
1

COMPARISON OF AUTOASSOCIATIVE NEURAL NETWORKS AND
KOHONEN MAPS FOR SIGNAL FAILURE DETECTION AND

RECONSTRUCTION

THOMAS J. BÖHME
University of Sunderland, School of
Computing, Engineering and
Technology, Edinburgh Building,
Chester Road, SR1 3SD Sunderland,
UK

CHRIS S. COX
University of Sunderland, School of
Computing, Engineering and
Technology, Edinburgh Building,
Chester Road, SR1 3SD Sunderland,
UK

NICOLAS VALENTIN
CITI - Suez Lyonnaise des Eaux,
Technopolis, ZAC de Mercières,
14, rue du Fonds Pernant
60471 COMPIÈGNE,
FRANCE

THERRY DENOEUX
Université de Technonologie de
Compiègne, UMR CNRS 6599
Heudiasyc, BP 20529,
60205 Compiègne,
FRANCE

ABSTRACT
This paper investigates the potential of two different neural network approaches
for signal failure detection and reconstruction. Firstly, we propose an approach
based on the use of a five-layer perceptron feedforward network (MLP), also
known as Autoassociative Neural Network, with a global feedback loop. Two
different training methodologies for the Autoassociative neural network are
presented in detail. Secondly, we propose an approach based on the use of
Kohonen Maps to learn the structure of the data. The map is used for sensor
failure detection and different techniques based on simple methods like nearest
neighbor are employed to reconstruct the erroneous and missing data. Each
missing measurement is estimated from available data in the form of a
possibility distribution reflecting the underlying uncertainty. The performance
of both neural approaches is illustrated using data collected from a water
treatment plant. The two neural networks are trained with the identical training
set and identical sensor faults and missing data are imposed. The primary
function of the subsequent research is to assess the potential of both neural
network types to identify sensor malfunctions and their ability to reconstruct the
erroneous sensor signal and missing data. Advantages and disadvantages of the
two neural network approaches are discussed.

1. INTRODUCTION
In water treatment, as in many other processes, it is extremely important to provide

accurate sensor information. This data is required for many reasons which include
legislation, plant efficiency management and process control. Sensor validation is
therefore a critical part of overall system operation. Commonly, sensor reliability is
assessed using redundant sensor(s) and polling schemes. However, due to the large
number of measurements required in the water industry, such techniques are prohibited
by cost. Alternative techniques such as observers based upon models of the process are
notoriously difficult to implement since even after extensive research many of the unit
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operations (especially clarification and filtration) are not well understood (Adgar, 1997).
The drive towards "unmanned operation" has also increased demands for greater
intelligence, availability and reliability of instrumentation. Therefore, a new generation of
"smart" sensors have emerged over recent years. These systems can be programmed to
self check and diagnose internal faults, and perform on-line calibration. The aim of this
cooperative research was to develop software based methodologies that will improve
upon current smart sensor technologies. Two different methodologies are present based
upon the use of Autoassociative Neural Networks (AANNs) (Dong, 1994; Guo, 1995;
Hines, 1996; Lin, 1991) and Kohonen maps (Kohonen, 1995). The resulting tools enable
discrimination between sensor and plant faults; offer process diagnostic advice and
provide signal reconstruction support. The “paradigms” are trained from past data alone,
information which is extensively available.
This paper is organized as follows. The water treatment operation is first explained in
Section 2. The methodology used to build the AANN and the Kohonen map is then
described in Section 3 and 4. Finally, experimental results are presented and discussed in
Section 5.

2. WATER TREATMENT OPERATION
Water treatment involves physical, chemical and biological processes that transform

raw water into drinking water. The Viry-Chatillon water treatment plant, which was used
as an application site for this study, provides water to more than 300,000 inhabitants and
has a nominal capacity to process 120,000 m3 of water per day. Figure 1 presents a
schematic overview of the various operations necessary to treat the water and the
available measurements.Raw water is extracted from the river Seine and pumped to the
treatment works. The treatment consists of coagulation-flocculation, settling, filtration,
ozonation, filtration and final disinfection. The water is then stored in a tank ready to be
transported through the water supply network. The coagulation-flocculation step, which
requires the addition of a chemical coagulant, is the critical process to remove colloidal
solids.However, contrary to most industrial processes, for which the quality of the input
raw material is under control, the quality of the given raw water source may fluctuate due
to natural perturbation or occasional pollution. To help overcome these problems, water
conditions are monitored upstream of the extraction point at a Survey Station. The
objective of this paper was to validate the sensor measurements of the survey station as
they are the start point in producing optimum treated water quality. Six important
measurements with analytical redundancies were selected to make the study:
Conductivity, Turbidity, pH, Temperature, Dissolved Oxygen an UV’s absorption.

3. AANN METHODOLOGY
In structural terms an AANN is a five-layer perceptron feedforward network

(Kramer, 1991) which can be viewed as two independent three- layer neural networks
connected in series as shown in Fig. 2. The first network mixes and compresses the n
redundant measurements into a smaller number of characteristic variables which should
ideally represent the essential characteristics of the process. The second network works in
the opposite way and uses the compressed information to regenerate the original n
redundant measurements. The autoassociative neural network consists of 6 inputs and
outputs, 4 feature (bottleneck) hidden layer neurons, and 50 neurons for each of the other
two hidden layers. The input, output and feature neurons utilize linear activation
functions, whereas the two hidden layers for each independent network utilize nonlinear
sigmoidal activation functions.
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3.1 Sensor Failure Detection and Reconstruction
The detection of sensor failures using the AANN is based on residual generation,
produced by comparing the neural network outputs with their corresponding inputs. If the
difference between a sensor measurement and its estimate exceeds a specified residual
threshold (whilst the other residuals stay relatively low) then that sensor is declared as
faulty. In the case that two sensor failures occur simultaneously, both sensors will be seen
to have exceeded their thresholds. The thresholds themselves are set up based upon the
network error between its sensor inputs and their corresponding estimates under normal
operating conditions. Once a faulty sensor measurement is detected, it will be
disconnected from the input layer of network to isolate the false information. The external
isolating procedure assumes that we can replace the identified faulty sensor input with a
reasonably close value to the original one. A good technique for this is to feed the last
“good” output value back to the failed sensor input (Böhme, 1999; Böhme, 1998; Guo,
1995), see therefore Fig. 2.

3.2 Data Preparation
The goal of the autoassociative neural network training is to generate good sensor
estimates for all sensors even though some of the sensor measurements may have been
corrupted.In order to achieve this, the network training also includes the following data
pre-processing steps, which can be described as:
• split the data into monthly data sub-sets, in order to improve the reconstruction

accuracy,
• mean-center and scale the sensor readings of each month,
• select samples for training, test and final validation of each sub-network,
• colour each sensor variable of the training sets with added noise terms. The noise

terms are drawn from a random number generator based on Gaussian distribution
with zero mean and standard deviation iεσ ∗= 5.1 , where iε± is the valid range for

the ith sensor reading Si  (Guo, 1991).
• randomize the training data sets,
• Finally, 50% of the training samples of each sensor variable will be coloured to

represent corrupted sensor values
After pre- processing is completed select one sub-network to be trained. The back-
propagation algorithm is used to adjust the weights of the network so that the network
returns the desired sensor measurements for both normal and corrupted sensor
measurement conditions. This will allow “isolation” of faulty sensor measurement(s)
(Guo, 1995; Guo 1991) from their corresponding input(s) by providing robust output(s)
despite the fault(s) in question. Finally, 12 AANN models have been trained each valid
for its specific region.

3.3 Training Methodology for the AANN
The training of the autoassociative neural network can be carried out in two ways:
i) training of the entire 5-layer network (Combined Network);
ii)  training of the two independent networks separately (Input Training ).

3.3.1 Combined Network Training

To train the combined neural network, the weights appearing in the mapping and
demapping networks are optimized so that the reconstructed outputs 'Z  match the inputs
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Z as closely as possible. To do so, the objective function to be minimized is
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where zpk be the value of the kth observed variable in the pth training sample and z'pk the
corresponding AANN approximation.
Consequently, the steepest descent direction for optimizing the network weights wp is
given by
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For more details about backpropagation see reference (Freeman, 1991).

3.3.2 Input Training

In general, the performance of backpropagation deteriorates as the number of hidden
layers gets larger (Hertz, 1991). Thus, instead of training a whole three-hidden layer
associative network, one may train its mapping and demapping subnets separately.
Training such subnets is meaningful and can be done by extending the backpropagation
algorithm, because the error function is well defined. The difference between training the
mapping and demapping subnets and training an ordinary feedforward network is that the
outputs and inputs (feature values), respectively, to the subnets are not given. To
overcome this burden, not only the internal network parameters, but also the input
sequence- starting from a good estimate, e.g. linear PCA loadings - will be adjusted to
reproduce the given data as accurately as possible (Böhme, 1999; Reddy, 1996; Tan,
1995). The steepest descent direction for minimizing the output errors through adjustment
of network inputs is derived by minimizing the objective function represent by Eq. (1).
Therefore, the steepest descent direction for optimizing network inputs xpi is given by
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Assuming that input and output nodes of the demapping network use the identity
activation function, while hidden nodes use a sigmoidal function, the steepest descent
direction for training network inputs is
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where ( )⋅σ  is a sigmoidal function, bj is the bias of the jth hidden node, and jiυ and

kjw are the network weights of the ith subnet input and kth output.

4. KOHONEN MAP
We propose a second approach based on the use of a Self-Organizing Map (SOM)

(Kohonen, 1995) for multi-parameter data validation and reconstruction of data. The
SOM is a means for automatically arranging high-dimensional data. The resulting map
avails itself readily to visualization, and thus the distance relations between different data
items can be illustrated in a familiar and intuitive manner.
The SOM algorithm is a hybrid method in that it combines the goals of projection and
clustering algorithms. It can be used at the same time to visualize the clusters in a data
set, and to represent the set on a two dimensional map in a manner that preserves the
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nonlinear relations of the data items; nearby items are located close to each other on the
map. Moreover even if no explicit clusters exist in the map, the SOM methods can reveals
"ridges" and "ravines".

4.1 The principle of the SOM
The process in which the SOM is formed is an unsupervised learning process. The SOM
defines a mapping from the input data space ℜn (raw water quality parameters) onto a
regular two-dimensional array of nodes (here an hexagonal array) as shown in Fig. 3. A
reference vector, or prototype, mi ∈ ℜn is associated to every node i. Each input vector x
∈ ℜn is compared with the mi, and the best match mc defines the winning prototype. The
input is then mapped onto the corresponding location on the grid.
At each step t of the learning process, a data sample x(t) ∈ ℜn is presented to the units.
The node c that best represents the input is then searched for using, e.g., the Euclidean
distance to define the quality of the representation: { }iic mxmx −=− min . Next, the

unit c as well as neighboring units learn to represent the data sample more accurately. The
model vector of unit i is updated according to the following learning rule:

( ) ( ) ( ) ( ) ( )[ ]tmtxthtmtm iciii −+=+1 (5)

Here hci is a ‘smearing’ or neighborhood function expressing how much the unit i is
updates when unit c is the winner. The neighborhood function typically is a symmetric,
monotonically decreasing function of the distance of units i and c on the map grid. During
repeated application of Eq. (5) with different inputs, model vectors of neighboring map
units become gradually similar because of the neighborhood function hci, eventually
leading to global ordering of the model vectors. With time, the mi then tend to be ordered
along with the array in a meaningful way.

4.2 Training Methodology
A map of size 15*15 was trained on a data set consisting of 100,000 measurements of 6
variables (turbidity, conductivity, pH, temperature, dissolved oxygen and UV absorption)
taken at 5 min intervals.  The SOM-PAK software package (Kohonen et al., 1995) was
used for the simulations. Components planes of the map are shown in Fig. 4.

4.3 Sensor Failure detection and reconstruction
Kohonen maps allow not only to visualize the evolution of raw water quality in two
dimensions, but also to detect atypical data or outliers by measuring the distance between
each input vector and its closest reference vector. More precisely, the activation of unit i
for input x was defined using a Gaussian kernel:
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−−= 2

22

1
exp i

i

mxiK
σ

(6)

where σ2
i is a parameter defining the size of the influence region of unit i. If the

activation of the winning prototype is smaller than a specified threshold, the current
sample is considered as invalid. The contributions of each of the components of vector x
to the distance ||x - mi|| are then examined to determine more precisely which sensors
should be declared as faulty. These sensor measurements are then disconnected to
compute a new winning prototype with only valid parameters. For reconstruction, each
missing value of a given input variable is estimated by the value of the corresponding
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component in the winning prototype. In order to improve the reconstruction accuracy we
use a combination of the k nearest nodes. Each missing or invalid  value j is estimated by
a combination of the corresponding component in the k nearest prototypes:
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where mi(j) denotes component j of prototype i.

5. COMPARISON RESULT
In order to assess the performance of both sensor validation schemes, an off-line

simulation study was performed on the original six sensor variables, capturing one year of
data with faults introduced at certain times. In the simulation, each sensor variable was
sampled every hour whereas on the physical plant the sampling procedure takes place
every 5 min. In the scope of this paper we will consider two scenarios: two cases of single
sensor failure and one case when two sensors fail consecutively.

Case 1: A failure on the process variable pH
In the first example, the pH sensor is simulated to be degraded with a slow rising ramp of
0.0002/ 5 minutes. The fault occurs on the 18th June 1998 at 12:00. Using the AANN the
pH sensor is declared faulty 198 samples (16.5 hours) later on 19th June 04:30 (Figures 5
and 6). Using the Kohonen Map, the pH sensor is declared faulty 117 samples later (9
hours and 45 minutes) later on 18th June 21:45 (Figures 7-9).

Case 2: A failure on process variable dissolved oxygen
In the second example, the dissolved oxygen sensor is degraded with a bias of magnitude
-0.5 on the 18th June at 12:00.
The AANN declares the dissolved oxygen sensor faulty 9 samples (45 minutes) later
(Figures  10 and 11), whereas the Kohonen Map declares the dissolved oxygen sensor
faulty immediately at 12:00 (Figures 12-14).

Case 3: Two consecutive sensor failures with higher fault magnitude
Firstly, the pH reading suffers from a lost of signal, e.g. damaged measurement or broken
wire. The fault occurs on the 18th June 1998 at 12:00. Three days later on the 21st June
1998 at 12:00, the dissolved oxygen sensor is corrupted with a bias of magnitude 2.Using
the AANN, the total failure of the pH measurement is immediately recognized. The
consecutive fault of the dissolved oxygen sensor is declared one sample later as the fault
occurs (Figures 15-17).
Using the Kohonen Map, the total failure of the pH measurement is immediately
recognized. The consecutive fault of the dissolved oxygen sensor is also immediately
recognized (Figures 18-21).

6. CONCLUSION
In this paper we demonstrate the accuracy of two different ANN based methods for

signal failure detection and reconstruction using real data. It is established that both
methods are able to reconstruct single soft failure as well as two consecutive faults. Both
methods are correlation based and their reconstruction quality becomes poorer if more
faults occur consecutively. The methods are based on the correlation between 6
parameters, it is necessary to have at least 50 % valid parameters to reconstruct the signal.
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The identification time of a fault using the AANN is slower compared to the Kohonen net
because the AANN fault identification algorithm utilizes a combination of the individual
sensor residual determination and filtered total sensor residual determination. This
procedure is designed to prevent false triggering, but of course slows down the
identification time. However, it should be noted that the feedback of the last 'good' value
that preserves reconstruction capability is not affected by this delay. The Kohonen net
detects immediately a bias in a signal because the activation of the winning prototype
decreases immediately. The identification time of a small fault is better with the AANN.
Also, the Kohonen net has some problems detecting a very slow rising ramp fault on the
sensor. This is due to the fact that we trained 12 AANN's (one per month) and only one
Kohonen net (entire year). Comparisons of the two methods are very difficult because of
the differences in the training procedures followed, and the types of hardware platform
used.

7. FIGURES
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Figure 1: Simplified synopsis of the water treatment plant, Figure 2: Autoassociative Neural Network with
feedback loop, Figure 3: Principle of the SOM, Figure 4: Component planes of the map, Figure 5:
AANN's reconstruction of pH, Figure 6: AANN's total residual, Figure 7: Activation of the winning
prototype, Figure 8: Distance on pH component with the winning prototype, Figure 9: Kohonen map's
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Figure 15: AANN's reconstruction of pH,
Figure 16: AANN's reconstruction of Dissolved
Oxygen, Figure 17: AANN's total residual,
Figure 18: Activation of the winning prototype,
Figure 19: Distance on Dissolved Oxygen
component with the winning prototype, Figure 20:
Kohonen Map’s reconstruction of pH, Figure 21:
Kohonen map's reconstruction of Dissolved
Oxygen
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