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Abstract. Current analytic solutions to the execution time prediction Y of bi-
nary parallel compositions of tasks with arbitrary execution time distributionsX1 andX2 are either computationally complex or very inaccurate. In this paper
we introduce an analytical approach based on the use of lambda distributions to
approximate execution time distributions. This allows us to predict the first 4 sta-
tistical moments ofY in terms of the first 4 moments ofXi at negligible solution
complexity. The prediction method applies to a wide range ofworkload distri-
butions as found in practice, while its accuracy is better orequal compared to
comparable low-cost approaches.

1 Introduction

A well-known problem in the performance analysis of parallel and distributed systems
is to predict the execution time of a parallel composition oftasks having stochastic
execution time. Parallel task compositions can be distinguished inton-ary composi-
tions and binary compositions. Then-ary compositions typically result from data par-
allelism (e.g., parallel loops) where each task essentially involves the same computa-
tion on different data. Binary compositions, in contrast, typically result from task par-
allelism where the computation involved in the compositionmay be totallydifferent.
Consequently, performance prediction of task parallel programs frequently requires the
evaluation of binary (heterogeneous) parallel compositions, a problem that, unliken-ary
compositions, has not received much attention.

Consider a binary parallel composition of two tasks having execution timeX1 andX2, respectively. The resulting execution timeY of the parallel composition is given byY = max(X1; X2) (1)

Many authors have used Eq. (1) as part of a compile-time static prediction technique [1,
3, 11, 14]. In these approachesXi (andY ) are implicitly assumed to be deterministic.
While Eq. (1) indeed yields a correct prediction whenXi are deterministic, interpreting
Eq. (1) in terms of mean values whenXi arestochastic(i.e.,E[Y ℄=max(E[X1℄;E[X2℄))
introduces a severe error which increases monotonically with the variance ofXi [7]. For
example, consider the binary composition of two tasks whoseexecution time are inde-
pendent, normally distributed withE[X1℄=E[X2℄ = 1,Var[X1℄=1 andVar[X2℄=�2.
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Our measurements show that the relative error of the predicted E[Y ℄ is almost40%
and70% for � = 1 and5, respectively. Yet, in many practical circumstancesXi are
typically modeled as stochastic parameters, reflecting theexecution time distribution of
possibly time-critical tasks over a large spectrum of possible input data sets, and/or the
inherent stochastic behavior of the underlying virtual machines. While such a stochas-
tic approach is more effective and realistic than using deterministic parameters [15],
solving Eq. (1) now becomes a non-trivial problem well-known in the field of order
statistics.

There are a number of approaches to express an execution timedistribution, the
choice of which largely determines the trade-off between accuracy and cost involved
in solvingY . An exact, closed-form, solution for the distribution ofY can be obtained
using the cumulative density function (cdf). LetFXi(x) denote the cdf ofXi. For inde-
pendentXi from order statistics [17] it follows thatFY (x) is given byFY (x) = FX1 (x)FX2 (x) (2)

While Eq. (2) is exact, only parametric solutions are of practical use.
Recently a method has been proposed [4] where a distributionis represented in

terms of a limited number of statistical moments. Thekthmoment ofX , denotedE[Xk℄,
is defined by E[Xk℄ = Z 1�1 xkdFX (x) (3)

This method has been successfully applied to the analysis ofsequential and conditional
task compositions [5], such that the first four moments of theexecution time (E[Y k℄) of
an arbitrary composition of loops and branches can be recursively expressed in terms of
the first four moments of each loop bound, branch probability, and basic block execution
time (E[Xk℄) atO(1) cost. Although the approach is straightforward in the sequential
domain, for parallel composition there is in general no analytic, closed-form solution
for E[Y k℄ in terms ofE[Xk℄ due to a fundamental integration problem [4].

In this paper we present a method based on the use of lambda distributions as in-
termediate approximation of an execution time distribution in terms of the first four
moments. Our contribution has the specific advantage that the approximation ofE[Y k℄,
now readily expressed in terms of the input momentsE[Xki ℄, hasO(1) solution com-
plexity while the approximation error is acceptable. Recently the use of lambda distri-
butions has already been successfully introduced to solve arelated integration problem
for n-ary parallel compositions of tasks with independent, identically distributed (iid)
execution times [4]. Experiments show that the estimation error of the mean value of
the parallel execution time is less than 4% for parallel sections comprising up to 10,000
tasks whose execution times are normally distributed. Measurements on real programs
(NAS-EP benchmark, PSRS sorting program, and WATOR simulator) confirm these
results provided the task execution distributions are independent and unimodal [4].
However, the requirements ofXi being identical restricts these results to binary par-
allel compositions withidenticalwork loads whilenon-identical work loads frequently
occur in practice.

The results for binary compositions ofnon-identical tasks as presented in this paper
therefore extends the general applicability of the momentsapproach from the data paral-
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lel computing domain to the task parallel computing domain,where task heterogeneity
is common. Combining with the results for sequential programs the moment method
constitutes an integrated approach to the analysis of any parallel program that can be
modeled by Series-Parallel stochastic graphs (SP-graphs). To the best of our knowledge
such an approach towards solvingE[Y k℄ for binary parallel task compositions in terms
of E[Xk℄ has not been described elsewhere.

The remainder of the paper is organized as follows. In Section 2 we review current
approaches towards performance estimation of binary parallel task composition. In Sec-
tion 3 we present our approximation method using lambda distributions. In Section 4
we test the our method using well-known standard distributions as well as distributions
measured from real applications.

2 Related Work

There have been a number of analytic approaches to predicting the execution time of a
binary parallel composition of tasks having stochastic execution time. One approach is
to restrict the type of distributions allowed forX to those, for which exact analytical
solutions can be derived, such as the class of discrete distributions using the traditional
z-transform [9], exponential and uniform distributions [10], and the class of exponomial
distributions [13]. While the solution is exact, such execution time distributions are
seldom found in practical programs.

Another approach is by approximatingX in terms of increasing failure rate random
variables [8] or in terms Gram-Charlier series of type A fromwhich the integration
problem can be solved [4]. Again, letE[Xk℄ be the moments that characterize the dis-
tribution ofX . Then the approximating probability density function (pdf) ofX , denoted
by f(x), can be expressed by the Gram-Charlier series [4]. While asymptotically exact,
it can be shown, unfortunately, that the number of Gram-Charlier terms needed for a
sufficiently accurate approximation is prohibitive [4].

While the above approaches allowXi to have different distributions, other methods
approach the binary composition problem from then-ary perspective [4, 6, 7], i.e., by
solvingY = max(X1; : : : ; XN) for N = 2. However, all these approaches assumeXi
to be iid which significantly narrows the application space.

As a result of the difficulties in finding a low-cost, accurate, analytical solution to
solving the binary parallel composition problem, also a number of heuristic approaches
have been proposed. A good example of such an approach is found in [15].Y is calcu-
lated by simply choosingXi with the largest mean or by selecting the stochastic value
with the largest magnitude value in its entire range. For example (adapted from [15]),
to compute the maximum ofX1 = 4� 0:5 andX2 = 3� 2, X1 has the largest mean,
andX2 has the largest value within its range. On average however, the values ofX1
are likely to be higher than the values ofX2. We formulate the heuristic as described
in [15] as followsY =8<:X1; E[X1℄ > E[X2℄X1; E[X1℄ = E[X2℄ and E[X21 ℄ > E[X22 ℄X2; otherwise: (4)
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Being a simple heuristic, despite its attractive low-cost property, Eq. (4) only takes into
account the first two momentsE[Xki ℄, and, amongst other things, does not compute the
offset inE[Y ℄ as established by the order statistics. Nevertheless, nextto our positive
prior experience with lambda distributions, this heuristic has partly been the inspiration
for our low-cost, analytic solution to the binary parallel composition problem.

3 Methodology

In this section we present our approximation approach usinglambda distributions. Due
to space limitation the background of lambda distributionsis omitted, while interested
reader is referred to [12]. First, we describe the principlebehind our approach, after
which we present our main result for binary parallel composition.

3.1 Principle

To illustrate the principle of our approach consider the following example. LetX1 andX2 be uniform distributions with sample spaces[0; 1=m℄, wherem > 0 is a shape
parameter, and[1; 3=2℄, respectively. Figure 1 showsFX1 for m = 1 andFX2 which
indicates a trivial case to obtainY . From Eq. (2) we immediately obtainFY = FX2
sinceFX1 = 1 for FX2 > 0. In contrast, Figure 2 shows the resultingFY (dashed line)
using Eq. (2) form = 1=2. Due to the integration problem this exact solutionFY cannot
be evaluated explicitly in terms ofE[Xki ℄. Applying heuristic Eq. (4) would simply yieldY = X2 independent ofVar[X1℄. Consequently this heuristic causes a large estimation
error shown by area betweenFX2 andFY which increases monotonically as function
of Var[X1℄.

A better approximation can be obtained by taking theminimumof FX1 andFX2 as
shown by the bold solid line in Figure 2. In contrast to heuristic Eq. (4) this approach
implicitly takesVar[X1℄ into account such that the estimation error is less sensitive toVar[X1℄.
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Fig. 1. Y = max(X1; X2) for m = 1.
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Fig. 2. Y = max(X1; X2) for m =1=2.

Since the execution time distribution in our method is expressed in terms of statistical
moments, we have to evaluate the moments ofY which can be time consuming because
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the cdf ofY may range from�1 to1. Due to the specific (inverse) formulation of the
lambda distribution, however, the moments can be easily obtained while the cdf range
is significantly reduced from0 to 1 (as shown in Section 3.2). A second reason for using
the lambda distribution is that� values can be obtained fromE[Xk℄ in a straightforward
manner. ThusE[Y k℄ can be easily evaluated directly fromE[Xk℄ using the� values as
intermediate parametric representation.

3.2 Binary Parallel Composition

We now present our new result for general binary parallel compositions in Theorem 1
based on the use of the lambda distribution.

Theorem 1. Let random variableY be defined asY = max(X1; X2)
whereXi are independent random variables for whichE[Xk℄, k = 1; 2; 3; 4 exists. LetXi be expressed in terms of the lambda distribution asX1 = RX1(F ) = �1 + (F�3 � (1� F )�4)�2X2 = RX2(F ) = �1 + (F �3 � (1� F )�4)�2
where�i and�i are constants evaluated from a simple function ofX1 andX2, respec-
tively. Then the moments ofY are approximated byE[Y k℄ = Z 10 (max(RX1(F ); RX2 (F )) +�x)kdx (5)

where�x is the approximation error. 2
The proof of Theorem 1 is given in [4]. It can be proven that�x reaches a maximum
whenE[X1℄ = E[X2℄ and approaches zero whenjE[X1℄ � E[X2℄j is large. As men-
tioned earlier, due to specific formulation of� distribution the distribution ofY may
range from 0 to 1 rather than from�1 to 1 which significantly reduces the solu-
tion cost. Note that Eq. (5) conserves the commutative property of the binary parallel
composition.

4 Synthetic Distributions

This section describes the quality of our prediction approach when applied to some of
the frequently-used standard distributions. The estimation quality is defined by the rel-
ative error"k evaluated from the predicted momentsE[Y kp ℄ in Eq. (5) and the measured
momentsE[Y km℄, according to "k = jE[Y kp ℄� E[Y km℄jE[Y kp ℄ (6)
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In our applications we use"k to determine the estimation error of our method (Eq. (5))
as well as the heuristic (Eq. (4)).

The first synthetic distribution is the continuous uniform distribution. LetX1 andX2 be continuous uniform distributions with sample spaces[0; 1=m℄ and [1; 3=2℄, re-
spectively, wherem in X1 is introduced to evaluate the relative error betweenX1 andX2 for various scenarios. For0:1 � m < 2=3 our method is much better than the
heuristic as shown in Figure 3 while for2=3 � m < 1 both methods yield the same
error. Form � 1 both methods have no error since the cdf’s are disjunct (i.e., Y = X2).
The maximum error of our method is15% while "1 is even less than5%.
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Fig. 3. "k for uniform distribution.
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Fig. 4. "k for exponential distribution.

A similar scenario is also used for the exponential distribution whereE[X1℄ = 1, andE[X2℄ = 1=� with � varying from 0.1 to 10. The relative error is shown in Figure 4.
Again as a consequence of the prediction principle described in Section 3.1, the error
is the largest whenE[X1℄ = E[X2℄. Note that in this case the heuristic Eq. (4) has the
same performance sinceFX2 < FX1 in the entire range causes both methods to return
theX with the greatest mean value. Note also that in Figure 4"k is symmetric around� = 1 when� is plotted in logarithmic scale. The maximum error forE[Y ℄ is 33%,
which sharply decreases for diverging workloads.

The third synthetic distribution is the normal distribution whereE[X1℄ = 1 andVar[X1℄ = 1, while E[X2℄ = � andVar[X2℄ = �2. We vary� and� as shown in
Figures 5 and 6, respectively. Again, the estimation error decreases as the workloads
diverge, while for larger variance our method outperforms the heuristic. In Figure 5
both methods have the same error since the predictedY is X2. Note that in Figure 6
the decreasing"k for k = 2 and� = 2 is due toE[Y 2℄ > E[X22 ℄ for 1 < � < 2
while E[Y 2℄ < E[X22 ℄ for � > 2. The maximum error ofE[Y ℄ is 35%, while the error
decreases withVar[X2℄ whereas the error of heuristic Eq. (4) steadily increases.
Summarizing this section, we conclude that the maximum error of our method occurs
whenX1 = X2, while the error quicklydecreaseswith increasing workload unbalance.
Although the maximum error ranges into tens of percents, theheuristic is a significant
improvement over the previous heuristic Eq. (4), and of course, over the commonly
used deterministic approach (Eq. (1)) of which the error reaches ofE[Y ℄, e.g.,70% for� = 5 in the normal distribution case. Furthermore, the difference between the predic-
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Fig. 5. "k for normal distribution� = 1.
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tion accuracy of our method and the previous heuristic and deterministic approaches
increases in favor of our method for increasing task execution time variance.

A significant point of our results is that our methodgainsaccuracy fordifferent
workloads, a situation typical for task parallelism, whichindeed is the focus of our
method. In this sense our method is complementary to ourn-ary (data parallel) predic-
tion method which adequately covers the situation whereE[X1℄ is closeto E[X2℄ [4].

5 Empirical Distributions

5.1 Pipeline

In this section we determine the quality of our approximation when applied to a pipelined
application of two tasks whose execution times are denoted by X1 andX2, respec-
tively. The pipeline comprises a Gaussian random generatortask that supplies one-
dimensional, real-valued vectors of lengthN to a PSRS sorting task. In steady state the
total execution time per vector of the pipelined application is given byY = max(X1; X2),
assuming both tasks use different resources.

The generator task is implemented using the data parallel NAS-EP benchmark [2].
The PSRS sorting task is a data parallel application that sorts the input array by first
dividing the array inP equal subarrays whereP also denotes the number of processors.
Each partition is sorted in parallel, after which a number ofglobal pivots are determined.
Based in these pivots, the subarrays are cyclically merged.As a result, a sorted array is
obtained. A description of the algorithm can be found in [16].

To have an interesting scenario for our experiment (i.e., the worst case for Eqs. (5)
and (4)), we adjust the parameters such that both tasks have approximately equal work-
load (which also balances the pipeline). We chooseP = 1 processor for NAS-EP andP = 24 for PSRS. The pipeline processes6; 000 arrays per experiment. A number
of experiments, based on6; 000 simulation runs, are performed whereN varies fromN = 4 104 toN = 105. ForN = 105 the pdf’s ofX1 andX2 are given in Figure 7. In
this figureX1 is approximately normal whileX2 has a long right tail. Furthermore, the
variance ofX2 (the sorting task) is much larger than that ofX1.

Figure 8 shows"k of our method and the heuristic. For both methods"k is decreas-
ing for increasingN due to the disjunction ofX1 andX2. AlthoughE[X1℄ = E[X2℄
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indeed much smaller than we have assumed in our theoretic evaluation in Section 4).
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5.2 WATOR

In this section we predict the performance of WATOR, an application where the task
workload balance changes significantly over the time. WATORis a Monte Carlo simula-
tion in which idealized fish and sharks live, move randomly, breed, and eat one another
in a two-dimensional ocean with toroidal topology. The characteristic of such an algo-
rithm is that the workload can be severally unbalanced because of the computational
scenario. Hence the workload in each processor is changing with increasing iteration
numberi (i.e., simulated time). The load unbalance comes about naturally because of
the dynamics of the problem: the fish and sharks tend to aggregate in schools as the they
breed, move and eat each other. More information on the algorithm can be found in [?].

In our experiment we perform a simple rectangular subdomaindecomposition of the
ocean forP = 2 processors such that each processor is assigned to process 2,500 grid
points. As workloadX we choose the number of fish within each processor, which on
initialization is generated randomly over each location inthe ocean. The workloadX1
for i ranging from0 to 256 is given in Figure 9 in terms of central moments based on6; 000 simulation runs. The pdf ofX1, whereX1 is normalized, is given in Figure 10.
As shown by the table and the figure, the workload changes overtime, exhibiting a
bimodal distribution fori = 256. The estimation error is given in Figure 12 for iteration
numberi = 2; : : : ; 128. Although initially below 5%, the error quickly increases with
the iteration numberi as a result of the large correlation betweenX1 andX2, which
implies thatX1 andX2 are no longer independent (populations in different processors
influence one-another). This dependence also causes the error to be the same for both
methods.

In Figure 11 the correlation is shown betweenP1 andPj for P = 16 processors.
Despite the small coefficient of correlation the actual covariance is large due to large
variance values. As to be expected Figure 11 shows that the correlation is the largest
for the processors nearest toP1 (P2 andP16, the processors are interconnected in a 1-D
torus). Figure 11 also shows that the correlation increaseswith the iteration numberi.
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In summary, our measurements of the two above applications show that the error ofE[Y ℄ is in the percent range, rather than in the ten percent range,as in practice task
execution time variance is less than our theoretic experiments might suggest. Provided
the task execution times are independent these results suggest that this is even a worst
case as in the corresponding experiments the tasks had equalworkloads.

6 Conclusion

In this paper we have presented an analytical model of the execution time distributionY of binary parallel composition of tasksX1 andX2 with stochastic workloads. Our
approach is based on approximating the distributionsX andY in terms of the first
four moments, in conjunction with the use of the lambda distribution as an intermediate
vehicle, to derive a closed-form,O(1) complexity expression forE[Y k℄ in terms ofE[Xk℄.

We have investigated to what extent the moments approximation and the lambda
distribution approximation have affected the accuracy of our model. Measurements us-
ing three well-known synthetic workload distributions show that the worst case error
of E[Y ℄ is 35%, occurring for equal workloads, while sharply decreasing for diverging
workloads. Empirical data obtained from two real programs suggest that the worst case
error may actually be much less (our measurements indicate 5%), provided the task
workloads are independent.
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As an adequate solution already exists for parallel compositions where tasks have
equal workloads, our method focuses on filling the gap where workloads are differ-
ent. The results show that in this sense our approach provides a low-cost solution that
outperforms comparable methods known to date.
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