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implementation based on micro-controllers; 2) the development of a
FDI method addressing sensor faults, actuator faults, and process faults
under one unified framework [15].
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Sampled-Data Based Consensus of Continuous-Time
Multi-Agent Systems With Time-Varying Topology

Yanping Gao and Long Wang

Abstract—This technical note studies consensus problems of multiple
agents with continuous-time second-order dynamics, where each agent
can obtain its positions and velocities relative to its neighbors only at
sampling instants. It is assumed that the sampling period of each agent is
independent of the others’ and the interaction topology among agents is
time-varying, where the associated direct graphs may not have spanning
trees. If the union graph of all direct graphs has a spanning tree, then
there exist controller gains and sampling periods such that consensus is
reached. Moreover, two approaches are presented to design such controller
gains and sampling periods. Simulations are performed to validate the
theoretical results.

Index Terms—Consensus, multi-agent systems, sampled-data control,
second-order agents, time-varying topology.

I. INTRODUCTION

There has been much work on consensus problems of first-order
agents, and many research topics, such as consensus under
time-varying topology [1]–[4], finite-time consensus [5], consensus
over random networks [6], asynchronous consensus [7], [8], and con-
sensus with predictive mechanisms [9], have been studied thoroughly.
In some practical situations, agents such as unmanned aerial vehicles
and mobile robots can be controlled directly by their accelerations
rather than by their velocities. Hence, it is also necessary to investigate
consensus problems of second-order agents. In [10] and [11], two typ-
ical protocols were proposed for continuous-time second-order agents.
In [12], a relaxed sufficient condition was obtained for consensus
of continuous-time second-order agents with switching topology.
Formation control problems of continuous-time second-order agents,
which can be transformed into consensus problems, were considered
in [13] and [14]. In [15], motion coordination problems were discussed
for continuous-time second-order agents with switching topology,
variation of link gain, and unmodeled dynamics. In [16], consensus
problems were investigated for discrete-time second-order agents with
stochastic switching topology. For details, see the survey papers [17],
[18] and the references therein.

In most of the work on continuous-time multi-agent systems, it is
assumed that all information is transmitted continuously. However,
information transmission may be interrupted due to the unreliability
of communication channels and the limitations of sensing ability of
agents. Hence, it is more practical to take account of intermittent infor-
mation transmission. In [19]–[22], consensus problems were addressed
for continuous-time second-order agents in a sampled-data setting,
where the sampling periods of all agents are the same. Moreover, all
agents update their control inputs at the same discrete times. On the
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other hand, it is difficult to guarantee synchrony because of technology
limitations and environment disturbances, and thus, the asynchronous
case, namely, each agent acts on its own pace, also deserves to be
studied. Asynchronous consensus problems of first-order agents have
been investigated extensively (see, e.g., [7], [8]). To the authors’ best
knowledge, there are few research results on asynchronous consensus
problems of second-order agents. Based on the above considerations,
we investigate asynchronous consensus problems of continuous-time
second-order agents in a sampled-data setting, where the sampling
periods of all agents may be different. The main contribution of this
work is to provide some sufficient conditions for consensus under
intermittent information transmission, asynchronous update, and
time-varying topology which may not have spanning trees.

Notations: Let �� � ��� be an identity matrix and
�� � � � � � � � �� � �; Let � denote the set of all posi-
tive integers; for any symmetric matrices �, � � � (respectively,
� � �) means that � is a negative (respectively, positive) definite
matrix; for any square matrix � , ���� �� represents the �-th row of
� and 	��� denotes the set of all eigenvalues of � ; 
 is called the
transformation matrix from � to 	 if 	 � 
�, where 	, � � �,

 � ���.

II. PRELIMINARIES

A. Graph Theory

We introduce some basic definitions in graph theory [23].
A directed graph � consists of a vertex set ���� and an edge set

����, where ���� � �
�� � � � � 
�� and ���� � ��
� � 
�� � 
� � 
� �
�����. For edge �
� � 
��, 
� is called the parent vertex of 
� and 
�
is called the child vertex of 
� . The set of neighbors of vertex 
� is
defined by ���� 
�� � �
� � �
� � 
�� � ���� �
� � 	� ��, and the
associated index set is denoted by ���� �� � �� � 
� � ���� 
���. A
(directed) path from 
� to 
� is a sequence, 
� � � � � � 
� , of distinct
vertices such that �
� � 
� � � ����, � � �� � � � � 
 
 �. A directed
graph � is strongly connected if there is a path from every vertex to
every other vertex. A directed tree is a directed graph, where every
vertex except one special vertex has exactly one parent vertex, and the
special vertex, called root vertex, has no parent vertices and can be
connected to any other vertices via paths. A subgraph �� of � is a
graph such that ����� � ���� and ����� � ����. �� is said to be
a spanning subgraph if ����� � ����. For any 
�, 
� � �����, if
�
�� 
�� � ������ �
�� 
�� � ����, then �� is said to be an induced
subgraph of �, and �� is also said to be induced by �����. A spanning
tree of � is a directed tree which is a spanning subgraph of �. � is said
to have a spanning tree if some edges form a spanning tree of �. The
union graph of a collection of graphs ���� � � � ����, where ��� � � � ���
have the same vertex set � , is a graph with vertex set � and edge set
equaling the union of edge sets of ��� � � � ��� .

A matrix is called nonnegative if each of its elements is nonnegative.
A weighted directed graph ���� is a directed graph � plus a nonneg-
ative matrix � � ���� � �

���, where ��� � � � �
� � 
�� � ����,
and ��� is called the weight of edge �
� � 
��. The Laplacian matrix
� � ���� � �

��� of

���� �� ���
�� �� ��� �


��� � � 	� �
�

��������

���� � � � �

B. Model

Consider a group of agents with the following second-order
dynamics:

������ � 
����� �
���� � ������ � � �� � � � � � (1)

where �� � and 
� � are the position and velocity vectors of agent
�, respectively, and �� is the control input or the protocol. Although we
only consider the case of second-order dynamics, similar analysis can
also be done for the case of high-order dynamics.

Given ��, � � �� � � � � �, we say that �� or multi-agent system
(1) solves a consensus problem asymptotically if ��������	��� 

������ � � and �������
	��� 
 
����� � �, �, � � �� � � � � �, for
any initial states. Such a consensus problem can find application in
formation control of multiple vehicles/robots (see, e.g., [13], [14]).

We consider the following protocol:

����� � 
 
�

��
 �

��� ����� �� ����� 
 �� �����


 
�

��
 �

��� ����� 
� ����� 
 
� ����� �

����� � � � �
���
���� � � �� �� � � � � � � �� � � � � � (2)

where 
�, 
� � �, and �
���
� � �� � ���. Moreover, it is assumed that

the sampling period of each agent is independent of the others’ and
�� � ���, � � �� � � � � �, where � � � and �� � �.

III. MAIN RESULTS

In this section, first we show that there exist controller gains 
�, 
�
and sampling periods ��� � � � � �� such that protocol (2) solves a con-
sensus problem if the time-varying topology satisfies some conditions,
and then we provide some methods to design such controller gains and
sampling periods. For this purpose, we need some preparations.

To facilitate the following analysis, introduce a new topology, de-
noted by�������, which is different from the actual topology �������.

Definition 1: ������� is a weighted directed graph with the same
vertex set as �������, where ���� � �������� �

���. For any � �

��� � � � � ��, � � ��� �� � � ��, and � � �
���
� � �

���
��� , if the information

of relative state between agent � and agent �, 
 � 	� �, is available for
agent � at time �

���
� , then �
� � 
�� � ����������, or else �
� � 
�� ��

����������; if �
� , 
�� � ����������, then ������ � ��� �
���
� . It is

assumed that ������ � �, � � �� � � � � �, 
 � � ��.
Each agent interacts with other agents only at discrete times, and

we use ������� to denote the actual interaction among all agents.
Under protocol (2), the effect of interaction at a discrete time will last
to next discrete time, and we use ������� to represent such effect.
Hence, ������� can be viewed as the extension of actual interaction
among all agents on entire time. Furthermore, we make the following
assumptions:

(A1) ��� � � � � ����, � � �, 
 � � ��, i.e., ������� is
periodically time-varying.
(A2) The union graph of �������� � 
 � � ��� has a spanning
tree.

Remark 1: Periodic processes exist extensively in nature and engi-
neering [24]. In some cases, the communication among agents exhibits
periodic phenomena, which implies that the topology among agents
is periodically time-varying. Hence, we focus on the case of periodi-
cally time-varying topology. Note that ������� is periodic if and only
if ������� is periodic. Actually, (A1) and (A2) can be replaced with a
more general topology case, which will be discussed in Section IV.

Let �
���
� � � � �� � � � � �� � � �� �� � � � � ���� ��� � � ��, where �� �

�� � � � �. Obviously, ������� is time-invariant during each time in-
terval ���� �����, and each ���� 
 �� is an integer multiple of �. For
convenience, let �������� � 
 � � ��� � ������� � � � ����� �� and
introduce a switching signal � � ��� �� � � �� � ��� � � � ���.
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Fig. 1. Distribution of discrete times during all time intervals �� � � �,
� � �� �� � � �, is identical.

From (2), we see that the control input of agent � during
�
���
� � �

���
��� is time-invariant. By solving (1), we have ����� �

�� �
���
� � �� �

���
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�
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� ,
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���
� , � � �� �� � � � � � � �� � � � � 	,

� � � �
���
� � �

���
��� . For any 
 � ��� �� � � �� and � � ��� � � � � 	�, there

exists ��
� �� � ��� �� � � �� such that �� � �
���
������� �

���
�������� . Then

����� ������� � ��� ��������� �
��� ���

�

�
�� �

���
������ �

����� � ������ � ��� ����� �
���
������ � � � � ���� ����	 (3)

and

�������� ������� � ����� � ���������

�
����� � ���

�

�
�� �

���
������ �

�������� � ������ � ����� � ����� �
���
������ � (4)

Let 
 denote the least common multiple of 
�� � � � � 
�, then the least
common multiple of ��� � � � � �� is 
�. Let � � 
�. By �

���
� � �� �

���, � � �� � � � � 	, � � �� �� � � �, ��� 
 �� � ��� � ��� �� � �� �

����� 
 � ��� �� � � ���, � � �� �� � � �, have the same number of ele-
ments, denoted by �, where � � � � �

��� �
�
� � �� � �. Hence,
����� ������ � � � � ���������� � ��� � ��� �� � �� � ����, where ��� �

�����, � � �� �� � � �, and the distribution of discrete times during each
two time intervals ��	�� ��	����� and ����� �������� is identical, i.e.

�	��� � �	� � ����� � ���� � � � �

��	���� � ��	������ � ������� � ����������

�� � ��� �� � � � (5)

as shown in Fig. 1. By the definition of ����
���������, ����

���
������ � ������

�
���
���������. Thus

�
���
��������� � �

���
������ � ����� � �� � �

���
������ � ��� (6)

Let ��
� � �
��	, 
 � �� �� � � �, where �
��	 is the maximum integer
not larger than 
��, then ��
�� � 
 � ���
� � ���, and

�
���� � �
���
������ � ��� � � �� � � � � 	� (7)

Let ����� denote the Laplacian matrix of 
�������, and let
��
� � � ��� �
� � � � ��� �
� 	

� , ���
� � � ����
� ����
� 	
� �

� ������ ������ 	
� . By (7), system (4) can be rewritten as

��
 � �� � ��� ����
����
�

�

��
����

���

�
���
���� ����
� ��
 � ���


 ��� �� � � � (8)

where ���
� �
� ��
� �

, ���
� �
���

�
� �� ���

�
� ��

���� ����
, �� �

���� � �� , ����
���� �

���, and

�
���
������� 
� �

�������� 
�� �
���
������ � ���� � � � �� � � � � 	

�� �
���
������ �� ���� .

Clearly, ��
����
��� �

���
���� � �����, �

���
������ � �, and the delays of

system (8) are not larger than � � �. Note that system (8) is different
from the discrete-time second-order multi-agent system in [16] and the
discrete-time systems obtained by discretization in [19]–[22]. Obvi-
ously, asynchrony induces more time-delays.

We say that system (8) solves a consensus problem if
�
��������
� � ���
�� � �, �, � � �� � � � � 	, for any initial
value ����. By (3) and the definition of �, system (1) with protocol
(2) solves a consensus problem if and only if system (8) solves a
consensus problem. Nonnegative matrix theory is generally applied to
deal with consensus problems of discrete-time systems (see, e.g., [2],
[4], [8]). However, some coefficient matrices of system (8) may not
be nonnegative. Hence, we resort to the Lyapunov’s direct method to
treat the consensus problem of system (8) [25].

First we make a state transformation for system (8). Let
� � ��� �� 	 be an invertible matrix, then ��������� �
� �����

� �����
, ����

���
����� �

� �
���
����
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���
����

where �����,

�
���
���� � �����������. Let ��
� � ���� � �����
�, where
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� 	
� , and
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� 	
� , then ��
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With the above preparations, we obtain the following result.
Lemma 1: System (1) with protocol (2) solves a consensus problem

if and only if system (9) is globally asymptotically stable.
Hence, we can establish the following main result by analyzing the

stability of system (9).
Theorem 1: Assume (A1) and (A2) hold. Then there exist controller

gains ��, �� and sampling periods ��� � � � � �� such that system (1) with
protocol (2) solves a consensus problem.

Proof: First we show that the global asymptotic stability of
system (9) is equivalent to the asymptotic stability of a discrete-time
time-invariant system without delays.
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The least common multiple of � and � is denoted by ��, Where
� � �. obviously, there exists � � � such that ��� � ��. By
(A1) and (A2),������� during ������ ��������� is the same as�������
during ������ ���������, � �, 	 � ��� �� � � ��, and the union graph of
�������� � � � ������ ����������, � � � ��� �� � � ��, has a spanning
tree.

By (5), 
�� � 
�� � � � � 
������ � 
���, � � �� �� � � �.
Clearly, 
� , � � �� �� � � �, are all integer multiples of �. Thus,
let 
�� � ���� � � � � 
������ � �����, � � �� �� � � �, where
��� � � � ����� � �. Note that �, ��� � � � ����� are determined
only by 
�� � � � � 
�. Obviously, each coefficient matrix of system (9)
can be written as a polynomial matrix of �, namely

	���
� � �������


 �
� ������������

������������
���
���� ������������

���
����
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�
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�
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����
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	���
� ��

� �

������������
���
���� ������������

���
����


 �� �
	 �

�
�

���
���� �

	 �

�
�

���
����

� �
�

(10)

The following aim is to obtain the transformation matrix from
������ to ����
 �����, � � � ��� �� � � ��, which will be finished by
three steps.

Let ����� � ��
���
���� � � � �

���������
���� �, � � �� �� � � �. The

transformation matrices from ���� to ����, � � �� � � � � �, can
be calculated by (9). Moreover, by (10), the transformation
matrix from ���� to ����, � � � ��� � � � � ��, can be written
as a polynomial matrix of � with degree ��; let �

�
�
��� de-

note the constant coefficient matrix associated with �
, � � �
��� �� � � � � ���. Clearly, ����

��� � �������, � � �� � � � � �. Then
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and ��
���
��� � � � �

����
��� � is determined only by ��, ��,

��� � � � �����, ������������ � � � ��������.
By similar manipulation, for any � � ��� �� � � ��, the transformation

matrix from ����� to ���� 
 ���� can also be written as a polynomial
matrix of � with degree ��; let ��
�

�������� denote the constant coeffi-
cient matrix associated with �
, � � � ��� �� � � � � ���. Then
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 ���� � ������� 
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�
�
�
�
�������� ������

� ��� �� � � � (11)

where
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����
�������� � is determined only by ��, ��,

��� � � � �����, ������� � � �, ������������.

By (11), for any � � ��� �� � � ��, the transformation matrix from
������ to ���� 
 ����� can also be written as a polynomial matrix
of � with degree ���; let 


�
�
� denote the constant coefficient

matrix associated with �
, � � � ��� �� � � � � ����. Hence, for any
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where �� � �������������, and � 

���
� � � � 


�����
� �

Is Determined Only By ��, ��, ��� � � � �����,
�������� � � � ��������������.

By (5), (6) and (A1), for any �, 	 � ��� �� � � ��, ������� during
������ ��������� is the same as ������� during ������ ���������, and
thus, ������� � �������� � � � �������������� � �������������,
which means � 
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� � � � 
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� �, i.e.,
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� . Let 
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� � �� �� � � �, � � �� � � �, ���, 
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, and
���� � ������, Then

��� 
 �� � 
����� � � �� �� � � � � (12)

Obviously, the global asymptotic stability of system (9) is equivalent to
the asymptotic stability of system (12). By Lemma 1, system (1) with
protocol (2) solves a consensus problem if and only if system (12) is
asymptotically stable or 
 is Schur stable. Note that 
 is a polynomial
matrix of �with degree ��� and is determined only by controller gains
��, ��, sampling periods ��� � � � � �� and the interaction topology.

Next we prove that there exist controller gains ��, �� and sam-
pling periods ��� � � � � �� such that system (12) is asymptotically
stable. Consider any given positive integers 
�� � � � � 
�. Since the
union graph of �������� � � � � ���� ����� has a spanning tree,

����
��� ������������� can be viewed as the Laplacian matrix of a

directed graph with a spanning tree.
Clearly

���
����

���

������������� �

�
� ����

��� �������������

� ����
��� �������������

�

Let � � ����
��� ������������� and � � � ���

��� �� , then 
� �
� �����

���� ����
. By Lemma 3.3 in [4], �� is Hurwitz stable. By

analyzing the eigenvalues of 
� and by Liénard-Chipart criterion, for
any �� � �, �� � ��������� ��������������� 
 � 
�, there
exists � � � such that 
�
� 
 �
�. By calculation, 

�
 �
� � � 
�


�
�
� 
 � ���� , where  ���� is a polynomial ma-
trix of � with degree ��� � � and 
�


� 
 �
� is independent of
�. Hence, for any given 

 � �, � � �� � � � � !, �� � �, �� �
�����	��� ��������������� 
 � 
�, if � is small enough, then


�
�� " �, namely, system (12) is asymptotically stable. Hence,
there exist ��, ��, ��� � � � � �� such that system (1) with protocol (2)
solves a consensus problem.

Theorem 1 shows the existence of controller gains and sampling pe-
riods which ensure consensus. In the following, we provide methods
to design such controller gains and sampling periods. By the proof of
Theorem 1, it is natural to have the following result.
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Corollary 1: Assume (A1) and (A2) hold. For any given controller
gains ��, �� and sampling periods��� � � � � ��, system (1) with protocol
(2) solves a consensus problem if and only if there exists � � � such
that ���� � � � �.

Hence, we can find ��, ��, ��� � � � � ��, which ensure consensus, by
verifying the feasibility of a group of LMIs, i.e., ������ � �, � �
�. By the proof of Theorem 1, for any given �� �

�, � � �� � � � � 	,
�� � � and �� � ��������� ��
	�
�����

�� � � ��, the LMIs
hold if � is small enough. Furthermore, we can obtain an allowable
upper bound of � by applying the linear matrix inequality technique.

Corollary 2: Assume (A1) and (A2) hold. Let �� � �,
�� � ��������� ��
	�
�����

�� � � ��, �� � �,
� � �� � � � � 	, and 
 � �. System (1) with protocol (2) solves a
consensus problem if � � ��, where
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Proof: We first show that optimization problem (13) is solvable.
By the proof of Theorem 1, there exists� � � such that������� � �
�. Thus, the LMIs in (13) are feasible if � � � is small enough. More-
over, If the LMIs in (13) are feasible for � � �� � �, then they
are also feasible for any � � 
�� ���. Clearly, the set of all � satis-
fying the LMIs in (13), i.e., �� � � � � ��� ��
�
 
����� � � �
���� ���� ��
 ��	� �� 
��� ��
 ����� 
��, is a bounded open in-
terval in 
�����. Hence, (13) is solvable.

Let � � ���. Consider any � � ��. By the above analysis, there
exists � � � such that the LMIs in (13) hold for � � � and � � �.
Let �� denote �� in the Case of � � � , then

��� � ��� � �

��

���

������ � �� (14)

Choose the following Lyapunov function for system (12): � 
�� �
�
�����
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��. By (14), � 
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Fig. 2. Topologies.

�, � � �� �� � � �. Thus, system (12) is asymptotically stable, namely,
system (1) with protocol (2) solves a consensus problem.

Remark 2: By the proof of Corollary 2, �� can be obtained by the
following steps: (1) Let � � � be a tolerable error and �
 � � be small
enough such that the LMIs in (13) are feasible, where the feasibility of
the LMIs can be verified by the feasp solver in Matlab’s LMI Toolbox;
(2) Let � � �
 � � and verify the feasibility of the LMIs in (13), if
they are feasible, then replace �
 with �
 � � and repeat step (2), or
else �� � �
.

IV. DISCUSSION

Although only the case of periodically time-varying topology is
considered, the more general topology case, i.e., there exist nonempty,
bounded, and contiguous time intervals such that the union graph
of all graphs across each time interval has a spanning tree, can be
analyzed similarly. In the case of periodically time-varying topology,
the consensus problem is transformed into the asymptotic stability
problem of a discrete-time time-invariant system; however, in the case
of general topology mentioned above, the consensus problem can be
transformed into the asymptotic stability problem of a discrete-time
switched system. There have been many research results on the
stability of switched systems (see [26]), and thus, the analysis in the
general topology case is omitted due to space limitation.

V. SIMULATIONS

Consider a system with six agents. The sampling periods of agents
1, 2, 3 are ��, and the sampling periods of agents 4, 5, and 6 are �. The
communication structures among six agents are shown as follows: (1)
at sampling instants ���, � � �� �� � � � � agent 1 (respectively, 2,3) can
obtain the information of relative state between it and agent 4 (respec-
tively, 5,6); (2) at sampling instants 
�� � ���, � � �� �� � � �, agent
1 (respectively, 2,3) can obtain the information of relative state be-
tween it and agent 4 (respectively, 1,6); (3) at sampling instants ���,
� � �� �� � � �, agent 4 (respectively,5,6) can obtain the information of
relative state between it and agent 1 (respectively, 6,3); (4) at sam-
pling instants 
�� � ���, � � �� �� � � �, agent 4 (respectively, 5,6)
can obtain the information of relative state between it and agent 5 (re-
spectively, 4,3). Assume that each edge weight is 1. Hence, for any
� � ��� �� � � ��, the topologies, defined by Definition 1, during time in-
tervals !���� 
�������, !
������� 
�������, !
������� 
�������,
and !
������� 
������� are 	�, 	�, 	�, and 	�, respectively, where
	�, � � �, 2, 3, 4, are shown in Fig. 2. Obviously, none of 	�, � � �, 2,
3, 4, have spanning trees, while their union graph has spanning trees.
By Theorem 1, there exist ��, ��, � such that consensus is reached. By
calculation, for �� � �, �� � �, � � ���, � is Schur stable, which
means that consensus is reached by Corollary 1. The state trajectories
of six agents in the case of �� � �, �� � �, � � ��� are shown in
Fig. 3, which validates our results.
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Fig. 3. State trajectories of six agents.

VI. CONCLUSION

This technical note has studied consensus problems of continuous
second-order agents in a sampled-data setting, where the sampling pe-
riod of each agent is independent of the others’ and the interaction
topology among agents is time-varying. In virtue of some state trans-
formations, the consensus is shown to be equivalent to the asymptotic
stability of a discrete-time time-invariant system without delays. Under
the condition that the union graph of all graphs has a spanning tree,
it has been proved that consensus can be reached for some controller
gains and sampling periods. Furthermore, two methods have been pre-
sented to design such controller gains and sampling periods. Simula-
tions have been provided to illustrate the effectiveness of the theoretical
results.
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