
AN EVENT PROCESSING SYSTEM FOR RULE-BASED
COMPONENT INTEGRATION

Susan D. Urban, Sunitha Kambhampati, Suzanne W. Dietrich, Ying Jin, Amy Sundermier
Department of Computer Science and Engineering

 Arizona State University
 Tempe, Arizona USA

 s.urban@asu.edu dietrich@asu.edu

Keywords: active rules, event specification, event processing, component integration

Abstract: The Integration Rules (IRules) project has developed an environment in which active rules, known as
integration rules, are used together with transactions to provide an event-driven, rule-based approach to the
integration of black-box components. This paper presents the event processing system that supports the use
of integration rules over components. The event processing system is composed of the language framework
for the specification of different types of events, an event generation system for generating event instances,
and an event handler for communicating the occurrence of events to the integration rule processor. The
language framework supports the enhancement of EJB components with events that are generated before
and after the execution of methods on components. Since integration rules support an immediate coupling
mode and execute in the context of nested transactions, a synchronization algorithm has been developed to
coordinate the execution of immediate integration rules with the execution of methods on components. The
synchronization algorithm makes it possible to suspend and resume distributed application transactions to
accommodate the nested execution of integration rules with an immediate coupling mode.

1 INTRODUCTION

Distributed component technology standards address
the need for well-known interfaces and middleware
for discovering and integrating software components
into applications (COM/DCOM, 2003; OMG, 1998;
WSA, 2002; J2EE, 2003). Implementing distributed
applications when components reside on multiple
servers, however, can be a difficult task that often
results in procedural, hard-coded solutions. The
application integrator must not only understand the
semantics for mediating the interactions between the
components, but must also be skilled in the technical
details associated with distributed event and
transaction processing techniques.

The Integration Rules (IRules) project at Arizona
State University has responded to the need for more
flexible and declarative middleware technology by
applying active rule processing technology to the
area of software component integration (Urban et al.,
2001). Active database technology enhances
traditional database technology with the ability to
monitor and react to circumstances that are relevant
to an application (Widom and Ceri, 1996). The
IRules project is extending the use of active rules to

distributed components, providing a middle-tier, rule
processing framework for the integration of
distributed black-box software components. The
current prototype implementation supports the
Enterprise JavaBeans (EJB) (EJB, 2001) component
model, with future plans to include support for other
component models.

The IRules project provides an environment in
which active rules, known as integration rules, are
used together with transactions to provide an event-
driven, rule-based approach to component
integration. When an event is generated in the IRules
environment, an integration rule is triggered to test a
condition expressed as a query over distributed
components. A successful condition evaluation may
invoke additional methods on components in the
action part of an integration rule. Integration rules
therefore provide a declarative and distributed rule
processing mechanism for responding to events in a
distributed environment, thereby separating the logic
associated with reactive behavior from the main
application logic expressed within distributed
transactions.

One of the challenges of developing the IRules
environment has been the design and

implementation of the event processing system that
supports the execution of integration rules
(Kamphampati, 2003). The event processing system
is composed of a language framework for the
specification of several different types of events, an
event generation system for generating instances of
each event type, and an event handler for
communicating events to the integration rule
processor. The IRules language allows for the
definition of events that are detected before and after
the execution of methods on components and the
execution of distributed application transactions.
The language framework also supports the
specification of events that are generated and
published by the internal logic of black-box
components as well as events that are generated by
sources external to IRules.

To coordinate events with transactional behavior
in the IRules environment, we have developed
wrappers that serve as proxies for EJB components
(Patil, 2003). All method calls are routed through the
wrappers. The wrappers are responsible for
generating events before and after method execution.
The wrappers are also capable of suspending
methods to support the nested execution of triggered
rules with an immediate coupling mode. A
synchronization algorithm uses semaphores
implemented with JavaSpaces (Freeman et al., 1999)
operations as a distributed communication
mechanism. The synchronization algorithm
coordinates the execution of application transactions
with the nested execution of integration rules before
and after the execution of methods on EJB
components.

Our research provides an original approach to
enhancing black-box components with event
generation techniques, addressing issues for control
of transactional scope, event handling, and
suspension and resumption of activities in
component-based integration architectures. These
issues are described as future directions within the
Business Process Execution Language specification
(BPEL4WS, 2002), a standard choreography
language for integrating Web Services. The
techniques described within this paper, although
currently implemented using Java technology, are
applicable to other component models and
integration languages as well.

The remainder of this paper is structured as
follows. Section 2 provides an overview of the
IRules environment. Section 3 presents the
language framework for the specification of IRules
events. The event handling component of the IRules
environment is presented in Section 4. Section 5
provides an overview of the synchronization
algorithm for coordinating method execution with
rule execution. Our work is discussed in the context

of related work in Section 6. The paper concludes
with a summary in Section 7.

2 OVERVIEW OF IRULES

Figure 1 provides a high-level view of the
functionality of the IRules environment. As shown
in Figure 1, EJB components are organized into
distributed containers, where each component was
purchased or created independently of components
in other containers. This specific example illustrates
an Investment application from (Urban et al., 2001),
consisting of four different containers with
purchased software components: a Portfolio
container, a Pending Order container, a Stock
container, and an Account container.

Although the containers in Figure 1 are
independent black-box containers that know nothing
about the existence of the other containers, the
IRules semantic framework supports the definition
of externalized relationships (Rumbaugh, 1987)
between such containers. These relationships are
shown in Figure 1 by lines between components in
different containers. For example, the externalized
relationship between Stock and Pending Order
represents the type of stock that is associated with a
pending buy or sell order. Externalized relationships
are managed by IRules wrappers around existing
EJB components. In addition to externalized
relationships, IRules wrappers add other
functionality to EJB components, such as extents,
derived attributes, stored attributes, and events
(Dietrich et al. 2001).

 Application logic is captured through the use of
application transactions together with integration
rules. Integration rules have been derived from
active rules in active database technology (Widom
and Ceri, 1996), providing an Event-Condition-
Action (ECA) rule form as well as an Event-Action
(EA) rule form for responding to events. As shown
in Figure 1, when an application transaction
executes a method such as Operation k on an EJB
component, an event can be generated that triggers
the execution of integration rules. These events are
referred to as method events and can be generated
before or after the execution of a method on a
component. Integration rules may also be triggered
by internal events, application transaction events, or
external events. Internal events are events that were
defined within a black-box component before the
component joined the IRules environment.
Application transaction events are events that can be
generated before or after the execution of an
application transaction. External events are events
that are generated from sources outside of the IRules
environment.

Account

IRulesAccount

Portfolio

IRulesPortfolio

Stock

IRulesStock

PendingOrder

IRulesPendingOrder

Account Container Stock Container

Portfolio Container PendingOrder Container

Method Event Internal Event

Application Transaction
Begin

Operation1
...

Operation k
...

Operation n
End

Application Transaction
Event

Integration Rule

trig
ge

rs

triggers

triggers

generate

generate generate

generate

Execute operation
on EJB

Integration Rule:
create rule ruleName
event eventName(event Parameters)
 [on componentName componentVariable]
condition [eaCoupling]
 when conditionSpecification
 [define bindingsName as
 select <>
 from <>
 [where <>]]
action [caCoupling]
 [from <>
 [where <>]]
 do action

External Event

Integration Rule

Integration Rule

Execute Operation
on EJB

triggers

Externalized Relationships

The structure of an integration rule is also shown
in Figure 1. When an integration rule is triggered by
an event, the rule may execute a when condition that
is expressed as a simple query over the event object
and its parameters. If the condition evaluation is
true, then an OQL-based (Cattell and Barry, 2000)
define statement allows for the named specification
of bindings using a query over the distributed
components of the environment. The action of the
rule may refer to these bindings when invoking a
method of a component or an application
transaction.

The rule-based approach to component
integration within the IRules environment is
expressed using the IRules Definition Language
(IRDL) (Dietrich et al., 2001; Urban et al. 2001).
IRDL consists of four sub-languages: the
Component Definition Language (CDL) for
describing components and defining the method and
internal events associated with that component, the
IRules Scripting Language (ISL) for describing
application transactions, the Event Definition

Language (EDL) for defining external and
application transaction events, and the Integration
Rule Language (IRL) for defining integration rules
that respond to events. In the current version of
IRDL, ISL is based on the JACL (DeJong and Laird,
2003) scripting language, which is a Java
implementation of the Tool Command Language
(TCL) (Ousterhout, 1994).

The IRules execution environment is a Jini-based
architecture that supports the execution of events,
rules, and application transactions over distributed
EJB components (Jin et al., 2002). Architectural
components include the rule manager for controlling
the execution of rules, the transaction manager for
the management of transactions, the object manager
for providing abstract access to the underlying
components of the system, the metadata manager for
storing the integration semantics as extracted from
the compilation of an IRDL schema, and the event
handler for processing events. The Java Messaging
Service (JMS) (JMS, 1999) provides asynchronous
event notification.

Figure 1. Purchased Components

3 IRULES EVENT DEFINITION

The subsections that follow illustrate the
specification of each type of event supported in the
IRules environment.

3.1 Event Specification in CDL

Method and internal events are expressed using CDL
since they are associated with component
definitions. The syntax of CDL is based on the
syntax of the ODMG Object Definition Language
(ODL) (Cattell and Barry, 2000). Using the
Investment example introduced in Section 2, Figure
2 shows an example of describing a portion of the
Stock component to the IRules environment, which
includes the definition of a method event. The event
specification is composed of an event name and a
list of parameters, followed by curly braces that
enclose the definition of the details of the event. The
method keyword defines the type of the event, while
the before keyword is an event modifier, indicating
that the event is raised before the execution of the
method. The keyword after can be used to define an
event raised after the execution of a method. The
name and type of the method parameters are also
specified. The names of the method parameters in
CDL allow for naming the attributes that are to be
propagated as parameters to the IRules event.

component Stock implements EntityBean
(extent stocks)
{ ………
 event beforeSetPrice(newPrice)
 {method before setPrice(double newPrice);}}

Figure 2. Example of a Method Event

Figure 3 presents the stockBuy rule as an example
of an integration rule that is triggered in response to
the beforeSetPrice method event. The condition part of
the rule includes an OQL-like query expressed over
the distributed components of the environment. The
when condition checks whether the new price of the
stock is less than the current stock price. The action
part of the rule does a buy transaction for the stocks
that are currently pending.

When an EJB component joins the IRules
environment, it is possible that the black-box
component is capable of generating and publishing
events as part of its internal logic. The IRules
environment refers to these events as internal events
and allows the use of internal events in the
integration process. Since internal events are

associated with components, these events are
defined as part of CDL.

create rule stockBuy
event beforeSetPrice(NewPrice)
 on stock S
condition immediate
 when NewPrice > S.price
action immediate
 from Pn in S.pendingTrades
 where S.price<=Pn.desiredPrice and
 Pn.pnaction="buy"
 do buyStock(S,Pn)

Figure 3. Example of an Integration Rule Triggered by a
Method Event

As an example of an internal event, Figure 4

presents the specification of the afterUpdateCash
event within the StockBroker_PastHolding component
of the Portfolio container. This is an event that is
generated as a result of the execution of an update
operation on the cash value of a portfolio. Internal
events are always after events, since the IRules
environment has no control over the execution of the
internal logic of a black-box component. As a result,
an event modifier is never specified for internal
events. The event handler currently supports internal
events published by EJB components using the JMS
system. Internal events must specify the proprietary
name and message type of the event that
accompanies the JMS message. In Figure 4, the
updateCashEvent token is the name of the event that
is sent to the appropriate JMS topic (i.e., a data
structure for collecting JMS messages) by the black-
box component. The map token represents the JMS
map message type with its corresponding
parameters.

component StockBroker_PastHolding implements
EntityBean
(extent pastHoldings)
{relationship Stock pastStock
 inverse Stock::soldBy;
 event afterUpdateCash (portfolioID, cashValue)
 {internal map(int portfolioID, float
 cashValue) updatecashEvent};};

Figure 4. Example of an Internal Event

3.2 Event Specification in EDL

Application transaction events and external events
are defined using EDL. Since application
transactions in IRules are defined using ISL, Figure
5 provides an example of the sellStockOnNewPO ISL
transaction for selling stock. The code in the body of
the transaction uses JACL syntax. The newinstance

command is a JACL extension command used to
create a new instance of a PortfolioSessionBean. The
sellStock method is then executed on
PortfolioSessionBean and the PendingOrderComponent
status is set to 'executed'. The last step in the body
does the task of printing the status of the pending
order by executing printSellInfo extension command.

application transaction
sellStockOnNewPO(string stockId, float price, string
 portfolioId, int numOfShares, PendingOrder pn)
tcl newInstance,printSellInfo
{ set session [newInstance PortfolioSessionBean]
 $session sellStock $stockId $price $portfolioId

 $numOfShares
 $pn setStatus "executed"
 printSellInfo $pn}

Figure 5. Example of an Application Transaction in ISL

Figure 6 illustrates the specification of an
application transaction event, named
afterSellStockOnNewPO, that is generated after the
execution of the sellStockOnNewPO application
transaction specified in Figure 5.

event afterSellStockOnNewPO(stockId, price, portfolioId,

 numOfShares, pn)
{ appTrans after sellStockOnNewPO(String stockId, float

 price, String portfolioId, int numOfShares,
 PendingOrder pn);}

Figure 6. Example of an Application Transaction Event

Since it is likely that the application integration

process may need to monitor events from external
sources, the IRules environment supports the
definition and use of external events. We assume
that external events are generated using JMS.
External events are defined in the same manner as
internal events and must therefore specify the
proprietary name and message type of the event that
accompanies the JMS message. There is no modifier
explicitly stated with external events since they are
inherently after events.

Figure 7 gives an example of an external event in
the context of the Investment application that
monitors changes in stock prices from the stock
market. The afterStockMarketQuote event is defined as
a JMS map message type with an originating event
name of TickerEvent. Within the Investment
application, the occurrence of this event can be used
to update local information about stock prices.

event afterStockMarketQuote(stockId, newPrice)
{external map(String stockId, double newPrice)
 TickerEvent;}

Figure 7. Example of an External Event

4 THE EVENT HANDLER

The IRules framework uses the publish-subscribe
approach of JMS to support asynchronous message
passing during rule execution. Method and
application transaction events are sent to a pre-
defined IRules Event Topic. Internal and external
events are sent to a proprietary JMS topic that must
be made known to the IRules environment. The
IRules Event Handler listens to the relevant topics
and communicates event information to the rule
processor using a push strategy.

As shown in the Figure 8, method events are
generated by IRules wrappers. The execution of an
application transaction or the action part of a rule
can invoke method calls to the black-box
components. The wrapper intercepts any call to the
EJB instance of the black-box component. The
wrapper is responsible for generating method events
and for invoking the method on the component
instance. Event parameters for a given method event
are packaged into a generic IRules data structure
called EventMsg. The EventMsg object is then
published to the IRules Event Topic. The transaction
manager is responsible for generating application
transaction events. Similar to method events,
application transaction events are also packaged into
the IRules EventMsg data structure and published to
the IRules Event Topic.

For external and internal events, since the
messages are in their proprietary JMS format, the
message has to be extracted, interpreted, and
translated into the IRules EventMsg format. The
event handler initiates the necessary listeners or
subscribers for all of the topics to which internal and
external events are being published. When an
internal or an external event is received, the JMS
message is extracted and the necessary parameters
are interpreted from the information available in the
IRules metadata repository. The interpretation and
extraction process depends on the type of the
message that is received at the event handler.

After the interpretation and extraction process,
the EventMsg instance is propagated to the rule
manager. As a result, all of the different types of
events ultimately share the same event structure. The
rule processor then executes the triggered rules for a
newly detected event depending on the semantics of
the coupling modes associated with the rules.

5 SYNCHRONIZATION ISSUES

Integration rules are processed based on coupling
modes as defined in traditional active database
systems. Coupling modes define transactional

R u le M a n a g e r M e ta d a ta M a n a g e r

E ve n t H a n d le r

IR u le s E ve n t
T o p ic

IS L In te rp re te r O b je c t M a n a g e r

B la c k -B o x S p e c ific
J M S T o p ic

In te rn a l E ve n ts

A p p lica tio n T ra n s a c tio n
E ve n ts

M e th o d E ve n ts

IR u le s P ro p a g a te d
In te rn a l E ve n ts

A p p lica tio n
T ra n s a c tio n
P ro ce s so r

IR u le s E n v iro n m e n t

E x te rn a l
E ve n ts

E n te rp r is e S ys te m s

e ve n ts
E n te rp r is e S ys te m s
S p e c if ic JM S T o p ic

IR u le s W ra p p e r fo r B la ck -B o x
C o m p o n e n t

B la c k -B o x C o m p o n e n t
(S e ss io n /E n tity E J B)

IR u le s E ve n ts

behavior for rule execution. The IRules system
supports four coupling modes (Jin et al., 2002):
immediate synchronous (the condition of a rule must
be executed as a nested transaction immediately
after an event is raised), immediate asynchronous
(same as immediate synchronous except that the rule
and triggering transaction are processed
concurrently), deferred (condition evaluation occurs
at the end of the outermost transaction in which a
rule is triggered), and decoupled (a new top-level
transaction is created for processing a rule). The
coupling mode of interest in this paper is the
immediate synchronous coupling mode, which
results in a nested execution structure where the
triggering transaction suspends while the triggered
rule executes as a sub-transaction. IRules must
suspend the transaction that executes the triggering
event and release the suspended transaction when
rule execution completes.

Consider the case of method events. An IRules
wrapper wraps each black-box instance and acts as a
proxy to the black-box. Since the EJB component
model does not allow threading and does not support
primitives for a blocking mechanism, there is no
built-in mechanism for suspending method
execution to allow for rule execution. A
synchronization process has been implemented as
part of this research to coordinate the execution of
methods on components with the execution of rules

by the rule processor. Since any method of a
component executes in the context of a transaction
within IRules, the transaction identifier that
represents the IRules transactional context is used to
help generate a semaphore for the synchronization
process. The transaction identifier alone, however, is
not sufficient for the creation of a semaphore since
the JACL interpreter for executing ISL transactions
allows multi-threading. As a result, two or more
methods on components within one transaction can
be called concurrently by the JACL interpreter.

We associate a counter, initialized to zero, with
the transaction identifier to create a
ResourceSemaphore object as a pair (ti, cij), where ti
is the transaction identifier and cij is a counter for the
execution of methods within ti. The
ResourceSemaphore (ti, cij) is used to provide a
unique event identifier, known as the EventId, across
all of the distributed components that execute within
the IRules environment. The EventId is used to
coordinate the suspension of a wrapper for a specific
method execution with the execution of immediate
rules in response to before and after events.

JavaSpaces has been used to implement the
synchronization process. A take operation provides
a way to remove an object from the JavaSpaces
persistent store. The take operation is a blocking
operation that will wait until an object matching a
template is found. A ResourceSemaphore with a

Figure 8. Events in the IRules Environment

transaction identifier and a counter initialized to
zero is placed into JavaSpaces at the start of a
transaction. The wrapper generating the before event
must use a take operation to access the
ResourceSemaphore and to create a unique EventId
object. When the ResourceSemaphore object is
retrieved, the counter of the object is incremented
and the modified ResourceSemaphore is written back
to the JavaSpace to prevent unnecessary waiting for
the concurrent execution of multiple methods within
the same transaction. Since the ResourceSemaphore
object is unique for each transaction and method
within a transaction, deadlock cannot occur.

The EventId object is used as the synchronization
object for the suspension and release of the wrapper
execution. The EventId is packaged along with an
EventMsg and sent to the IRules Event Topic. The
event handler detects the event and propagates the
information to the rule processor. The rule processor
executes the immediate rules for the particular
event. When the rule execution is completed, the
rule processor notifies the wrapper that it can
continue by writing the EventId back into the
JavaSpace. The wrapper, which has been waiting
during the rule execution by executing a take
operation on the EventId, succeeds in retrieving the
EventId and returns from the blocking operation. The
synchronization process for after events is similar to
before event processing, with the full details of the
algorithm in (Kambhampati, 2003).

We have tested the event service and rule
execution modules using the synchronization
process for the investment example. We have also
evaluated the performance of event detection for the
four different types of IRules events. Detection time
for application transaction and method events is
measured as the duration from event occurrence to
the time that the rule manager receives the event.
Method event detection is more time consuming
than application transaction event detection. Both
types of event detection must query the metadata to
determine the need to generate before and after
events. Metadata access from component wrappers,
which are also implemented as EJB components, is
more time consuming than Java method calls to the
metadata in the detection of application transaction
events. The detection of internal and external events
is measured differently from that of method and
transaction events. The detection time of internal
and external events is the duration required to wrap
an event and push the event to the rule manager once
the event handler gets events from JMS. The
detection of internal and external events varies
according to the data type of the message. Detection
for the map type, for example, is slower than the
stream data type.

6 RELATED WORK

Several event processing/distributed rule systems are
related to our research. In (Carzaniga, 2001), the
authors describe a general-purpose, Internet-scale
notification service called SIENA. Unlike SIENA,
the IRules project concentrates on integration of
transactional context along with events to develop
distributed applications. JEDI (Cugola et al., 2001)
supports an object-oriented infrastructure for the
development and operation of event-based systems,
also based on active rules. IRules differs from JEDI
by coordinating the generated events with
application transactions, thus allowing for seamless
integration instead of intermixing reactions to events
with application logic.

 In (Collett et al., 1998), the authors introduce
dimensions to characterize event definition,
detection, production, and notification for event
services in active database systems, where the
producers and consumers communicate via the
CORBA push and pull protocols. There is no
mention of a rule execution service for active rules
as in the work presented in this paper.

In (Liebzig et al., 2000), the authors present a
CORBA-based transaction and notification service
X2TS as part of a larger project for unbundling the
concepts of active object systems. In (Cilia et al.,
2001), the authors propose an architecture to move
active functionality from centralized to open
distributed heterogeneous environments using the
results of X2TS to allow for different coupling
modes. Unlike IRules, X2TS requires event-
consuming active objects to pre-register as a group
with the triggering transaction so that a call-back
mechanism can be invoked by consumers to release
the event producer in support of an immediate
coupling mode. The authors state the desire to
explore a declarative means to introduce the concept
of active objects into the CORBA object model.

The research in (Benatallah et al., 2002) has
developed an approach known as SELF-SERV
(composing wEb accessible information & business
sERVices) for declarative composition of dynamic
web services in a peer-to-peer architecture. ECA
rules are used in SELF-SERV to control state
transitions. In IRules, integration rules play a more
direct role in the design of the application
integration logic.

7 SUMMARY

This paper has presented an original approach to
enhancing black-box components with the
specification and generation of events, including a

synchronization algorithm for coordinating method
execution with the nested execution of integration
rules. In addition to the implementation of the event
processing system, we have implemented a query
processor for IRules based on the monoid algebra of
(Fegaras and Maier, 1995), and a rule processor that
uses the flexible transaction model for the nested
execution of rules (Jin et al., 2002). Full
development of compensating transactions for
dealing with failure in the rule execution process is
an area for future research. Other directions for
future research include extending the environment to
include different component models, different
messaging services, and composite events. We have
already developed a prototype implementation of the
IRules environment using Web Services (WSA,
2002) together with the synchronization algorithm
described in this paper. We are also redesigning the
environment for use with Grid services (Foster,
2002).

REFERENCES

Benatallah, B, Dumas, M., Sheng, Q., and Ngu, A., 2002.
Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services, Proc. of the
18th Inl. Conf. on Data Eng., San Jose, CA, 297-308.

BPEL4WS, 2002. Business Process Execution Language
for Web Services. Version 1.0. http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/

Carzaniga, A., Rosenblum, D S., and Wolf, A L., 2001.
Design and Evaluation of Wide-Area Event
Notification Service. ACM Trans. on Computer Sys.
19(3), 332 -383.

Cattell, R. and Barry D., 2000. The Object Database
Standard: ODMG 3.0, Morgan Kaufmann.

Cilia, M., Bornhovd, C., and Buchmann, A.. 2001.
Moving Active Functionality from Centralized to
Open Distributed Heterogeneous Environments. Proc.
of the 6th Int. Conf. on Cooperative Information Sys.,
2172 LNCS. Springer.

Collet, C., Vargas-Solar, G., and Grazziotin-Ribeiro, H.,
1998. Towards a Semantic Event Service for
Distributed Active Database Applications. DEXA,
LNCS 1460.

COM/DCOM, 2003. COM/DCOM Specification.
http://www.microsoft.com/com/resources/comdocs.as
p

Cugola, G., Nitto, E., and Fuggetta, A., 2001. The JEDI
Event-Based Infrastructure and Its Application to the
Development of the OPSS WFMS. IEEE Trans. on
Software Eng., 27, 827-850.

Dietrich, S W., Urban, S D., Sundermier, A., Na, Y., Jin,
Y., and Kambhampati, S., 2001. A Language and

Framework for Supporting an Active Approach to
Component-Based Software Integration. Informatica
25,4 443-454.

DeJong, M., and Laird, C., 2003. TCL+Java = A match
made for scripting.
http://www.tcl.tk/software/java/java.html

EJB, 2001. Enterprise JavaBeans Specification 2.0.
Proposed Final Draft 2.

Fegaras, L., and Maier, D., 1995. Towards an Effective
Calculus for Object Query Languages. ACM SIGMOD
Int. Conf. on Mgmt. of Data, San Jose CA, 47-58.

Foster, I, Kesselman, C., Nick, J., and Tuecke, S. “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration”,
http://www.globus.org/research/papers/ogsa.pdf, 2002.

Freeman, E., Hupfer, S., and Arnold, K., 1999. JavaSpace:
Principles, Patterns, and Practice. Addison-Wesley.

JMS, 1999. Java Messaging Service 1.0.2.
http://java.sun.com/products/jms/docs.html

J2EE, 2003. Java TM 2 Platform, Enterprise Edition
(J2EE). http://java.sun.com/j2ee/

Jin, Y., Urban, S D., Sundermier, A., and Dietrich, S W.,
2002. An Execution and Transaction Model for
Active, Rule-Based Component Integration
Middleware. Proc. of the Eng. and Deployment of
Cooperative Info. Sys.

Kambhampati, S., 2003. An Event Service for a Rule-
Based Approach to Component Integration, M.S,
Thesis, Dept. of Computer Sci. and Eng., Arizona
State University.

Liebig, C., Malva, M., and Buchmann, A., 2000.
Integrating Notifications and Transactions: Concepts
and X2TS Prototype. Proc. of 2nd Int. Workshop on
Eng. Distributed Objects.

OMG, 1998. Object Management Group: The common
Object Request Broker, Architecture and
Specification, (December 1998).

Ousterhout, J., 1994. TCL and the TK Toolkit. Addison-
Wesley Publishing.

Patil, R., 2003. The Development of a Framework
Supporting an Active Approach to Component-Based
Software Integration, Arizona State University, Dept.
of Comp. Sci. and Eng., Spring 2003.

Rumbaugh, J., 1987. Relations as Semantic Constructs in
an Object-Oriented Language. Proc. of OOPSLA, 446-
481.

Urban, S D., Dietrich, S W., Na, Y., Jin, Y., Sundermier,
A., and Saxena, A., 2001. The IRules Project: Using
Active Rules for the Integration of Distributed
Software Components. Proc. of the 9th IFIP 2.6
Working Conf. on Database Semantics: Semantic
Issues in E-commerce Sys. Hong Kong, 265-286.

WSA 2002. Web Services Activity,
http://www.w3.org/2002/ws

Widom, J., and Ceri, S., 1996. Active Database Systems.
Morgan Kaufmann publishers, San Francisco CA.

