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Abstract—A model for wireless networks with slotted-Aloha-
type random access and with multihop flow routes is considered.
The goal is to devise distributed algorithms for utility-optimal
end-to-end throughput allocation and queueing stability. A class
of queue back-pressure random access algorithms (QBRAs),
in which actual queue lengths of the flows in each node’s close
neighborhood are used to determine the nodes’ channel access
probabilities, is studied. This is in contrast to some previously
proposed algorithms, which are based on deterministic optimiza-
tion formulations and are oblivious to actual queues. QBRA is
also substantially different from the well-studied “MaxWeight”
type scheduling algorithms, even though both use the concept of
back-pressure.

For the model with infinite backlog at each flow source, it is
shown that QBRA, combined with simple congestion control local
to each source, leads to optimal end-to-end throughput allocation
within the network saturation throughput region achievable by
random access, without end-to-end message passing. This scheme
is generalized to the case with minimum flow rate constraints.
For the model with stochastic exogenous arrivals, it is shown that
QBRA ensures stability of the queues as long as nominal loads of
the nodes are within the saturation throughput region. Simulation
comparison of QBRA and the queue oblivious random-access
algorithms, shows that QBRA reduces end-to-end delays.

Index Terms—Aloha, distributed algorithm, queue back-pres-
sure, random access, stability, throughput region.

I. INTRODUCTION

N wireless ad hoc networks, contention resolution and inter-

ference management among links are among the most im-
portant issues, which motivates the extensive study of wireless
medium access control (MAC) protocols. The standard MAC
protocol currently used in IEEE 802.11 [3] is the Distributed
Coordination Function (DCF) with Binary Exponential Backoff
(BEB) mechanism. However, it has been concluded by many re-
searchers that DCF with BEB mechanism for contention control
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can be inefficient and unfair, e.g., [11]. Thus, there are signifi-
cant challenges in designing MAC protocols that are both effi-
cient in terms of throughput, latency, energy consumption, etc.,
and allow distributed implementation minimizing signaling or
message passing overhead.

It has been shown that the maximum throughput region can
be achieved by much studied “MaxWeight”-type scheduling al-
gorithms as originally proposed in [14]. However, in the context
of wireless networks, MaxWeight algorithms typically need to
be centralized for implementation. Many recent works (e.g.,
see [8], [12] and the references therein) propose distributed so-
lutions of the MaxWeight algorithm, but such implementations
also require heavy signaling procedures whose complexity
sometimes relies on the size of the network. The impact of
signaling overhead on the overall performance is relatively
under-studied. Another class of wireless scheduling schemes,
known as random-access (‘“slotted-Aloha-type”) algorithms,
typically provide smaller throughput regions, but are simpler
and more amenable to distributed implementations. In this
paper, we consider a model of random access for multihop
transmissions.

Aloha-type random-access models have been widely adopted
in contemporary works, such as [1], [2], [4]-[7], [9], [10], [13],
[15], and [16]. Informally, we can classify them into two cate-
gories: “pure optimization-based” algorithms (e.g., [5], [6], [9],
[10], and [15]) and dynamic, queue-length based strategies (e.g.,
[2], [4], [7], and [13]). Algorithms of the former type solve an
optimization problem that allocates network resources (e.g., ef-
fective link throughputs) to satisfy and/or optimize traffic de-
mands of different flows; they require optimization parameters
to be specified a priori and are typically oblivious to the dy-
namics of actual queues in the network. Moreover, the itera-
tive algorithms in [5], [6], and [15], involve end-to-end message
passing within the network; the revised algorithms proposed in
[9] and [10] reduce the signaling to a cluster of interfering nodes
but the convergence and optimality have been shown only in a
single-hop transmission model. The latter type algorithms, in-
cluding the queue-length based random access (QRA) algorithm
in [2] and [13], and the constant-time distributed scheduling
policy which coincides with a certain type of QRA in particular
systems in [4] and [7] are operated by adaptively responding to
actual queueing dynamics and thus guarantee queueing stability
of the system. In particular, for the class of QRA algorithms,
even though in some cases they appear to have the same opti-
mization objective as the former optimization-based algorithms,
they do not need a priori knowledge of traffic flow input rates to
achieve queueing stability if such is feasible. It is worth noting
that the previous studies of dynamic random access of the latter
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type ([2], [4], [7], and [13]) all assume a traffic flow model with
single-hop transmission without multihop routes.

In this paper, we propose and study a class of queue back-
pressure random-access (QBRA) algorithms for a multihop net-
work, and generally with multihop end-to-end flows. The algo-
rithms use flow queue differentials on the links to determine link
access probabilities, while the MaxWeight algorithms use queue
differentials as well, but in a different way. Our main contribu-
tions are as follows.

(i) For the problem of utility-optimal end-to-end throughput
allocation in the model of saturated sources, as considered in
Section V, we prove that QBRA combined with simple conges-
tion control at each flow source, solves the problem of weighted
proportional fair (sum-log utility) end-to-end throughput alloca-
tion among the flows. We also prove an extension of this result
for the case of additional minimum flow-rate constraints. This
generalizes and considerably strengthens the corresponding re-
sult in [2]. The result in [2] applies to single-hop flows and
proves optimality of equilibrium but not convergence towards
equilibrium: it does not state the convergence to an optimal
point—only the fact that if convergence takes place, then opti-
mality holds. A further generalization—to more general utility
functions—is also possible, and will be considered as future
work.

(ii) For the problem of queueing stability in the model of
exogenous arrivals as considered in Section VI, we prove that
QBRA “automatically” ensures stability without knowing input
rates, as long as nominal link loads are within the network satu-
ration throughput region. This generalizes some of the stability
results in [13], which apply to single-hop flows. The stability
proof in this paper is conducted with fluid limit techniques but
using a novel Lyapunov function that is substantially different
than that in [13]—the proof in [13] does not generalize to the
multihop case. We will elaborate on this in Section V-D.

(iii) Finally, we present simulation results as considered in
Section VII, with a variety of parameter settings, showing good
performance of QBRA, in particular in terms of end-to-end
delays.

II. BASIC NOTATION AND DEFINITIONS

Typically, we use bold-face letters x, ¥, . . . to denote vectors,
as opposed to scalars z, v, . ... We use the notations R, R, and
R+ for the set of real, real nonnegative, and real positive num-
bers, respectively. Correspondingly, d-times product spaces are
denoted as R?, R%, and R, . We write & - y to denote scalar
product, and ||z|| = \/z - z for the Euclidean norm, inducing
the standard metric. Cardinality (i.e., the number of elements)
of a finite set A is denoted by |.A|. We denote [2]T = max{z,0}.

We use <, X, >, >~ for component-wise vector inequalities,
e.g.,& > ymeans x; > y;, V. Forany scalar function7 : R —
R, T(z) = (T(x1),...,T(x4)) and for any subset C € R,
T(C) ={T(v) :v € C}.

III. SYSTEM MODEL

A. Wireless Network Model

We consider a wireless multihop network described as a di-
rected graph G = (N, L), where A is the set of nodes and £
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is the set of the logical (directed) communication links between
pairs of nodes; ¢; and r; are the transmitter and receiver nodes,
respectively, of link [. There is finitely many traffic flows, in-
dexed by r € R; each flow has fixed source and destination
nodes, and a fixed route. Here, throughout the paper, we will
use the terms flow and route interchangeably, and use index 7
for either one. Let £,. C L denote the set of links on route 7, and
index links [ € £, from source to destination in an ascending
orderasi(r,j),j = 1,2,3,.... We also assume each node main-
tains separate queues of data packets of different flows. Let Ql(r)
denote the queue length of flow r packets located in the trans-
mitter node ¢; of link [ € L,.. To simplify notation, we often
write Q;T) to mean Q;Eﬂg’j), i.e., for the queue length of flow r at
the jth node in its route.

The system operates in discrete (or, slotted) time ¢ = 0, 1,
2, ... In any time slot, each node may attempt to transmit one
packet at most on one of its outgoing links. A packet transmis-
sion attempt on a link is successful if it is not “interfered with”
by another simultaneous transmission during the same time slot;
otherwise, the transmission fails. The interference model is the
same as in [2] and [13] and is somewhat more general than in
[15]. First, any transmission attempt to a node will fail if this
node is transmitting. Second, if there are two or more simulta-
neous transmissions to the same node, they all fail. Third, for
each node n there is the set of nodes A,, C A with which it
interferes, namely, a transmission to any node in A, will fail if
node n transmits. Note that according to our interference model,
n € N, and D,, C N,,, where D,, C N'\n is the set of nodes m
to which node n has data to send. In summary, a transmission
attempt on link / € L is successful if and only if no node in the
set {n : n # t;, 7 € N, } transmits.

For each n let us define S,, = {l € £ : r, € N,}. This
set includes links originating at n and links interfered with by
transmissions from n. We consider the link dependence graph as
defined in [2], i.e., the directed graph with vertices being links
[ € L, in which the edge from [ to another vertex I’ € L exists
if and only if I’ € &;,. Throughout the paper we assume strong
connectivity of the link dependence graph, which assumes that
there exists a directed path between any two vertices.

B. Saturation Throughput Region and its Properties

Suppose the network employs a slotted-Aloha-type
random-access protocol. Recall that each node maintains
separate queues for the packets of different flows. In each time
slot ¢, node n attempts a transmission with probability P,,
and chooses to transmit data from queue QET) on link [ with
conditional probability pl(r) / P.,, where pl(r) > 0 is defined for
each pair (r,1) such that n = ¢; and | € L,.. Thus, pl(r) is the
resulting probability of transmission of class r packets on link
[, and

VneN. )]

Po=3 3 g7 <,

lin=t; r: €L,

We define P to be the set of all feasible vectors of link access
probabilities p = {p;’y)vl eL,,re R} Obviously

P={pec[0,1]": P, <1, VneN} @
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where d = ) |£,|. Givenp € P, the transmission attempts
by all nodes are independent, and then the resulting average suc-
cessful transmission rate (or, average throughput) allocated to
flow r on the link [ € L, is

" (p) = p"”

II

n#ty, 1 €Ny

We will use notation p(p) = {Nz (p),leL,,re R}

Definition 1: We define the system saturation throughput re-
gion M as the set of all possible p(p), along with the vectors
dominated by them, namely

M={ve0,1]":Ipe P, sit.v = pp} 4)
We also define the log-throughput region log M by
logM = {u=logv:ve M,veR:,}
and its Pareto (“north—east”) boundary as

[log M]* = {u € log M :if u < 4’ € logM, thenu = u'}.

Proposition 1 (Follows from [2, Lemma I and Theorem 2]):
The log-throughput region log M is convex and the boundary
[log M]* is a smooth (d — 1)-dimensional surface in R¢, which
can be parametrized by the vectors of positive link weights w=

i () €L, reRteRL ., asfollows. A vector u € [log M]*
i

and only if there exists a unique (up to scaling by a positive
constant) link weights vector w € R‘fr . such that u is the unique
solution of the problem

maxw - us.t. u € log M,

or an equivalent problem maxw - logv s.t. v € M. (Thus, the
vector w is the unique outer normal vector to the region log M
at the boundary point «.) Moreover, the unique set of access
probabilities p such that w = log u(p) is given by
(r)
(r) wy
b= (k) (5)
Yics, 2okier, Wi

where n = {; is the transmitter node of link /. Different vectors
u € [log M]* have different corresponding weights vectors w;
this implies, in particular, that region log M is strictly convex.

We will denote by p(w) the function given by (5), and for fu-
ture reference adopt the convention that plr) = 0 when wl(r) =
0. This makes p(w) well defined for all w € R<, and not just for
w € Ri 4, because wl(T) > 0 guarantees that the denominator
in (5) is positive as well. The important feature of expression (5)
is that the denominator is essentially the sum of the weights of
all links with which the transmitting node n interferes including
the link originating at n itself, and so nodes can compute their
access probabilities very efficiently, using limited information
exchange within their local neighborhoods (see [2] and [13] for
further details).
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C. Queueing Dynamics

The generic queuing dynamics in the random-access network
described above are as follows. We do not discuss here how new
packets arrive in the networks and how access probabilities are
set, which will be specified later. Let A(")(t) denote the number
of exogenous data packet arrivals at the source node I(r, 1) of
flow 7 in time slot ¢, and Q;r)(t), j=1,...,]L.|, be the queue
length of type r packets at the transmitter node of link I(r, )
at time ¢, where the notation [(r, ) is based on the convention

(r) _ )
Qj = Ql(m.). Then

(m) )4y — p(™) C
Q; (1) +h; 24 (t) —h; (1), 1<j<|L

()

where h ;= 1 if there is a successful transmission of a flow r

packet on link I(r, j) in slot ¢, and hj(.r) = 0 otherwise.

IV. DYNAMIC QUEUE BACK-PRESSURE
RANDOM ACCESS (QBRA)

In this section we introduce a dynamic distributed algorithm,
called QBRA, which is the main subject of this paper. The algo-
rithm generalizes the QRA scheme, introduced in [2] and [13]
for the special case of our model, where all routes have length
one. Under QRA, nodes choose their access probabilities p dy-
namically, according to formula (5), with link weights wl(T) at
time ¢ being a fixed function of the current queue length QET) (t).
In the simplest form, w' ) Q<T) (t). (See [2] and [13] for more
general weight functions.)

Under the QBRA algorithm, nodes also dynamically choose
access probabilities p according to (5), with the weight wy) of
flow r on link (7, j) at time ¢ being set to the current queue
differential, wg-r) = AQET)(t), defined as follows:

(@00 -] 1<i<ie
J =1L

(6)

As usual, we identify AQY) and AQEQ i
the vector of all AQ(T) in the network.

Obviously, under QBRA a transmission of a flow r g)acket
at time ¢ on link [(r, j) will not be attempted unless Q

Q(T) (t) > 0. This clearly implies that if inequality

, and denote by AQ

Q) (1) = QL) -1 )
holds for flow r on link {(r, j) at time ¢ = 0, it then holds for all
t. In all cases considered throughout this paper, (7) in fact holds
for all flows and links at time 0 and then for all ¢.

V. UTILITY BASED END-TO-END THROUGHPUT ALLOCATION

In this section, we study the scenario in which the sources of
all data flows are “saturated,” i.e., they have infinite amounts of
data to send. Informally, the problem is to allocate throughputs
z(") to flows r along their respective routes in the network by
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setting access probabilities of all nodes in a way that maximizes
the weighted proportional fairness objective ) 0 log ("),
where 8(") > 0 are fixed weights.

This problem was considered in [15], where two distributed
iterative algorithms for setting access probabilities were pro-
posed and proved to be optimal; these approaches and results
were generalized in [5]. However, the solution approaches in [5]
and [15] based on the dual and the primal algorithms in convex
optimization, both need end-to-end feedback information to up-
date variables maintained by the nodes. This may induce in-
creased delays due to the end-to-end signaling along the route,
especially in large-scale networks. Moreover, the deterministic
optimization-based algorithms of [5] and [15] are oblivious to
the actual queueing dynamics in the network, which also may
degrade performance metrics, including delays.

The purpose of this section is to prove that the above problem
can be solved by the QBRA algorithm as well. The solution
is very simple. Each flow 7 source maintains a constant queue
length QY) , proportional to (") at the flow source node. Then,
as we show, the dynamics of the network queues under QBRA
are such that the queue lengths “converge” to the values that
induce access probabilities resulting in the optimal end-to-end
throughput allocation. Since QBRA uses only local message
passing between “neighboring” nodes, one can say that QBRA
provides a “more distributed” solution to the problem than those
in [15].

The solution provided by QBRA is asymptotically optimal
in the following sense. Queues at the source nodes are main-
tained equal to 6(") /m, where n > 0 is a small scaling param-
eter. This means that, roughly speaking, the parameter 7 “scales
up” all queues in the network by a large factor 1/7. The opti-
mality is achieved when 7 becomes infinitesimally small. Con-
sequently, our results concern fluid limits of the queue length
process, which are the limits of the process under nQ(t/n) space
and time scaling, as | 0.

Finally, in this section, we show that QBRA also solves a
more general problem, with additional, minimum end-to-end
throughput requirements, (") > ("),

A. Problem Formulation

The problem is to operate our random-access network in a
way such that the average end-to-end flow throughputs z(")
maximize >, () log 2("), where 6(") > 0 are fixed parame-
ters, while keeping all the queues in the network stable. This
in particular means that we want the values of (") to be those
given (as (") = vi’w)) by a solution of the following optimiza-
tion problem for the average link-flow throughputs v:

Z o) log vY)
rerR

J(C)l < 'UJ('T)a

max
vEM

subjectto v

Here again we use notational convention vj(»r) = vl((r) i) and we

will adopt similar ones accordingly throughout the paper. Since
any optimal solution to (8) must be such that v > 0, problem
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(8) can be equivalently written in terms of log-throughputs 4 =
logv:

9(), ()
a2 00
subject to ugr_)l < u?ﬁ i=2,..,0L:], TER. 9

Note that, given smoothness of the boundary [log M]* (see
Proposition 1), any interior point « of log M is strictly dom-
inated by some boundary point u* € [log M]*. (We can
choose any dominating point and then move it slightly within
the boundary so it strictly dominates.) This implies that any
optimal solution «* to (9) must lie on the boundary [log M]*.
Otherwise, we could move this point within the interior of
log M in a direction that improves the value of the objective,
while respecting the constraints. Moreover, since the region
log M is strictly convex by Proposition 1, the optimal solution
u* to (9) is unique. (Non-uniqueness would imply that we
could choose two optimal solutions, w*1 and w*?2; then, the
middle point u* = (u*! + u*?)/2 has same objective value,
but cannot be optimal, since it is in the interior.) Then v* such
that u* = logv™* is the unique solution of (8). Further, again by
Proposition 1, the unique (up to scaling) outer normal vector
to the smooth boundary [log M]* at point 4* has all positive
components. This implies that the optimal link throughputs
allocated to each flow along its route are all equa:l

(r)*

)*
- [£-]?

ny = reR. (10)
Otherwise, we could improve the objective by slightly “moving”
u* within the boundary [log M]*.

Now, consider the Lagrangian for the problem (9):

o

Lgw) =3 |00 =3¢ (w2 - 7)) an
rerR Jj=2

=Aq-u (12)

where, by convention, ¢ is such that qY) = 0 for all r, and
Agq is the vector with components

(r) (r) :
T i Y541 1<5< ‘Cr
Q. )= |["r|'
Then, for any optimal dual solution ¢*, we must have
u* = arg max Aq"-u (14)

u€log M

from which we conclude the following additional facts. First,
Aq* > 0, that is

00 > ¢ > > g1 >0, reRr, (15)
because if at least one of the components of Ag* would be neg-
ative or zero, no point u of log M could be an optimizer in (14).
(Because Ag* - u could always be increased by a small change
of u within log M.) Second, again using Proposition 1, Ag* is
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an outer normal to [log M]* at w*. From here, finally, we con-
clude that the optimal dual solution ¢* is unique, and it is such
that Ag* is the unique vector of positive weights that produces
the optimal rates v* (namely, v* = p(p(Ag*))), and satisfying
additional conditions qY) = 0 for all r.

B. Application of OBRA Algorithm

QBRA can be applied to solve problem (8) as follows. First,
we fix a small parameter > 0. Each flow r source maintains
a constant queue length QY) = [0 /n], at the flow source
node, where |-| denotes the integer part of its argument. It is
always feasible to provide this condition because the source has
an infinite amount of data, and it can simply add a new packet in
the queue after each successful transmission from it. Otherwise,
the QBRA in the network works exactly as defined earlier.

Without loss of generality, we can assume that at time ¢ = 0,
the relationships (7) hold (for example, all queue lengths on each
route are 0, except for that of the first queue), and so (7) holds
for all 7.

We consider the fluid limit asymptotic regime. Namely, we
look at a sequence of systems, with parameter | 0. For
each system we consider the space—time rescaled queueing
process nQ(t/n) in continuous time ¢ > 0, and then consider
the process-level limit of those, as 7 | 0. The following fact,
proved essentially the same way as the analogous result in [13],
roughly speaking says that any limiting process is concentrated
on the family of continuous trajectories g(t), t > 0, called fluid
sample paths, and describes their basic properties. We omit the
proof here—it follows essentially from the same argument as
that used for the analogous result in [13].

Proposition 2 (Fluid Limit): The sequence of rescaled pro-
cesses nQ(t/n),t > 0, can be constructed on a common proba-
bility space in a way such that, with probability 1, the sequence
of realizations has a subsequence converging uniformly on com-
pact sets to a Lipschitz continuous trajectory q(t), ¢ > 0, called
the fluid sample path (FSP). The family of FSPs satisfies, in par-
ticular, the following properties. For each r

601 =g (1) 2 (1) > - > 4P ()20 (16)
and foreachr and 1 < j < |£,|
d oy [0 07w, ¢ >0
ar’s (1= { (0240 =" @1, 7 =0
where v(t) is such that
v(t) € arg max, ¢, Aq(t) -logz (17)

with the vector of queue differentials Ag(¢) > 0 defined analo-
gously to (13).

Note that the ordering property (16) is the limiting version of
(7), and that the key property (17) follows from the fact that
QBRA uses queue differentials as link weights to set access
probabilities via (5).
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We denote by D the set of all possible FSP states q(t), i.e.,
those satisfying inequalities (16), and by 9D, the subset of those
q € D with at least one zero component AqET) =0.

C. Asymptotic Optimality

Given the properties of optimal primal and dual solutions to
problem (9), u* and g*, respectively, it follows immediately that
the stationary trajectory g(¢t) = ¢* satisfies all the FSP proper-
ties described in Proposition 2. Moreover, analogously to the
way it is done in [2] for a simpler model, it is easy to see that
any stationary trajectory g(t) = ¢** ¢ 9D, satisfying FSP prop-
erties in Proposition 2, must be such that ¢** = ¢*, because
then ¢** satisfies Karush—-Kuhn-Tucker (KKT) conditions for
problem (9). This to some degree motivates the following main
result of this section.

Theorem 1: Every FSP is such that ¢(t) — ¢* ast — oo
and, consequently, v(¢) — v*. The convergence is uniform on
all FSPs.

Theorem 1 basically says that, when the parameter n > 0
is small, then regardless of the initial state of the queues, the
queues “converge to” and stay close to the values that result via
the QBRA rule for access probability assignment in the optimal
end-to-end throughput allocation. The key idea of the proof of
Theorem 1 is contained in the following Lemma 1, which states
that essentially the Lagrangian (11) of the convex optimization
problem (9) can serve as a Lyapunov function to prove the con-
vergences and we will discuss the technical ideas below.

Lemma 1: For any FSP at any time ¢ such that g(¢) € D\ 9D,
the following holds. The value of v(¢), and then u(¢) = logv(t),
is defined by (17) uniquely, and moreover

u(t) = arg max,ciop mAQ(t) - 1

and u(t) € [log M]*. Consequently, (g(t),u(t)) is a smooth
function of time in a neighborhood of ¢; by (12) L(q(t),u(t)) is
the value of the convex dual problem to (9) at point g(¢), and

390U < Lig(t),u(t)) < 0; (18)
r€ER

function (g, w) is smooth in a neighborhood of (g(¢),u(t)),
and has zero partial gradient on primal variables u at

(q(t), u(t)):

VuL(q(t), u(t)) = 0. (19)
Finally
d
2 1a(®),u(?) (20)
1£.|
. o) =0 (@0) (W87 ) (1)) <0
%Z( (1) o) (w41~ (1))
2D

and the inequality is strict unless q(¢) = ¢*.

Proof: If q(t) € D\ 9D, then, by Proposition 1, in the
neighborhood of this point the dependence of v(¢) on g(t) is
given by the explicit smooth function v(p(q)). Obviously, the
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dependence u = logw is smooth as well. Then, all the prop-
erties described in the lemma clearly follow, using in partic-
ular the smoothness of the boundary [log M;* Inequality (21)
holds because each difference v](-r_)l (t) — v](-T (t) obviously has
the same sign as the corresponding difference ugi)l (t)- ugr) (t);
all such differences cannot be simultaneously equal to 0 unless
q(t) = ¢*, because otherwise a stationary trajectory “sitting” at
a point different from ¢* would exist. O

In addition to the key Lemma 1, we need some auxiliary re-
sults to prove Theorem 1.

Lemma 2: For any FSP and any time ¢ > 0, there exists an
arbitrarily close to ¢ time s > ¢, such that Ag(s) > 0, ie.,
q(s) € D\ ID.

Proof: Let us call any link-route pair ({,7) such that [ €
L,., a virtual link. For a given FSP, let us call gl, r) a “zero”
(resp., “nonzero”) virtual link at time ¢ if Aql(r = 0 (resp.,
> 0). Suppose there are some zero virtual links at time ¢. If not,
then the lemma statement is trivial. Since the trajectory g(-) is
continuous, to prove the statement of the lemma it will suffice
to show that there exists a time s > t, arbitrarily close to ¢,
such that at least one virtual link which was zero at ¢ becomes
nonzero at s. Indeed, this implies that we can “reset” ¢ to s, show
that yet another link becomes nonzero at a time arbitrarily close
to s, and so on, until all links are nonzero. Consider two cases.

Case (a): Suppose that on one of the routes r, there is
a nonzero virtual link followed by a zero one; that is,
qu(.r_)l(t) > 0 and qur)(t) = 0. This is the situation in
which a transmission on the jth link “kills” a simultaneous
transmission on the 5 — 1th link. Then, it is clearly seen from
(17) that vj(-r)(t) =0and vjr_)l(t) > 0, and both these functions

are continuous in time at ¢. Then, by (17), qJ(»T) has positive,
bounded away from 0, derivative in the interval (¢,¢ + ¢),
with small € > 0. In the same time interval, also by (17), the
derivative of qj(-:)l is upper-bounded by an arbitrarily small
6 > 0, if we choose sufficiently small ¢ > 0. If j = |£,.|, then
qj(:_)l (t) = 0 by convention. These facts mean that qu@ (s)>0
for all s € (¢,t + €). We are done with case (a).

Case (b) = [NOT Case (a)]: At time ¢, along each route r,
there is a (possibly empty) sequence of zero virtual links at the
beginning, followed by the (definitely nonempty) sequence of
nonzero virtual links until the end of the route. In this case,
there is at least one zero virtual link, let it be the jth link on
route 7, such that it either shares a link with a nonzero virtual
link, or it interferes with transmissions on a nonzero virtual link.
Here, the latter observation uses strong connectivity of the link
dependence graph. Either way, v](-T)(t) = 0 and it is continuous
at time ¢. For the first nonzero virtual link on this route, say the
mth withm > j, v,(fl) (t) > 0 and is continuous at ¢. Then, using
(17), we clearly see that, in a small interval (¢, ¢ + €)

d 1o .
e+ (9)] < -0

for some C' > 0 independent of ¢; and in the same interval
%q](»r)(s) > —6, where 6 > 0 can be made arbitrarily small
by choosing small . We conclude that for any s € (¢,t+€), we

must have q](.T)(s) > q](»f)(s) for atleastone j/, j+1 < j/ < m,
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and therefore one of the virtual links from the jth to the m — 1th
must be nonzero at time s L.

Lemma 3: For any FSP, Ag(t) > 0 for all ¢ > 0.

Proof: In view of Lemma 2, it suffices to show that if
Ag(t) = 0fort = s > 0, then this holds for all ¢ > s as
well. Suppose not, and 7, s < 7 < 00, is the first time after s
when ¢(t) hits set 9D. This means that there exists a subset of
virtual links that simultaneously become zero at time 7. How-
ever, considering the values of vj(»r)(t) for t close to 7, and es-
sentially repeating the argument in the proof of Lemma 2, we
can show that for at least one of those links qu(»r)(t) must in
fact be increasing for such ¢, and therefore cannot hit 0 at 7 —
a contradiction to our assumption. O

Proof of Theorem 1: According to Lemma 2, for any FSP
at any time ¢ > 0, we are in the conditions of Lemma 1. In par-
ticular, this means that the uniform bound (18) holds. Thus, to
prove the uniform convergence q(t) — ¢* it remains to show
that the negative derivative £ L(g(t),u(t)), given by (20), is
bounded away from zero as long as ¢(t) is outside of an e-neigh-
borhood of ¢*. This is obvious if values of ¢(t) are confined to
a compact set, not intersecting with 9D. To show that it is still
the case within the entire set D \ 9D, it remains to observe the
following. If point g approaches an arbitrary point @ € 9D, the
derivative % L at q approaches — oo, because for at least one vir-

tual link, the corresponding vj(T_)l (see (20)) approaches 0 while

v;r) does not, or vice versa. Here, again, we essentially repeat
the argument used for Lemma 2. O

D. Discussion: Key Features of FSP Dynamics Under QBRA

At this point, we would like to highlight key features of
FSP behavior under QBRA, which make it distinct from the
behavior of FSPs under “conventional” back-pressure based al-
gorithms in multihop networks. Consider inclusion (17), which
determines the instantaneous service rates v(¢) (in the fluid
limit). First, under QBRA w(¢) is “chosen” within the saturation
throughput region M, as opposed to the maximum possible
throughput region. Second, and this is key, v(t) is chosen so
that Aq(t) - logv(¢) is maximized, as opposed to maximizing
Agq(t) -v(t) under conventional back-pressure algorithms. Both
features are already present in paper [13] concerned, in partic-
ular, with queueing stability of the special, single-hop version
of QBRA; and as shown in [13] these features do not “prevent”
the use of standard ‘“‘sum-of-queue-squares’-type Lyapunov
functions (up to some adjustments) to establish stability. How-
ever, for the multihop version of QBRA considered in this
paper, the second feature (log z instead of z in the right-hand
side (RHS) of (17)) makes sum-of-queue-squares-type Lya-
punov functions inapplicable for queueing stability proofs (at
least, we did not find a way to use them), which in fact was the
starting point of our work. This prompted us to take a broader
view which includes both utility maximization problems of
this section and (as we will see in Section VI) the queueing
stability problem, within a unified framework. This led us to
consider the Lagrangian-type Lyapunov function used in the
proof of Theorem 1, which (as the proof shows) can be used
to establish FSP convergence, despite the second feature of
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FSP dynamics. (This Lyapunov function does, however, rely
on the convexity of the log-throughput region log M.) The
generalization of the utility maximization result, which we
present next, is both important in its own right and (as shown in
Section VI) allows the queueing stability result to “fall out” as
essentially a corollary. The use of Lagrangian-type Lyapunov
functions for queueing stability problems of back-pressure type
algorithms, i.e., treating such problems essentially as special
cases of utility maximization, is novel and (as we show) it
works in cases when the traditional approach does not — this
is one of the main technical contributions of this paper.

E. Generalization: Systems With Minimum Flow Rate
Requirements

In practical systems, a minimum rate lower bound is often
required on the end-to-end throughput to guarantee quality of
service of the data transfers. Accordingly, Theorem 1 can be
generalized to include such additional constraints. More pre-
cisely, suppose that the end-to-end throughput allocated to each
flow r needs to be at least A("™) > 0. Formally, the more general
optimization problem which we will write directly in terms of
log-throughputs # = log v as in (9)), is
AN
reER
subject to UE'T—)1 < u?’),
i=2,...,L:], TETR,

log A < u§’“>, r € R.

max
u€log M

(22)

We will assume the following.

Feasibility condition: Problem (22) is feasible, and more-
over all its inequality constraints can be satisfied as strict in-
equalities.

This condition can be interpreted as follows. Let us denote
Amo — {A}”’“’,l €L 1€ R} (23)

where )\l(r)’m = A(")_ Obviously, A is the vector of minimum
rates each flow needs to receive on each link, in order for the
end-to-end rates to be at least A("). The superscript no stands
for nominal minimum link loads. Then, using properties of the
region M, it is easy to verify that the feasiblity condition is
equivalent to the following one.

Feasibility condition (an equivalent form): Vecior A"° is
strictly inside region M, in the sense that A" < v’ for some
v’ € M. In other words, the saturation throughput region M is
large enough to provide each flow r with a rate strictly greater
than A(") on all its links.

Now, given the feasibility condition, there exists a unique op-
timal solution «* such that (10) holds, and the optimal dual so-
lution y(™)*, q}T)*, j=2,...,|L], r € R, where y(* are
the duals corresponding to the minimum throughput constraints.
The generalized version of (15) is

r e€R,

(24)
Ag* > 0 is defined as in (13), and, again, u* =
arg MaXuclog M AQ™ - .

q§r)* = 0(7") + ,y(r)* > qér)* > > q|(£)rT > 07
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To apply QBRA in this case we use a virtual queue ¥ ("),
maintained by each flow r source node. “Tokens” are added
to (") at the average rate A") (tokens per slot); one token is
removed from it if there are any in every slot when a packet
of flow r is successfully transmitted from the source node. As
opposed to the previous situation, the source node uses not the
constant value |#(") /7| as the queue length QY), but rather the
variable Q{")(t) = [0 /n| + Y ")(t). Otherwise, the QBRA
in the network works exactly the same way as defined earlier in
Section IV.

An FSP now contains an additional component y(")(t) for
each r, which is a limit of 7Y (¢/n), and it satisfies condition

AM — o (1), ¢\ >0

d
O o -] W =

dt

in addition to (17). If we denote, by convention, qY) (t) = o) +
y(")(t), then the key condition (17) determining v(¢) still holds.
The generalization of Theorem 1 is the following.

Theorem 2: Assume the feasibility condition. Then, uni-
formly on all FSPs with initial states ¢(0) within an arbitrary
fixed compact set, g(t) — g* ast — oo and, consequently,
v(t) — v*.

Theorem 2 both generalizes and significantly strengthens a
result of [2], which applies to QBRA in a system with one-hop
routes and states only that if convergence ¢(t) — ¢** holds,
then ¢** = ¢*.

Proof of Theorem 2 is carried out analogously to that of The-
orem 1. We do not provide details here, but rather just the fol-
lowing key points. The Lagrangian in this case, which serves as
a Lyapunov function in the proof, is

12|
Ligu) = Y 00u” = 37 3 af” (w2, - )

re€R rER j=2
— 3y (log A ugﬂ)
reR
=Aq-u-— Z y(r) log A (25)
reR

where, by convention, for those flows r with A(") = 0, we have
y( = 0 and 4" log A(") = 0. For each FSP, the bounds (18)
generalize as

> 00U < L(g(t), u(t))
< L(g(0),u(0)) < = Yy (0)log A" (26)

As in the proof of Theorem 1, an important intermediate step is
showing that Aq(t) &~ O forall ¢ > 0 — this is done analogously
to the arguments in Lemmas 2 and 3.

VI. STOCHASTIC STABILITY OF A NETWORK
WITH EXOGENOUS ARRIVALS

‘We now turn to another version of our model, where flow
sources do not have an infinite supply of data to send, but
rather there is a random process of exogenous arrivals to the
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first queue QY) at the flow source node. For simplicity, let us
assume that each such arrival process A)(t), t = 1,2,... s
independent and identically distributed (i.i.d.) with the average
rate A" = E[A((#)] > 0, and all arrival processes are
independent. The i.i.d. and independence assumptions can be
greatly relaxed. Also, it is not an accident that here we use
the same symbol A(") for the input rate as we use used for the
minimum rate bound in Section V-E; the reason will become
clear shortly.

Consider such a network under the QBRA random-access
scheme. We wish to determine under which conditions the
queueing process Q(t), ¢t = 0,1, 2,.. ., in the network is stable.
If we assume (for further simplicity) that P{A(")(t) = 0} > 0
for each r, then it is clear that @(¢) is a countable state space,
irreducible, aperiodic Markov chain. By stability we mean its
ergodicity.

Note that, without loss of generality we can assume that the
“queueing order” relations (7) hold along each route at all times.

The main result of this section is the following

Theorem 3: Suppose input rates A") > 0, r € R, satisfy
the feasibility condition given in Section V-E. Then the network
queueing process is stable.

This theorem generalizes to the multihop setting one of the
stability results in [13], which apply to the single-hop system.
We emphasize again that our proof, outlined below, is substan-
tially different from that in [13], even though both use fluid
limits. (See the discussion in Section V-D.) Note that, in the
setting of this section, the feasibility condition in its equivalent
form (see Section V-E) has a simple and intuitive meaning: the
saturation throughput region is large enough to support the nom-
inal loads A"° imposed on the individual network links by the
traffic flows.

We will use the fluid limit technique to establish Theorem
3 (see [13] for an application of the technique to a random-
access system, and references therein to a general theory).
With this technique, we look at the fluid limit, defined anal-
ogously to the way described in Section V-B. It is important
to emphasize that the QBRA algorithm in the network does
not use the parameter 7 in any way. This is true for the use
of QBRA in Section V as well, but there traffic sources use
the parameter 1 to decide when to send new packets. In this
section, the parameter 7 is used only to define the fluid limit
asymptotic regime.

In our case, the FSPs turn out to satisfy the same properties
as those for the FSPs in Section V-E, but specialized to the case
(") = 0 for all r. This is not merely coincidental — it is easy
to observe that if in Section V-E we were to assume that all
6(") = 0, then the behavior of each virtual queue Y (") there
would be analogous to the behavior of actual queue QY) in the
setting of this section.

Then, according to the fluid limit technique, to prove The-
orem 3 it suffices to prove the following theorem.

Theorem 4: There exists T" > 0 such that, uniformly on all
FSPs with ||g(0)|| = 1, we have g¢(¢t) = 0 forall ¢ > T.

Proof: This proof is, again, analogous to the proof of

the convergence results in Theorems 1 and 2. We omit full
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details, but the key points are as follows. Since all o) = 0,
and consequently, (") (t) = <T)( t), the Lagrangian in (25)
specializes to

-y Z i (w7 - o)

reR j=2
= > af” (log A —uf?)
reR
=Aq-u-— Z qY) log pYSel 27
reR

This Lagrangian is used as Lyapunov function, and for each FSP
we have the bounds
-3

reR

0< Lq(t 0)log A(™. (28)

In particular, if ||g(0)|| = 1, then
L(g(t),u(t)) < = log A,

Using arguments analogous to those in Lemmas 2 and 3, we
can show that for all £ > 0, a subset of components of Ag(#)
cannot hit 0, unless all components hit 0 simultaneously; this
implies that Ag(t) = 0 for all 0 < ¢ < ¢’, where ¢’ is the first,
possibly finite time when Ag(¢) = 0, and then g(¢) = 0. For all
0 < t < t/, we have, analogously to (20)

2 La(t) u(t)

=-3 (A&) !

reER

') (log A - u{” (1))

o) (w0 = u 1))
(29)

Next, we prove that the RHS of (29) not only is nonpositive,
but in fact is bounded away from 0 by a negative constant —e,
uniformly on all possible u € [log M]*. Indeed, there exists a
sufficiently small § > 0 such that, for any u € [log M]*, we
have

‘)\(”) _ UY)’ > 6 or ’U]('i)l - ”J('T) >0 (30)

in at least one of the terms in the RHS of (29). Otherwise, A*° €
[log M]*, which contradicts the feasibility condition. For the
term that corresponds to the latter form in (30)

( )yl )) (u5_>1 ugr)) > (vj(r_)l —

Here, we used the fact that (d/dz)log z > 1 when z € (0,1).
Thus, L(q(t),u(t)), and then ¢(¢), must hit 0 within a uni-

formly bounded time. The fact that g(¢) cannot leave 0 after first

hitting it clearly follows. O

2
vj(.”)) > §2. (31)

VIL

In this section, we investigate the performance of QBRA
via simulations. We consider a simple 6-node, 3-route ad hoc

NUMERICAL EXAMPLE

Authorized licensed use limited to: Princeton University. Downloaded on November 4, 2009 at 19:20 from IEEE Xplore. Restrictions apply.



LIU et al.: QUEUE BACK-PRESSURE RANDOM ACCESS IN MULTIHOP WIRELESS NETWORKS

ii
Flow 3

Fig. 1. A 6-node ad hoc network.

net-work as shown in Fig. 1, which has the same network
topology as the second example in [15]. The nodes are labeled
from 1 to 6, and the interference model is such that each node
interferes with the reception at its one-hop neighbor nodes in
the network graph. Therefore, we have

Dy :{2}7 Dy = {173}7 D3 = {274}7

Dy=0, Ds={3}, Ds={3,5},

N ={1,2}, MNo=1{1,2,3}, WN3=1{2,3,4,5,6},
Ny ={3,4}, N;=1{3,5,6}, Ng={3,56}

and the sets S,, defined accordingly. Links are identified by the
pair (r, 7), so that, for example, le) is the queue length of flow
1 at the second link (from node 5 to node 3) on its route.

We apply QBRA to solve both the optimal end-to-end flow
throughput allocation problem of Section V, and to provide
stability of the queues in the case of exogenous arrivals (Sec-
tion VI). We compare the performance of QBRA with that
of deterministic optimization based algorithms referred to as
OPTs, such as that in [15].

We would like to emphasize that, even when QBRA and
OPTs are applied to solve the same problem, such as (9),
there are significant differences between them: QBRA updates
network variables based on queue-lengths, while OPTs are
oblivious of the actual queues; QBRA can be implemented by
nodes exchanging queueing information within local neighbor-
hoods, while OPTs require end-to-end message passing along
each flow route. When we talk about providing queueing sta-
bility in a system with exogenous arrivals, the difference is even
more pronounced: OPTs would require estimation of the flow
input rates to be used in the appropriate optimization problem
to calculate link access probabilities resulting in sufficient link
throughputs along each route; QBRA does not need to know or
estimate input rates and ensures stability “automatically” when
feasible.

A. End-to-End Throughput Allocation

Here, we run QBRA to solve the problem (22) with weights
(D) = 9 = gB) = 1, in two cases. Case 1 is without min-
imum rate constraints; Case 2 is with minimum rate constraint
A = 0.1 for flow 1, and none for the other two flows. The
resulting end-to-end throughputs after queues “converge” are
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TABLE I
THE END-TO-END THROUGHPUT (™) OF EACH ROUTE IN TWO CASES:
WITH/WITHOUT MINIMUM RATE REQUIREMENTS

Thru PIS) &) ME)
Case 1 | 0.05196 | 0.12258 | 0.08770
Case 2 | 0.09934 | 0.07392 | 0.04957

given in Table 1. These throughputs are the same as those pro-
duced by OPT as expected, since the problem being solved by
the two algorithms here is same.

For both Cases 1 and 2, we run the algorithm with three dif-
ferent values of the scaling parameter 7, namely, 0.002,0.01,
and 0.05, to demonstrate how the dynamics of queues depend on
this parameter. Figs. 2 and 3 show the dynamics of the queues
of flow 1 along its route. As predicted by the asymptotic re-
sults in Theorems 1 and 2, the scaled queue lengths an-l) “con-
verge” and “stabilize” around the corresponding values qj(-l)*.
Here “stabilize” and “converge” are in quotation marks, be-
cause for any pre-limit system, with finite 7, there cannot be a
convergence in the deterministic sense—the queueing processes
remain random. We can also see, again as predicted by Theo-
rems 1 and 2, that the “convergence” time of the QBRA algo-
rithm is roughly proportional to 1/7. This is true, however, as
long as n remains sufficiently small; if 7 is “too large” as is
n = 0.05 in Figs. 2(c) and 3(c), the fluctuations of the scaled
queue lengths an-T) around qJ(»T)*, even after the queues “con-
verge,” will be too large, and the accuracy of the algorithm will
suffer. Therefore, the value of parameter 7 has to be chosen care-
fully to achieve a balanced tradeoff between oscillation around
a stationary regime, and the time to converge. Namely, it should
be chosen “as large as possible, but not larger.”

B. System With Exogenous Arrivals

Here we simulate the system with exogenous (i.i.d. Poisson)
arrivals with equal rates for all flows, AL = A2 = )G,
and we scale the rates up to observe the changes of the queue
lengths. The QBRA works exactly as specified in Section VI.
An OPT algorithm that we simulate works as follows: we a
priori “pre-calculate” link access probabilities so that the re-
sulting end-to-end rates z(") provided to the flows are maximal,
subject to (1) = 23 = £(3) In other words, we pretend
that an optimization based algorithm is run a priori to calculate
appropriate access probabilities. OPT is oblivious to the queue
lengths, except that, when there are no packets at a link, the link
does not attempt transmission. We study the total average queue
length of each flow ~ which by Little’s law is proportional to the
end-to-end queueing delay: Q") = > Ql(r). Fig. 4 compares
QM, Q@ and Q® under the QBRA and OPT. It shows that
the average queues under QBRA are significantly lower than
those under OPT. An intuitive explanation of this is that QBRA
“better adapts” to the current queue length in the network.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have considered a class of queue back-pres-
sure random access (QBRA) algorithms within a model of
wireless networks with multihop flow routes, where the actual
queue lengths of the flows in each node’s close neighborhood
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Fig. 2. Behavior of flow 1 queues, under different scaling factor 7.

are used to determine the nodes’ channel access probabilities.
We have investigated the properties and performance of the
QBRA scheme under two different traffic models.
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Fig. 3. Behavior of flow 1 queues, under different scaling factors 7, with min-
imum rate requirements A = (0.1,0,0).

For the model with infinite backlog at each flow source, we
have shown that QBRA, combined with simple congestion con-
trol, local to each source, leads to the optimal solution of a
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Fig. 4. Comparison of the QBRA scheme and the optimization-based scheme
on queueing performance: A(1) = A(2) = A(3),

utility-based end-to-end throughput allocation, within the net-
work saturation throughput region achievable by random access.
The implementation of this scheme needs no end-to-end mes-
sage passing in contrast to existing pure optimization-based al-
gorithms. We have further generalized this local QBRA scheme
to the case of additional, minimum flow rate constraints. On the
other hand, for the model with stochastic exogenous arrivals,
we have shown that QBRA ensures stochastic stability of the
queueing process as long as nominal loads of the nodes are
within the saturation throughput region.

One subject of interest for future work is a study of the
queueing stability of random-access schemes in the model of
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multihop transmissions with link weights being defined more
generally than queue differentials. Meanwhile, another topic
of interest is to quantify and compare the queue performance
under different queue-based random access schemes, and thus
to determine the optimal queue function in terms of queueing
delay.
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