracy. Our approach manipulatesthe features that the individual classi�ers use. In con-trast, other combining algorithms may manipulate thetraining patterns (Bagging, Boosting) or the class la-bels (ECOC).In the next section, we describe the MFS algorithmfor combining multiple NN classi�ers. In Section 3,we evaluate the algorithm on datasets from the UCIRepository for accuracy, computational complexity,and robustness to irrelevant features. In Section 4, weanalyze the algorithm's bias and variance componentsof error. In Section 5, we discuss related work, andfollow it by conclusions and future work in Section 6.2 CLASSIFICATION FROMMULTIPLE FEATURE SUBSETSWe start by describing the MFS algorithm and thenwe discuss the motivation behind it and the dangers inusing it. We then explain how we set the algorithm'sparameters.2.1 THE MFS ALGORITHMThe algorithm for nearest neighbor classi�cation frommultiple feature subsets (MFS) is simple and can bestated as:Using simple voting, combine the out-puts from multiple NN classi�ers, eachhaving access only to a random subsetof features.We select the random subset of features by samplingfrom the original set. We use two di�erent samplingfunctions: sampling with replacement, and samplingwithout replacement. In sampling with replacement, afeature can be selected more than once which is equiv-alent to increasing its weight.Each of the NN classi�ers uses the same number offeatures. This is a parameter of the algorithm whichwe set by cross-validation performance estimates on atuning dataset (see Section 2.2). Each time a pattern1Recently Ricci and Aha (1998) have developed amethod for combining NN classi�ers and ECOC whichsolves the correlation problem. We discuss this in section 5.

is presented for classi�cation, we select a new randomsubset of features for each classi�er.As an example of MFS classi�cation, consider Fisher'siris plant classi�cation problem (Fisher, 1936; Dudaand Hart, 1973). In this domain, we try to classifyiris plants into their speci�c species: iris-setosa, iris-virginica, and iris-versicolor, based on the followingfour features: petal length, petal width, sepal length,and sepal width. With MFS we might use three NNclassi�ers each using a random subset of features. The�rst NN classi�er might use fpetal length, sepal width,sepal lengthg, the second might use fpetal width, petallength, sepal widthg, and the third might use fpetalwidth, sepal width, sepal widthg which we would treatas fpetal width, 2 � sepal widthg.The idea of using only a random subset of featuresmay seem counter intuitive, as we are throwing awaypotentially valuable information. The accuracy of theNN classi�ers is likely to decrease compared to a clas-si�er that has access to all the features. Should wenot use all the information and make each classi�er asaccurate as possible? Why should we create a set ofclassi�ers each less accurate than a single one trainedon all the information?The answer to these questions lies in the dynamicsof simple voting among a set of classi�ers. The in-dividual models do not need to be very accurate forthe system as a whole to achieve high accuracy, if themodels make di�erent errors. In particular, Hansenand Salamon (1990) showed that under simple votingif the models make independent errors, then the over-all error will decrease monotonically with increasingnumbers of classi�ers. Ali and Pazzani (1996) veri�edempirically that combining models with uncorrelatederrors could signi�cantly reduce the overall error. Se-lecting di�erent features is an attempt to force the NNclassi�ers to make di�erent and uncorrelated errors.We are trading o� accuracy for error diversity.There is no guarantee that using di�erent feature setsfor the NN classi�ers will decorrelate error. However,Tumer and Ghosh (1996) found that with neural net-works, selectively removing features could decorrelateerrors. Unfortunately, the error rates in the individualclassi�ers increased, and as a result there was little orno improvement in the ensemble. Cherkauer (1996)was more successful, and was able to combine neuralnetworks that used di�erent hand selected features toachieve human expert level performance in identifyingvolcanoes from images.



One method of generating a diverse ensemble of clas-si�ers is to perturb some aspect of the training inputsfor which the classi�er is unstable. For example, Bag-ging (Breiman, 1996) perturbs the training patternsavailable to each classi�er in the ensemble. Since deci-sion trees are unstable to the patterns, Bagging gener-ates a diverse and e�ective ensemble. Nearest neigh-bor classi�ers are stable to the patterns, so Bagginggenerates poor NN ensembles. Nearest Neighbor clas-si�ers, however, are extremely sensitive to the featuresused. For example, Langley and Iba (1993) found thatadding just a few irrelevant features could drasticallychange the NN classi�er's outputs (and reduce accu-racy). MFS attempts to use this instability to generatea diverse set of NN classi�ers with uncorrelated errors.The above discussion hopefully provides motivation forwhy we expect that MFS will improve the accuracyof the nearest neighbor classi�er. However, there arethree major dangers that we should be aware of whenusing MFS:1. Simple voting can only improve accuracy if theclassi�ers select the correct class more often thanany other class. Breiman refers to this as ordercorrectness. If the classi�ers are not order correct,then simple voting will increase the expected er-ror. For two class problems, we require slightlymore than 50% accuracy in the voting classi�ersto improve accuracy. With multiple classes, therequired accuracy may drop as low as 1C where Cis the number of classes.2. The Bayes error rate can only increase by using asubset of features. This may make it di�cult forthe NN classi�ers used by MFS to meet the re-quirements in point 1. For example, in the parityproblem, a domain with highly interacting fea-tures, the Bayes error rate in any proper subsetof features is 50% (as opposed to 0% for the fullfeature space). There is no guarantee that ran-dom subsets will have the necessary informationfor accurate classi�cation.3. By using the nearest neighbor classi�er in theMFS scheme we lose its asymptotic optimalityproperties. Speci�cally, as the number of train-ing examples approaches in�nity the NN classi�eris bounded by twice the Bayes error rate (Cover,1967). The kNN classi�er is Bayes optimal in thelimit with proper choice of k (Fix and Hodges,1951). We can make no such claims about MFS.

2.2 PARAMETER SELECTIONThe MFS algorithm has two parameter values thatneed to be set: the size of the feature subsets, and thenumber of classi�ers to combine.We set MFS's subset size parameter based on cross-validation accuracy estimates on the training set forthe entire ensemble. We evaluated ten evenly spacedintervals over the size of the original feature set. Forexample, if a domain had 34 features then the subsetsizes at 3,7,10,. . . ,34 were evaluated. In the case ofties, the smaller value was chosen.We set the number of classi�ers by evaluating the per-formance of MFS on seven development datasets vary-ing the number of classi�ers from 10 to 1000. Based onthe results, we set the number of classi�ers to 100 asa reasonable trade-o� between computational expenseand accuracy.3 EXPERIMENTS3.1 METHODSWe evaluated the performance of MFS using two dif-ferent sampling functions: sampling with replacement(MFS1) and sampling without replacement (MFS2).We compared these to four other algorithms: near-est neighbor (NN), k nearest neighbor (kNN), nearestneighbor with forward (FSS) and backward (BSS) se-quential selection of features (Aha and Bankert, 1994).The use of FSS and BSS should provide an interestingcontrast with MFS. FSS and BSS try to �nd a sin-gle good subset of features, while MFS uses multiplerandom subsets without regard to their performance.All classi�ers used unweighted Euclidean distance forcontinuous features and Hamming distance for sym-bolic features. Missing values were treated as infor-mative and considered to be a speci�c symbolic value.In the case of continuous features (normalized to [0,1]),a missing value is considered to have a distance of 1to all non missing values. For the kNN classi�er, thevalue of k was set using cross-validation performanceestimates on the training set. For feature selection,we used cross-validation accuracy on the training setfor our objective function (also known as a wrapperapproach (Kohavi and John, 1996)).We evaluated the algorithms on twenty-�ve datasetsfrom the UCI Repository of Machine LearningDatabases (Merz and Murphy, 1998). We �rst normal-ized the datasets so that continuous features ranged



from [0; 1], and then we ran thirty trials where thetraining set contained 2/3 of the patterns (randomlyselected) and the test set contained the remaining 1/3.There were a few exceptions to this procedure. ForWaveform, we used 300 training cases and 4700 testcases to maintain consistency with reported results(Quinlan, 1996). For Satimage, we used the origi-nal division into a training and test set, so the resultsrepresent one run of each algorithm. For the Muskdataset, which has 166 features, FSS and BSS tooktoo long to run (over 24 hours for a single trial) andno results were obtained.3.2 ACCURACYThe accuracy and parameter selection results (averagek or number of features selected) are shown in Table 1.The �rst seven datasets were used in the developmentof the MFS algorithm. The default accuracy is thefrequency of the most common class.The results show that MFS is promising: MFS1 andMFS2 were about 2% more accurate over all domainsthan it's nearest competitor kNN. MFS1 was best on16 domains out of 25 (not including MFS2). MFS2 wasbest on 14 domains and tied in 3 (not including MFS1).For a formal comparison, we used the Wilcoxon signedrank test and found that MFS1 and MFS2 were signif-icantly better than all others with a con�dence levelgreater than 99%.MFS only performed poorly on two datasets: Iris andTic-Tac-Toe. For Iris, both MFS1 and MFS2 gave thelowest accuracy out of all the classi�ers. This can pos-sibly be explained by the small number of features inthe Iris dataset. With only four features, many of thefeature subsets would be identical. This would leadto identical errors and high error correlation. For Tic-Tac-Toe, MFS1 performed extremely poorly, havingan error rate almost �ve times that of the NN andkNN classi�ers. MFS1 probably performed poorly be-cause in the Tic-Tac-Toe domain the features have ahigh amount of interaction. We need to examine allthe features to determine which side has won. Takinga random subset of features does not make sense andwould probably lead to a greatly increased Bayes errorrate for the individual classi�ers. MFS2 did not experi-ence the same degradation as MFS1 because samplingwithout replacement degenerated into selecting all thefeatures and hence performing identically to NN.Comparing MFS1 to MFS2, it is not clear which clas-si�er performed better. MFS1 was better than MFS2on 15 domains, worse on 7, and tied in 3. However,

MFS2 had a slightly better average accuracy as it didnot have a catastrophic failure on Tic-Tac-Toe. TheWilcoxon test did not detect a signi�cant di�erencebetween them.3.3 COMPUTATIONAL COMPLEXITYThe nearest neighbor classi�er is often criticized forslow runtime performance, so we will briey commenton the complexity of MFS and then present actualrunning times from the experiments.The NN classi�er computes the distance between thetest pattern and every pattern in the training set. Thisrequires O(ef) time, where e is the number of ex-amples, and f is the number of features. For MFS,we use n NN classi�ers, so its complexity is O(nef).For training, we use cross-validation and MFS requiresO(ne2fv) time, where v is the number of folds (Bay,1997).This analysis shows how the computational require-ments of MFS change as a function of the number ofexamples and features. However, it does not give anyindication of actual running times on real datasets.Therefore in Table 2 we list the actual running timeson an Intel Pentium Pro processor for NN and MFSon the three slowest datasets.Table 2: Time Requirements for NN and MFS1Classi�cation TrainingDomain NN MFS1 MFS1Satimage 0.080s/pat 0.415s/pat 4.6hSegment 0.015s/pat 0.075s/pat 19.9mAnnealing 0.018s/pat 0.073s/pat 5.5mNote that even though we are combining 100 classi�ersin MFS, it was only about �ve times as slow as the NNclassi�er. We attribute this speed up to caching thedi�erence in feature values between the test patternand all patterns in the training set (i.e. in d(x;y) =(Pf (xf � yf )2) 12 , we cache (xf � yf )2).3.4 ROBUSTNESS TO IRRELEVANTFEATURESA major drawback of the NN classi�er is its sensitivityto irrelevant features. This concerns us because theMFS algorithm uses multiple NN classi�ers and henceraises the question: how will the ensemble behave? Ifthe accuracy of the individual NN classi�ers drops toolow, simple voting can increase the error rate. Since



Table 1: Accuracy and Parameter Selection Results (average k or number of features selected)Accuracy Average Parameter SettingsDomain Pat/F Def. NN kNN FSS BSS MFS1 MFS2 kNN FSS BSS MFS1 MFS2Glass 214/9 35.5 67.9 66.8 72.3 72.5 75.8 76.1 1.7 4.8 5.5 4.4 3.6Hepatitis 155/19 79.4 79.2 80.4 80.3 77.2 82.7 82.6 6.7 2.4 12.8 8.1 7.0Ionosphere 351/34 64.1 86.5 85.5 88.2 87.9 93.5 92.7 1.8 4.6 21.9 6.9 6.5Iris 150/4 33.3 94.3 95.1 93.7 93.5 92.5 92.7 6.1 1.4 2.3 2.8 2.8Liver-Disorders 345/7 58.0 60.4 61.3 56.8 60.0 65.4 64.4 9.7 1.9 4.2 4.1 3.2Pima Diabetes 768/8 65.1 69.7 73.6 67.7 68.5 72.5 72.3 11.5 2.0 6.5 4.8 4.2Sonar 208/60 53.4 85.0 85.1 76.0 84.3 87.3 87.0 1.1 6.3 38.2 15.4 13.2Annealing 898/38 76.2 98.0 98.0 98.8 98.8 98.6 98.6 1.0 8.2 9.0 31.6 21.3Automobile 205/25 32.7 70.9 70.9 74.2 72.8 72.5 73.3 1.0 3.3 10.3 8.7 6.3Breast Cancer 286/9 70.3 65.9 74.3 71.0 70.0 74.0 74.0 8.0 1.9 5.0 6.7 4.6Credit 690/15 55.5 81.6 85.5 85.7 81.6 86.3 85.8 12.4 3.2 10.5 8.8 6.3German 1000/20 70.0 70.5 73.1 70.6 68.8 74.4 74.2 10.8 3.0 15.7 15.4 11.2Horse Colic 368/22 63.0 76.8 79.8 83.9 76.5 80.2 79.8 15.1 2.4 14.8 9.8 7.8Labor 57/16 64.9 92.1 90.4 78.6 89.5 94.2 94.6 2.3 2.8 7.5 6.7 5.1Lymphography 148/18 54.7 74.6 77.0 74.8 76.7 81.9 80.4 8.7 3.7 12.1 11.6 8.3Musk 476/166 56.5 84.3 83.9 na na 88.9 88.6 1.4 na na 18.1 19.1Primary-Tumor 339/17 24.5 37.0 43.5 37.8 38.9 44.5 45.0 13.8 6.3 11.2 10.6 8.1Satimage 6435/36 22.8 89.5 90.4 88.0 89.4 91.5 91.0 3 10 33 14 11Segment 2310/19 14.3 93.5 93.0 96.5 96.6 96.8 96.6 4.6 4.8 9.9 10.3 7.9Soybean-Large 683/35 13.0 90.7 90.5 93.2 90.7 93.4 93.2 1.5 11.9 20.2 21.9 14.9Tic-Tac-Toe 958/9 65.3 98.1 98.1 87.8 98.1 91.1 98.1 1.0 6.6 9.0 9.0 9.0Vehicle 946/18 25.8 68.1 67.7 66.6 70.4 71.4 71.4 5.7 5.4 12.5 9.7 6.8Vote 435/16 54.8 92.9 93.1 95.8 94.6 94.9 94.5 4.3 2.8 9.2 11.8 8.4Waveform 5000/21 33.9 74.9 81.4 70.3 74.4 81.0 80.9 13.7 7.4 16.8 10.0 8.1Wine 178/13 39.9 95.2 96.7 92.8 94.8 97.6 97.9 9.8 4.1 7.8 3.8 3.5average 49.1 79.9 81.4 79.2 80.3 83.3 83.4 6.3 4.6 12.8 10.6 8.3we are unsure of how the ensemble will behave, weexperimentally investigated the robustness of MFS toirrelevant features.We used the same basic procedure in Section 3.1. Weadded 10, 20, and 30 boolean irrelevant features toeach of the datasets and then measured the accuracy ofkNN and MFS1. We chose boolean irrelevant featuresbecause they are more di�cult for nearest neighbormethods to handle than continuous irrelevant features.This is because while they both have the same rangeand mean, boolean variables have greater variance.Table 3 shows the results for several domains. Theremaining results (Bay, 1997) are not shown here forspace reasons, but they follow a similar pattern.As expected, irrelevant features always hurt both kNNand MFS to some degree. However, the results aresurprising because they reveal that on some domainskNN is critically sensitive while MFS is stable. For ex-ample, on Vehicle and Wine with 10 added irrelevantfeatures, kNN drops in accuracy by over 20% whileMFS drops by less than 2%. In general, MFS had onlyminor degradations in accuracy and was occasionallyvery robust. For example, MFS's accuracy on Iono-

sphere degrades by so little (from 93.5% to 90.1%), itis still better on the dataset corrupted by 30 irrelevantfeatures, than all of the other classi�ers on the originaldataset.One possible explanation for MFS's performance liesin how random voters a�ect the margins of victoryin simple voting. For simplicity, let us divide all vot-ers into two types: informed (using relevant features)and uninformed (random) voters. The informed vot-ers cast their ballots, and the winner will have a givenmargin of votes compared to the next closest competi-tor. The uninformed, random voters then cast theirballots. The random voters vote with equal proba-bility and equal expectation for all competitors (ac-cording to a multinomial distribution). In order forrandom voting to change the outcome, the numberof random votes for class X must meet the follow-ing inequality: randvotes(X )� randvotes(trueclass) >margin(trueclass ;X ). Unless the margins from the in-formed voters are small, this is unlikely to occur sincethe E(randvotes(X )) = E (randvotes(trueclass)).As a numerical example, consider a two class problemwith �fty informed voters and �fty random voters. The�fty informed voters cast their ballots and the outcome



is 30 votes for class A and 20 votes for class B. The�fty uninformed voters then cast their ballots. In orderfor the uninformed voters to change the outcome ofthe vote (class A wins) at least 30 must vote for classB. The probability that the decision will change isapproximately 8%.This situation is analogous to what occurs when MFSis applied to domains with irrelevant features. The NNclassi�ers are the voters, and can become uninformedand random when both of the following conditions aremet: (1) the randomly selected features are irrelevant,and (2) the occurrence of the classes in the trainingset are roughly equal (this is true in many of the UCIdatasets). Note that if only the �rst condition is met,the NN classi�er will be random but will choose classesroughly in proportion to their frequencies in the train-ing set.4 BIAS-VARIANCE ANALYSIS OFERRORThe expected error of an algorithm can be divided intotwo components: bias which is the consistent errorthat the algorithm makes over many di�erent runs,and variance which is error that uctuates from runto run. This decomposition is a useful method for ex-plaining how changes to an algorithm a�ect the �nalerror rates. It allows us to decompose the error intomeaningful components and to see how the error com-ponents change with variations in the algorithm.Several researchers have used the bias-variance analy-sis of error to show how multiple model approacheswork. For example, both Breiman (1996b) andSchapire et al. (1997) showed that Bagging improvesperformance by reducing the variance component oferror. Kong and Dietterich (1996) showed that ECOCcould reduce both bias and variance.The bias variance decomposition of error originatedin squared error for regression. For classi�cation, 0-1loss (misclassi�cation rate) is commonly used, but thisdoes not have a straightforward or unique decomposi-tion. Recently, many authors have proposed similardecompositions (Kong and Dietterich, 1996; Breiman,1996b; James and Hastie, 1997; Tibshirani, 1996; Ko-havi and Wolpert, 1996).We used Kong and Dietterich's (1996) de�nitions.They de�ne bias to be \the error of the ideal voted hy-pothesis," which is the result we would get from com-bining an in�nite number of classi�ers, each trainedon an independent set of examples. Variance is the

\di�erence between the expected error rate and theideal voted hypothesis error rate." Formally, where Ais the algorithm, m is the training set size, x is theunknown test point, f(x) is the class of x, f�(x) is theideal voted hypothesis of the algorithm A at x, andError(A;m; x ) is the expected error of algorithm A atx using training sets of size m, then bias and varianceare: Bias(A;m; x ) = � 0 if f�(x) = f(x)1 if f�(x) 6= f(x) (1)Variance(A;m; x ) = Error (A;m; x )� Bias(A;m; x )(2)Note that the Bayes error is incorporated into the biaserror. Also, the variance can be negative. This oc-curs when the algorithm is usually wrong, but makesa lucky guess and predicts the correct class.We investigated the bias-variance components of erroron three datasets originally used by Breiman (1996b)and later by Schapire et. al (1997) to evaluate mul-tiple model approaches. The datasets are two classproblems, with the individual classes composed of 20-dimensional gaussians.We compared four classi�ers: NN, kNN, MFS1 with1 classi�er (1-MFS1), and MFS1 with 100 classi�ers.The NN classi�er is the control, to which we can com-pare the kNN and MFS algorithms. 1-MFS1 shouldallow us to determine the changes to the error compo-nents that are caused by random feature selection andthe changes that are caused by voting among multipleclassi�ers.We used a test set of 3000 instances and 100 inde-pendent training sets of size 300 to estimate the bias,variance, and error of the four classi�ers. We approx-imated f�(x) by voting over the classi�ers trained onthe 100 independent training sets. The results areshown in Table 4.In Twonorm and Threenorm, selecting a single ran-dom subset of features (1-MFS1) destabilizes the NNclassi�er and causes the variance error to signi�cantlyincrease. During voting (MFS1) the variance error isreduced to a much smaller value than the variance ofthe original NN classi�er, thus reducing the overall er-ror signi�cantly.For Ringnorm, the feature selection process does a dra-matic trade of bias for variance. The bias error dropsfrom 47.1% to only 4.6%, while the variance increases



Table 3: Accuracy of kNN and MFS Under Corruption by Irrelevant FeatureskNN MFS1Domain 0 10 20 30 0 10 20 30Breast Cancer 74.3 71.0 70.3 69.8 74.0 71.5 71.3 70.5German 73.1 72.0 70.9 70.5 74.4 72.6 71.3 70.7Ionosphere 85.5 73.7 71.7 69.5 93.5 91.3 91.4 90.1Soybean-Large 90.5 80.6 75.2 71.1 93.4 87.7 81.2 76.9Vehicle 67.7 37.8 35.5 34.1 71.4 69.7 66.0 64.2Vote 93.1 91.8 91.1 90.9 94.9 93.0 92.0 91.3Wine 96.7 72.5 62.2 61.2 97.6 96.9 93.7 91.8Table 4: Bias Variance Decomposition of ErrorDomain Opt. NN 1-MFS1 MFS1 kNNTwonormbias 2.3 2.4 2.6 2.4 2.4variance - 4.9 17.8 1.3 1.0error 2.3 7.3 20.4 3.7 3.4Threenormbias 10.5 10.5 11.6 10.42 11.2variance - 13.6 22.5 6.3 4.4error 10.5 24.1 34.1 16.8 15.6Ringnormbias 1.3 47.1 4.6 3.7 47.1variance - -7.9 25.8 2.0 -7.9error 1.3 39.2 30.4 5.7 39.2from -7.9% to 25.8%. Voting then drops the varianceto only 2% greatly improving accuracy.From these datasets, we see that MFS has two modesof operation: (1) decreasing variance through voting,and (2) trading bias for variance through random fea-ture selection. Taken together, MFS is able to reduceboth bias and variance components of error.In comparison to MFS, the kNN classi�er reduced onlyvariance. On Twonorm and Threenorm the error ofNN was dominated by variance (the bias error wasnearly optimal) and like MFS, kNN was able decreaseerror by reducing the variance. In fact, kNN did abetter job than MFS at variance reduction. On Ring-norm, the error of the NN classi�er was dominated bybias and kNN was not able to improve performance.2The value for bias should always be greater than orequal to the Bayes error rate (10.5%), however, becauseof estimation error from �nite sample sizes, it is possibleto obtain bias estimates which are lower than the optimalbound.

5 RELATED WORKAlthough there is a large body of research on multi-ple model methods for classi�cation, very little specif-ically deals with combining NN classi�ers. We areonly aware of Skalak's (1996) work on combining NNclassi�ers with small prototype sets, Alpaydin's (1997)work with condensed nearest neighbor (CNN) classi-�ers (Hart, 1968), and Ricci and Aha's (1998) work oncombining NN, feature selection, and ECOC.Skalak and Alpaydin approach the problem of combin-ing NN classi�ers similarly. They drastically reducethe size of each classi�er's prototype set to destabilizethe NN classi�er. Skalak investigates several di�er-ent strategies for �nding a reduced prototype set andeven pursues an approach called \radical destabiliza-tion" where the NN classi�er has just a single proto-type per class. He was able to improve accuracy overthe baseline NN classi�er in 10 of 13 UCI domains.Interestingly, MFS did well on Glass and Lymphog-raphy (average increase of over 7% compared to theNN classi�er); these are two domains where Skalak re-ported that no combining algorithm improved perfor-mance. Alpaydin uses dataset partitioning (bootstrapor disjoint) in combination with the CNN classi�er toedit and reduce the prototypes. He also reported im-provements over the NN classi�er if the training setswere su�ciently small and thus able to generate di-verse classi�ers.Ricci and Aha (1998) applied ECOC to the NN clas-si�er (NN-ECOC). Normally, applying ECOC to NNwould not work as the errors in the two-class problemswould be highly correlated; however, they found thatapplying feature selection to the two-class problemsdecorrelated errors if di�erent features were selected.With this method they were able to improve perfor-mance in many of the domains tested, and they notedthat ECOC accuracy gains tended to increase with in-



creased diversity among the features selected for thetwo-class problems.NN-ECOC is similar to MFS as they both use NNclassi�ers with di�erent features. They di�er in thatNN-ECOC uses active selection of features (and out-put coding) while MFS uses random selection. A headto head comparison would be useful to determine ifNN-ECOC and MFS achieve their accuracy gains inthe same areas of the feature space. Ricci and Ahaalso analyzed NN-ECOC for bias and variance andconcluded that NN-ECOC reduces bias but slightlyincreases variance. Unfortunately, because we useddi�erent a de�nition of bias and variance our resultsare not directly comparable.Regardless of which method has better accuracy, MFSappears to have two main advantages over NN-ECOC:(1) MFS is the simpler algorithm, and (2) MFS is notconstrained by ECOC to multiclass problems.6 CONCLUSIONS AND FUTUREWORKWe introduced MFS, a new algorithm for combiningmultiple NN classi�ers. In MFS, each NN classi�er hasaccess to all the patterns in the original training setbut only to a random subset of the features.Our experiments showed that MFS was e�ective inimproving accuracy. But beyond accuracy improve-ments, MFS is a signi�cant advance because it allowsus to incorporate many desirable properties of the NNclassi�er in a multiple model framework. For example,one of the primary advantages of the NN classi�er isits ability to incrementally add new data (or removeold data) without requiring retraining. MFS maintainsthis property and new data can be added (old data re-moved) at runtime. Another useful property of theNN classi�er is its ability to predict directly from thetraining data without using intermediate structures.As a result, no matter how many classi�ers we com-bine in MFS, we require only the same memory as asingle NN classi�er. (The combined NN classi�ers canshare a common dataset, and the features are selectedrandomly at runtime.)MFS has disadvantages and it should not be used in-discriminantly. In particular, MFS loses the asymp-totic optimality properties of the NN and kNN classi-�ers. Additionally, on domains with highly interactingfeatures, such as Tic-Tac-Toe, the error rate can in-crease too much in the feature subsets resulting in poorensemble performance. As with all multiple model ap-

proaches, we lose comprehensibility compared to a sin-gle model. The individual must judge if the potentialaccuracy increases is worth these disadvantages.MFS is our �rst attempt at using random feature selec-tion to generate e�ective NN ensembles, and althoughsuccessful at improving accuracy, there are still manyunanswered questions and open areas for future work:1. Why does MFS work? We made an initial at-tempt at answering this question with our anal-ysis of irrelevant features and the bias-variancedecomposition of error. But clearly more workneeds to be done as we cannot even characterizethe domains MFS will do well on.2. Application to other classi�ers. We showed thatrandom feature selection is useful for generatingensembles of NN classi�ers. Can we apply thistechnique to other learning algorithms?3. Implications for feature selection and featureweighting. The experimental results showed thatcombining multiple random feature subsets cansigni�cantly improve performance over the singlebest subset of features found by FSS or BSS. Thisimplies that instead of searching for the single bestset of features, we should be searching for multiplefeature sets that work well together.4. Other Improvements. In this paper, we kept thedesign of MFS as simple as possible; however,there are a number of obvious improvements thatmay help accuracy and speed. In particular, wewould like to investigate: (1) di�erent weightingschemes, (2) varying the number of features eachclassi�er uses, (3) postpruning the ensemble, (4)combining more sophisticated versions of the NNclassi�er, and (5) editing the prototypes.AcknowledgementsI thank Michael Pazzani for his support and encour-agement. I also thank Cathy Blake, Yang Wang, andthe anonymous reviewers for providing many com-ments that improved this paper. This work was par-tially supported by an NSERC PGS A scholarship.ReferencesD. W. Aha and R. L. Bankert. (1994). Feature se-lection for case-based classi�cation of cloud types: Anempirical comparison. In Proceedings of the AAAI-94Workshop on Case-Based Reasoning, pages 106{112.
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