Perfor mance Prediction of Data-Dependent Task
Parallel Programs

Hasyim Gautama and Arjan J. C. van Gemund

Faculty of Information Technology and Systems
Delft University of Technology
P.O. Box 5031, NL-2600 GA Delft, The Netherlands
{H. Gaut ama, A.J.C. vanGenund}@ TS. TUDel ft.NL

Abstract. Current analytic solutions to the execution time predicti6 of bi-
nary parallel compositions of tasks with arbitrary exesanttime distributions
X, and X, are either computationally complex or very inaccurate his paper
we introduce an analytical approach based on the use of lamtisttibutions to
approximate execution time distributions. This allowsapitedict the first 4 sta-
tistical moments ot” in terms of the first 4 moments df; at negligible solution
complexity. The prediction method applies to a wide rangavorkload distri-
butions as found in practice, while its accuracy is betteequal compared to
comparable low-cost approaches.

1 Introduction

A well-known problem in the performance analysis of patadled distributed systems
is to predict the execution time of a parallel compositiontasgks having stochastic
execution time. Parallel task compositions can be distsigd inton-ary composi-
tions and binary compositions. Theary compositions typically result from data par-
allelism (e.g., parallel loops) where each task esseyptiallolves the same computa-
tion on different data. Binary compositions, in contragpitally result from task par-
allelism where the computation involved in the compositinay be totallydifferent
Consequently, performance prediction of task parallegpams frequently requires the
evaluation of binary (heterogeneous) parallel compasitia problem that, unlike-ary
compositions, has not received much attention.

Consider a binary parallel composition of two tasks havirgegition timeX; and
Xo, respectively. The resulting execution tifieof the parallel composition is given by

Y = max(X;, X») (1)

Many authors have used Eq. (1) as part of a compile-timegtatidiction technique [1,
3,11, 14]. In these approach&s (andY’) are implicitly assumed to be deterministic.
While Eq. (1) indeed yields a correct prediction whE€pare deterministic, interpreting
Eq. (1) in terms of mean values whén arestochastidi.e.,E[Y] = max(E[X1], E[X2]))
introduces a severe error which increases monotonicattythe variance oX; [7]. For
example, consider the binary composition of two tasks whexeeution time are inde-
pendent, normally distributed with[ X;] = E[X5] = 1, Var[X;] =1 andVar[X;]=02.
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Our measurements show that the relative error of the predigfy’] is almost40%
and70% for c = 1 and5, respectively. Yet, in many practical circumstancésare
typically modeled as stochastic parameters, reflectingxieeution time distribution of
possibly time-critical tasks over a large spectrum of gaesnput data sets, and/or the
inherent stochastic behavior of the underlying virtual hiaes. While such a stochas-
tic approach is more effective and realistic than using reiteistic parameters [15],
solving Eqg. (1) now becomes a non-trivial problem well-kmoin the field of order
statistics.

There are a number of approaches to express an executiordtstnéution, the
choice of which largely determines the trade-off betweetueacy and cost involved
in solvingY'. An exact, closed-form, solution for the distribution¥éfcan be obtained
using the cumulative density function (cdf). L, (x) denote the cdf of;. For inde-
pendentX; from order statistics [17] it follows thaky (z) is given by

Fy(z) = Fx, (z)Fx, () (2)

While Eq. (2) is exact, only parametric solutions are of ficad use.

Recently a method has been proposed [4] where a distribigioapresented in
terms of a limited number of statistical moments. Ffemoment ofX, denotedE[ X ¥],
is defined by

E[X*] = / ¥ dFx (z) (3)
This method has been successfully applied to the analysisqpfential and conditional
task compositions [5], such that the first four moments oftkecution time E[Y *]) of

an arbitrary composition of loops and branches can be reelyexpressed in terms of
the first four moments of each loop bound, branch probabditg basic block execution
time (E[X*]) atO(1) cost. Although the approach is straightforward in the setjak
domain, for parallel composition there is in general no gial closed-form solution
for E[Y*] in terms ofE[ X'*] due to a fundamental integration problem [4].

In this paper we present a method based on the use of lamhktdautisns as in-
termediate approximation of an execution time distributio terms of the first four
moments. Our contribution has the specific advantage teaproximation oE[Y*],
now readily expressed in terms of the input momeijt§*], hasO(1) solution com-
plexity while the approximation error is acceptable. Rélyetne use of lambda distri-
butions has already been successfully introduced to salekated integration problem
for n-ary parallel compositions of tasks with independent, fabatly distributed (iid)
execution times [4]. Experiments show that the estimativoreof the mean value of
the parallel execution time is less than 4% for parallelisestcomprising up to 10,000
tasks whose execution times are normally distributed. Mesmsents on real programs
(NAS-EP benchmark, PSRS sorting program, and WATOR siraglatonfirm these
results provided the task execution distributions are prethelent and unimodal [4].
However, the requirements df; being identical restricts these results to binary par-
allel compositions withidenticalwork loads whilenorridentical work loads frequently
occur in practice.

The results for binary compositions nbr-identical tasks as presented in this paper
therefore extends the general applicability of the momapgsoach from the data paral-
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lel computing domain to the task parallel computing domainere task heterogeneity
is common. Combining with the results for sequential praggdghe moment method

constitutes an integrated approach to the analysis of arallglaprogram that can be

modeled by Series-Parallel stochastic graphs (SP-graptf)e best of our knowledge

such an approach towards solvigf}"*] for binary parallel task compositions in terms
of E[X*] has not been described elsewhere.

The remainder of the paper is organized as follows. In Se@iwe review current
approaches towards performance estimation of binary leatatk composition. In Sec-
tion 3 we present our approximation method using lambdaibligtons. In Section 4
we test the our method using well-known standard distrimgias well as distributions
measured from real applications.

2 Reated Work

There have been a number of analytic approaches to preglitinexecution time of a
binary parallel composition of tasks having stochasticexien time. One approach is
to restrict the type of distributions allowed fof to those, for which exact analytical
solutions can be derived, such as the class of discretéudistms using the traditional

z-transform [9], exponential and uniform distribution®]land the class of exponomial
distributions [13]. While the solution is exact, such extmu time distributions are

seldom found in practical programs.

Another approach is by approximatitigin terms of increasing failure rate random
variables [8] or in terms Gram-Charlier series of type A frovhich the integration
problem can be solved [4]. Again, IEf X*] be the moments that characterize the dis-
tribution of X. Then the approximating probability density function (paff X', denoted
by f(z), can be expressed by the Gram-Charlier series [4]. Whileasytically exact,
it can be shown, unfortunately, that the number of Gram-{@ralerms needed for a
sufficiently accurate approximation is prohibitive [4].

While the above approaches allo¥y to have different distributions, other methods
approach the binary composition problem from thary perspective [4,6,7], i.e., by
solvingY = max (X4, ..., Xn) for N = 2. However, all these approaches assuiihe
to be iid which significantly narrows the application space.

As a result of the difficulties in finding a low-cost, accutadealytical solution to
solving the binary parallel composition problem, also a benof heuristic approaches
have been proposed. A good example of such an approach id fio{it5]. Y is calcu-
lated by simply choosing; with the largest mean or by selecting the stochastic value
with the largest magnitude value in its entire range. Fongxa (adapted from [15]),
to compute the maximum of; = 4+ 0.5 and X, = 3 + 2, X; has the largest mean,
and X, has the largest value within its range. On average howeweryalues ofX;
are likely to be higher than the values &%. We formulate the heuristic as described
in [15] as follows

X1, E[Xi]> E[X,]
Y ={ X1, E[X)] = E[X,] and E[X?] > E[X?) @)
X, otherwise
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Being a simple heuristic, despite its attractive low-cosperty, Eqg. (4) only takes into
account the first two momenE X ¥], and, amongst other things, does not compute the
offset in E[Y] as established by the order statistics. Nevertheless,to@ur positive
prior experience with lambda distributions, this heudstas partly been the inspiration
for our low-cost, analytic solution to the binary parallehsposition problem.

3 Methodology

In this section we present our approximation approach usimgpda distributions. Due
to space limitation the background of lambda distributinsmitted, while interested
reader is referred to [12]. First, we describe the principddind our approach, after
which we present our main result for binary parallel composi

3.1 Principle

To illustrate the principle of our approach consider thédiwing example. LetX; and
X, be uniform distributions with sample spaci@s1/m]|, wherem > 0 is a shape
parameter, andl, 3/2], respectively. Figure 1 showix, for m = 1 and Fx, which
indicates a trivial case to obtalri. From Eg. (2) we immediately obtaify, = Fx,
sinceFx, = 1for Fx, > 0. In contrast, Figure 2 shows the resultifg (dashed line)
using Eq. (2) forn = 1/2. Due to the integration problem this exact solutién cannot
be evaluated explicitly in terms & X . Applying heuristic Eq. (4) would simply yield
Y = X, independent oVar[ X ]. Consequently this heuristic causes a large estimation
error shown by area betwedry, and Fy which increases monotonically as function
of Var[X;].

A better approximation can be obtained by takingmmiaimumof Fx, andFx, as
shown by the bold solid line in Figure 2. In contrast to heigigq. (4) this approach
implicitly takesVar[X;] into account such that the estimation error is less serditiv
Var[X1].
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Fig.2. Y = max(X1,X2) for m =

Fig.1. Y = max(X1, X2) form = 1. 1/2.

Since the execution time distribution in our method is expeal in terms of statistical
moments, we have to evaluate the momenfis @fhich can be time consuming because
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the cdf ofY may range from-oo to co. Due to the specific (inverse) formulation of the
lambda distribution, however, the moments can be easilgioéd while the cdf range

is significantly reduced frorfito 1 (as shown in Section 3.2). A second reason for using
the lambda distribution is thatvalues can be obtained froBi.X *] in a straightforward
manner. Thu€[Y*] can be easily evaluated directly froBiX *] using the values as
intermediate parametric representation.

3.2 Binary Parallel Composition

We now present our new result for general binary parallel gositions in Theorem 1
based on the use of the lambda distribution.

Theorem 1. Let random variablé@” be defined as
Y = HlaX(Xl,Xg)

whereX; are independent random variables for whiEpX*], k = 1,2, 3, 4 exists. Let
X, be expressed in terms of the lambda distribution as
(F* (1 F)™)
Qo
(F% - (1= F)*)
B2

whereq; and3; are constants evaluated from a simple functiotXgfand X, respec-
tively. Then the moments Bfare approximated by

X1:RX1(F):()(1+

Xy = Rx,(F)=p1 +

E[Y"] = / (max(Rx, (F), Rx, (F)) + Az)*dx (5)

whereAz is the approximation error.

The proof of Theorem 1 is given in [4]. It can be proven that reaches a maximum
whenE[X;] = E[X,] and approaches zero whé[X;] — E[X,]| is large. As men-
tioned earlier, due to specific formulation afdistribution the distribution ot may
range from O to 1 rather than fromoo to oo which significantly reduces the solu-
tion cost. Note that Eq. (5) conserves the commutative ptgé the binary parallel
composition.

4 Synthetic Distributions

This section describes the quality of our prediction apphoahen applied to some of
the frequently-used standard distributions. The estmmequality is defined by the rel-
ative errore;, evaluated from the predicted momeff3’)] in Eq. (5) and the measured
momentsE[Y,%], according to

k] k
D] — E[VE] ©

Er =
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In our applications we usg, to determine the estimation error of our method (Eq. (5))
as well as the heuristic (Eq. (4)).

The first synthetic distribution is the continuous uniforistdbution. Let X; and
X, be continuous uniform distributions with sample spaites/m] and[1,3/2], re-
spectively, wheren in X; is introduced to evaluate the relative error betwégnand
X, for various scenarios. Far.1 < m < 2/3 our method is much better than the
heuristic as shown in Figure 3 while fay3 < m < 1 both methods yield the same
error. Form > 1 both methods have no error since the cdf’s are disjunct {i.es X5).
The maximum error of our method i$% while €, is even less thab%.
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Fig.3. e, for uniform distribution. Fig. 4. £, for exponential distribution.

A similar scenario is also used for the exponential distidouwhereE[X,] = 1, and
E[X2] = 1/6 with # varying from 0.1 to 10. The relative error is shown in Figure 4
Again as a consequence of the prediction principle desgiibé&ection 3.1, the error

is the largest whel[X;] = E[X]. Note that in this case the heuristic Eq. (4) has the
same performance sindéx, < Fl, in the entire range causes both methods to return
the X with the greatest mean value. Note also that in Figurg ¥ symmetric around

6 = 1 when# is plotted in logarithmic scale. The maximum error 1] is 33%,
which sharply decreases for diverging workloads.

The third synthetic distribution is the normal distributizvhereE[X,] = 1 and
Var[X;] = 1, while E[X,] = u andVar[X,] = ¢2. We varyu ando as shown in
Figures 5 and 6, respectively. Again, the estimation ergmreases as the workloads
diverge, while for larger variance our method outperforims heuristic. In Figure 5
both methods have the same error since the predictési X,. Note that in Figure 6
the decreasing;, for k = 2 ando = 2 is due toE[Y?] > E[XZ]for1 < o < 2
while E[Y?] < E[X%] for o > 2. The maximum error oE[Y] is 35%, while the error
decreases witWar[X;] whereas the error of heuristic Eq. (4) steadily increases.
Summarizing this section, we conclude that the maximumrefour method occurs
whenX; = X, while the error quicklydecreasewvith increasing workload unbalance.
Although the maximum error ranges into tens of percentshtheistic is a significant
improvement over the previous heuristic Eqg. (4), and of seupver the commonly
used deterministic approach (Eg. (1)) of which the erroches ofE[Y], e.g.,70% for
o = 5 in the normal distribution case. Furthermore, the diffeebetween the predic-



Performance Prediction of Data-Dependent Task Paraltgms 7
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Eq. (5) fork =3

08 - Eq. (5) fork =4 1
Eq. (4) fork =1------
Eq. (4) fork =2 ------

0.6

Fig.5. e, for normal distributions = 1. Fig. 6. ex, for normal distributiory = 1.

tion accuracy of our method and the previous heuristic andrdenistic approaches
increases in favor of our method for increasing task exeatttime variance.

A significant point of our results is that our methgdinsaccuracy fordifferent
workloads, a situation typical for task parallelism, whictdeed is the focus of our
method. In this sense our method is complementary toweany (data parallel) predic-
tion method which adequately covers the situation wiPé, | is closeto E[X5] [4].

5 Empirical Distributions

5.1 Pipeine

In this section we determine the quality of our approxim@atidien applied to a pipelined
application of two tasks whose execution times are denoyed pand X, respec-
tively. The pipeline comprises a Gaussian random genetasir that supplies one-
dimensional, real-valued vectors of lengthto a PSRS sorting task. In steady state the
total execution time per vector of the pipelined applicatogiven byY” = max(X;, X»),
assuming both tasks use different resources.

The generator task is implemented using the data parall&-ER benchmark [2].
The PSRS sorting task is a data parallel application thds $be input array by first
dividing the array inP equal subarrays wher@ also denotes the number of processors.
Each partition is sorted in parallel, after which a numbaeglobal pivots are determined.
Based in these pivots, the subarrays are cyclically meyed. result, a sorted array is
obtained. A description of the algorithm can be found in [16]

To have an interesting scenario for our experiment (i.e wbrst case for Eqgs. (5)
and (4)), we adjust the parameters such that both tasks pavexamately equal work-
load (which also balances the pipeline). We choBse 1 processor for NAS-EP and
P = 24 for PSRS. The pipeline processeg00 arrays per experiment. A number
of experiments, based @) 000 simulation runs, are performed whehé varies from
N =410*to N = 10°. For N = 10° the pdf’'s of X; and X, are given in Figure 7. In
this figure X, is approximately normal whil&'s has a long right tail. Furthermore, the
variance ofX, (the sorting task) is much larger than that'of.

Figure 8 shows;, of our method and the heuristic. For both methegé decreas-
ing for increasingV due to the disjunction oX; and X,. AlthoughE[X;] = E[X]
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e is excellent since the coefficient of variation is small (iragice, task variance is
indeed much smaller than we have assumed in our theoretigagican in Section 4).

0.003 X 0.008
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Fig. 7. pdf(X,) and pdf(X2) for N = 105, Fig.8. i, for pipeline.

52 WATOR

In this section we predict the performance of WATOR, an aggion where the task
workload balance changes significantly over the time. WATi©&Monte Carlo simula-
tion in which idealized fish and sharks live, move randomtgdal, and eat one another
in a two-dimensional ocean with toroidal topology. The auderistic of such an algo-
rithm is that the workload can be severally unbalanced texaf the computational
scenario. Hence the workload in each processor is changihgincreasing iteration
number; (i.e., simulated time). The load unbalance comes aboutalgtiecause of
the dynamics of the problem: the fish and sharks tend to agtg@gschools as the they
breed, move and eat each other. More information on the ithgorcan be found in7].

In our experiment we perform a simple rectangular subdomegomposition of the
ocean forP = 2 processors such that each processor is assigned to prqbe8seid
points. As workloadX we choose the number of fish within each processor, which on
initialization is generated randomly over each locatiothi@ ocean. The workload;
for ¢ ranging from0 to 256 is given in Figure 9 in terms of central moments based on
6,000 simulation runs. The pdf ok, whereX; is normalized, is given in Figure 10.
As shown by the table and the figure, the workload changes tower;, exhibiting a
bimodal distribution for = 256. The estimation error is given in Figure 12 for iteration
number; = 2,...,128. Although initially below 5%, the error quickly increasesthv
the iteration numberf as a result of the large correlation betweEn and X, which
implies thatX; and X, are no longer independent (populations in different preces
influence one-another). This dependence also causes trdebe the same for both
methods.

In Figure 11 the correlation is shown betweBnand P; for P = 16 processors.
Despite the small coefficient of correlation the actual c@arece is large due to large
variance values. As to be expected Figure 11 shows that thelation is the largest
for the processors nearesti (P, and P4, the processors are interconnected in a 1-D
torus). Figure 11 also shows that the correlation increagtisthe iteration number.
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| i [E[Xq][Var[X1][Skw[X:][Kur[X,]|
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Fig. 9. The first four central moments df; ol

for WATOR (P = 2).
or ( ) Fig. 10. Normalized pdf({;) for WATOR.
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Fig. 11. Measured correlation for WATOR. Fig. 12. ¢, for WATOR.

In summary, our measurements of the two above applicatibow shat the error of

E[Y] is in the percent range, rather than in the ten percent ream@ practice task
execution time variance is less than our theoretic experimmight suggest. Provided
the task execution times are independent these resultgesutat this is even a worst
case as in the corresponding experiments the tasks hadwegikdbads.

6 Conclusion

In this paper we have presented an analytical model of theutiom time distribution
Y of binary parallel composition of task¥; and X, with stochastic workloads. Our
approach is based on approximating the distributi@hand Y in terms of the first
four moments, in conjunction with the use of the lambda itistion as an intermediate
vehicle, to derive a closed-fornd)(1) complexity expression foE[Y*] in terms of
E[X*].

We have investigated to what extent the moments approamatnd the lambda
distribution approximation have affected the accuracywfroodel. Measurements us-
ing three well-known synthetic workload distributions shthat the worst case error
of E[Y] is 35%, occurring for equal workloads, while sharply desieg for diverging
workloads. Empirical data obtained from two real prograogggest that the worst case
error may actually be much less (our measurements indicdfe provided the task
workloads are independent.
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As an adequate solution already exists for parallel contiposi where tasks have

equal workloads, our method focuses on filling the gap wheveklwads are differ-
ent. The results show that in this sense our approach pre@dew-cost solution that
outperforms comparable methods known to date.
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