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ABSTRACT
Search queries are often ambiguous and/or underspecified. To ac-
comodate different user needs, search result diversification has re-
ceived attention in the past few years. Accordingly, several new
metrics for evaluating diversification have been proposed, but their
properties are little understood. We compare the properties of ex-
isting metrics given the premises that (1) queries may have multiple
intents; (2) the likelihood of each intent given a query is available;
and (3) graded relevance assessments are available for each intent.
We compare a wide range of traditional and diversified IR metrics
after adding graded relevance assessments to the TREC 2009 Web
track diversity task test collection which originally had binary rel-
evance assessments. Our primary criterion is discriminative power,
which represents the reliability of a metric in an experiment. Our
results show that diversified IR experiments with a given number
of topics can be as reliable as traditional IR experiments with the
same number of topics, provided that the right metrics are used.
Moreover, we compare the intuitiveness of diversified IR metrics
by closely examining the actual ranked lists from TREC. We show
that a family of metrics called D�-measures have several advantages
over other metrics such as α-nDCG and Intent-Aware metrics.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Experimentation

Keywords
ambiguity, diversity, evaluation, graded relevance, test collection

1. INTRODUCTION
Traditional information retrieval (IR) research has mostly fo-

cussed on satisfying clearly specified information needs. However,
in Web search, queries are often ambiguous and/or underspeci-
fied [9]. When a search engine has no or little knowledge of the
user, the best it can do may be to produce an output that reflects
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several interpretations (or intents) of such queries to accomodate
a large population of users. In light of this, search result diversi-
fication is beginning to receive attention [1, 6, 10, 15, 24]. While
modern search engines can display multiple blocks of information,
some textual and others nontextual, a ranked list of URLs remains
the primary output feature today. Hence how to appropriately eval-
uate a diversified list of URLs is an important research problem for
advancing the state-of-the-art of search engines.

A popular method for evaluating traditional (i.e. non-diversified)
IR is to use normalised Discounted Cumulative Gain (nDCG) [11]
based on graded relevance assessments, taking into account the
fact that some relevant documents are more relevant than others.
Assuming that we can list up some possible intents for a given
ambiguous or underspecified query in advance, a natural exten-
sion of the above evaluation framework would be to hire asses-
sors to conduct graded relevance assessments for each intent of that
query. For example, for the ambiguous query “apple,” we should
be able to collect documents that are highly/marginally relevant
to the intent “Apple the Steve Jobs company,” and those that are
highly/marginally relevant to the intent “apple the fruit.” More-
over, if we know that some intents are more likely than others, we
should probably reflect that information in evaluating search en-
gines. For example, if a search query log suggests that users are
more likely to search for “Apple the company” than for “apple the
fruit,” the search engine may choose to return more URLs relevant
to the former than ones relevant to the latter.

Recently, several evaluation metrics for handling search result
diversification have been proposed. Surprisingly, however, not all
of them accomodate per-intent graded relevance and intent prob-
abilities. The objective of this study is to compare the reliability
of diversified IR metrics as well as traditional IR metrics on which
the diversity metrics are based. By reliability, we informally mean
the ability of a metric to detect “real” performance differences as
opposed to those observed by chance. As a measure of reliability,
we use discriminative power [19] which has been used in several
evaluation studies over the past five years [7, 17, 20, 25, 29]. In
addition, we closely examine some actual ranked lists from TREC
and discuss the intuitiveness of different diversified IR metrics.

To our knowledge, our work is the first to use a diversity test
collection with per-intent graded relevance data for the purpose of
comparing diversified IR metrics. This is somewhat surprising, as
many of the existing diversity metrics can handle per-intent graded
relevance. We first add graded relevance assessments to the TREC
2009 Web track diversity task test collection which originally had
binary relevance assessments. We then examine a wide variety of
metrics: six for traditional IR, and eleven for diversified IR. We
show that a family of metrics called D�-measures have several ad-
vantages over α-nDCG [8] and Intent-Aware metrics [1], including



high discriminative power and intuitiveness. We also show that the
“best” diversified IR metrics can be as discriminative as the “best”
traditional IR metrics, given the same number of topics.

The remainder of this paper is organised as follows. Section 2
discusses previous work related to the present study, and Section 3
formally defines the traditional and diversified IR metrics that we
examine. Section 4 describes discriminative power, our primary
criterion for choosing reliable metrics. Section 5 describes our test
collections with per-intent graded relevance data, and Section 6 re-
ports on our experiments. Finally, Section 7 concludes this paper.

2. RELATED WORK
Zhai, Cohen and Lafferty [31] used subtopic recall for evaluating

subtopic retrieval. In the present study, we evaluate subtopic recall,
but call it intent recall. Zhai, Cohen and Lafferty also defined S-
precision and WS-precision at a given subtopic recall level, but the
computation of these two metrics involves an NP-hard problem and
an approximation is required. Carterette and Chandar [4] evaluated
faceted topic retrieval, a task similar to subtopic retrieval. Their
evaluation metric was subtopic recall at lmin, where lmin is the
minimum rank at which perfect S-recall can be achieved. But they
point out that computing lmin is NP-hard.

Clarke et al. [8] proposed a metric called α-nDCG for evaluating
diversified search results. They view both intents and documents
as sets of nuggets, and assume that the number of nuggets covered
by a document determines the graded relevance of that document.
Prior to discounting the gain of a document based on its rank (as
traditional nDCG does [11]), α-nDCG discounts the gain based on
“nuggets already seen.” This metric was one of the official metrics
used at the TREC 2009 Web track diversity task [6], and the present
study uses the official α-nDCG values from TREC for computing
its discriminative power.

Clarke, Kolla and Vechtomova [9] proposed Novelty- and Rank-
Biased Precision (NRBP) by combining the ideas of α-nDCG and
Rank-Biased Precision [13]. NRBP was used at the recent TREC
2010 Web track diversity task. However, Sakai et al. [20] argue
that NRBP inherits the weaknesses of both α-nDCG and RBP: one
practical weakness of (N)RBP is that it is heavily undernomalised
for topics with few relevant documents and does not average well.
Moreover, the advantage of NRBP over α-nDCG is not clear (at
least in terms of discriminative power) in subsequent experiements
reported by Clarke et al. [7]. We therefore do not consider NRBP.

Agrawal et al. [1] proposed Intent-Aware (IA) metrics for eval-
uating diversified search results. They were the first to explicitly
incorporate intent probabilities in IR evaluation. Their approach is
simple: compute a traditional metric for each intent and then finally
take an expectation based on the intent probabilities. Clarke, Kolla
and Vechtomova [9] have discussed the possibility of evaluation
with IA versions of α-nDCG and NRBP.

Chapelle et al. [5] proposed Expected Reciprocal Rank (ERR)
for traditional IR evaluation, and claimed that its IA version can
handle diversified IR evaluation. ERR-IA was used at the TREC
2010 Web track diversity task. The essence of ERR is that relevant
documents are discounted based on the number of relevant docu-
ments already seen rather than the absolute document ranks.

Robertson, Kanoulas and Yilmaz [17] recently proposed a met-
ric for traditional IR evaluation called Graded Average Precision
(GAP). GAP assumes that the user has a binary notion of relevance,
but that different users have different thresholds over the relevance
levels. The present study examines (for the first time) an IA version
of GAP, as well as its normalised version.

Sakai et al. [20] proposed an alternative method for evaluat-
ing diversified search results. Their key idea is to define (global)

graded relevance by combining intent probabilities and per-intent
graded relevance. Based on an ideal ranked list thus defined, they
introduced a family of metrics which we call D-measures and D�-
measures. Using the TREC 2009 Web diversity task data which
have per-intent binary relevance assessments, they reported that
D�-measures perform at least as well as α-nDCG and intent recall
in terms of discriminative power, while solving some shortcomings
of α-nDCG and IA metrics.

Using the same TREC 2009 data set, Clarke et al. [7] also com-
pared different diversified IR metrics (with and without “collection-
dependent” normalisation) in terms of discriminative power. They
pointed out that IA metrics do not necessarily reward high intent
recall. Surprisingly, all of the diversified IR metrics they examined
(including α-nDCG and NRBP) underperformed the simple intent
recall in terms of discriminative power.

The present study is similar to the work by Sakai et al. [20] and
Clarke et al. [7], but has the following new contributions: (a) It is
the first to compare different diversified IR metrics when per-intent
graded relevance assessments are available. (b) It examines the
most extensive set of diversified IR metrics, including (normalised)
GAP-IA which is being examined for the first time. All of these
metrics can handle graded relevance: hence, in previous work, the
full potential of these metrics for diversity evaluation has not been
demonstrated. (c) While the previous two studies considered either
a uniform [7] or non-uniform [20] intent probability distribution,
this study considers both. (d) This study investigates the effect of
measurement depth on discriminative power, in contrast to previ-
ous work which only considered a document cutoff of 10 [20] or
20 [7]. (e) It uses multiple test collections for evaluating traditional
IR metrics on which our diversified IR metrics are based.

By employing Mechanical Turk users, Sanderson et al. [23] ex-
amined the predictive power of metrics: if a metric prefers one
ranked list over another, does the user also prefer the same list?
Using the same TREC 2009 Web diversity task data, they exam-
ined some traditional and diversified IR metrics. One of their find-
ings was that diversified IR metrics agree reasonably well with
human preferences. Clearly, discriminative power is not the only
way to evaluate evaluation metrics (See Section 4), and other ap-
proaches, especially those that rely on human subjects (e.g. predic-
tive power), should complement our work.

More recently, Brandt et al. [3] proposed a framework for pre-
senting a tree of retrieved URLs dynamically, which includes an
evaluation method that is a tree version of the IA approach. This
probably deserves an investigation in terms of the user’s physical
and cognitive load when compared to our flat-list approach.

3. EVALUATION METRICS

3.1 Basic Metrics
First, we formally define some graded-relevance evaluation met-

rics that have been designed for traditional IR evaluation.
Our first premise is that we have relevance levels {0, . . . , h},

with 0 representing nonrelevance and h representing the highest
level. Hence h = 1 implies a binary relevance environment. We
say that a document is Lx-relevant if its relevance level is x (0 <
x ≤ h). Let Rx denote the number of Lx-relevant documents
for a topic and let R =

∑
x Rx. Let J(r) = 1 if a document

at rank r is Lx-relevant (x > 0) and J(r) = 0 otherwise. Let
C(r) =

∑r
k=1 J(k).

Let GV x denote the gain value for retrieving an Lx-relevant
document [11]. Let g(r) = GV x if a document at rank r is Lx-
relevant and g(r) = 0 otherwise. Further, let cg(r) =

∑r
k=1 g(k).

We call g(r) and cg(r) the (cumulative) gain at rank r. Also, let



g∗(r) and cg∗(r) denote the (cumulative) gain at rank r in an ideal
ranked list, obtained by exhaustively listing up Lx-relevant docu-
ments in descending order of relevance levels.

We define nDCG and Q-measure at document cutoff l as fol-
lows [20]:

nDCG@l =

∑l
r=1 g(r)/ log(r + 1)

∑l
r=1 g

∗(r)/ log(r + 1)
(1)

Q@l =
1

min(l, R)

l∑

r=1

J(r)
C(r) + βcg(r)

r + βcg∗(r)
(2)

where β (≥ 0) is a user persistence parameter for Q. (β = 0 re-
duces Q to binary Average Precision.) We let β = 1 throughout
this paper.

Next, we discuss Graded Average Precision (GAP) [17]. GAP
assumes that the user considers only relevance levels x, . . . , h as
relevant (x > 0) and the rest as nonrelevant with probability px,
and that

∑h
x=1 px = 1. Following a recommendation by Robert-

son, Kanoulas and Yilmaz [17], we consider a uniform probability
distribution: px = 1/h for x ≥ 1. In this particular case, GAP can
be defined as follows.

Let X(r) ∈ {0, . . . , h} denote the relevance level of a document
at rank r, and let M(r, k) = min(X(r),X(k)) for any pair of
ranks (r, k). Then the Expected Precision (EP) [17] at rank r is
given by EP(r) = 1

r

∑r
k=1

∑M(r,k)
x=1 px. Under the uniformity

assumption, it can be rewritten as:

EP(r) =
1

h r

r∑

k=1

M(r,k)∑

x=1

=
1

2h r

r∑

k=1

M(r, k)(M(r, k) + 1) .

(3)
Similarly, under the same assumption, the maximum possible

value of cumulated EP is:
∑h

x=1Rx

∑x
y=1 py =

1
2h

∑h
x=1Rx x(x+ 1). Therefore, GAP can be expressed as:

GAP =

∑∞
r=1 EP(r)

1
2h

∑h
x=1 x(x+ 1)Rx

(4)

=

∑∞
r=1

1
r

∑r
k=1 M(r, k)(M(r, k) + 1)

∑h
x=1 Rx x(x+ 1)

. (5)

Note that the above denominator represents a summation over all
Lx-relevant (x > 0) documents, and therefore can also be written
as

∑R
r=1X

∗(r)(X∗(r) + 1), where X∗(r) is the relevance level
of a document at rank r in an ideal output. For the purpose of Web
search evaluation where the number of documents to be evaluated is
typically very small (e.g. l = 10), a division by the above sum over
all relevant documents yields a heavily undernormalised metric. (It
is usually impossible to list up all relevant documents if there is
space for only 10 URLs.) Hence, we also define normalised GAP
(nGAP) for evaluation with a small document cutoff:

nGAP@l =

∑l
r=1

1
r

∑r
k=1 M(r, k)(M(r, k) + 1)

∑l
r=1X

∗(r)(X∗(r) + 1)
. (6)

Next, we define Expected Reciprocal Rank (ERR) [5]. Let Pr(r)
denote the relevance probability of a document at rank r. Let
dsat(r) =

∏r
k=1(1 − Pr(k)), which is interpreted as the prob-

ability that the user is dissatisfied with documents from ranks 1 to
r. Then ERR is defined based on the expected probability that the
user is finally satisfied at rank r:

ERR =
∞∑

r=1

Pr(r)dsat(r − 1)

r
. (7)

Following Chapelle et al. [5], we let Pr(r) = (2X(r) − 1)/2h.
Note that this makes ERR a very top-heavy metric: any ranked list
that has a document of the highest relevance level (h) at rank 1
receives an ERR of (2h − 1)/2h or higher. Thus, if we have h = 3
relevance levels, the ERR is 7/8 = .875 or higher; if h = 4, the
ERR is .938 or higher. Also, in accordance with the above setting
for ERR, we let g(r) = 2X(r)−1 for nDCG and Q. This gain value
setting appears to be the de facto standard for nDCG1.

Finally, for completeness, we also consider normalised ERR [7]
for evaluation with a small document cutoff:

nERR@l =

∑l
r=1 Pr(r)dsat(r − 1)/r

∑l
r=1 Pr

∗(r)dsat∗(r − 1)/r
(8)

where Pr∗(r) is the relevance probability of a document at rank r
in an ideal ranked list and dsat∗(r) =

∏r
k=1(1− Pr∗(k)). How-

ever, we expect the impact of normalisation for ERR to be small
since unnormalised ERR already tends to take very large values, as
we have discussed earlier.

3.2 α-nDCG
Clarke et al. [8] proposed α-nDCG for evaluating diversified

search results. They view information needs (i.e. intents) and doc-
uments as sets of nuggets. In their framework, the assessor judges
whether each document contains a nugget or not (i.e. makes a bi-
nary decision). Let Jn(r) = 1 if a document at rank r is relevant
to the n-th nugget and 0 otherwise; let Cn(r) =

∑r
k=1 Jn(r), i.e.

the number of documents observed within top r that contained the
n-th nugget. Then novelty-biased gain NG(r) is defined as:

NG(r) =
m∑

n=1

Jn(r)(1− α)Cn(r−1) (9)

where m is the total number of nuggets for the query and α(< 1)
is a parameter. Then α-nDCG can be defined by replacing the
raw gain values g(r) and g∗(r) in Eq. 1 with the novelty-biased
gains. Thus, α-nDCG discounts gains first based on “nuggets al-
ready seen,” and then based on document ranks. Note that Eq. 9
defines graded relevance simply based on the number of nuggets
that a document covers as well as nugget novelty.

Computing the ideal ranked list for α-nDCG is NP-complete [8]
and an approximation is required. In this study, we simply use the
official α-nDCG values reported at the TREC 2009 Web diversity
task where α = .5 [6]. Note that this setting of α corresponds
to the assumption that the assessor “finds” a nonexistent nugget in
a document 50% of the time but never misses an existing nugget,
which is arguably counterintuitive [20].

3.3 Intent-Aware (IA) Metrics
Agrawal et al. [1] proposed a simple methodology for evaluat-

ing diversified search results. First, we assume that, given a query
q with several different intents i, the probability of each intent
Pr(i|q) can be estimated, where

∑
i Pr(i|q) = 1. Second, we

assume that document relevance assessments are available for each
intent. Then, for example, nDCG for a particular intent i (nDCGi)
can be computed first, and finally nDCG-IA can be computed as:

nDCG-IA@l =
∑

i

Pr(i|q)nDCGi@l . (10)

1GAP relies on a different notion of graded relevance and its graded
relevance setting in our paper is not strictly equivalent to that we
use for nDCG, Q and ERR. In the case of GAP with h = 3, for ex-
ample, the uniform probability distribution implies that all users re-
gard L3-relevant as relevant, while 67% of them regard L2-relevant
as relevant, and only 33% regard L1-relevant as relevant [17].



Thus, unlike α-nDCG, IA metrics accomodate both intent proba-
bilities and per-intent graded relevance2. Other IA metrics can be
computed similarly: in the present study, we consider nDCG-IA,
(n)GAP-IA and (n)ERR-IA.

One of the disadvantages of IA metrics is that their maximum
value is not 1: a single ranked list is almost never ideal for every
intent [20]. More importantly, IA metrics tend to be counterintu-
itive, in that they practically disregard minor intents (i.e. those with
relatively low Pr(i|q) values) [7, 20].

3.4 D-measures and D�-measures
Sakai et al. [20] proposed an alternative way to evaluate diversi-

fied search results, given intent probabilities and per-intent graded
relevance assessments. This solves the undernormalisation prob-
lem of IA metrics and also includes a mechanism for explictly
boosting intent recall, i.e. number of intents covered by a ranked
list.

Let us say that document d is relevant to q iff it is relevant to at
least one of its intents (∈ {i}). If we assume that the intents are ex-
clusive (i.e. a user searching with q has exactly one intent), then the
Probability Ranking Principle (PRP) [16] reduces to ranking doc-
uments by

∑
i Pr(i|q)Pr(rel = 1|i, d), where Pr(rel = 1|i, d)

is the probability that document d is relevant to i. Note that rele-
vance is a binary notion here. Let GV i,d denote a gain value for
document d with respect to intent i. If we can assign these values
so that Pr(rel = 1|i, d) ∝ GV i,d, then the PRP reduces to rank-
ing documents by

∑
i Pr(i|q)GV i,d. This defines a globally ideal

ranked list, which retrieves documents that are highly relevant to
major intents above those that are marginally relevant to minor in-
tents. Based on this ideal list, cumulative-gain-based metrics such
as nDCG and Q can be computed, by replacing the raw gain g(r)
discussed in Section 3.1 with the global gain:

GG(r) =
∑

i

Pr(i|q)gi(r) (11)

where gi(r) is the gain value for document at rank r for intent i.
Following Sakai et al., we apply this idea to nDCG and Q, and call
the resultant metrics D-nDCG and D-Q (D stands for diversity).
Moreover, we collectively call such metrics D-measures.

Note that D-measures rely on a single ideal ranked list (in con-
trast to IA metrics which use multiple “locally ideal” lists), and
that the relevance levels are defined more dynamically and implic-
itly than for traditional nDCG and Q. For example, suppose that we
have three local (i.e. per-intent) relevance levels L1-L3. Then, for
a topic with three intents, we will have at most 3∗3 = 9 global rel-
evance levels. The number of global relevance levels will differ for
other topics. Thus, an ideal list is defined not based on a discrete
set of relevance levels (which is usually pre-defined over the entire
test collection), but based on a sort by the global gain, defined per
topic.

Apart from the fact that D-measures avoid the undernomalisa-
tion problem of IA metrics by relying on a single “globally ideal”
list, these two metric families are quite similar. However, Sakai
et al. [20] also proposed a simple method to explicitly encourage
high intent recall in a search output within the D-measure frame-
work. Let I-rec@l denote the intent recall at document cutoff l.
Then D�-measure (“dee sharp measure”) is defined as3

D�-measure@l = γI-rec@l + (1− γ)D-measure@l (12)

2Clarke, Kolla and Vechtomova [9] have discussed the possibility
of incorporating Pr(i|q) into α-nDCG and NRBP.
3We call it D�-measure because it “sharpens up” D-measure in
terms of discriminative power, as we shall demonstrate later.

where γ is a parameter. As Sakai et al. showed that the effect of
the choice of γ on IR experiments is relatively small due to the
fact that I-rec and D-measures are already highly correlated with
each other (evidence will be given in Section 6.2), we let γ = .5
throughout this study. We examine D�-nDCG and D�-Q in this
paper. Provided that the document cutoff l is larger or equal to the
maximum number of intents, I-rec ranges between 0 and 1, and
therefore D�-measures also range between 0 and 1.

4. DISCRIMINATIVE POWER
Our primary method of comparing evaluation metrics is discrim-

inative power [19]. We want metrics that are robust to variation
across topics, so that the same conclusion can be reached as to
which of two given systems is better, regardless of the choice of
the topic set. More precisely, we measure discriminative power by
conducting a statistical significance test for different pairs of runs,
and counting the number of significantly different pairs. In this
study, we randomly sample 20 runs from each test collection so
20*19/2=190 run pairs are tested in each case4. For significance
testing, we use the two-tailed paired bootstrap test, with 1,000
bootstrap samples [19]. Note that this experiment is not about
whether the metrics are right or wrong; it is about how metrics
can be consistent across experiments and as a result how often dif-
ferences between systems can be detected with high confidence.
We regard high discriminative power as a necessary condition for a
good evaluation metric, not as a sufficient condition. Later in this
paper, we shall complement our discriminative power results by ex-
amining the actual ranked lists and comparing the intuitiveness of
different diversity IR metrics.

It has been pointed out that discriminative power is not useful
when, for example, the “metric” in question sorts systems alpha-
betically by the system name as this produces perfectly consistent
judgments regardless of the data used [22, 29]. However, we are
interested in metrics that are strictly functions of a ranked list of
items (i.e. system output) and a set of judged items (i.e. right an-
swers). We are not interested in a “metric” that knows that (say)
one ranked list is from Google and that the other is from Bing, and
uses this knowledge to say which is better than the other.

The discriminative power method also provides a natural esti-
mate of the performance difference (Δ) between two systems re-
quired to achieve statistical significance. This is done by record-
ing, for every run pair, the Δ that corresponds to the borderline
between significance and nonsignificance among the 1,000 trials,
and then by selecting the largest value among all run pairs (i.e. a
conservative estimate). This is one of the advantages of using the
bootstrap test, although other significance tests may be used just for
computing discriminative power.

Other methods for evaluating evaluation metrics exist. The swap
method proposed by Voorhees and Buckley [28] yields results simi-
lar to the discriminative power method but cannot directly examine
the situation with the full topic set [19, 25]. The maximum en-
tropy method [2, 17] can measure the informativeness of metrics
but requires a mathematical derivation for each metric. Comparing
the metrics with user clicks [5, 14] or with user preferences [23]
should also be useful, and we expect these user-based approaches
to complement our work.

4Note that if we take the “top X% runs” from the run pool based
on a metric, this may bias the metrics comparison results.



Table 1: Test collection statistics.
(a) TREC 2009 Web Track Diversity Task Category A (“TR09DIV”) (b) NTCIR-6 CLIR Chinese (“NTCIR6C”)

Documents ClueWeb09 (approx. one billion Web pages) [6] CIRB040r (901,446 Chinese news articles)
Topics 50 topics (12 ambiguous; 38 faceted) with 243 subtopics (177 informational; 66 navigational) 50
Intents 199 intents (i.e. subtopics with at least one relevant document). -

Max. #intents per topic: 6. Max. #intents per document: 5.
#relevant across 50 topics: 4,942; across 199 intents: 6,499. across 50 topics: 4,405 (1,807 L1, 1,519 L2 and 1,079 L3).

5. DATA

5.1 Adding Graded Relevance to TREC Data
Our experiments rely on the TREC2009 Web track diversity test

collection with Category A runs [6], which we call TR09DIV. Some
statistics are shown in Table 1(a). Unfortunately, TR09DIV con-
tains neither the intent probabilities (Pr(i|q)) nor per-intent graded
relevance assessments5. Hence, while this is a suitable situation for
α-nDCG, it is difficult to demonstrate the advantages of other di-
versified IR metrics using TR09DIV.

Sakai et al. [20] compared D�-measures, α-nDCG and nDCG-IA
in terms of discriminative power and intuitiveness when the intent
probability distribution is non-uniform. However, they did not use
per-intent graded relevance. In contrast, this study fully utilises the
capability of the diversified IR metrics to handle graded relevance,
and considers both non-uniform and uniform distributions. To this
end, we hired assessors to enrich the per-intent binary relevance
data from TREC, as follows.

As Table 1(a) shows, we have 4,942 <topic, relevant document>
pairs, or 6,499 <intent, relevant document> pairs. We assumed
that all of these documents were judged as “partially relevant” by
the TREC assessors6. Then, each intent-document pair was re-
assessed by two assessors: only this time, each assessor had a
choice between “relevant” (the document fully satisfies the infor-
mation need expressed in the subtopic field) and “partially rele-
vant” (the document only partially satisfies the information need).
The assessors used an assessment tool on which the TREC descrip-
tion and subtopic fields as well as the document content were dis-
played. To URLs that no longer exist, the default assessment “par-
tially relevant” was given. Finally, we defined a relevance level
for each document based on the three assessments (including the
original one from TREC): L3 (two relevants and one partially rele-
vant); L2 (one relevant and two partially relevants); and L1 (three
partially relevants). We call the resultant data set TR09DIV+gr,
where “gr” stands for (per-intent) graded relevance. The inter-
assessor agreement between the new graded assessments is 69.9%
(Cohen’s kappa: .325). In this way, we obtained 1,173 L1, 1,959
L2 and 3,367 L3 documents across intents. Note that we did not
re-examine any documents that were judged nonrelevant at TREC.

As for the intent probability distribution, we considered “Non-
uniform” and “Uniform”. Uniform means that all intents are equally
likely, and this is the assumption currently used at the TREC Web
diversity task. As for Non-uniform, we followed Sakai et al. [20]:
for each topic with n intents, and assumed that the j-th intent has
the probability 2n−j+1/

∑n
k=1 2

k. Methods for estimating intent
probabilities exist [1, 26], but our focus is on the inherent property
of different diversified IR metrics given these probabilities.

5.2 Reducing the Diversity Test Collection
In addition to evaluating diversified IR metrics using TR09DIV+gr,

we evaluated traditional graded-relevance IR metrics on which the
diversified IR metrics are based. Sanderson et al. [23] treated each
5For the TREC 2010 Web track, a kind of graded relevance was
introduced to the ad hoc task but not to the diversity task.
6TREC binary relevance assessments are known to be “liberal,” at
least for early collections [27].

intent (i.e. subtopic) from TR09DIV as an independent topic to
study the predictive power of traditional metrics. However, we
avoided this approach because (a) This means that the traditional
version of the test collection has many more topics than the origi-
nal diversity version, and makes our traditional/diversity compari-
son rather difficult; and (b) The topic set thus constructed probably
violates the i.i.d. assumption.

Instead, we constructed traditional test collections in two ways.
The first method reduces TR09DIV+gr, by taking the maximum
relevance level across intents for each topic-document pair. For
example, if a document is L1-relevant to intent i1 and L3-relevant
to intent i2 for a topic that has these two intents, then we treat
this document as L3-relevant to this topic in the new collection.
We call the new collection TR09DIV+gr2T, where “2T” means
“(converted) to traditional.” TR09DIV+gr2T has 601 L1, 1,328
L2 and 3,013 L3 documents across topics.

For comparison, we also constructed another traditional test col-
lection using the original TR09DIV, not TR09DIV+gr. This was
accomplished by simply defining graded relevance in terms of how
many intents a document covers. The resultant collection, which
we call TR09DIV2T, has 3,622 L1, 1,113 L2, 178 L3, 28 L4 and
1 L5 documents across topics. (As shown in Table 1(a), the max-
imum number of intents covered by a document in TR09DIV is
5.) Note that TR09DIV2T does not rely on our per-intent graded
relevance data.

5.3 Another Data Set: NTCIR6C
In general, it is dangerous to try to draw strong conclusions

from experiments that rely on a single test collection. We there-
fore conduct an additional set of traditional IR experiments using
another data set. Our choice is the NTCIR-6 CLIR Chinese data
(NTCIR6C) [12]: Table 1(b) shows its statistics. We selected NT-
CIR6C because (a) It is radically different from the TREC data
discussed above in that it is from outside TREC and outside Web
search (The NTCIR-6 task was a newspaper search task); and yet
(b) It is similar to our TREC data in that it also has 50 topics and
comes with relevance levels L1-L3.

6. EXPERIMENTS

6.1 Evaluating Traditional Search
Using the three traditional graded-relevance IR test collections

(NTCIR6C, TR09DIV+gr2T and TR09DIV2T), we evaluated
nDCG, Q, (n)GAP and (n)ERR in terms of discriminative power,
for document cutoffs l = 1000 and l = 10. The cutoff of 1,000
represents classical TREC, while 10 represents the more recent
shallow-depth evaluation practices as exemplified by the TREC
Web tracks.

Figure 1 shows the Achieved Significance Level (ASL) curves [19]
for nDCG, Q, (n)GAP and (n)ERR for each experimental condi-
tion. (Note that normalisation does not affect GAP and ERR when
l = 1000.) The x axis represents the 190 run pairs sorted by ASL,
and the y axis represents the ASL (i.e. p-value). Metrics whose
graphs are closer to the origin are more discriminative than others,
i.e. they are able to detect more significant differences. Table 2 cuts
these graphs in the middle (horizontally) to compare the discrimi-
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Figure 1: ASL curves for traditional metrics. The horizontal
axes represent the 190 system pairs sorted by ASL; the vertical
axes represent the ASL values.

native power at the .05 significance level. The table also shows the
performance Δ that corresponds to a statistical significant differ-
ence. For example, with NTCIR6C at l = 1000, the discriminative
power of Q-measure at the .05 level is (137/190 =)72.1%, and if
the Δ between two systems is 0.09 or larger, then that is usually
statistically significant [19]. Figure 1 and Table 2 show that:

1. nDCG appears to be the most consistently discriminative met-
rics of all the traditional metrics for our data sets: Q does not
perform as well as nDCG for the TREC data when l = 10;
(n)GAP does not perform well for the TREC data when l =
1000 and when l = 10; (n)ERR doe not perform well for
NTCIR6C, especially when l = 1000 as it suffers from its
top-heaviness (i.e. virtually ignores all documents except for
the very top ones).

2. Comparisons between l = 1000 and l = 10 show that, ex-
cept for the top-heavy (n)ERR, using a small document cut-
off (i.e. evaluating systems based on fewer data points) re-
duces discriminative power.

3. Comparisons across the three data sets with the same cutoff l
show that the highest discriminative power achieved given 50
topics is similar: over 70% for l = 1000 and almost 60% for
l = 10 at the .05 significance level. In particular, the results
for TR09DIV+gr2T and TR09DIV2T are very similar, even
though they have different number of relevance levels (up to
L3 vs. up to L5). This suggests that the number of relevance
levels and how they are obtained may not be major factors
when comparing the discriminative power of metrics.

4. Normalisation improves the discriminative power of GAP,
especially for NTCIR6C (Table 2(i), cutoff l = 10: the dis-
criminative power goes up from 46.8% to 58.4%).

Table 2: Discriminative power of traditional metrics at α =
.05: Columns (a) and (b) show the discriminative power; (c)
and (d) show the Δ required to achieve statistical significance.

cutoff l = 1000 cutoff l = 10
(a) (b) (c) (d)

(i) NTCIR6C
Q 72.1% 0.09 nGAP 58.4% 0.08
GAP 71.1% 0.07 nDCG 57.4% 0.11
nDCG 70.0% 0.11 Q 54.2% 0.09
ERR 42.6% 0.14 GAP 46.8% 0.04

nERR 42.6% 0.16
ERR 42.6% 0.15

(ii) TR09DIV+gr2T
nDCG 74.7% 0.09 ERR 58.4% 0.17
Q 66.3% 0.05 nERR 57.9% 0.18
ERR 57.4% 0.15 nDCG 56.3% 0.11
GAP 50.5% 0.06 Q 48.4% 0.12

nGAP 47.4% 0.13
GAP 46.3% 0.02

(iii) TR09DIV2T
nDCG 75.8% 0.07 nERR 58.4% 0.11
Q 64.7% 0.04 nDCG 57.9% 0.09
ERR 57.4% 0.04 ERR 50.0% 0.04
GAP 55.8% 0.05 Q 48.4% 0.08

nGAP 47.4% 0.06
GAP 43.2% 0.05

6.2 Evaluating Diversified Search
We now present our main results using TR09DIV+gr with per-

intent graded relevance data. We evaluated I-rec, D(�)-nDCG, D(�)-
Q, nDCG-IA, (n)GAP-IA, (n)ERR-IA as well as the official α-
nDCG values at l = 10. As mentioned earlier, we considered both
Non-uniform and Uniform intent probability distributions.

Figure 2 shows the ASL curves of the diversified IR metrics for
four experimental conditions (two cutoffs × two intent probability
distributions), and Table 3 compares the discriminative power at
the .05 level. As α-nDCG and I-rec are not affected by intent prob-
abilities, we show their results only in the Uniform results. More-
over, we do not consider I-rec (and therefore D�-measures) when
l = 1000 because I-rec is not useful with large document cutoffs:
it would equal one most of the time. Also, we do not consider α-
nDCG when l = 1000 as such values are not available from TREC.
Figure 2 and Table 3 show that:

1. The Non-uniform and Uniform results are very similar. Thus,
the intent probability distribution does not seem to have a
major impact on discriminative power.

2. The most discriminative diversified IR metrics when l =
1000 are nDCG-IA and D-nDCG. The most discriminative
when l = 10 are D�-Q, α-nDCG, D�-nDCG and I-rec.

3. The aforementioned “best” diversified IR metrics are at least
as discriminative as the “best” traditional metrics: D-nDCG
and nDCG-IA achieve well over 70% for l = 1000, while
D�-measures, α-nDCG and I-rec achieve well over 60% for
l = 10 at the .05 level. (Hence, as in the traditional IR exper-
iments, using a small document cutoff reduces discriminative
power.)

4. In all four experimental conditions, (n)GAP-IA is substan-
tially less discriminative than other metrics, and (n)ERR-IA
is a middle-performer (it is as discriminative as nDCG-IA
when l = 10, but less discriminative when l = 1000 due to
its top-heaviness).

5. Normalisation improves the discriminative power of GAP-IA
(Table 3, l = 10).
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Figure 2: ASL curves for diversified IR metrics. The horizontal
axes represent the 190 system pairs sorted by ASL; the vertical
axes represent the ASL values.
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Figure 3: I-rec / D-measure graphs.

Note that the D�-measures, which combine D-measures with I-rec,
are slightly more discriminative than their components: for exam-
ple, for the l = 10, Uniform case, the discriminative power of D-Q
is 51.1%, that of I-rec is 62.6%, and that of D�-Q is 66.3% at the .05
level (Table 3(ii)). Thus, D-measures and I-rec complement each
other to achieve reliable evaluation results, by looking at a ranked
list from two different (but not unrelated) angles. This generalises
an observation by Sakai et al. [20].

Figure 3 plots all 25 runs for the TR09DIV+gr, l = 10, Uniform
case with I-rec as the x axis and D-measure (i.e. D-nDCG or D-
Q) as the y axis. The dotted lines represent the contour lines for a
D�-measure with γ = .5: if multiple runs lie on the same contour
line, they are equally effective in terms of a D�-measure. It can
be observed that I-rec and D-measures are indeed already highly
correlated with each other. A similar graph was shown by Sakai et
al. [20] but they did not use per-intent graded relevance; the TREC
2009 overview paper [6] shows a similar graph for I-rec and the
traditional precision metric.

Table 3: Discriminative power of diversified IR metrics at α =
.05: Columns (a) and (b) show the discriminative power; (c)
and (d) show the Δ required to achieve statistical significance.

cutoff l = 1000 cutoff l = 10
(a) (b) (c) (d)

(i) TR09DIV+gr; Non-uniform P (i|q)
nDCG-IA 77.4% 0.06 D�-Q 65.3% 0.09
D-nDCG 75.3% 0.07 D�-nDCG 63.7% 0.09
D-Q 61.1% 0.04 nERR-IA 58.4% 0.09
ERR-IA 58.4% 0.08 ERR-IA 57.9% 0.09
GAP-IA 48.9% 0.07 D-nDCG 57.4% 0.08

nDCG-IA 57.4% 0.06
D-Q 48.9% 0.09
nGAP-IA 42.6% 0.07
GAP-IA 24.2% 0.05

(ii) TR09DIV+gr; Uniform P (i|q)
nDCG-IA 76.8% 0.06 D�-Q 66.3% 0.09
D-nDCG 75.3% 0.07 α-nDCG 66.3% 0.10
D-Q 63.2% 0.05 D�-nDCG 65.8% 0.10
ERR-IA 61.6% 0.07 I-rec 62.6% 0.13
GAP-IA 50.5% 0.04 D-nDCG 60.5% 0.10

nDCG-IA 58.4% 0.05
nERR-IA 58.4% 0.08
ERR-IA 57.9% 0.08
D-Q 51.1% 0.10
nGAP-IA 43.7% 0.04
GAP-IA 35.3% 0.03

Table 4: τ and τap (TR09DIV+gr; l = 10; Uniform).
D�- D�- α- nDCG- nGAP- nERR-
Q nDCG nDCG IA IA IA

I-rec .96/.97 .95/.86 .87/.74 .84/.84 .72/.70 .77/.63
D�-Q 1/1 .97/.87 .87/.74 .88/.86 .74/.70 .79/.64
D�-nDCG - 1/1 .91/.87 .87/.76 .75/.62 .80/.76
α-nDCG - - 1/1 .84/.67 .74/.57 .90/.83
nDCG-IA - - - 1/1 .85/.83 .86/.74
nGAP-IA - - - - 1/1 .78/.69

6.3 Examining Intuitiveness
Highly discriminative metrics, while desirable, may not neces-

sarily measure what we want to measure. How do the different
diversified IR metrics differ from one another, and which ones are
more intuitive than others for the purpose of search result diversifi-
cation?

Table 4 shows the Kendall’s τ and τap [30] values for different
pairs of metrics, when the 20 runs are ranked in the TREC09DIV+gr,
l = 10, Uniform setting. Kendall’s τ is a monotonic function of
the probability that a randomly chosen pair of ranked items is or-
dered identically in the two rankings. Hence a swap near the top
of a ranked list and that near the bottom of the same list have an
equal impact. Whereas, τap is “top-heavy,” in that it is a monotonic
function of the probability that a randomly chosen item and one
ranked above it are ordered identically in the two rankings. Like
τ , τap lies between −1 and 1, but unlike τ , it is not symmetrical:
one of the input rankings is taken as the gold standard. When the
errors (i.e. pairwise item swaps with respect to the gold standard)
are uniformly distributed over the ranking being examined, τap is
equivalent to τ . For example, the τ between I-rec and D�-Q is .96,
while the τap between the same pair of metrics is .97 when D�-Q
is taken as the ground truth. The main message Table 4 conveys is
that all of these metrics (including the simple I-rec) are reasonably
correlated with one another.

Based on the bootstrap test results used for our discriminative
power experiments, Table 5 shows the agreement between metrics,
focussing on I-rec, D�-measures, α-nDCG and nDCG-IA in the
l = 10, Uniform setting. Let A and B denote the sets of sigfini-
cantly different run pairs at the .05 level according to two metrics,
respectively. We define agreement as |A ∩ B|/|A ∪ B|. For ex-
ample, the agreement between D�-nDCG and α-nDCG is 86%, as
|A − B| = 9, |A ∩ B| = 116 and |B − A| = 10 for these two



Table 5: Agreement of significant differences at the .05 level
(TR09DIV+gr; l = 10; Uniform).

D�- D�- α- nDCG-
Q nDCG nDCG IA

I-rec 4/115/11 4/115/10 9/110/16 23/96/15
(86%) (89%) (81%) (72%)

D�-Q - 1/125/0 9/117/9 21/105/6
(99%) (87%) (80%)

D�-nDCG - - 9/116/10 21/104/7
(86%) (79%)

α-nDCG - - - 20/106/5
(81%)

metrics. That is, for nine run pairs, D�-nDCG says that they are sig-
nificantly different while α-nDCG says they are not; the situation
is reversed for another set of ten run pairs7. One observation from
this table is that the agreement between I-rec and nDCG-IA is rel-
atively low (72%): this supports the arguments by Sakai et al. [20]
and Clarke et al. [7] that IA metrics do not necessarily reward high
intent recall, i.e. diversification. (See also the relatively low rank
correlation values between I-rec and the IA metrics in Table 4.) On
the other hand, it can be observed that the D�-measures, α-nDCG
and nDCG-IA agree with one another for around 80% of the time
or more. (D�-Q is virtually identical to D�-nDCG: the agreement
between them is 99%.) The important question is: when do they
disagree? Hereafter, we focus our attention on D�-nDCG, α-nDCG
and nDCG-IA, as our experiments suggest that nDCG is the most
reliable traditional IR metric when the document cutoff is small,
and as these three metrics represent three different approaches to
diversified IR evaluation.

To examine how D�-nDCG, α-nDCG and nDCG-IA differ from
the viewpoint of intuitiveness, we selected ten pairs of actual ranked
lists from TREC 2009 Web track diversity runs as follows. First,
from the aforementioned nine run pairs which were significantly
different with D�-nDCG but not with α-nDCG (Table 5), we ob-
tained five pairs of ranked lists (i.e. run pairs for a particular topic)
with the largest per-topic Δ’s in terms of D�-nDCG, under the con-
straint that there is a disagreement among D�-nDCG, α-nDCG and
nDCG-IA as to which run is better. We refer to these five cases as
A-E, as shown in Table 6. For example, Case A in this table rep-
resents two runs watd3 and Sab9wtBfDiv for Topic 47 which has
two intents. The middle column shows which of the top 10 docu-
ments retrieved by each run are relevant to which intent (where i
and i indicate informational and navigational intents according to
the TREC diversity topic file, respectively); the last three columns
show the per-topic Δ’s (e.g. performance of watd3 minus that of
Sab9wtBfDiv), and the arrows indicate which run is rated higher
with each metric. Similarly, from the ten run pairs which were sig-
nificantly different with α-nDCG but not with D�-nDCG shown in
Table 5, five cases with the largest per-topic Δ’s in terms of α-
nDCG were selected. These are shown as cases F-J in Table 6. In
short, these ten cases are the ones that contributed most to the dis-
crepancy (in terms of statistical significance) between D�-nDCG
and α-nDCG. We shall closely examine these cases below from
the viewpoint of intuitiveness. Note that these results are from the
Uniform setting: Sakai et al. [20] have already compared the in-
tuitiveness of D�-nDCG, α-nDCG and nDCG-IA when the intent
probability distribution is Non-uniform, a situation which α-nDCG
does not handle.

We examined the ten cases shown in Table 6 and categorised the
results into the following four classes. The arguments below are
7In theory, conflicts can also occur, where one metric says that run
X significantly outperforms run Y while another metric says that
run Y significantly outperforms X . There was no such case in our
experiments.

somewhat subjective, as the right balance between diversity and
relevance is hard to define. Nevertheless, we believe that they are
useful for understanding the diversity metrics.

6.3.1 Only α-nDCG Prefers a Low-Relevance Run
In Case B, we argue that α-nDCG is counterintuitive. Both twC-

SodpRBB and MSDiv1 completely failed to diversify: they cover
the fifth intent i5 only. However, twCSodpRBB has only one rel-
evant document (though at rank 1), while MSDiv1 has eight, all of
which are L3-relevant. Since i5 is informational, MSDiv1 should
probably be preferred, since the two runs are equally poor in terms
of diversity (i.e. intent recall) but MSDiv1 has much better overall
relevance. The rightmost columns of Table 6 show that D�-nDCG
and nDCG-IA agree with this intuition, while α-nDCG does not.
This counterintuitiveness of α-nDCG is precisely because of α,
which tends to ignore repetition of relevant documents for the same
intent. It should be remembered that, unless the intent is purely
navigational, providing the user with multiple documents that are
relevant to the same intent does not necessarily imply redundancy
in practice: different relevant documents may carry different pieces
of information. Of course, a smaller value of α may remedy this
particular situation, but how to appropriately set α in advance is an
open question.

On the other hand, α-nDCG may be the most intuitive for Case
C, which is similar to Case B in that both runs failed to diver-
sify but different in that the intent involved is navigational (“Go
to the Alexian Brothers Health System homepage”). Thus, even
though D�-nDCG and nDCG-IA prefer MSDiv1 which returned
three documents that are L3-relevant to i1, the second and the third
L3-relevant documents may not be useful in practice. In particular,
D�-nDCG appears to favour MSDiv1 perhaps too much (the differ-
ence is over .15). Note that the raw nDCG is inherently suitable
for evaluation with informative queries. We will discuss this point
further in Section 6.3.5.

6.3.2 α-nDCG and nDCG-IA Prefer a
Non-diversified Run

Next, let us discuss Case A, Case F and Case H, where only
informational intents are involved and D�-nDCG disagreed with α-
nDCG and nDCG-IA. It can be observed that, in all three cases,
α-nDCG and nDCG-IA prefer the non-diversified run, even though
they are supposed to reward diversified ranked lists. In contrast, D�-
nDCG (with γ = 0.5) consistenly favours a more diversified run,
due to its explict intent recall component. However, as we have
discussed earlier, the right balance between relevance and diversity
(which in the case of D�-nDCG is represented by the γ parameter)
is hard to define.

6.3.3 Only α-nDCG Prefers a Poorly Diversifed Run
Next, we discuss Case D and Case E, where only informational

intents are involved and α-nDCG disagreed with D�-nDCG and
nDCG-IA. In both cases, α-nDCG prefers the less diversified run
which missed the fourth intent (but nevertheless returned a docu-
ment relevant to two intents at rank 1).

6.3.4 Only nDCG-IA Prefers a Non-diversified Run
In Case G, nDCG-IA is clearly counterintuitive. It can be ob-

served that THUIR09FuClu has a document L2-relevant to i5 at
rank 2, and one L2-relevant to i2 at rank 3. (These two intents
are informational.) On the other hand, MSRABASE has only a
document L2-relevant to i3 at rank 2. (This intent is navigational.)
Thus, since we are examining the uniform intent probability setting,



Table 6: Ten ranked list pairs from TR09DIV+gr, l = 10, Uniform. 2nd column: topic IDs (number of intents). 3rd column: run
IDs. 4th column: number of intents covered by each run. 5th column: relevance levels for each intent at ranks 1-10. The rightmost
columns: performance differences in terms of each metric; arrows point to the preferred run.

document rank Δ in Δ in Δ in
(i: informational intents; i: navigational intents) D�- α- nDCG-

1 2 3 4 5 6 7 8 9 10 nDCG nDCG IA
A 47 watd3 1 i1L3 i1L3 i1L3 i1L3 −0.209 0.018 0.098

(2) Sab9wtBfDiv 2 i1L3 i2L3 ⇓ ⇑ ⇑
i2L3

B 21 twCSodpRBB 1 i5L3 −0.170 0.023 −0.084
(5) MSDiv1 1 i5L3 i5L3 i5L3 i5L3 i5L3 i5L3 i5L3 i5L3 ⇓ ⇑ ⇓

C 46 twCSodpRBB 1 i1L3 i1L3 −0.156 0.010 −0.031
(3) MSDiv1 1 i1L3 i1L3 i1L3 ⇓ ⇑ ⇓

D 26 watd3 2 i1L2 i1L1 i1L2 i1L1 −0.141 0.027 −0.025
(4) i3L1 ⇓ ⇑ ⇓

twCSodpRNB 3 i1L1 i1L2 i1L2
i3L2 i3L3 i3L1
i4L1 i4L2 i4L2

E 26 watd1 2 i1L2 i1L1 i1L1 i1L1 i1L2 −0.139 0.042 −0.023
(4) i3L1 ⇓ ⇑ ⇓

twCSodpRNB 3 i1L1 i1L2 i1L2
i3L2 i3L3 i3L1
i4L1 i4L2 i4L2

F 50 Sab9wtBfDiv 1 i3L2 i3L2 i3L2 −0.080 0.168 0.116
(3) spc 2 i1L2 ⇓ ⇑ ⇑

i2L1
G 20 THUIR09FuClu 2 i5L2 i2L2 0.220 0.150 −0.092

(4) MSRABASE 1 i3L2 ⇑ ⇑ ⇓
H 14 Sab9wtBfDiv 1 i2L1 i2L1 i2L1 i2L1 i2L1 i2L1 i2L1 i2L1 i2L1 i2L1 −0.102 0.131 0.028

(4) spc 2 i2L1 i2L1 ⇓ ⇑ ⇑
i4L1

I 50 MSRABASE 3 i3L2 i3L1 i3L2 i1L2 0.236 0.131 −0.130
(3) i2L1 ⇑ ⇑ ⇓

THUIR09FuClu 1 i3L2 i3L2 i3L2 i3L2 i3L2 i3L2 i3L2 i3L1 i3L1
J 38 Sab9wtBfDiv 2 i1L2 i3L3 i1L2 i1L3 i1L2 0.141 0.130 −0.019

(3) Sab9wtBDiv1 1 i1L3 i1L2 i1L3 i1L3 i1L2 ⇑ ⇑ ⇓

THUIR09FuClu should definitely be preferred over MSRABASE,
and both D�-nDCG and α-nDCG satisfy this requirement.

The above counterintuitive behaviour of nDCG-IA arises from
the inherent property of IA metrics, namely that high IA metric
values can be achieved by doing extremely well for a single in-
tent. In Case G, MSRABASE did extremely well for i3: this in-
tent only has one relevant document (L2), and the run returned
this document at rank 2. The gain value for an L2-document is
22−1 = 3, and therefore nDCG3 = (3/ log(2+1))/(3/ log(1+
1)) = log 2/ log 3 = .631. Thus, nDCG-IA, averaged over four
intents, is .631/4 = .158. Whereas, THUIR09FuClu achieves
only nDCG2 = .119 and nDCG5 = .144 for the two intents and
therefore its nDCG-IA is only (.119 + .144)/4 = .066.

Case I and Case J are similar to Case G in that only nDCG-IA
prefers a run that failed to diversify. (All intents involved are in-
formational.) We argue that nDCG-IA is rather counterintuitive for
these cases as well, as MSRABASE covers three intents in Case I
and Sab9wtBfDiv covers two in Case J.

6.3.5 Intuitiveness Summary
To sum up the above analysis: while the right balance between

relevance and diversity is difficult to define, D�-nDCG consistently
prefers the more diversified run compared to α-nDCG and nDCG-
IA. If we want diversity more than we want high relevance, then
D�-nDCG would be the clear winner, as it explitly incorporates in-
tent recall. This is in contrast to α-nDCG which tries to encourage
high intent recall by discouraging retrieval of “redundant” docu-
ments. As for IA metrics, we have demonstrated that they can be
clearly counterintuitive, as high IA metric values can be achieved
by retrieving highly relevant documents for one (major) intent.

The only case where D�-nDCG may be less intuitive than α-
nDCG is Case C, where the intent was navigational and there-

fore retrieving multiple relevant documents may not be practically
useful. For navigational intents, it may be better to use graded-
relevance versions of Reciprocal Rank such as ERR and P+ [18]8.

Finally, recall that the above analysis used our Uniform results.
Given a non-uniform intent probability distribution, α-nDCG can
be more counterintuitive as it disregards the probabilities [20]. Also,
recall that α-nDCG completely disregards local relevance levels
(e.g. L1 vs L3 in Table 6).

7. CONCLUSIONS
To our knowledge, our work is the first to have studied the prop-

erties of different diversity evaluation metrics using per-intent graded
relevance data. Moreover, our experiments are more extensive than
similar studies that have been reported recently [7, 20]. Our main
findings from the discriminative power experiments are:

• Our traditional IR and diversified IR experiments suggest
that (n)GAP and (n)ERR and their intent-aware versions are
not the most discriminative of metrics9;

• D�-measures, α-nDCG and intent recall appear to be the most
discriminative metrics for shallow-depth diversified IR eval-

8Q-measure, P+ and ERR are all members of a family of met-
rics called Normalised Cumulative Utiliy (NCU) [21]. An NCU
is defined in terms of a user’s stopping probability distribution over
ranks and a utility function at a given rank. Q-measure uses a uni-
form distribution over all relevant documents; P+ uses a uniform
distribution over all relevant documents retrieved within top rp,
where rp is the rank of one of the most relevant documents in the
ranked list. Whereas, ERR’s stopping probability at a given rank
depends on the relevance of previously seen documents.
9Recall, however, that we have only examined a version of GAP
which uses a flat probability distribution over the relevance levels,
a setting recommended by Robertson, Kanoulas and Yilmaz [17].



Table 7: Summary: properties of diversified IR metrics.
α-nDCG IA metrics D�-measures

Intent probabilities NO YES YES
Pay attention to minor intents YES NO YES
Per-intent graded relevance NO YES YES
Max value guaranteed to be 1 NO NO YES
High discriminative power YES NO YES

uation. Moreover, they are at least as discriminative as the
most discriminative traditional metrics (e.g. nDCG).

The second finding suggests that diversified IR experiments with a
given number of topics can be as reliable as traditional IR experi-
ments with the same number of topics, provided that the aforemen-
tioned discriminative metrics are used. This is good news for IR
test collection builders and users.

Moreover, our analysis showed that, while different diversified
IR metrics are generally highly correlated with one another, D�-
nDCG is more intuitive than α-nDCG and nDCG-IA at least when
high diversity is considered more important than high relevance.

Table 7 summarises the properties of diversified IR metrics ex-
amined in this study. The original α-nDCG (as used in TREC) can
handle neither intent probabilities nor per-intent graded relevance;
IA metrics tend to ignore minor intents; α-nDCG and IA metrics
have normalisation issues. In contrast, D-measures range fully be-
tween 0 and 1, and so do D�-measures provided that the measure-
ment depth l is not smaller than the number of intents. In addition
to these inherent differences, our present study showed that IA met-
rics have relatively low discriminative power, and that D�-measures
have strengths in terms of intuitiveness. (The latter observation is
not included in Table 7 as it is somewhat subjective.) It is probably
fair to say that the D�-measures are promising for diversified IR
evaluation. A practical recommendation for diversified IR evalua-
tion would be to plot I-rec against D-nDCG as we have shown in
Figure 3 and to discuss the contour lines that represent D�-nDCG.

Our results on diversified IR metrics, however, rely solely on
TR09DIV+gr (just as other studies [7, 20, 23] relied solely on
TR09DIV). As future work, we plan to construct more diversity
test collections (at the NTCIR “INTENT” task10) and strengthen
our conclusions. We also plan to explore related questions such as:
(1) how to seamlessly evaluate diversity and relevance for naviga-
tional and informational queries; and (2) how to evaluate diversity
across verticals in aggregated search and across queries in a session,
and formulate a unified, general framework for diversity evaluation.
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