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Abstract: The instability and consequent atomization of a swirling viscous liquid jet emanated
into gaseous surroundings and subjected to periodical surface disturbances is modelled and
investigated. The theoretical analysis is based on a simplified mathematical formulation of the
continuity and momentum equations in their conservative forms. Numerical solutions of the gov-
erning equations along with appropriate initial and boundary conditions are obtained through
a robust finite-difference scheme. The computations yield real-time evolution of the interfacial
profile and subsequent breakup characteristics of the liquid jet. It is found that the jet disinte-
grates into main and satellite drops, under all the conditions considered in the present study. The
swirl enhances the instability of the jet and causes radial stretching of the main drops, whereas
the satellite drops exhibit axial elongation. Increasing viscosity hinders jet instability and leads
to main and satellite drop deformations that are similar to those produced by the swirl. The sizes
of both main and satellite drops are diminished at higher disturbance wave numbers. A greater
swirl strength induces a higher dominant wave number, and hence a reduced size of resultant
main and satellite drops. Larger satellite drops and smaller main drops are produced as viscous
forces are increased. The present model could be used as a guide for designing swirl injectors.
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1 INTRODUCTION

The instability and breakup of a liquid jet into
small drops have a wide array of industrial applica-
tions including fuel injection, ink-jet printing, and
spray delivery devices used for agricultural, medi-
cal, hygienic, coating, drying, and painting purposes.
Therefore, numerous investigations have contributed
to advancing models aimed at predicting the charac-
teristics of the spray produced by liquid jet disintegra-
tion. These characteristics include breakup length and
time, spray angle, drop size, velocity, and orientation.

Many of the existing models of jet atomization are
linearized [1–10] and, hence, incapable of providing
accurate predictions of resultant spray parameters
because atomization is a highly non-linear phe-
nomenon. Other models [11–13] were riddled with
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empiricism, which limit their applications to the
range of experimental data employed in deriving
their empirical formulae. Therefore, it is imperative
to advance a jet atomization model that accounts for
non-linear effects and is free of empirical relations.

Early attempts at formulating non-linear models of
liquid jet atomization have exploited varied analyti-
cal approaches. Wang [14], Yuen [15], Nayfeh [16] and
Nayfeh and Hassan [17], Kakutani et al. [18], Lafrance
[19], Taub [20], and Chaudhary and Redekopp [21]
used the method of strained coordinates. Bogy
[22–26] employed the Cosserat theory developed
by Green [27, 28]. A weakly non-linear instability
analysis was advanced by Ibrahim and Lin [29].
More recent modelling efforts utilized a multitude of
numerical techniques. Direct numerical solutions of
Navier–Stokes equations in their axisymmetric form
were obtained by Fromm [30] and Shokoohi and
Elrod [31] for the viscous jet. Mansour and Lund-
gren [32] pioneered the application of the boundary-
element method of jet atomization studies. Chacha
et al. [33] applied the finite-difference method to the
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vorticity-stream function formulation of the Navier–
Stokes equations in their treatment of the problem of
instability and breakup of a liquid capillary column in
a bounded immiscible phase. References [7], [8], [11]
to [13], [20], [33], and [34] provide reviews of some
experimental results of liquid jet atomization studies.

Lee [35], and later Pimbley and Lee [36], devel-
oped a one-dimensional non-linear-direct-simulation
technique that proved to be a simple and practical
approach to investigating the non-linear instability
and breakup of a liquid jet. Tropey [37] utilized vari-
ations of Lee’s numerical-simulation methodology in
his analyses of the instability of inviscid liquid jets.
By examining Weber’s [5] linear instability analysis of
a viscous liquid jet, Sellens [38] modified Lee’s basic
formulation to include viscous terms. He argued that
viscous forces become more paramount at a smaller
jet radius. Since most atomizers are of small scale, the
effects of liquid viscosity should be included in numer-
ical simulations of the atomization process to enhance
their accuracy.

Swirling liquid jets have received limited atten-
tion in the literature despite their distinctive char-
acteristics, which are absent in their non-rotating
counterparts. The presence of centrifugal forces in
swirling jets critically alters their stability character-
istics by combining both Kelvin–Helmholtz (shear)
and Taylor–Gortler (centrifugal) instabilities. The bulk
of the published research in the area of swirling jet
atomization makes use of the linear instability theory.
Ponstein [39] presented a comprehensive linearized
treatment of the problem. Kang and Lin [40] analysed
the effects of non-axisymmetric disturbances on the
linear instability of a swirling liquid jet surrounded
by a non-swirling gas. Lian and Lin [41] considered
the convective linear instability of a viscous liquid jet
issued in a swirling inviscid gas. Wu et al. [34] investi-
gated the spatial instability of an inviscid compound
jet with swirl distribution of solid-body rotation, and
free vortex in and outside the vortex core, respec-
tively. Ibrahim [42] modelled the non-linear capillary
instability and breakup of a swirling liquid jet by mod-
ifying Lee’s equations to incorporate the additional
terms needed to account for the swirl ensuing from
superposing a free vortex on the mean flow. More
recently, Park et al. [43] applied the boundary ele-
ment method to model the non-linear instability of
a swirling liquid column.

In the present work, the studies of Ibrahim [42] are
extended by adding the effect of viscosity on liquid
jet atomization to that of the swirl. Therefore, this
effort emphasizes the combined influence of viscous
forces investigated by Sellens [38], and centrifugal or
swirl forces studied by Ibrahim [42]. In addition, the
exact form of the surface tension term as given by
Levich [44] is incorporated to replace the linearized
version used by Ibrahim [42] and Sellens [37]. A novel

derivation of the governing equations in conservative
form is detailed. A rigorous total variation diminishing
(TVD) with flux splitting and characteristic decom-
position finite-difference scheme is used to ensure
the accuracy and stability of the numerical simula-
tions. Therefore, numerical instabilities reported by
other investigators [31, 38] in obtaining solutions of
the governing equations are eliminated. These insta-
bilities may have originated from the application of
central-differencing-based finite difference schemes,
particularly at smaller viscous forces. The present
model also contributes an innovative methodology
for taking into account swirl and viscous effects by
including them in the source terms of the governing
equations.

The evolution of the deformed jet surface leading
to formation of main and satellite drops, commonly
observed in liquid jet breakup, is simulated and exam-
ined. The size of drops produced by jet disintegration
is computed. Effects of flow conditions and liquid
properties on the resultant spray parameters are inves-
tigated. The present model is intended to explicate
the influence of the swirl and viscosity on liquid jet
atomization. The model could be used in design-
ing spray nozzles with specific applications that may
benefit from the unique features produced by liq-
uid swirl. However, it should be pointed out that the
range of Weber and Reynolds numbers investigated
in the present work yields jet breakup by, primarily,
the capillary forces rather than inertia. Therefore, the
model would be most applicable to physical tech-
nology involving atomization of low-speed jets such
as ink-jet printing, agricultural sprays, coating, and
painting.

2 THEORETICAL FORMULATION

The instability of an infinitely long cylindrical liq-
uid jet subject to an initial sinusoidal disturbance
is considered. The liquid is assumed to be viscous
and incompressible. The axial velocity is assumed
to be constant over the cross-section of the jet and
dependent only on axial coordinate z and time t .
These assumptions are consistent with the study of
the case of long waves [44]. Since the surrounding
conditions and velocity distribution at each cross-
section within the jet is uniform, the jet surface will
be axisymmetric during the wave growth. In a cylin-
drical coordinate system moving at the unperturbed
(basic) axial jet velocity relative to the gas, the equa-
tions of motion may be written in their conservative
form as

Continuity

1
r

∂

∂r
(rv) + ∂

∂z
(u) = 0 (1)
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Axial momentum

∂

∂t
(u) + 1

r
∂

∂r
(rvu) + ∂

∂z
(uu) = − 1

ρ�

∂

∂z
(p) + ν�

∂2u
∂z2

(2)

Since the interface is a material surface, the radial
velocity component is given by

v = ∂h
∂t

+ ∂h
∂z

∂z
∂t

= ∂h
∂t

+ u
∂h
∂z

(3)

By multiplying each of equations (1) and (2) by the
radial coordinate, r, integrating from 0 to h, the
radius of the perturbed jet, and substituting for
the radial velocity component from equation (3), a set
of unsteady one-dimensional equations is derived

∂(h2)

∂t
+ ∂(h2u)

∂z
= 0 (4)

∂(h2u)

∂t
+ ∂(h2u2)

∂z
= −h2

ρ�

∂p
∂z

+ ν�h2 ∂2u
∂z2

(5)

It should be noted that equations (4) and (5) are iden-
tical to those derived by Sellens [38] except for the
viscous term. Sellens [38] derived his equations by
considering mass and axial momentum balances on a
disc-shaped element of the liquid jet. Therefore, Sell-
ens’s [38] approach involved geometrical simplifying
assumptions that are not employed in the present
model, resulting in discrepancy in the form of the
viscous terms between the two models.

The radial momentum equation for a symmetric
liquid jet with negligible radial velocity compared to
tangential velocity is reduced to

−w2

r
= − 1

ρ�

∂p
∂r

(6)

Following Ponstein [39], a swirl (tangential) veloc-
ity, w = A/r, corresponding to a free vortex of con-
stant strength A centred at the jet axis is considered.
Through integration of equation (6) between the limits
of any radial position r and the interfacial position h,
it is shown that [42]

ph = p − 1
2
ρ�A2

(
1

h2
− 1

r2

)
(7)

The normal stresses due to liquid pressure, viscous
stresses, gas pressure, and surface tension are bal-
anced at the liquid–gas interface, r = h, therefore

−ph + 2µ�

∂v
∂r

+ pσ = −pg (8)

Substitution from equation (7) into equation (8) yields

p = 1
2
ρ�A2

(
1

h2
− 1

r2

)
+ pσ + pg (9)

It should be noted that the viscous term in equation
(8) vanishes by virtue of equation (3) and the assump-
tion that velocity is independent of radial distance. The
capillary pressure is derived by Levich [44] as

pσ = σ

h

{
1√

1 + (∂h/∂z)2
− h(∂2h/∂z2)√[1 + (∂h/∂z)2]3

}
(10)

Substituting equation (10) in equation (9) after ignor-
ing gas pressure perturbations, carrying out the differ-
entiation of the pressure term with respect to z, and
rewriting both equations (4) and (5) in dimensionless
form, the following can be obtained

∂H 2

∂T
+ ∂(H 2U )

∂Z
= S(1, 1) (11)

∂(H 2U )

∂T
+ ∂(H 2U 2)

∂Z
= S(2, 1) (12)

where S is the source matrix with two elements,
namely, S(1, 1) = 0, and S(2, 1) given by

S(2, 1) = Wes

H
∂H
∂Z

+
{

∂H /∂Z√
1 + (∂H /∂Z)2

+ H (∂H /∂Z)(∂2H /∂Z 2) + H 2(∂3H /∂Z 3)√[1 + (∂H /∂Z)2]3

− 3H 2(∂H /∂Z)(∂2H /∂Z 2)2√[1 + (∂H /∂Z)2]5

}
+ H 2

Reσ

∂2U
∂Z 2

(13)

All lengths are normalized by the jet radius, a,
velocity is non-dimensionalized by the capillary veloc-
ity, Uσ = √

σ/ρ�a, and time is made dimensionless
by multiplying by the capillary velocity and divid-
ing by the jet radius. The terms on the right-hand
side of equation (13) correspond to swirl, capillary,
and viscous forces, respectively. The treatment of the
swirl, capillary, and viscous terms as source terms is
to avoid the numerical instability that may originate
from these terms, as was documented by previous
investigators [31, 38].

The initial conditions correspond to a sinusoidal dis-
turbance imposed on the unperturbed interface, so
that

H (t = 0, z) = η0 cos (KZ) + 1 (14)

U (t = 0, z) = 0 (15)

where η0 is the amplitude of initial disturbance. Since
it is not practical to simulate the whole length of the
jet, the computational domain is taken to be equal
to one wavelength λ = 2π/k and a symmetric bound-
ary condition is applied at the right and left ends of
this domain.
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The dimensionless continuity and axial momentum
equations given by equations (11) and (12), may be
written in matrix form as

∂E
∂T

+ ∂F
∂Z

= S (16)

where

E =
[

H 2

H 2U

]
(17)

F =
[

H 2U
H 2U 2

]
(18)

The present numerical simulations employ a TVD
scheme with flux-splitting and characteristic decom-
position to obtain solutions of the system of equations
given by equation (16). The TVD upwind method uses
two characteristic speeds of the convective eigen vec-
tor to determine the upwind direction. Therefore, the
flux term can be calculated with the following formula

Fi−1/2 = 1
2
(Fi + Fi−1) − 1

2
|G|(Ei − Ei−1) (19)

where G is the eigen vector of the system. Accordingly,
the finite-difference solutions of the dependent vari-
ables in the matrix E over the control volume can be
obtained through

Em+1
i = Em

i − �T
�Z

(Fm
i+1/2

− Fm
i−1/2

) + �T Sm
i (20)

For the present computations, the time step was set
as 1 per cent of the spatial step size. The computa-
tional domain was equal to one wave length and a
uniform mesh system was used. The number of nodes
for the one-dimensional grid was chosen as 20, which
rendered a grid-independent convergent numerical
solution.

3 RESULTS AND DISCUSSION

In the present computations, the liquid and gas prop-
erties are taken as those of water injected into atmo-
spheric air. The initial jet radius is taken as 0.0005 m.
The dimensionless parameters, e.g. the Weber number
and Reynolds number, are therefore determined based
on these fluid properties and relevant flow parameters.

The time-history of the disturbance growth rate
may be indicative of the convergence of the numer-
ical solutions. Therefore, the temporal variation of the
dimensionless growth rate is scrutinized in Fig. 1 for
the dimensionless wave number, K = 1.0, that corre-
sponds to the maximum growth rate for Wes = 1.0, as
expounded in Fig. 2. The capillary Reynolds number,
based on water properties and an initial jet radius of

Fig. 1 Time-history of dimensionless disturbance
growth rate

Fig. 2 Variation of growth rate with initial displacement
amplitude

a = 0.0005 m, is approximately Reσ = 200. The dimen-
sionless growth rate plotted in Fig. 1 is calculated at
each time step by the numerical method suggested by
Mansour and Lundgren [32]

ω = �H /�T√
(H − 1)2 − η2

0

(21)

The growth rate is determined by averaging the
overall spatial discretization nodes of the numerical
solution. The value of η0 used in eqution (21) is taken
as, η0 = 0.01 as discussed in the following paragraph.
It is seen in Fig. 1 that the growth rate history exhibits
an initial interval of rapid increase followed by a fairly
asymptotic behaviour that is indicative of a stable
solution.Therefore, the growth rate in the present work
is deemed to be represented by its asymptotic value at
the jet breakup instant.

The initial disturbance amplitude used in the com-
putations may have an effect on the growth rate of
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disturbances. It is desirable to keep the initial distur-
bance amplitude small to observe the initial stages
of the evolution of disturbances on the liquid jet
surface and minimize numerical instability. However,
employing relatively small initial disturbance ampli-
tude results in an unnecessary long computational
time. To decide upon an acceptable level of the initial
amplitude of disturbance, its influence on disturbance
growth rate is examined in Fig. 2 at the same condi-
tions of Fig. 1, i.e. K = 1.0, Wes = 1.0, and Reσ = 200.
It is observed in Fig. 3 that the dimensionless initial
amplitude does not have much effect on the dimen-
sionless growth rate when η0 � 0.01. Therefore, the
amplitude of the initial disturbance is set at 1 per cent
of the unperturbed jet radius throughout this study.

To further validate the model, comparison of com-
putational predictions with published theoretical
analyses are performed. Ponstein [39] advanced a lin-
ear stability analysis of a swirling inviscid liquid jet
subjected to a basic potential flow having a constant
axial velocity and a tangential (swirl) velocity of the
form A/r, which corresponds to a free vortex centred
at the jet axis. For axisymmetric disturbances, Ponstein
gives the dimensionless growth rate as

ω =
√

(Wes + 1 − K 2)
I1(K )

I0(K )
K (22)

where the growth rate is made dimensionless by divid-
ing by

√
σ/(ρa3), and I0 and I1 are the modified Bessel

functions of the first kind of zero and first order,
respectively.

Figure 3 depicts the comparison of the present non-
linear model’s dimensionless disturbance growth rate
computations with Pontstein’s [39] theoretical results.
The disturbance dimensionless growth rate is plot-
ted in Fig. 3 as a function of the dimensionless wave

Fig. 3 Comparison of present non-linear computations
with linear theory

number at a capillary Reynolds number, Reσ = 200,
and swirl Weber numbers, Wes = 0, 1, and 2. It is clear
from Fig. 3 that the numerical simulations agree well
with Ponstein’s analysis, thus affirming confidence in
the computational model’s robustness. However, the
non-linear predictions yield growth rates somewhat
lower than those produced by the linear theory, espe-
cially at higher swirl Weber numbers. Similar trends
also have been described by Childs and Mansour [45]
for the non-swirling jet, and Ibrahim [42] in the case of
inviscid swirling jet. The drop in the predicted growth
rate relative to that of Ponstein’s may be explained by
the dual dampening effects of non-linearity and vis-
cosity included in the present model. These effects
combine to reduce the disturbance growth below its
exponential rate assumed in the linear inviscid theory
of Ponstein [39]. Figure 3 also indicates that increasing
swirl leads to a more pronounced disturbance growth
rate and larger cut-off wave number, i.e. the range
of the wave number for which jet instability is real-
ized. It is also seen in Fig. 3 that the dominant wave
number, which corresponds to maximum growth rate,
becomes larger as swirl Weber number is increased.
Since a larger wave number is associated with a shorter
disturbance wavelength, increasing swirl strength may
lead to formation of smaller drops.

The effects of the swirl and viscosity on the evolution
of interfacial disturbances on the liquid jet surface are
investigated in Figs 4, 5, 6, and 7. Results for the non-
swirling jet corresponding to Wes = 0.0 are displayed
in Fig. 4 at capillary Reynolds number, Reσ = 200,
and the dimensionless dominant wave number cor-
responding to maximum growth for the non-swirling
jet, K = 0.7. It should be indicated that the interfacial
contour lines in Figs 4, 5, 6, and 7 are separated by
100 time steps. Recall that the dimensionless time step

Fig. 4 Evolution of liquid jet interface at K = 0.7,
Wes = 0, and Reσ = 200
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Fig. 5 Evolution of liquid jet interface at K = 0.7,
Wes = 1.0, and Reσ = 200

Fig. 6 Evolution of liquid jet interface at K = 0.7,
Wes = 2.0, and Reσ = 200

is set at �T = 0.01 �Z = 0.01 (λ/an) = 0.01 (2π/Kn),
where n is the number of grid points taken as 20. Since
the total dimensional domain investigated is one wave
length, λ = 2π/K , the dimensionless axial distance is
normalized by K /π, so that it varies from 0 to 2.0. The
dimensionless time of interfacial evolution may be cal-
culated by multiplying the number of contour lines
between the initial and final states of the interface by
100�T .

Figure 4 illustrates the spatial growth of the infinites-
imal initial disturbances to a finite size. The con-
tour lines in Fig. 4, which are plotted 100 time
steps apart, follow the progress of the liquid jet
interface from an initially undisturbed cylindrical
shape through its development in time. It is noted
in Fig. 4 that the jet surface distortion leads to

Fig. 7 Evolution of liquid jet interface at K = 0.7,
Wes = 0, and Reσ = 2

formation of large main drops with smaller satel-
lite drops interspaced between them, as has been
recognized in past studies [16–26, 31–33, 35–38].
When the necking portion of the jet touches the centre-
line, i.e. H = 0, the main and satellite drops will detach
from the jet. Since this condition may lead to a singu-
larity in the numerical solution, the criterion adopted
to stop the computations was that H � 0.05 at any
nodal point on the interface. Using this criterion, the
drop radii can be estimated. The boundary between
main and satellite drops was set at the location on
the jet interface that is closest to the centreline. Since
the drops were mostly far from spherical, a compos-
ite trapezoidal rule was used to integrate the breakup
volume of drops, and hence the equivalent radius of a
sphere of the same volume can be determined.

Figures 5 and 6 portray, respectively, the effects of
introducing the swirl of Wes = 1.0, 2.0 into the liquid
jet, on the development of interfacial disturbances. All
the other problem parameters investigated in Figs 5
and 6 are held the same as in Fig. 4. It is evident from
the progressive decrease in the number of interfacial
lines in Figs 5 and 6 compared with Fig. 4 that the liq-
uid swirl promotes the growth of instability waves on
the jet surface (recall that each line represents 100 �T ).
This higher growth rate maybe attributed to the addi-
tional pressure gradient created in the liquid due to
the swirl. Therefore, swirling the liquid jet will cause
it to break up at a faster rate, and hence enhance its
atomization. This result is in general agreement with
previous work [39, 40, 42, 43].

It is also seen from Figs 4, 5, and 6 that increasing
swirl causes the main drops to deviate from sphericity
and assume a donut-like shape, while the satellite
drops take a more elongated oval shape.
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In order to investigate the effect of liquid viscosity
on the development of jet disturbance, all parameters
are kept the same as those in relation to Fig. 4, except
that the Reynolds number is reduced to Reσ = 2, signi-
fying a two order of magnitude rise in liquid kinematic
viscosity over that considered in Fig. 4. The results of
Fig. 7 elucidate that increasing liquid viscosity by 100-
fold results in an appreciable stretching of the main
drops in the radial direction, leading them to resemble
a disc shape. The satellite drops experience a signifi-
cant axial elongation. It is also clear from Fig. 7 that the
time elapsed for the interface to approach the breakup
criterion has increased by about 20 per cent, as evident
from the larger number of interfacial lines appearing
in Fig. 7 compared with Fig. 4. This result is expected
due to the dissipative nature of liquid viscosity that
leads to suppression of the growth of surface waves.
Therefore, it is concluded that the effects of variation
in the viscous term exhibit a plausible trend.

Figure 8 portrays the variation of dimensionless
main and satellite drop radii with wave numbers at
capillary Reynolds number, Reσ = 200, and swirlWeber
numbers, Wes = 0, 1, and 2. It is remarked in Fig. 8
that the size of both main and satellite drops decrease
with wave number. This is expected since the dis-
turbance wavelength becomes smaller as the wave
number is increased, and hence the volume of liq-
uid available to produce individual main and satellite
drops is reduced. It is also noticed that, for all swirl val-
ues investigated, the size of main and satellite drops
approach each other at small wave numbers, i.e. long
wave lengths. A similar trend has been reported in
relation with the Rayleigh jet [19, 31].

It is also observed in Fig. 8 that, at the same
wave number, the size of the main drops is reduced
while that of the satellite drops is augmented as the
swirl Weber number is raised. This behaviour is a
consequence of centrifugal forces acting to displace

Fig. 8 Variation of drop size with wave number

liquid mass from the larger main drops to smaller
satellite ones.

Figure 9 elucidates the variation of dimensionless
main and satellite drop radii with swirlWeber numbers
at the dimensionless wave number, K = 1.0, and cap-
illary Reynolds number, Reσ = 200. For each value of
swirl Weber number, the computations are performed
at the dominant wave number corresponding to the
maximum growth rate as determined from the linear
theory of Ponstein [39]. It is seen in Fig. 9 that increas-
ing the swirl strength causes the size of both main and
satellite drops to be diminished. This is due to the rise
in the dominant wave number and hence reduction of
wavelength with the swirl Weber number, as discussed
earlier in relation to Fig. 3. It is manifested in Fig. 9 that
for a change of the swirl Weber number from 0 to 2, the
sizes of both main and satellite drops are reduced by
approximately 25 per cent of their original size.

Figure 10 delineates the variation of dimensionless
main and satellite drop radii with capillary Reynolds
numbers at the dimensionless wave number, K = 1.0,

Fig. 9 Effect of swirl on drop size

Fig. 10 Effect of viscosity on drop diameter
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and swirl Weber number, Wes = 1. It is deduced
from Fig. 10 that for small Reynolds numbers up to
Reσ = 100, the size of main drops increase while
that of the satellite drops decrease as the capillary
Reynolds number is increased. For the range of cap-
illary Reynolds number from 2 to 100, the size of main
drops grows by about 4 per cent of its original size
while that of satellite drops experiences a reduction
of ≈12 per cent. This behaviour may be interpreted in
the light of the enhanced viscous dissipation effects at
smaller Reynolds numbers, which act to inhibit devel-
opment of the bigger main drops and thus leaves more
liquid volume available for smaller satellite drops to
consume. Figure 10 also demonstrates that increasing
the capillary Reynolds number above Reσ = 100 has no
effect on drop sizes, indicating that liquid viscosity has
become too small to affect drop formation.

4 CONCLUSIONS

A rigorous mathematical formulation and numerical
solution scheme of the computational model equa-
tions for a swirling viscous liquid jet are demonstrated.

The model affords a simple method to account
for the swirl and viscous effects through inclusion
in the source terms of the governing equations. The
swirl is represented by a free vortex introduced in
the normal stress boundary condition. The compu-
tational model appropriately captures the influence
of the swirl and viscous forces on the instability and
breakup of the liquid jet. Validation of the model
against established theoretical results reveal good
agreement. A larger swirl Weber number boosts jet
destabilization due to a more pronounced pressure
differential across the jet cross-section. Decreasing
the capillary Reynolds number causes the instability
of the liquid jet to be hampered by the dampening
effects of viscosity. Respective radial and axial distor-
tions of the shapes of main and satellite drops are
brought about by the swirl and viscous forces. Increas-
ing the disturbance wave number yields smaller main
and satellite drops. A larger swirl Weber number is
associated with an enlarged dominant wave num-
ber, and hence a reduced size of main and satellite
drops. For capillary Reynolds numbers less than 100,
increasing liquid viscosity leads to augmentation of
satellite drops size at the expense of that of the
main drops.
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APPENDIX

Notation

a unperturbed liquid jet radius
A free vortex strength
G eigen vector
h perturbed liquid jet radius
H dimensionless perturbed liquid jet radius,

H = h/a
k wave number
K dimensionless wave number, K = ka
p perturbation pressure
r radial coordinate
R dimensionless drop radius
Reσ liquid Reynolds number based on capillary

velocity, Reσ = Uσ a/ν�

S source matrix
t time
T dimensionless time, T = t(Uσ /a)

u liquid jet axial velocity perturbation
U dimensionless liquid jet axial velocity,

U = u/Uσ

Uσ capillary velocity, Uσ = √
σ/(ρ�a)

v liquid jet radial velocity perturbation
w liquid jet tangential (swirl) velocity
Wes swirl Weber number, Wes = ρ�A2/(σa)

z axial coordinate
Z dimensionless axial coordinate, Z = z/a

� step size
η dimensionless amplitude of disturbance
λ wave length, λ = 2π/k
µ dynamic viscosity
ν kinematic viscosity
ρ density
σ surface tension
ω dimensionless growth rate of disturbance

Superscript and subscripts

m index of time marching
0 initial (unperturbed)
g gas
h liquid jet interface
i index of ith grid
� liquid
s swirl
σ surface tension (capillary forces)
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