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Abstract

In this paper we implement a computational model of a neuromodulatory system in an autonomous robot. The output of the

neuromodulatory system acts as a value signal, modulating widely distributed synaptic changes. The model is based on anatomical and

physiological properties of midbrain diffuse ascending systems, in particular parts of the dopamine and noradrenaline systems. During

reward conditioning, the model learns to generate tonic and phasic signals that represent predictions and prediction errors, including precisely

timed negative signals if expected rewards are omitted or delayed. We test the robot’s learning and behavior in different environmental

contexts and observe changes in the development of the neuromodulatory system that depend upon environmental factors. Simulation of a

computational model incorporating both reward-related and aversive stimuli leads to the emergence of conditioned reward and aversive

behaviors. These studies represent a step towards investigating computational aspects of neuromodulatory systems in autonomous

robots. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Throughout the nervous system, neuromodulators have a

variety of functions ranging from the regulation of neuronal

excitability and plasticity to effects on gene expression and

structural modifications in neural circuits. In computational

models, neuromodulation may be viewed as exerting an

influence on neuronal response functions, learning rates, or

other model parameters (Doya, 2000; Fellous & Linster,

1998; Hasselmo, 1995; Hasselmo, Wyble, & Fransen, 2002;

Pennartz, 1996; Servan-Schreiber, Printz, & Cohen, 1990).

Several models have focused on the potential functional

roles of diffusely projecting neuromodulatory systems in

influencing the magnitude and direction of synaptic

plasticity, ultimately resulting in behavioral change. In

this paper we present one possible computational

implementation of such systems and we investigate

their action during learning and autonomous behavior in

a robot.

Adaptive behavior requires that the behaving system or

agent, be it an organism or a robot, is sensitive to the

consequences of its own actions. Different environmental

stimuli and events have different saliency, defined here as

their ‘predictive power’ or ‘relevance’ to the agent. Salient

stimuli and events play special roles in influencing learning

and plasticity. Whatever the mechanisms are that mediate

plastic changes, they must be unsupervised (or self-

supervised), allowing the agent to learn as a result of its

own actions and in the absence of an external teacher. A

number of computer simulations and robot models

(Almassy, Edelman, & Sporns, 1998; Edelman et al.,

1992; Friston, Tononi, Reeke, Sporns, & Edelman, 1994;

Pfeifer & Scheier, 1999; Rucci, Tononi, & Edelman, 1997;

Scheier & Lambrinos, 1996; Sporns, Almassy, & Edelman,

2000; Verschure, Wray, Sporns, Tononi, & Edelman, 1995)

have used ‘value systems’ as internal mediators of

environmental saliency. Value systems are entirely part of

the neural network architecture of the agent. Their outputs

serve to modulate neural activity or plasticity by delivering

a diffuse, globally acting signal. Typically, value systems

become active after the occurrence of specific sensory

stimuli, often as a result of behavioral actions of the agent.

Their response pattern is phasic and short-lasting, essen-

tially serving as a timing signal for synaptic modification.

While some aspects of value may be viewed as ‘innate’ and

the result of evolutionary adaptation (such as the immediate

effects on behavior of food or noxious stimuli), other aspects

are ‘acquired’ and the result of an agent’s experience

and behavior. In computational models, innate value is
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determined by fixed (hard-wired) connections, while

acquired value is the result of synaptic modifications within

the value system itself (Friston et al., 1994; Sporns et al.,

2000).

The multiple diffuse ascending systems of the vertebrate

brain have anatomical and physiological characteristics that

render them good candidates for mediating neuromodu-

latory effects on synaptic plasticity. They show phasic

activation in response to a variety of salient sensory stimuli,

ranging from food rewards (Ljungberg, Apicella, & Schultz,

1992) to stimuli attracting attention, signaling novelty or

triggering aversive responses (Aston-Jones et al., 1991;

Jacobs, 1986). Their anatomical projections reach wide-

spread areas of the brain, including large parts of the

cerebral cortex. Their immediate physiological effects

include modulation of the ‘signal-to-noise’ ratio of cortical

neuronal activity (Hasselmo, Linster, Ma, & Cekic, 1997) as

well as modulation of synaptic efficacy (Bear & Singer,

1986; Hasselmo & Barkai, 1995). Several of these systems

maintain structural connections that suggest they might

interact at the level of the midbrain. In addition, they project

to overlapping regions of cortex suggesting interactions

between different neurotransmitter systems at the level of

their projection targets.

The function of the mammalian midbrain dopamine

system in reward conditioning has been studied extensively

in recent years (Schultz, 1998). One of its components, the

ventral tegmental area (VTA), contains dopaminergic

neurons projecting to widespread cortical areas, including

frontal and prefrontal cortex. The majority of VTA

dopamine neurons show phasic activation in response to

food rewards. Their response pattern undergoes character-

istic changes in the course of learning. Phasic activation

following primary reward does not occur when the reward is

reliably preceded by other reward predicting stimuli. These

‘acquired’ phasic responses occur immediately at the onset

of stimuli that are predictive of rewards. In other words,

dopamine responses are ‘transferred’ to conditioned,

reward-predicting stimuli and become attenuated or dis-

appear entirely for completely predicted primary rewards. If

a fully predicted reward does not occur, dopamine neurons

exhibit a transient depression of their baseline discharge rate

at the time of the expected occurrence of the reward. This

last finding suggests that the dopamine system has access to

information concerning the timing of sensory inputs relative

to the occurrence of reward. Several computational models

of the midbrain dopamine system have been proposed

(Montague, Dayan, & Sejnowski, 1996; Schultz, 1998;

Schultz, Dayan, & Montague, 1997; Suri & Schultz, 2001),

forging a strong connection between dopaminergic

responses and temporal difference learning (Sutton &

Barto, 1990). Neuromodulators other than dopamine may

be involved in mediating the effects of aversive stimuli.

Noradrenergic neurons of the mammalian locus coeruleus

show responses to a wide variety of salient sensory stimuli,

including those of an aversive nature. Noradrenergic

neurons exhibit phasic discharge patterns (Aston-Jones,

Rajkowski, Kubiak, & Alexinsky, 1994) and plastic changes

related to behavior (Aston-Jones, Rajkowski, & Kubiak,

1997), although the predictive aspect of their responses is

less clear.

In this paper, we focus on the question of how

neuromodulatory systems operate in the course of relatively

unconstrained behavior executed by an autonomous agent.

We first present a neural implementation of a neuro-

modulatory system mediating reward that shares many

structural and functional characteristics with the mam-

malian midbrain dopamine system. In addition, we

implement a second neuromodulatory component mediating

the effects of aversive stimuli on learning and plasticity. We

demonstrate the operation of these two components of a

neuromodulatory system in simple robot experiments,

emphasizing the relationship between behavior and neural

change.

2. Methods

2.1. General

All experiments reported in this paper were carried out

using neural simulations implemented in Matlab 6.0

(Mathworks, Natick, MA), run on Linux 6.2 workstations

(ASL, Newark, CA) and interfaced with autonomous

Nomenclature

si cell activation

AðtÞ total synaptic input

cij synaptic weight

V cell persistence

f nonlinear cell response function (r: slope, u: activation threshold)

b behavioral threshold

1 synaptic decay rate

h learning rate

V value signal

F nonlinear postsynaptic function (k, w1, w2, j1 and j2: parameters determining shape of F).
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khepera robots (K-Team, S.A., Préverenges, Switzerland),

equipped with a color CCD video turret and a gripper

module. Basic Matlab scripts and serial line communication

modules for Linux are available from the authors upon

request. Some additional material including short movies of

robot behavior can be found at php.indiana.edu/~osporns/

lab.htm.

2.2. Robot design

The robotic system described in this paper is named

‘Monad’, after the individual elements of being, the building

blocks of the universe of metaphysics, central to the

philosophies of Giordano Bruno and Gottfried Wilhelm

Leibniz. Monad (Fig. 1(A)) consisted of a mobile circular

platform (B < 5 cm) capable of translation and rotation

limited to an approximate speed of 5 cm/s. An arm/gripper

module allowed a one degree-of-freedom gripper to be

raised and lowered, as well as closed and opened, thus

permitting physical contact with objects. Rotational move-

ments of the robot wheels as well as movements of the arm/

gripper were triggered by the activation of neural units

within the simulation. Robot sensors consisted of a color

CCD camera (fl 3 mm, 59.8 £ 42.68 field of view) mounted

on top of the mobile platform and angled forward, 8 infrared

(IR) sensors mounted around the periphery of the platform,

and resistivity sensors on the inner surfaces of the gripper.

The color camera continuously transmitted RGB images

(320 £ 240 pixels), which were used as input to the visual

part of the neural simulation. A low-resolution gray level

image was derived from the RGB signal and used as input to

the visual approach system. The 8 IR sensors acquired

infrared reflectance readings at 20 ms intervals that were

converted into motor signals using a fixed motor map.

Synaptic weights were set so as to effectively steer Monad

away from obstacles (see below). The resistivity sensors

recorded the conductivity across the surface of objects, a

signal that served as a measure of object ‘taste’ (low

conductivity ¼ appetitive taste, high conductivity ¼

aversive taste). Resistivity was recorded as a scalar variable

with 8-bit resolution; for simplicity, all readings were

converted to binary outputs, with high conductivity

activating an aversive taste receptor (Tav) and low

conductivity activating an appetitive taste receptor (Tap).

2.3. Robot environment

Monad was tethered via a flexible wire bundle and a

rotating contact, which was mounted directly above an

environmental enclosure (Fig. 1(B); 90 £ 90 cm2), with

white floor and walls, illuminated by DC-powered halogen

lights and containing various stimulus objects. These

objects were black 1 in. cubes, with a single colored face

at the top. Objects were visually indistinguishable except for

their color, which was red or blue. The black surfaces of the

objects were either electrically non-conductive or conduc-

tive, a physical property analogous to ‘taste’. Objects were

sufficiently light to be easily manipulated by Monad’s

gripper and were either presented manually by the

experimenter or placed at random positions within the

environment at the beginning of an experiment.

2.4. Robot behavior

At each point in time, Monad was in one of several

behavioral modes, forming a simple behavioral hierarchy.

By default and in the absence of overt visual targets, Monad

was traversing the environment at fairly constant speed

(<3–5 cm/s) while sensing IR reflectance and avoiding

obstacles or walls (mode ¼ navigate ). If a high-contrast

visual target was detected, the target was approached under

the guidance of the visual approach system (mode ¼

approach ). This system translated the activity of units in

a visual map into motor (speed) commands relayed to

Monad’s two high-precision DC motors, via a fixed motor

map. While approaching a target, all steering movements

were under visual control and no IR sensor readings were

taken. Approach terminated if a visual target loomed large

Fig. 1. (A) Monad, as configured for the experiments reported in this paper. (B) Robot environment. Environment consists of an enclosed platform (approx.

90 £ 90 cm2) containing objects. Monad’s tether, consisting of power and communication lines, allows unrestricted movements. Monad is pictured in

navigational mode, with arm/gripper module raised to allow IR sensor readings. Multiple objects are distributed at random throughout the environment.

O. Sporns, W.H. Alexander / Neural Networks 15 (2002) 761–774 763

php.indiana.edu/~osporns/lab.htm
php.indiana.edu/~osporns/lab.htm


(i.e. was physically close) in the center of Monad’s visual

field (fovea). Before learning, Monad attempted to establish

physical contact with all targets located in close physical

proximity (mode ¼ interact ), by lowering the arm and

closing the gripper. After obtaining sensor readings of the

conductivity of an object, the object was released (mode ¼

withdraw ) by opening the gripper and returning the arm to a

raised position. Then, Monad turned away from the released

object to resume navigation or approach another target.

The behavioral sequence outlined earlier constituted

Monad’s ‘default’ or innately specified behavioral pattern.

All objects of high-visual contrast were approached and

‘tasted’, regardless of their visual appearance. When objects

were encountered, Monad emitted different unconditioned

responses (UR) depending upon the nature of the uncondi-

tioned stimulus (US), i.e. ‘taste’. If an object was found to

be appetitive, a prolonged gripping response ensued. If an

object was found to be aversive, the gripping response was

immediately terminated. After learning (essentially amount-

ing to an instrumental conditioning paradigm), the visual

appearance (color) of objects was sufficient to trigger

conditioned responses, a reward-related conditioned

response (CRR) consisting of immediate approach and

gripping for appetitive stimuli, and an aversive conditioned

response (CRV) consisting of immediate withdrawal with-

out gripping for aversive stimuli. These conditioned

responses were triggered by activation of motor units Map

and Mav, respectively, as soon as their activation difference

exceeded a behavioral threshold b ðb ¼ 0:3Þ: In all robot

experiments, connections driving Map/Mav activation were

subject to value-dependent learning (see below).

2.5. Neural simulation

All visual images and sensor readings were relayed to a

neural simulation, and motor commands were initiated from

the simulation and relayed to Monad via simple serial line

commands. Neural and behavioral states were continuously

recorded and saved for off-line display and analysis. In some

cases, digital video recording of the environment was

carried out in parallel. On average, a single simulation cycle

required about 250 ms of CPU time.

All neural units were implemented using a continuous

firing rate model with a single saturating non-linearity,

according to

siðt þ 1Þ ¼ f½AðtÞ þVsiðtÞ�

where si(t ) is the activity of unit i at time t, A(t ) is the total

synaptic input to unit i at time t, V is the unit’s temporal

persistence (0 , V , 1), and f is a saturating nonlinear

function, given as f ¼ tanhðr½AðtÞ þVsiðtÞ�Þ if ½·� . u and

f ¼ 0 otherwise, with r denoting the slope of the function

and u acting as an activation threshold. A(t ) was calculated

as the linear sum of all inhibitory and excitatory inputs, i.e.P
cijsjðtÞ: (For parameter values see Fig. 3.)

Schematic diagrams of the neural model and its

constituent networks (including parameter values) are

shown in Figs. 2–4. Fig. 2 shows segregated sensorimotor

circuits that governed robot navigation and approach (Fig.

2(A) and (B)), as well as the robot’s visual system (Fig.

2(C)). IR sensors are connected to motor units driving the

two wheels of Monad via a fixed motor map (Fig. 2(A)). A

raw image delivered by Monad’s CCD camera provides

input to the visual approach system, after being converted to

a low-resolution format, thresholded and contrast-inverted

(Fig. 2(B)). The resulting visual array is converted to

steering motions of the two wheels using two symmetrical

fixed motor maps. The central (foveal) part of the raw image

is converted to red, green, blue and yellow (red þ green/2)

arrays, which are further processed using red–green and

blue–yellow center–surround convolutions. The resulting

neural arrays (R þ G 2 , B þ Y 2 ) are used to drive color-

selective units in Cred and Cblue that discount visual

topography and report the presence or absence or red or

blue color within the visual field. We note that the emphasis

of the present model was on the computational aspects of

the neuromodulatory system. Therefore, no attempt was

made to implement complex categorization or sensorimotor

mappings (for earlier work on visual categorization see

Almassy et al., 1998; Krichmar, Snook, Edelman, & Sporns,

2000). Stimulus categories were limited to the object’s

color, specifically ‘red’ and ‘blue’ and category-dependent

behavioral outputs were simple ‘appetitive’ or ‘aversive’

behaviors.

The robot’s neuromodulatory system had two main

components, mediating effects of appetitive (reward) and

aversive stimuli, respectively. The structure of the reward

component is shown in Fig. 3. Color selective units (Cred/

Cblue) provided sensory inputs to a network transforming

this input into a continuous temporal representation. As a

result of excitatory and inhibitory interactions within this

network (essentially forming a delay chain), stimulus-

specific units Dred/Dblue within this network became active

after a specific amount of time had elapsed since the onset of

their preferred stimulus. These units had fairly broad

temporal tuning with significant mutual overlap in terms

of their ‘temporal receptive field’ (see Figs. 5 and 8, below,

for example activity traces). A more realistic implemen-

tation of such a network would consist of intermixed

populations of neurons that show complex spatio-temporal

activation patterns. Dred units projected to two subcom-

ponents of the reward system mediating different aspects of

reward stimuli through two distinct sets of modifiable

connections. Both of these subcomponents consisted of an

‘integrator’ unit (SO1 and SO2, respectively), which activated

a feedforward inhibitory unit (SI1 and SI2, respectively) and

a phasic response unit (SS1 and SS2, respectively). Connec-

tion and cell parameters for SO, SI, and SS were chosen to

confer the desired dynamic properties of sustained or tonic

response (SO), powerful inhibition (SI) and burst-like phasic

responses (SS). SS1 and SS2 emitted two phasic components

of the reward-related neuromodulatory output signal.
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Initially, the connections linking temporal delay units and

SO1/SO2 were weak, but in the course of learning they

became strengthened in specific patterns and capable of

driving responses in SO1/SO2. SO1/SO2 were also activated by

the primary reward (appetitive taste), through a strong

‘innate’ and excitatory connection. Due to their combined

excitatory and inhibitory inputs, SS1 and SS2 both showed a

phasic response profile, a short burst of activation followed

by inhibition from SI1 and SI2. The SS2 phasic response is

inhibited (‘cancelled’) by the simultaneous occurrence of a

primary reward, due to an ‘innate’ and inhibitory connection

from Tap to SS2. Essentially, activation in SS1 and SS2

constituted a temporal derivative of increases (but not

decreases) in SO1/SO2 activation. The firing level of SS1 was

taken to be proportional to an increase in the level of

neuromodulator released at projection targets over a

stationary baseline. In turn, the firing level of SS2 was

taken to be proportional to a decrease in the level of

neuromodulator below the same stationary baseline. The

overall level of neuromodulator released by the reward

system, taken to be a ‘value signal’, was calculated as VR ¼

SS1 2 lSS2; with l setting the overall difference in gain

between the two components (l ¼ 1 in this paper). VR was

a signed scalar variable, which was positive if the level

of neuromodulator increased above baseline and negative

if it decreased below baseline (i.e. we assume that

baseline ¼ 0).

In a separate set of experiments, a second component of

the neuromodulatory system is added, responsive to

aversive stimuli. Fig. 4 shows the neural networks

comprising this system, which is similar in its design to

the positive subcomponent of the reward-mediating neuro-

modulatory system. All neuromodulatory components

receive sensory inputs to SO1, SO2 and SO3 from Dred and

Dblue units (Dred units not shown in Fig. 4 for clarity). The

output of the aversive neuromodulatory system VV consists

Fig. 2. (A) Schematic top view of Monad with positions of 8 IR sensors. Sensor readings are converted to motor (speed) signals to Mleft and Mright via a fixed

motor map. (B) Input to the visual approach system is provided after converting a large portion of the raw image (shown in panel C) into a low-resolution, high-

contrast, black-and-white visual array. This array governs motor speeds through two fixed and symmetric motor maps, one for activating Mleft and one for

Mright. The motor map shown is for Mleft. (C) Separate color channels derived from the central (foveal) portion of the raw image are processed by red–green and

blue–yellow center–surround units (R þ G 2 , and B þ Y 2 , respectively). Their outputs drive color-selective units Cred and Cblue that discount spatial

information (translation invariance).
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of the activity of SS3 alone; no temporal prediction

similar to SS2 was implemented. The overall value

signal is calculated as V ¼ VR þ VV; i.e. as the linear

sum of the levels of the two reward-related and aversive

neuromodulatory systems.

Two types of learning were employed in the present

model, value-dependent learning and Hebbian learning.

Through value-dependent learning, the value signal V

influenced synaptic modification in sensorimotor connec-

tions linking color-selective units in Cred/blue to motor units

in Map/av, as well as in connections linking the temporal

delay units Dred/blue to SO1 and SO3. Thus, value exerted a

dual influence, by directly modifying behavior through

changes in sensorimotor linkages, and by modifying the

response characteristics of parts of the neuromodulatory

system itself. Connections that were subject to value-

dependent learning were updated according to a ternary

learning rule:

cijðt þ 1Þ ¼ ð1 2 1ÞcijðtÞ þ hsjðtÞFðsiðtÞÞV

where sj(t ) is the presynaptic activation, si(t ) is the

postsynaptic activation, cij is the connection weight from

unit j to unit i, 1, the incremental decay rate of connection

weight per iteration, h, the learning rate, Fð·Þ the nonlinear

function applied to postsynaptic activity, V, the value signal.

Fð·Þ determined if a connection weight increased or

decreased depending upon the level of postsynaptic activity.

Fð·Þ was a continuous saturating function (21 , F(·) , 1),

here modeled as

F ¼ kð1 2 tanhðw1siðtÞ2 j1ÞÞ þ tanhðw2siðtÞ2 j2Þ:

Parameter values k, w1, w2, j1 and j2 (see Fig. 3) were set by

the experimenter solely to determine the shape of Fð·Þ and

were not thought to have direct physiological analogs.

Given the parameter values given in the legends to Figs. 3

and 4, the shape of F modeled the observed dependence of

the sign of synaptic modification on postsynaptic activity

(cf. Bear, Cooper, & Ebner, 1987; Bienenstock, Cooper, &

Munro, 1982). For very low levels of postsynaptic activity,

F tends to be very close to zero and synaptic changes are

very small. For low to intermediate levels of postsynaptic

activity, F takes on negative values, resulting in synaptic

weakening. High values of postsynaptic activity result in

Fig. 3. Schematic diagram of the reward component of Monad’s neuromodulatory system. Neural units and networks are indicated as boxes, excitatory

connections are shown as thin lines connecting boxes, inhibitory connections are shown as thick lines, the output signals of the neuromodulatory system are

indicated as thick hatched lines, and their modulatory targets are indicated as ellipsoid shaded areas. Some feedback inhibitory connections between Dred units

that are used for generating temporally specific responses are not shown for clarity. Parameter values for neural units are listed on the right of the figure.

Parameters r and u refer to the slope and activation threshold of the nonlinear response function f (f ¼ tanh for all units shown in Figs. 3 and 4). Both sets of

SO, SI and SS units had identical unit parameters. Connection weights cij are indicated as positive or negative numbers. Parameter values for synaptic

modification were: connections Cred ! Map: 1 ¼ 0:001; h ¼ 0:25; k ¼ 0:5; w1 ¼ 40; w2 ¼ 40; j1 ¼ 3 and j2 ¼ 5; connections Dred ! SO1: 1 ¼ 0:001;

h ¼ 0:15; k ¼ 0:5; w1 ¼ 60; w2 ¼ 60; j1 ¼ 1 and j2 ¼ 3; connections Dred ! SO2: 1 ¼ 0:001; h ¼ 0:15; k ¼ 0:5; w1 ¼ 6; w2 ¼ 6; j1 ¼ 1 and j2 ¼ 4: See

text for a more detailed description of anatomy and physiology.
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positive values for F (saturating at F ¼ 1) and synaptic

strengthening. For plastic connections that are not value-

dependent (i.e. connections between Dred/Dblue and SO2), the

value component of the earlier equation is set to 1, and thus

synaptic modification depends entirely on pre- and post-

synaptic activity only (Hebbian learning).

3. Results

The functional characteristics of the neuromodulatory

system were explored in three sets of experiments. In the

first set, objects associated with reward (appetitive taste)

were presented manually to the robot, in order to ensure

reproducible timing of reward delivery within individual

learning trials. In the second set of experiments, objects

were placed at random throughout the environment and all

robot behavior and learning proceeded in a fully self-guided

and autonomous fashion. This tended to degrade the

consistent timing of reward delivery. In the third set of

experiments, a component of the neuromodulatory system

mediating aversive stimuli was added and both appetitive

and aversive objects were used.

3.1. Robot experiments with consistent timing of reward

Our first goal was to investigate the development of

neural connectivity and activation patterns in Monad’s

neuromodulatory system in a task setting in which there was

consistent relative timing of object vision and subsequent

reward (appetitive taste), controlled by the experimenter. To

this end, the experimenter placed objects in Monad’s

navigational path, at positions just outside of the visual

field. This resulted in a fairly stereotypic behavioral

sequence, beginning with initial visual acquisition, followed

by guided visual approach, the establishment of physical

contact with the gripper and the sensing of taste. After each

trial the object was released and navigation through the

environment resumed. Individual trials, from first visual

contact to taste sensing, took about 1–2 s of real time, or 6–

8 iterations. About 20–25 trials were conducted in a typical

experiment lasting 1000 iterations (4–5 min). Fig. 5 shows

average activation patterns of neural networks involved in

visual sensing of objects, taste, motor action and neuro-

modulation. In all three sets of panels, a red object was

approached, resulting in activation of red-selective units as

well as triggering a temporal stimulus representation in

Fig. 4. Schematic diagram of the aversive component of Monad’s neuromodulatory system (compare Fig. 3). Connections linking Dred units with SO1, SO2 and

SO3 are not shown for clarity, but are present within the model and subject to plastic change. Also, SI1, SS1, SI2, and SS2 (see Fig. 3) are not shown, but are

present in the model. Parameter values are unchanged from Fig. 3. Parameter values for synaptic modification in connections linking Cblue to Map and Dblue to

SO1 and SO2 are identical to the ones shown in Fig. 3. For connections Dred/blue ! SO3 parameter values were 1 ¼ 0:001; h ¼ 0:15; k ¼ 0:5; w1 ¼ 60; w2 ¼ 60;

j1 ¼ 1 and j2 ¼ 3: See text for a more detailed description of anatomy and physiology.
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Dred units. After approach was complete, the object was

gripped and the primary reward (appetitive taste) was

delivered, here at iteration 15. Before learning (Fig. 5, left

panels), motor and neuromodulatory responses were not yet

driven by color-selective cells. Instead, the primary reward

(Tap) triggered motor (Map) and SO1/SO2 activation. SS1

became active, reporting the positive temporal difference in

SO1 due to the reward. SS2 activation was cancelled by the

arrival of the primary reward. During learning (Fig. 5,

middle panels), Map was activated by selectively strengthened

inputs from Cred, while Mav was competitively inhibited.

SO1 was triggered, not by the primary reward, but by activity

in Dred units, as a result of value-dependent modifications of

connections between Dred and SO1. Thus, SS1 became active

during visual approach, before objects were physically

encountered. Due to long-lasting activation of SO1, it did not

become active in response to the primary reward. SO2

continued to be activated by the primary reward, but was

also partially driven by strengthened connections from Dred

units whose ‘temporal receptive field’ coincided with the

timing of the reward. SS2 remained suppressed due to the

actual delivery of the reward. After learning (Fig. 5, right

panels), Map units were strongly driven by Cred. SO1 and SS1

were activated immediately after a red object was visually

acquired, with SO1 remaining active for a prolonged time

period. SO2 was driven by both primary reward and timing

signals from Dred. SS2 remained suppressed.

Fig. 6 shows activation levels, averaged over several

trials, of the reward component of the neuromodulatory

system, as well as average value signals used in synaptic

modification. Panels show SO1/SS1 and SO2/SS2 activations,

as well as VR, both as an average over multiple trials and for

individual trials. Before learning, SO1/SS1 were activated by

the primary reward (delivered at iteration 12), accounting

for the single spike in the value signal. After learning, SO1/

SS1 were triggered by visual input from Cred and Dred units.

SO2 responded to the primary reward in most trials (13 out

of 15) and no SS2 activity resulted. In two trials, the reward

appeared slightly delayed (as measured from the onset of

red visual input) and some SS2 activation occurred. On

average, the value signal consisted of a single spike

temporally aligned to the onset of the reward-predicting

stimulus (color red). After learning, if the reward was

withheld (by presenting red objects to Monad and then

quickly withdrawing them as the robot approached), SO1/SS1

activation was unaffected, but SO2/SS2 activation was

entirely driven by the temporally specific expectation of

the reward, mediated by selectively strengthened connec-

tions between Dred and SO2. This reward expectation signal

was not cancelled by an actual reward and thus contributed a

negative spike to the value signal. Over time, this negative

value signal would lead to weakening of connections

between Dred and SO1; in addition, connections between

Dred and SO2 would tend to return to baseline, reflecting the

change in the consistent timing between the reward-

predicting stimulus and the primary reward. If, after

learning, the reward was delayed (by pulling the object

away from Monad during visual approach), SS2 activation

occurred at the expected time of reward followed by a

second SS1 activation to the primary reward once it was

delivered. This produced a tri-phasic value signal with an

initial positive spike due to the appearance of the reward-

predicting stimulus (color red), followed by a negative spike

due to reward omission at the expected time, followed by a

second positive spike due to the final, now unpredicted,

delivery of the primary reward. Over time, if the delay

between the onset of the reward-predicting stimulus and the

reward delivery changes to a new consistent value,

connections between Dred and SO1 would remain largely

unaffected (the predictive nature of the color ‘red’ is not

changed), while connections between Dred and SO2 would

become modified to reflect the new delay time. The negative

value spike at the old delay time will disappear and the

initially positive value spike at the new delay time will be

attenuated and disappear as well.

Fig. 7(A) shows connection weights between temporal

representation units Dred and SO1/SO2, obtained from four

Fig. 5. Development of neural activation patterns for various sensory, motor

and neuromodulatory networks. Data shown are from three representative

trials with red objects associated with reward (appetitive taste). Panels on

the left are recorded before learning, panels in the middle after

approximately 500 iterations (<10 learning trials), and panels on the

right were obtained at the end of learning (1000 iterations, <20 trials). Top

to bottom, plots show neural activity in Cred, Dred, Tap, Map/Mav, SO1/SS1,

and SO2/SS2. Map, SS1 and SS2 are shown as thick lines. In all cases, plots

show neural activation averaged over all neural units within the designated

network. Hatched line in panels for Map/Mav indicates the behavioral

threshold b ðb ¼ 0:3Þ: A reward-related conditioned response (CRR) is

triggered as soon as Map 2 Mav exceeds b. Dotted vertical line at iteration

15 indicates the onset of appetitive taste.
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representative learning experiments. Both sets of weights

started at values near zero, but showed characteristic

patterns of at the end of learning. The connections

terminating on unit SO1 first showed strengthening for

longer temporal delays (connections numbered 5–7). This

is due to the initial phasic activation of SS1 by primary

reward stimuli and the fact that the value signal derived

from this SS1 activation was at first temporally coincident

Fig. 7. Average synaptic weights for connections mediating reward-related neuromodulatory responses. (A) Connection weights (numbered 1–7) before,

during (250 and 500 iterations) and after learning. Thin lines show weight profile for four individual learning experiments, thick line shows average profile. Top

panels are for connections between Dred and SO1, bottom panels are for connections between Dred and SO2. (B) Weights after learning experiments involving

fully autonomous behavior. Top and bottom panels are as in Fig. 7(A). Left panels were obtained after 1000 iterations, right panels after 2000 iterations.

Fig. 6. Activation patterns of neuromodulatory networks, averaged over multiple trials before and after learning, as well as over trials for which a predicted

reward was omitted or delayed. Top to bottom, plots show SO1/SS1, SO2/SS2, VR and a raster plot of VR obtained from individual trials. Dotted vertical line at

iteration 12 indicates the actual or expected onset of appetitive taste.
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with the primary reward. As a result of the broad ‘temporal

receptive field’ of Dred units, earlier temporal components

gradually became capable of driving SO1 activation and

caused SS1 to be active prior to the primary reward. The

retrograde transfer of the temporal onset of the SO1 response

was completed when the earliest onset of Cred and Dred

triggered both SO1 and SS1 responses. The weight profile

shows high synaptic weights for Dred units that became

active immediately after the onset of Cred activity. The

connections terminating on SO2 were modified using a

Hebbian rule, without the modulatory action of the value

signal. This ensured that the association between the

primary reward and the appropriate temporal delay units

remained ‘fixed in time’. If the timing between the reward-

predicting stimulus and the actual reward was consistent

across trials, a weight pattern emerged that drove responses

in SO2 at the expected time of reward. In Fig. 7(A),

consistent timing of visual approach and appetitive taste

resulted in the selective strengthening of connections 6

and 7.

3.2. Fully autonomous robot experiments

A critical factor in determining the outcome of robot

experiments that do not consist of series of carefully timed

trials, but allow fully autonomous behavior and exploration

of the environment, was the overall density of objects

associated with reward. If this density was low, behavioral

sequences involving visual approach and contact with

objects were fairly stereotypic, thus preserving the precise

timing between first visual input and eventual reward

delivery. In such cases, neural activation and synaptic

patterns closely resembled those that emerged after manual

training (see above). If reward objects, however, were more

densely crowded, consistent timing between their first visual

appearance and subsequent reward delivery was lost. Many

objects were encountered ‘suddenly’, leading to immediate

reward delivery as they were gripped and ‘tasted’. Others

were lost during approach as other, more salient, targets

interfered with visual approach. Over four separate learning

experiments (1000 iterations each), we recorded a total of

117 SS1 activations, 24 of them not followed by any reward

(‘lost objects’), 37 the result of unpredicted primary

rewards, and the remaining 56 followed by rewards at

delays of 1–6 iterations, with a fairly flat temporal profile.

Corresponding to these behavioral data, the temporal

patterns of the reward-mediating value signal VR were

complex and marked primarily by series of positive spikes

(unpredicted rewards) while negative spikes are mostly

absent (due to the lack of negative prediction errors).

Connection weights, obtained after 1000 and 2000 iterations

of autonomous behavior, are shown in Fig. 7(B). Weight

patterns between Dred and SO1 resemble those obtained after

manual training (see Fig. 7(A)), and were stable after 1000

iterations. However, connection patterns between Dred and

SO2 were flat, reflecting the lack of consistent timing

between onset of visual input and reward.

3.3. Reward and aversive conditioning

So far, all experiments have been conducted using only

appetitive stimuli (red objects associated with appetitive

taste). In order to investigate both reward and aversive

neuromodulatory action, we added a second component to

the neuromodulatory system (see Fig. 4) and presented red

and blue objects, associated with appetitive and aversive

taste, respectively. As described in Section 3.1, the

experimenter placed objects manually, to ensure consistent

timing between visual acquisition and taste. Neural

activation patterns for networks associated with reward

were very similar to those previously shown in Fig. 5. Fig. 8

shows average activation patterns of neural networks

involved in vision, taste, motor action and neuromodulation

following presentation of aversive objects. In each of the

three sets of plots shown in Fig. 8, a blue object was

approached, resulting in activity in Cblue as well as Dblue

units. Before learning (Fig. 8, left panels), the blue object

was approached and ‘tasted’, resulting in brief activations of

Tav, Mav, and SO3. SO3 activation triggered a phasic response

in SS3, temporally coincident with the delivery of the

Fig. 8. Development of neural activation patterns for various sensory, motor

and neuromodulatory networks. Data shown are from three representative

trials with blue objects associated with aversive taste. The experiment was

conducted by alternatingly presenting red and blue objects. Panels on the

left are recorded before learning, panels in the middle after approximately

1000 iterations (<10 learning trials), and panels on the right were obtained

at the end of learning (3000 iterations, <30 trials). Top to bottom, plots

show neural activity in Cblue, Dblue, Tav, Map/Mav, and SO3/SS3. Map and SS3

are shown as thick lines. In all cases, plots show neural activation averaged

over all neural units within the designated network. Hatched line in panels

for Map/Mav indicates the behavioral threshold b ðb ¼ 0:3Þ: An aversive

conditioned response is triggered (CSV) as soon as Mav 2 Map exceeds b.

Dotted vertical line at iteration 15 indicates the onset of aversive taste. Note

that Tav does not become activated if a CSV is triggered.
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primary aversive stimulus. As learning progressed (Fig. 8,

middle and right panels), Mav was increasingly driven by

strengthened connections from Cblue, resulting in the

triggering of the CRV prior to the completion of visual

approach and gripping of the object. After triggering of the

CRV, the blue object was actively avoided and removed

from Monad’s visual field. Also, as a result of value-

dependent modification of connections between Dblue and

SO3, SO3 became immediately activated as soon as a blue

object entered the visual field and triggered a phasic

response in SS3, which was predictive of the expected

aversive taste. SS3 responses continued to grow and moved

retrogradely towards the earliest onset of Dred, despite the

fact that the primary aversive stimulus was no longer

encountered after the CRV was established.

Fig. 9 shows patterns of connection weights between

visual delay units Dred/Dblue and components of the

neuromodulatory system (SO1, SO2, SO3), as well as motor

units capable of triggering conditioned responses (Map,

Mav). Integrator units for the two neuromodulatory com-

ponents mediating reward and aversive conditioning devel-

oped strengthened connections with the appropriate set of

sensory inputs. In addition, consistent timing between the

onset of visual input (color red) and reward resulted in

selective strengthening of connections between Dred and

SO2. Value-dependent modification of sensorimotor con-

nections between Cred/Cblue and Map/Mav produced a pattern

that allows color-selective units to elicit appropriate

conditioned responses.

4. Discussion

Neuromodulatory systems play essential roles in linking

behavior and neuroplasticity. In the present computational

model, we implemented a biologically based neuromodu-

latory system in a behaving robot. The model captured

several characteristic features of neuromodulatory systems

involved in mediating the effects of rewarding and aversive

sensory stimuli.

In the present paper as well as in previous work (Friston

et al., 1994; Sporns et al., 2000) we conceptualized the

functional effects of neuromodulators in plasticity as the

action of ‘value signals’ used in changing synaptic

connections. Value signals combine temporal specificity

(they are phasic and short-lasting) with spatial uniformity

(they affect widespread projection regions and act as a

single global signal). Value enters into traditional Hebbian-

type synaptic rules as a third factor, in addition to factors

representing pre- and postsynaptic activity. Because of their

phasic nature, value signals effectively gate plasticity, in

addition to influencing its magnitude and direction (see

below). Value affects plasticity more or less uniformly

throughout the widespread cortical and subcortical regions

to which value systems project. These and other properties

of value systems are in close correspondence with known

anatomical and physiological characteristics of various

mammalian neuromodulatory systems, including the nor-

adrenaline and the dopamine systems. Value signals fulfill a

dual role in plasticity. They link appropriate sensory and

Fig. 9. Synaptic weights for connections mediating both reward-related and aversive neuromodulatory responses. Panels on the left show connections between

Dred/Dblue and SO1, SO2 and SO3 as indicated. Connections are numbered 1–7. Plot on the lower right shows average connection weights between Cred/Cblue and

Map/Mav, as indicated. All data are from one representative run (length 3000 iterations).
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motor units, ultimately resulting in adaptive behavioral

change. They also change their own response properties, by

modulating sensory afferents to components of value

systems. Both of these roles are exemplified in the present

model, through changes in sensorimotor connections as well

as changes in inputs to the neuromodulatory system itself.

Changes in the response properties of neuromodulatory

systems underlie the distinction between components of

value that are evolutionarily determined (hard-wired), or

‘innate’, and others that are ‘acquired’, or experience-

dependent.

The temporal characteristics of the reward component of

Monad’s neuromodulatory system, shown in Figs. 5 and 6,

are consistent with their actions in mediating different

aspects of reward prediction. SS1 acts as a signal for

unpredicted occurrences of primary reward or for the

appearance of sensory stimuli that predict reward, but

themselves are unpredicted. SS2 acts as a signal for

(negative) errors in reward expectation. Most formulations

of temporal difference learning represent the prediction

error as a single (positive and negative) first derivative of

the reward prediction (e.g. Montague et al., 1996; Suri &

Schultz, 2001). Here, we distinguish the positive prediction

error (SS1), which is derived as a positive change in the

prediction (SO1), and the negative prediction error, which is

derived separately through SO2/SS2. SS2 activation depends

upon the development of specialized coincidence detectors

associating a component of a temporal stimulus represen-

tation (a specific Dred/Dblue unit) with the timed occurrence

of a primary reward. This mechanism produces results that

are overtly similar to other formulations of TD learning. In

addition, it generates appropriate phasic signals in cases

when delivery of the primary reward does not coincide with

changes in sensory input (removal of the stimulus predicting

the reward). The temporally specific negative prediction

error required a different learning rule than the positive

prediction error. Hebbian learning was used instead of

value-dependent learning, in order to generate and maintain

the temporal specificity of the SO2/SS2 signal. Value-

dependent learning, because of its temporally restricted

action at the onset of predictive sensory stimuli, does not

seem capable of supporting the generation of temporally

specific association units. This result raises the possibility

that the neural substrates for positive and negative

prediction errors are anatomically and functionally segre-

gated within the midbrain.

Both, reward and aversive components of the neuro-

modulatory system contained specialized units, which

emitted phasic and tonic neural responses. Both types of

responses are found in various neural structures and task

contexts (reviewed in Suri, 2002; Suri & Schultz, 2001). In

reward processing, phasic responses are typically elicited by

primary rewards or by reward predicting stimuli. Phasic

responses show plastic profiles, with responses disappearing

completely for rewards that are fully predicted and instead

appearing for reward-predicting stimuli. In our model, SS1

and SS3 represent reward or aversive stimulus prediction, or,

in terms of temporal difference learning, encode positive

errors in prediction. SS2 phasic activation carries infor-

mation about whether expected rewards have actually

occurred. In the brain, phasic anticipatory neural responses

have been identified for many midbrain dopamine neurons

(Schultz, 1998), as well as for noradrenergic neurons of the

locus coeruleus (Aston-Jones et al., 1997). Tonic activation

is observed for the ‘integrator’ units SO1 and SO3, whose

activity level after learning remains high for the time period

between the occurrence of a predicting stimulus and the

actual primary reward or aversive stimulus. Note that it is

not necessary for the stimulus to be physically present in

order to maintain tonic anticipatory activity (due to the

persistent activity caused in the temporal delay units). SO1

and SO3 activation remains high even after short-lasting

exposure to red or blue objects. For tonic anticipatory firing

patterns to emerge, the phasic response component must

participate (acting as a value signal) in synaptic changes in

connections between temporal stimulus representations and

the tonic response units. In the case of SO3, the firing level

remains high even if the actual aversive stimulus does not

occur due to active avoidance by the robot. Tonic

anticipatory activity has been observed in parts of the

striatum and various cortical areas (Suri & Schultz, 2001).

In temporal difference learning, tonic activation is associ-

ated with the amount of reward prediction (the temporal

difference of which is used as the prediction error signal). In

contrast to TD learning, tonic activation of SO1 and SO3 is

primarily the result of neuroplasticity within neural afferents

to these structures, which is dependent upon phasic value

signals, but it is not primarily ‘designed’ to represent the

prediction of reward accumulation. For example, it is

possible for SO1 or SO3 signals to return to zero before a

primary reward is delivered, without a change in SS1 or SS3

response properties.

The value signal used in this paper is a composite of

reward-related and aversive components. It combines

characteristics of a reinforcement signal and a saliency

signal. A reinforcement signal typically acts to increase or

decrease synaptic weights, depending upon the occurrence

of a positive or negative prediction error. The reward-

related component of the neuromodulatory system

implemented in this paper delivers a reinforcement signal,

which can be positive or negative. At the same time,

positive phasic signals are emitted upon encounter of

sensory inputs that are associated with, or predictive of,

reward or aversive stimuli. This characteristic of the value

signal is consistent with a more general saliency-based

function (cf. Redgrave, Prescott, & Gurney, 1999). It seems

likely that different neuromodulatory systems of the brain

carry different types of signals, related to reinforcement,

saliency or novelty. How these different neuromodulatory

systems interact is largely unexplored. Possibilities include

interconnections between different subcortical regions, or

antagonistic or synergistic pharmacological effects at the
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level of their target regions. In our model, we did not yet

incorporate anatomical connections linking the different

components and assumed that their effects on synaptic

plasticity add linearly. Future computational work is needed

to investigate different modes of combinatorial functional

coupling between different neuromodulatory systems.

Why implement neuromodulatory systems in robots?

Robot learning is an active and rapidly progressing area of

research (Nolfi & Floreano, 1999; Schaal, 2002; Sharkey,

1997; Touretzky & Saksida, 1997). In many of these

approaches, learning and plasticity depend upon behavioral

actions of an agent (animal, robot), which is embedded in an

environment. One broad set of functional roles played by

neuromodulators is in mediating the effects of behavior on

plasticity. This pivotal role of neuromodulation provides a

clear rationale for cross-level computational studies incor-

porating plasticity and behavior. Embodied systems can be

studied using actual robots situated in an environment

(Sporns, 2002) or using software agents interacting with

simulated environments. Implementations of real robots are

particularly useful as they allow a direct physical

implementation of critical constraints on learning, including

more or less complex stimuli, morphology and body

structure, sensor properties and mechanics, and temporal

dynamics of behavior. Robots are on their way to become

sophisticated research tools in psychology and cognitive

science (Weng et al., 2001), and they need to have internal

mechanisms that can guide their behavioral plasticity and

learning. In this context, biologically based computational

models of neuromodulatory systems in robots may ulti-

mately serve similar functional roles as their counterparts in

animals.
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