Combining Nearest Neighbor Classifiers Through Multiple Feature
Subsets

Stephen D. Bay*
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697, USA
sbay@ics.uci.edu

Abstract

Combining multiple classifiers is an effective
technique for improving accuracy. There are
many general combining algorithms, such as
Bagging or Error Correcting Output Coding,
that significantly improve classifiers like deci-
sion trees, rule learners, or neural networks.
Unfortunately, many combining methods do
not improve the nearest neighbor classifier.
In this paper, we present MFS, a combining
algorithm designed to improve the accuracy
of the nearest neighbor (NN) classifier. MFS
combines multiple NN classifiers each using
only a random subset of features. The ex-
perimental results are encouraging: On 25
datasets from the UCI Repository, MFS sig-
nificantly improved upon the NN, k near-
est neighbor (kNN), and NN classifiers with
forward and backward selection of features.
MFS was also robust to corruption by irrele-
vant features compared to the kNN classifier.
Finally, we show that MFS is able to reduce
both bias and variance components of error.

1 INTRODUCTION

The nearest neighbor (NN) classifier is one of the old-
est and simplest methods for performing general, non-
parametric classification. It can be represented by the
following rule: to classify an unknown pattern, choose
the class of the nearest example in the training set as
measured by a distance metric. A common extension

*Research performed while at the University of Water-
loo, Department of Systems Design Engineering, Waterloo,
Ont., N2L 3G1, Canada.

is to choose the most common class in the k£ nearest
neighbors (kNN).

Despite its simplicity, the NN classifier has many ad-
vantages over other methods. For example, it can learn
from a small set of examples, can incrementally add
new information at runtime, and often gives competi-
tive performance with more modern methods such as
decision trees or neural networks.

Since its inception by Fix and Hodge (1951), re-
searchers have investigated many methods for improv-
ing the NN classifier, but most work has concen-
trated on changing the distance metric or manipulat-
ing the patterns in the training set (Dasarathy, 1991).
Recently, researchers have begun experimenting with
general algorithms for improving classification accu-
racy by combining multiple versions of a single classi-
fier, also known as a multiple model or ensemble ap-
proach. The outputs of several classifiers are combined
in the hope that the accuracy of the whole is greater
than the parts. Unfortunately, many combining meth-
ods do not improve the NN classifier at all.

For example, in Breiman’s (1996) experiments with
Bagging, he found no difference in accuracy between
the bagged NN classifier and the single model ap-
proach. His results suggest that other combining
methods that involve any significant degree of resam-
pling or replication of patterns will not work with the
NN classifier. Kong and Dietterich (1996) also con-
cluded that Error Correcting Output Coding (ECOC),
a method of combining classifiers by decomposing
multi-class problems into multiple two-class problems,
will not improve classifiers that use local information
because of high error correlation. For example, with
the NN classifier we predict the class of the closest pat-
tern. This pattern is the same in all of the two-class
problems, and hence if it gives an incorrect prediction,
all the predictions in the ECOC ensemble will be in-

correct 1.

In this paper, we present a new method of combining
nearest neighbor classifiers with the goal of improv-
ing classification accuracy. Our approach manipulates
the features that the individual classifiers use. In con-
trast, other combining algorithms may manipulate the
training patterns (Bagging, Boosting) or the class la-
bels (ECOC).

In the next section, we describe the MFS algorithm
for combining multiple NN classifiers. In Section 3,
we evaluate the algorithm on datasets from the UCI
Repository for accuracy, computational complexity,
and robustness to irrelevant features. In Section 4, we
analyze the algorithm’s bias and variance components
of error. In Section 5, we discuss related work, and
follow it by conclusions and future work in Section 6.

2 CLASSIFICATION FROM
MULTIPLE FEATURE SUBSETS

We start by describing the MFS algorithm and then
we discuss the motivation behind it and the dangers in
using it. We then explain how we set the algorithm’s
parameters.

2.1 THE MFS ALGORITHM

The algorithm for nearest neighbor classification from
multiple feature subsets (MFS) is simple and can be
stated as:

Using simple voting, combine the out-
puts from multiple NN classifiers, each
having access only to a random subset
of features.

We select the random subset of features by sampling
from the original set. We use two different sampling
functions: sampling with replacement, and sampling
without replacement. In sampling with replacement, a
feature can be selected more than once which is equiv-
alent to increasing its weight.

Each of the NN classifiers uses the same number of
features. This is a parameter of the algorithm which
we set by cross-validation performance estimates on a
tuning dataset (see Section 2.2). Each time a pattern

'Recently Ricci and Aha (1998) have developed a
method for combining NN classifiers and ECOC which
solves the correlation problem. We discuss this in section 5.

is presented for classification, we select a new random
subset of features for each classifier.

As an example of MFS classification, consider Fisher’s
iris plant classification problem (Fisher, 1936; Duda
and Hart, 1973). In this domain, we try to classify
iris plants into their specific species: iris-setosa, iris-
virginica, and iris-versicolor, based on the following
four features: petal length, petal width, sepal length,
and sepal width. With MFS we might use three NN
classifiers each using a random subset of features. The
first NN classifier might use {petal length, sepal width,
sepal length}, the second might use {petal width, petal
length, sepal width}, and the third might use {petal
width, sepal width, sepal width} which we would treat
as {petal width, 2 x sepal width}.

The idea of using only a random subset of features
may seem counter intuitive, as we are throwing away
potentially valuable information. The accuracy of the
NN classifiers is likely to decrease compared to a clas-
sifier that has access to all the features. Should we
not use all the information and make each classifier as
accurate as possible? Why should we create a set of
classifiers each less accurate than a single one trained
on all the information?

The answer to these questions lies in the dynamics
of simple voting among a set of classifiers. The in-
dividual models do not need to be very accurate for
the system as a whole to achieve high accuracy, if the
models make different errors. In particular, Hansen
and Salamon (1990) showed that under simple voting
if the models make independent errors, then the over-
all error will decrease monotonically with increasing
numbers of classifiers. Ali and Pazzani (1996) verified
empirically that combining models with uncorrelated
errors could significantly reduce the overall error. Se-
lecting different features is an attempt to force the NN
classifiers to make different and uncorrelated errors.
We are trading off accuracy for error diversity.

There is no guarantee that using different feature sets
for the NN classifiers will decorrelate error. However,
Tumer and Ghosh (1996) found that with neural net-
works, selectively removing features could decorrelate
errors. Unfortunately, the error rates in the individual
classifiers increased, and as a result there was little or
no improvement in the ensemble. Cherkauer (1996)
was more successful, and was able to combine neural
networks that used different hand selected features to
achieve human expert level performance in identifying
volcanoes from images.

One method of generating a diverse ensemble of clas-
sifiers is to perturb some aspect of the training inputs
for which the classifier is unstable. For example, Bag-
ging (Breiman, 1996) perturbs the training patterns
available to each classifier in the ensemble. Since deci-
sion trees are unstable to the patterns, Bagging gener-
ates a diverse and effective ensemble. Nearest neigh-
bor classifiers are stable to the patterns, so Bagging
generates poor NN ensembles. Nearest Neighbor clas-
sifiers, however, are extremely sensitive to the features
used. For example, Langley and Iba (1993) found that
adding just a few irrelevant features could drastically
change the NN classifier’s outputs (and reduce accu-
racy). MFS attempts to use this instability to generate
a diverse set of NN classifiers with uncorrelated errors.

The above discussion hopefully provides motivation for
why we expect that MFS will improve the accuracy
of the nearest neighbor classifier. However, there are
three major dangers that we should be aware of when
using MFS:

1. Simple voting can only improve accuracy if the
classifiers select the correct class more often than
any other class. Breiman refers to this as order
correctness. If the classifiers are not order correct,
then simple voting will increase the expected er-
ror. For two class problems, we require slightly
more than 50% accuracy in the voting classifiers
to improve accuracy. With multiple classes, the
required accuracy may drop as low as % where C
is the number of classes.

2. The Bayes error rate can only increase by using a
subset of features. This may make it difficult for
the NN classifiers used by MFS to meet the re-
quirements in point 1. For example, in the parity
problem, a domain with highly interacting fea-
tures, the Bayes error rate in any proper subset
of features is 50% (as opposed to 0% for the full
feature space). There is no guarantee that ran-
dom subsets will have the necessary information
for accurate classification.

3. By using the nearest neighbor classifier in the
MFS scheme we lose its asymptotic optimality
properties. Specifically, as the number of train-
ing examples approaches infinity the NN classifier
is bounded by twice the Bayes error rate (Cover,
1967). The kNN classifier is Bayes optimal in the
limit with proper choice of k (Fix and Hodges,
1951). We can make no such claims about MFS.

2.2 PARAMETER SELECTION

The MFS algorithm has two parameter values that
need to be set: the size of the feature subsets, and the
number of classifiers to combine.

We set MFS’s subset size parameter based on cross-
validation accuracy estimates on the training set for
the entire ensemble. We evaluated ten evenly spaced
intervals over the size of the original feature set. For
example, if a domain had 34 features then the subset
sizes at 3,7,10,...,34 were evaluated. In the case of
ties, the smaller value was chosen.

We set the number of classifiers by evaluating the per-
formance of MFS on seven development datasets vary-
ing the number of classifiers from 10 to 1000. Based on
the results, we set the number of classifiers to 100 as
a reasonable trade-off between computational expense
and accuracy.

3 EXPERIMENTS

3.1 METHODS

We evaluated the performance of MFS using two dif-
ferent sampling functions: sampling with replacement
(MFS1) and sampling without replacement (MFS2).
We compared these to four other algorithms: near-
est neighbor (NN), k nearest neighbor (kNN), nearest

neighbor with forward (FSS) and backward (BSS) se-
quential selection of features (Aha and Bankert, 1994).

The use of FSS and BSS should provide an interesting
contrast with MFS. FSS and BSS try to find a sin-
gle good subset of features, while MFS uses multiple
random subsets without regard to their performance.

All classifiers used unweighted Euclidean distance for
continuous features and Hamming distance for sym-
bolic features. Missing values were treated as infor-
mative and considered to be a specific symbolic value.
In the case of continuous features (normalized to [0,1]),
a missing value is considered to have a distance of 1
to all non missing values. For the kNN classifier, the
value of k was set using cross-validation performance
estimates on the training set. For feature selection,
we used cross-validation accuracy on the training set
for our objective function (also known as a wrapper

approach (Kohavi and John, 1996)).

We evaluated the algorithms on twenty-five datasets
from the UCI Repository of Machine Learning
Databases (Merz and Murphy, 1998). We first normal-
ized the datasets so that continuous features ranged

from [0,1], and then we ran thirty trials where the
training set contained 2/3 of the patterns (randomly
selected) and the test set contained the remaining 1/3.

There were a few exceptions to this procedure. For
Waveform, we used 300 training cases and 4700 test
cases to maintain consistency with reported results
(Quinlan, 1996). For Satimage, we used the origi-
nal division into a training and test set, so the results
represent one run of each algorithm. For the Musk
dataset, which has 166 features, FSS and BSS took
too long to run (over 24 hours for a single trial) and
no results were obtained.

3.2 ACCURACY

The accuracy and parameter selection results (average
k or number of features selected) are shown in Table 1.
The first seven datasets were used in the development
of the MFS algorithm. The default accuracy is the
frequency of the most common class.

The results show that MFS is promising: MFS1 and
MFS2 were about 2% more accurate over all domains
than it’s nearest competitor kNN. MFS1 was best on
16 domains out of 25 (not including MFS2). MFS2 was
best on 14 domains and tied in 3 (not including MFS1).
For a formal comparison, we used the Wilcoxon signed
rank test and found that MFS1 and MFS2 were signif-
icantly better than all others with a confidence level
greater than 99%.

MFS only performed poorly on two datasets: Iris and
Tic-Tac-Toe. For Iris, both MFS1 and MFS2 gave the
lowest accuracy out of all the classifiers. This can pos-
sibly be explained by the small number of features in
the Iris dataset. With only four features, many of the
feature subsets would be identical. This would lead
to identical errors and high error correlation. For Tic-
Tac-Toe, MFS1 performed extremely poorly, having
an error rate almost five times that of the NN and
kNN classifiers. MFS1 probably performed poorly be-
cause in the Tic-Tac-Toe domain the features have a
high amount of interaction. We need to examine all
the features to determine which side has won. Taking
a random subset of features does not make sense and
would probably lead to a greatly increased Bayes error
rate for the individual classifiers. MFS2 did not experi-
ence the same degradation as MFS1 because sampling
without replacement degenerated into selecting all the
features and hence performing identically to NN.

Comparing MFS1 to MFS2, it is not clear which clas-
sifier performed better. MFS1 was better than MFS2
on 15 domains, worse on 7, and tied in 3. However,

MFS2 had a slightly better average accuracy as it did
not have a catastrophic failure on Tic-Tac-Toe. The
Wilcoxon test did not detect a significant difference
between them.

3.3 COMPUTATIONAL COMPLEXITY

The nearest neighbor classifier is often criticized for
slow runtime performance, so we will briefly comment
on the complexity of MFS and then present actual
running times from the experiments.

The NN classifier computes the distance between the
test pattern and every pattern in the training set. This
requires O(ef) time, where e is the number of ex-
amples, and f is the number of features. For MFS,
we use n NN classifiers, so its complexity is O(nef).
For training, we use cross-validation and MFS requires
O(ne? fv) time, where v is the number of folds (Bay,
1997).

This analysis shows how the computational require-
ments of MFS change as a function of the number of
examples and features. However, it does not give any
indication of actual running times on real datasets.
Therefore in Table 2 we list the actual running times
on an Intel Pentium Pro processor for NN and MFS
on the three slowest datasets.

Table 2: Time Requirements for NN and MFS1

Classification Training
Domain NN MFS1 MFS1
Satimage | 0.080s/pat 0.415s/pat 4.6h
Segment 0.015s/pat 0.075s/pat 19.9m
Annealing | 0.018s/pat 0.073s/pat 5.5m

Note that even though we are combining 100 classifiers
in MFS, it was only about five times as slow as the NN
classifier. We attribute this speed up to caching the
difference in feature values between the test pattern
and all patterns in the training set (i.e. in d(x,y) =

(X (@p —yp)?) 7, we cache (x5 — yy)?).

3.4 ROBUSTNESS TO IRRELEVANT
FEATURES

A major drawback of the NN classifier is its sensitivity
to irrelevant features. This concerns us because the
MFS algorithm uses multiple NN classifiers and hence
raises the question: how will the ensemble behave? If
the accuracy of the individual NN classifiers drops too
low, simple voting can increase the error rate. Since

Table 1: Accuracy and Parameter Selection Results (average k& or number of features selected)

Accuracy Average Parameter Settings
Domain Pat/F | Def. NN kNN FSS BSS MFS1 MFS2 | kNN FSS BSS MFS1 MFS2
Glass 214/9 | 35,5 679 66.8 723 72.5 75.8 76.1 1.7 48 55 4.4 3.6
Hepatitis 155/19 | 79.4 79.2 80.4 80.3 7.2 82.7 82.6 6.7 24 128 81 7.0
Tonosphere 351/34 | 64.1 86.5 855 88.2 87.9 93.5 92.7 1.8 46 219 6.9 6.5
Iris 150/4 | 33.3 943 95.1 93.7 935 92.5 92.7 61 14 23 2.8 2.8
Liver-Disorders 345/7 | 58.0 604 613 568 60.0 65.4 64.4 9.7 19 42 41 3.2
Pima Diabetes 768/8 | 65.1 69.7 73.6 67.7 68.5 72.5 72.3 115 2.0 6.5 4.8 4.2
Sonar 208/60 | 563.4 85.0 85.1 76.0 84.3 87.3 87.0 1.1 6.3 382 154 13.2
Annealing 898/38 | 76.2 98.0 98.0 98.8 98.8 98.6 98.6 1.0 82 9.0 316 21.3
Automobile 205/25 | 32.7 709 709 74.2 728 72.5 73.3 1.0 33 103 87 6.3
Breast Cancer 286/9 | 70.3 659 74.3 71.0 70.0 74.0 74.0 80 1.9 5.0 6.7 4.6
Credit 690/15 | 55.5 81.6 85.5 857 816 86.3 85.8 124 3.2 105 838 6.3
German 1000/20 | 70.0 70.5 73.1 70.6 68.8 74.4 74.2 10.8 3.0 15.7 154 11.2
Horse Colic 368/22 | 63.0 768 798 83.9 76.5 80.2 79.8 151 2.4 148 938 7.8
Labor 57/16 | 64.9 92.1 904 78.6 895 94.2 94.6 23 28 75 6.7 5.1
Lymphography 148/18 | 54.7 746 T7.0 74.8 76.7 81.9 80.4 8.7 3.7 121 11.6 8.3
Musk 476/166 | 56.5 84.3 83.9 na na 88.9 88.6 14 mna mna 181 19.1
Primary-Tumor 339/17 | 245 370 435 37.8 389 44.5 45.0 13.8 6.3 11.2 10.6 8.1
Satimage 6435/36 | 22.8 89.5 904 88.0 89.4 91.5 91.0 3 10 33 14 11
Segment 2310/19 | 143 93.5 93.0 96.5 96.6 96.8 96.6 46 48 99 10.3 7.9
Soybean-Large 683/35 | 13.0 90.7 90.5 93.2 90.7 93.4 93.2 1.5 119 20.2 219 14.9
Tic-Tac-Toe 958/9 | 65.3 98.1 98.1 87.8 98.1 91.1 98.1 1.0 6.6 9.0 9.0 9.0
Vehicle 946/18 | 25.8 68.1 67.7 66.6 70.4 71.4 71.4 5.7 54 125 9.7 6.8
Vote 435/16 | 54.8 929 931 95.8 94.6 94.9 94.5 43 28 92 118 8.4
Waveform 5000/21 | 33.9 749 814 703 744 81.0 80.9 13.7 7.4 16.8 10.0 8.1
Wine 178/13 | 39.9 952 96.7 92.8 948 97.6 97.9 9.8 41 738 3.8 3.5
average 491 799 814 79.2 80.3 83.3 83.4 6.3 4.6 128 10.6 8.3

we are unsure of how the ensemble will behave, we
experimentally investigated the robustness of MFS to
irrelevant features.

We used the same basic procedure in Section 3.1. We
added 10, 20, and 30 boolean irrelevant features to
each of the datasets and then measured the accuracy of
kNN and MFS1. We chose boolean irrelevant features
because they are more difficult for nearest neighbor
methods to handle than continuous irrelevant features.
This is because while they both have the same range
and mean, boolean variables have greater variance.

Table 3 shows the results for several domains. The
remaining results (Bay, 1997) are not shown here for
space reasons, but they follow a similar pattern.

As expected, irrelevant features always hurt both kNN
and MFS to some degree. However, the results are
surprising because they reveal that on some domains
kNN is critically sensitive while MFS is stable. For ex-
ample, on Vehicle and Wine with 10 added irrelevant
features, kNN drops in accuracy by over 20% while
MFS drops by less than 2%. In general, MFS had only
minor degradations in accuracy and was occasionally
very robust. For example, MFS’s accuracy on Iono-

sphere degrades by so little (from 93.5% to 90.1%), it
is still better on the dataset corrupted by 30 irrelevant
features, than all of the other classifiers on the original
dataset.

One possible explanation for MFS’s performance lies
in how random voters affect the margins of victory
in simple voting. For simplicity, let us divide all vot-
ers into two types: informed (using relevant features)
and uninformed (random) voters. The informed vot-
ers cast their ballots, and the winner will have a given
margin of votes compared to the next closest competi-
tor. The uninformed, random voters then cast their
ballots. The random voters vote with equal proba-
bility and equal expectation for all competitors (ac-
cording to a multinomial distribution). In order for
random voting to change the outcome, the number
of random votes for class X must meet the follow-
ing inequality: randvotes(X) — randvotes(trueclass) >
margin(trueclass, X). Unless the margins from the in-
formed voters are small, this is unlikely to occur since
the E(randvotes(X)) = E(randvotes(trueclass)).

As a numerical example, consider a two class problem
with fifty informed voters and fifty random voters. The
fifty informed voters cast their ballots and the outcome

is 30 votes for class A and 20 votes for class B. The
fifty uninformed voters then cast their ballots. In order
for the uninformed voters to change the outcome of
the vote (class A wins) at least 30 must vote for class
B. The probability that the decision will change is
approximately 8%.

This situation is analogous to what occurs when MFS
is applied to domains with irrelevant features. The NN
classifiers are the voters, and can become uninformed
and random when both of the following conditions are
met: (1) the randomly selected features are irrelevant,
and (2) the occurrence of the classes in the training
set are roughly equal (this is true in many of the UCI
datasets). Note that if only the first condition is met,
the NN classifier will be random but will choose classes
roughly in proportion to their frequencies in the train-
ing set.

4 BIAS-VARIANCE ANALYSIS OF
ERROR

The expected error of an algorithm can be divided into
two components: bias which is the consistent error
that the algorithm makes over many different runs,
and wvariance which is error that fluctuates from run
to run. This decomposition is a useful method for ex-
plaining how changes to an algorithm affect the final
error rates. It allows us to decompose the error into
meaningful components and to see how the error com-
ponents change with variations in the algorithm.

Several researchers have used the bias-variance analy-
sis of error to show how multiple model approaches
work. For example, both Breiman (1996b) and
Schapire et al. (1997) showed that Bagging improves
performance by reducing the variance component of
error. Kong and Dietterich (1996) showed that ECOC
could reduce both bias and variance.

The bias variance decomposition of error originated
in squared error for regression. For classification, 0-1
loss (misclassification rate) is commonly used, but this
does not have a straightforward or unique decomposi-
tion. Recently, many authors have proposed similar
decompositions (Kong and Dietterich, 1996; Breiman,
1996b; James and Hastie, 1997; Tibshirani, 1996; Ko-
havi and Wolpert, 1996).

We used Kong and Dietterich’s (1996) definitions.
They define bias to be “the error of the ideal voted hy-
pothesis,” which is the result we would get from com-
bining an infinite number of classifiers, each trained
on an independent set of examples. Variance is the

“difference between the expected error rate and the
ideal voted hypothesis error rate.” Formally, where A
is the algorithm, m is the training set size, z is the
unknown test point, f(z) is the class of z, f*(x) is the
ideal voted hypothesis of the algorithm A at z, and
Error(A, m, x) is the expected error of algorithm A at
z using training sets of size m, then bias and variance
are:

Bias(A,m,x) = {

Variance(A, m, z) = Error(A, m,z) — Bias(A, m, 1)
(2)
Note that the Bayes error is incorporated into the bias
error. Also, the variance can be negative. This oc-

curs when the algorithm is usually wrong, but makes
a lucky guess and predicts the correct class.

We investigated the bias-variance components of error
on three datasets originally used by Breiman (1996b)
and later by Schapire et. al (1997) to evaluate mul-
tiple model approaches. The datasets are two class
problems, with the individual classes composed of 20-
dimensional gaussians.

We compared four classifiers: NN, kNN, MFS1 with
1 classifier (1-MFS1), and MFS1 with 100 classifiers.
The NN classifier is the control, to which we can com-
pare the kNN and MFS algorithms. 1-MFS1 should
allow us to determine the changes to the error compo-
nents that are caused by random feature selection and
the changes that are caused by voting among multiple
classifiers.

We used a test set of 3000 instances and 100 inde-
pendent training sets of size 300 to estimate the bias,
variance, and error of the four classifiers. We approx-
imated f*(x) by voting over the classifiers trained on
the 100 independent training sets. The results are
shown in Table 4.

In Twonorm and Threenorm, selecting a single ran-
dom subset of features (1-MFS1) destabilizes the NN
classifier and causes the variance error to significantly
increase. During voting (MFS1) the variance error is
reduced to a much smaller value than the variance of
the original NN classifier, thus reducing the overall er-
ror significantly.

For Ringnorm, the feature selection process does a dra-
matic trade of bias for variance. The bias error drops
from 47.1% to only 4.6%, while the variance increases

Table 3: Accuracy of kNN and MFS Under Corruption by Irrelevant Features

kNN MFS1
Domain 0 10 20 30 0 10 20 30
Breast Cancer | 74.3 71.0 70.3 69.8 740 715 713 705
German 73.1 720 709 70.5 744 726 713 T70.7
Tonosphere 85.5 73.7 T1L.7T 69.5 93.5 913 914 090.1
Soybean-Large | 90.5 80.6 75.2 71.1 93.4 87.7 81.2 76.9
Vehicle 67.7 378 355 34.1 714 69.7 66.0 64.2
Vote 93.1 91.8 91.1 90.9 949 93.0 92.0 91.3
Wine 96.7 725 62.2 61.2 97.6 96.9 93.7 91.8

Table 4: Bias Variance Decomposition of Error

Domain Opt. | NN 1-MFS1 MFS1 kNN
Twonorm
bias 2.3 2.4 2.6 24 24
variance - 4.9 17.8 1.3 1.0
error 2.3 7.3 20.4 3.7 34
Threenorm
bias 10.5 | 10.5 11.6 1042 11.2
variance - | 13.6 22.5 6.3 4.4
error 105 | 24.1 34.1 16.8 15.6
Ringnorm
bias 1.3 | 471 4.6 3.7 47.1
variance -7.9 25.8 20 -7.9
error 1.3 | 39.2 30.4 5.7 39.2

from -7.9% to 25.8%. Voting then drops the variance
to only 2% greatly improving accuracy.

From these datasets, we see that MFS has two modes
of operation: (1) decreasing variance through voting,
and (2) trading bias for variance through random fea-
ture selection. Taken together, MFS is able to reduce
both bias and variance components of error.

In comparison to MFS, the kNN classifier reduced only
variance. On Twonorm and Threenorm the error of
NN was dominated by variance (the bias error was
nearly optimal) and like MFS, kNN was able decrease
error by reducing the variance. In fact, kNN did a
better job than MFS at variance reduction. On Ring-
norm, the error of the NN classifier was dominated by
bias and kNN was not able to improve performance.

2The value for hias should always be greater than or
equal to the Bayes error rate (10.5%), however, because
of estimation error from finite sample sizes, it is possible
to obtain bias estimates which are lower than the optimal
bound.

5 RELATED WORK

Although there is a large body of research on multi-
ple model methods for classification, very little specif-
ically deals with combining NN classifiers. We are
only aware of Skalak’s (1996) work on combining NN
classifiers with small prototype sets, Alpaydin’s (1997)
work with condensed nearest neighbor (CNN) classi-
fiers (Hart, 1968), and Ricci and Aha’s (1998) work on
combining NN, feature selection, and ECOC.

Skalak and Alpaydin approach the problem of combin-
ing NN classifiers similarly. They drastically reduce
the size of each classifier’s prototype set to destabilize
the NN classifier. Skalak investigates several differ-
ent strategies for finding a reduced prototype set and
even pursues an approach called “radical destabiliza-
tion” where the NN classifier has just a single proto-
type per class. He was able to improve accuracy over
the baseline NN classifier in 10 of 13 UCI domains.
Interestingly, MFS did well on Glass and Lymphog-
raphy (average increase of over 7% compared to the
NN classifier); these are two domains where Skalak re-
ported that no combining algorithm improved perfor-
mance. Alpaydin uses dataset partitioning (bootstrap
or disjoint) in combination with the CNN classifier to
edit and reduce the prototypes. He also reported im-
provements over the NN classifier if the training sets
were sufficiently small and thus able to generate di-
verse classifiers.

Ricci and Aha (1998) applied ECOC to the NN clas-
sifier (NN-ECOC). Normally, applying ECOC to NN
would not work as the errors in the two-class problems
would be highly correlated; however, they found that
applying feature selection to the two-class problems
decorrelated errors if different features were selected.
With this method they were able to improve perfor-
mance in many of the domains tested, and they noted
that ECOC accuracy gains tended to increase with in-

creased diversity among the features selected for the
two-class problems.

NN-ECOC is similar to MFS as they both use NN
classifiers with different features. They differ in that
NN-ECOC uses active selection of features (and out-
put coding) while MFS uses random selection. A head
to head comparison would be useful to determine if
NN-ECOC and MFS achieve their accuracy gains in
the same areas of the feature space. Ricci and Aha
also analyzed NN-ECOC for bias and variance and
concluded that NN-ECOC reduces bias but slightly
increases variance. Unfortunately, because we used
different a definition of bias and variance our results
are not directly comparable.

Regardless of which method has better accuracy, MFS
appears to have two main advantages over NN-ECOC:
(1) MFS is the simpler algorithm, and (2) MFS is not
constrained by ECOC to multiclass problems.

6 CONCLUSIONS AND FUTURE
WORK

We introduced MFS, a new algorithm for combining
multiple NN classifiers. In MF'S, each NN classifier has
access to all the patterns in the original training set
but only to a random subset of the features.

Our experiments showed that MFS was effective in
improving accuracy. But beyond accuracy improve-
ments, MFS is a significant advance because it allows
us to incorporate many desirable properties of the NN
classifier in a multiple model framework. For example,
one of the primary advantages of the NN classifier is
its ability to incrementally add new data (or remove
old data) without requiring retraining. MFS maintains
this property and new data can be added (old data re-
moved) at runtime. Another useful property of the
NN classifier is its ability to predict directly from the
training data without using intermediate structures.
As a result, no matter how many classifiers we com-
bine in MFS, we require only the same memory as a
single NN classifier. (The combined NN classifiers can
share a common dataset, and the features are selected
randomly at runtime.)

MFS has disadvantages and it should not be used in-
discriminantly. In particular, MFS loses the asymp-
totic optimality properties of the NN and kNN classi-
fiers. Additionally, on domains with highly interacting
features, such as Tic-Tac-Toe, the error rate can in-
crease too much in the feature subsets resulting in poor
ensemble performance. As with all multiple model ap-

proaches, we lose comprehensibility compared to a sin-
gle model. The individual must judge if the potential
accuracy increases is worth these disadvantages.

MEFS is our first attempt at using random feature selec-
tion to generate effective NN ensembles, and although
successful at improving accuracy, there are still many
unanswered questions and open areas for future work:

1. Why does MFS work? We made an initial at-
tempt at answering this question with our anal-
ysis of irrelevant features and the bias-variance
decomposition of error. But clearly more work
needs to be done as we cannot even characterize
the domains MFS will do well on.

2. Application to other classifiers. We showed that
random feature selection is useful for generating
ensembles of NN classifiers. Can we apply this
technique to other learning algorithms?

3. Implications for feature selection and feature
weighting. The experimental results showed that
combining multiple random feature subsets can
significantly improve performance over the single
best subset of features found by FSS or BSS. This
implies that instead of searching for the single best
set of features, we should be searching for multiple
feature sets that work well together.

4. Other Improvements. In this paper, we kept the
design of MFS as simple as possible; however,
there are a number of obvious improvements that
may help accuracy and speed. In particular, we
would like to investigate: (1) different weighting
schemes, (2) varying the number of features each
classifier uses, (3) postpruning the ensemble, (4)
combining more sophisticated versions of the NN
classifier, and (5) editing the prototypes.

Acknowledgements

I thank Michael Pazzani for his support and encour-
agement. I also thank Cathy Blake, Yang Wang, and
the anonymous reviewers for providing many com-
ments that improved this paper. This work was par-
tially supported by an NSERC PGS A scholarship.

References

D. W. Aha and R. L. Bankert. (1994). Feature se-
lection for case-based classification of cloud types: An
empirical comparison. In Proceedings of the AAAI-9)
Workshop on Case-Based Reasoning, pages 106 112.

K. M. Ali and M. J. Pazzani. (1996). Error reduc-
tion through learning multiple descriptions. Machine
Learning, 24:173 202.

E. Alpaydin. (1997). Voting over multiple condensed
nearest neighbors. Artificial Intelligence Review, 11(1-
5):115-132.

S. D. Bay. (1997). Nearest neighbour classification
from multiple data representations. Master’s thesis,
University of Waterloo, Department of Systems Design
Engineering.

L. Breiman. (1996).
Learning, 24:123-140.

Bagging predictors. Machine

L. Breiman. (1996b). Bias, variance, and arcing clas-
sifiers. Technical Report 460, Statistics Department,
University of California, Berkeley.

K. J. Cherkauer. (1996). Human expert-level perfor-
mance on a scientific image analysis task by a system
using combined artificial neural networks. In P. Chan,
editor, Working Notes of the AAAI Workshop on Inte-
grating Multiple Learned Models, pages 15-21. Avail-
able from http://www.cs.fit.edu/~imlm.

T. M. Cover and P. E. Hart. (1967). Nearest neighbor
pattern classification. IEEFE Transactions on Informa-
tion Theory, 13(1):21-27.

B. V. Dasarathy. (1991). Nearest Neighbor (NN)
Norms: NN Pattern Classification Techniques. TEEE
Computer Society Press, Los Alamitos, CA.

R. O. Duda and P. E. Hart. (1973). Pattern Classifi-
cation and Scene Analysis. John Wiley, New York.

R. A. Fisher. (1936). The use of multiple mea-
surements in taxonomic problems. Annual Eugenics,

7:179 188.

E. Fix and J. L. Hodges. (1951). Discriminatory
analysis: Nonparametric discrimination: Consistency
properties. Technical Report Project 21-49-004, Re-
port Number 4, USAF School of Aviation Medicine,
Randolf Field, Texas.

L. K. Hansen and P. Salamon. (1990). Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:993-1001.

P. E. Hart. (1968). The condensed nearest neigh-
bor rule. IEEE Transactions on Information Theory,
14:515-516.

G. James and T. Hastie. (1997). Generalizations of
the bias/variance decomposition for prediction error.
http://stat.stanford.edu/~gareth.

R. Kohavi and G. H. John. (1996). Wrappers for
feature subset selection. Artificial Intelligence, 97(1-
2):273 324.

R. Kohavi and D. H. Wolpert. (1996). Bias plus
variance decomposition for zero-one loss functions. In
Machine Learning: Proceedings of the Thirteenth In-
ternational Conference.

E. B. Kong and T. G. Dietterich. (1996).
correcting output coding corrects bias and variance.
In Proceedings of the Twelfth National Conference on
Artificial Intelligence, pages 725-730.

P. Langley and W. Iba. (1993). Average-case anal-
ysis of a nearest neighbor algorithm. In Proceedings
of the Thirteenth International Joint Conference on
Artificial Intelligence, pages 889-894.

C. J. Merz and P. M. Murphy. (1998). UCI repository
of machine learning databases. University of Califor-
nia, Irvine, Dept. of Information and Computer Sci-
ence. http://www.ics.uci.edu/~mlearn/.

J. R. Quinlan. (1996). Bagging, Boosting, and C4.5.
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 725 730.

F. Ricci and D. W. Aha. (1998). Error-correcting
output codes for local learners. In Proceedings of the
10th FEuropean Conference on Machine Learning.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee.
(1997). Boosting the margin: A new explanation for
the effectiveness of voting methods. In Machine Learn-
ing: Proceedings of the Fourteenth International Con-
ference.

D. B. Skalak. (1996). Prototype Selection for Com-
posite Nearest Neighbor Classifiers. PhD thesis, De-
partment of Computer Science, University of Mas-
sachusetts.

Error-

R. Tibshirani. (1996). Bias, variance and prediction
error for classification rules. Technical report, Depart-
ment of Statistics, University of Toronto.

K. Tumer and J. Ghosh. (1996). Error correlation
and error reduction in ensemble classifiers. Connec-
tion Science, 8:385—404. Special issue on combining
artificial neural networks: ensemble approaches.

