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Chapter 7

Artificial Immune Systems 
in Intrusion Detection

Dipankar Dasgupta and Fabio Gonzalez

7.1 Introduction
The biological immune system (BIS) is a complex network of specialized
tissues, organs, cells, and chemicals. Its main function is to recognize the
presence of strange elements in the body and respond to eliminate or
neutralize the foreign invaders. All living organisms are exposed to many
different microorganisms and viruses that are capable of causing illness.
These microorganisms are called pathogens. In general, organisms try to
protect against pathogens using different mechanisms including high tem-
perature, low pH, and chemicals that repel or kill the invaders. More
advanced organisms (vertebrates) have developed an efficient defense
mechanism called the immune system [26]. Substances that can stimulate
specific responses of the immune system are commonly referred to as
antigens (pathogens usually act as antigens).

To be effective, the immune system must respond only to foreign
antigens; therefore, it should be able to distinguish between the self (cells,
proteins, and in general, any molecule that belongs to or is produced by
the body) and the nonself (antigens) [7]. The self/nonself discrimination
is an essential characteristic of the immune system because the outcome
of an inappropriate response to self-molecules can be fatal.
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The immune system generates a large variety of cells and molecules
for defensive purposes. These cells and molecules interact with each other
and form a dynamic network of active immune cells while detecting and
eliminating antigens. It is difficult to give a concise picture of such a
complex system, as many of the mechanisms are not completely under-
stood. Detailed review of the natural immune system and its functionalities
may be found elsewhere [26,27,33].

7.1.1 Multilayered Protection

The immune system can be envisioned as a multilayer system with defense
mechanisms in several layers [24]. The three main layers include the
anatomic barrier, innate immunity, and adaptive immunity. They are
described as follows:

� Anatomic barrier: The first layer is the anatomic barrier, composed
of the skin and the surface of mucous membranes. Intact skin
prevents the penetration of most pathogens and also inhibits most
bacterial growth because of its low pH. On the other hand, many
pathogens enter the body by binding or penetrating through the
mucous membranes; these membranes provide a number of non-
specific mechanisms that help to prevent such entry. Saliva, tears,
and some mucous secretions act to wash away potential invaders
and also contain antibacterial and antiviral substances [33].

� Innate immunity: Innate immunity [26], which is also known as
nonspecific immunity, refers to the defense mechanism against
foreign invaders that individuals are born with. Innate immunity
is mainly composed of the following mechanisms:
– Physiologic barriers: This includes mechanisms such as temper-

ature, pH, oxygen tension, and various soluble chemicals. The
purpose of these mechanisms is to provide detrimental living
conditions for foreign pathogens. For instance, the low acidity
of the gastric system acts as a barrier to infection by ingested
microorganisms because they cannot survive the low pH of the
stomach.

– Phagocytic barriers: Some specialized cells (such as macroph-
ages, neutrophils, and natural killer cells) are able to ingest
specific material, including whole pathogenic microorganisms.
This ingestion has two purposes: to kill the antigen and to
present fragments of the invader’s proteins to other immune
cells and molecules.

– Inflammatory response: Activated macrophages produce pro-
teins called cytokines. They work as hormone-like messengers
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that induce the inflammatory response, which is characterized
by vasodilatation and rise in capillary permeability. These
changes allow a large number of circulating immune cells to
be recruited to the site of the infection. Cytokines are also
produced by other immune cells and nonimmune cells, for
example, those that secrete cytokines when damaged [26].

� Adaptive immunity: This layer is described in detail in the following
subsections.

7.1.2 Adaptive Immunity

It is also called acquired or specific immunity, which represents the part
of the immune system that is able to specifically recognize and selectively
eliminate foreign microorganisms and molecules. It is important to note
that acquired immunity does not act independently of innate immunity;
on the contrary, they work together to eliminate foreign invaders. For
instance, phagocytic cells (innate immunity) are involved in the activation
of adaptive immune response. Also, some soluble factors, produced during
a specific immune response, have been found to augment the activity of
these phagocytic cells [33].

7.1.2.1 Characteristics of Adaptive Immunity

An important part of the adaptive immune system is managed by white
blood cells, called lymphocytes. These cells are produced in the bone
marrow, circulate in the blood and lymph system, and reside in various
lymphoid organs to perform immunological functions.

� B-cells and T-cells: They represent the major population of lym-
phocytes. These cells are produced in the bone marrow and are
inert initially, i.e., they are not capable of executing their functions.
To become immune competent, they have to go through a matu-
ration process. In the case of B-cells, the maturation process occurs
in the bone marrow itself. For T-cells, they have to migrate first
to the thymus, where they mature. In general, a mature lymphocyte
can be considered as a detector that can detect specific antigens.
There are billions of these detectors that circulate in the body,
constituting an effective, distributed anomaly detection and
response system [33].

� Humoral immunity: Mature B-cells express unique antigen-binding
receptors (ABR) on their surface. The interaction of ABR with
specific antigen induces proliferation and differentiation of B-cells
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into antibody-secreting plasma cells. An antibody is a molecule
that binds to antigens and neutralizes them or facilitates their
elimination. Antigens coated with antibodies can be eliminated in
multiple ways: by phagocytic cells, by the complement system, or
by preventing them from performing any damaging functions (e.g.,
binding of viral particles to host cells) [40].

� Cellular immunity: During their maturation, T-cells express a
unique ABR on their surface, called the T-cell receptor. Unlike B-
cell ABR that can recognize antigens alone, T-cell receptors can
only recognize antigenic peptides that are presented by cell-mem-
brane proteins known as major histocompatibility complex (MHC)
molecules. When a T-cell encounters antigens associated with an
MHC molecule on a cell,* the T-cell proliferates and differentiates
into memory T-cells and various effector T-cells. The cellular
immunity is accomplished by these generated effector T-cells.
There are different types of T-cells that interact in a complex way
to kill altered self-cells (for instance, virus-infected cells) or to
activate phagocytic cells [36].

� Self/nonself discrimination: The immune system can distinguish its
own cells from foreign antigens, and so responds only to the
dangerous nonself molecules. As was mentioned before, T-cells
mature in the thymus. There, they go through a process of selection
that ensures that they are able to recognize nonself peptides
presented by MHC [7].

� Negative selection: The purpose of negative selection is to test for
tolerance of self-cells. T-cells that recognize the combination of
MHC and self-peptides fail this test. This process can be seen as
a filtering of a large diversity of T-cells; only those T-cells that do
not recognize self-peptides are retained [30].

� Immune memory: The immune system can “remember” a previous
encounter with an antigen. This helps to deliver a quick response
in subsequent encounters. In particular, immune-competent lym-
phocytes are able to recognize specific antigens through their ABR.
The specificity of each T-cell and B-cell is determined prior to its
contact with the antigen through random gene rearrangements in
the bone marrow (or thymus) during the maturation process [32].
The presence of an antigen in the system and its subsequent
interaction with mature lymphocytes trigger an immune response,
resulting in the proliferation of lymphocytes with a unique antigenic

* In general, T-cells do not recognize whole antigen molecules; instead, their receptors
detect fragments of the antigen called peptides, which are processed and presented
by antigen-processing cells (APCs).
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specificity. This process of population expansion of particular T-
cells and B-cells is called clonal selection. Clonal selection contrib-
utes to the specificity of adaptive immunity response because only
lymphocytes whose receptors are specific to a given antigen will
be cloned and, thus, mobilized for an immune response.

Another important consequence of clonal selection is immune memory
[33]. The first encounter of naive immune-competent lymphocytes with
an antigen generates the primary response, which, as discussed before,
results in the proliferation of the lymphocytes that can recognize this
specific antigen. Most of these lymphocytes die when the antigen is
eliminated; however, some are kept as memory cells. The next occurrence
of the same antigen can be detected quickly, activating a secondary
response. This response is faster and more intense because of the avail-
ability of such memory cells.

7.1.3 Computational Aspects of the Immune System

From the point of view of information processing, the natural immune
system exhibits many interesting characteristics. The following is a list of
these characteristics [12,20]:

� Pattern matching: The immune system is able to recognize specific
antigens and generate appropriate responses. This is accomplished
by a recognition mechanism based on chemical binding of recep-
tors and antigens. This binding depends on the molecular shape
and on the electrostatic charge.

� Feature extraction: In general, immune receptors do not bind to
the complete antigen but to peptides. In this way, the immune
system can recognize an antigen just by matching segments of it.
Antigenic feature is extracted (called peptides) and presented to
the lymphocyte receptors by antigen-presenting cells (APC). These
APCs act as filters that can extract the important information and
remove the molecular noise.

� Learning and memory: The main characteristic of the adaptive
immune system is that it is able to learn through interaction with
the environment. The first time an antigen is detected, a primary
response is induced that includes the proliferation of lymphocytes
and a subsequent reduction. Some of these lymphocytes are kept
as memory cells. The next time the same antigen is detected, the
memory cells generate a faster and more intense response (sec-
ondary response). Memory cells work as an associative (highly)
distributed memory.
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� Diversity: The adaptive immune system can generate billions of
different recognition molecules that are able to uniquely recognize
different structures of foreign antigens. Clonal selection and hyper-
mutation mechanisms constantly test different detector configura-
tions for known and unknown antigens. This is a highly
combinatorial process that explores the space of possible config-
urations for close-to-optimum receptors that can cope with the
different types of antigens. Exploration is balanced with exploita-
tion by favoring the reproduction of promising individuals.

� Distributed processing: Unlike the nervous system, the immune
system does not possess a central controller. Detection and
response can be executed locally and immediately without com-
municating with any central organ. This distributed behavior is
accomplished by billions of immune molecules and cells that
circulate in the blood and lymph systems and are capable of making
decisions in a local collaborative environment.

� Self-regulation: Depending on the severity of the attack, the
response of the immune system can range from very light and
almost imperceptible to very strong. A stronger response uses a
lot of resources to help repel the attacker. Once the invader is
eliminated, the immune system regulates itself to stop the delivery
of new resources and to release the used ones. Programmed cell
death and clonal expansions are parts of this self-regulatory pro-
cess.

7.2 Artificial Immune Systems
The study and design of artificial immune systems (AISs) is a relatively
new area of research that tries to build computational systems that are
inspired by the BIS [14]. There are many desirable computational features
in the BIS that can be used to solve computational problems. In many
respects, AISs are abstract computational models of the immune system;
in fact, some AIS techniques are based on theoretical models of the BIS.
However, the main difference lies in the use of AISs as a problem-solving
technique.

A theoretical model that has served as a basis for some AISs is the
idiotypic network theory proposed by Jerne [29]. This theory proposed
that the BIS regulates itself by forming a network of B-cells that can
enhance or suppress the expression of specific antibody types. This self-
regulatory mechanism maintains a stable immune memory. The formation
of such a network is only possible by the presence of paratopes on the
B-cells that can be recognized by other B-cell epitopes. This recognition
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usually extends to more than one level, resulting in the formation of
complex reaction networks. This model is a simplification of the BIS that
ignores important elements such as T-lymphocytes and macrophages and
concentrates on the modeling of the idiotypic networks.

Forrest and her group [21] proposed the negative-selection algorithm
(NSA), which is inspired by the mechanism used by the immune system
to train the T-cells to recognize antigens (nonself) and to prevent them
from recognizing the body’s own cells (self). Different variations of this
algorithm have been applied to problems in anomaly detection [14,25],
fault detection [13,41], and computer intrusion detection [15,21,24]. The
rest of this chapter describes in detail the NSA, its versions, and applica-
tions to intrusion detection.

7.2.1 NSA

The immune system, however, can recognize and classify different novel
patterns (pathogenic patterns of interest) and generate selective responses
in nonself space. Self/nonself (or danger) discrimination may be one of
the important tasks of the immune system during the process of pathogenic
recognition.

This discrimination is achieved in part by T-cells, which have receptors
on their surface that can detect foreign proteins (antigens). During the
generation of T-cells, receptors are made by a pseudorandom genetic
rearrangement process. Then they undergo a censoring process in the
thymus, called negative selection, in which T-cells that react against self-
proteins are destroyed; hence, only those that do not bind to self-proteins
are allowed to leave the thymus. These matured T-cells then circulate
throughout the body to perform immunological functions to protect against
foreign antigens. Forrest et al. [21] proposed the NSA based on self/nonself
discrimination in the immune system.

The NSA is based on the principles of self/nonself discrimination in
the immune system (Figure 7.1 shows the concept of self and nonself
space). This can be summarized as follows (adopted from Reference 16):

� Define self as a collection S of elements in a feature space U, a
collection that needs to be monitored. For instance, if U corre-
sponds to the space of states of a system represented by a list of
features, S can represent the subset of states that are considered
normal for the system.

� Generate a set F of detectors, each of which fails to match any
string in S. An approach that mimics the immune system generates
random detectors and discards those that match any element in
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the self set. However, a more efficient approach [17] tries to
minimize the number of generated detectors while maximizing the
coverage of the nonself space.

� Monitor S for changes by continually matching the detectors in F
against S. If any detector ever matches, then a change is known
to have occurred, as the detectors are designed not to match any
representative samples of S.

This description is very general and does not say anything about the
representation of the problem space and the type of matching rule that
is used. It is, however, clear that the algorithmic complexity of generating
good detectors can vary significantly, which depends on the type of
problem space (continuous, discrete, mixed, etc.), detector-encoding
scheme, and the matching rule (which determines if a detector matches
an element or not). Most of the past works on the NSA had been restricted
to the binary matching rules like r-contiguous, hamming distance, r-chunk,
etc. The primary reason for this choice is the ease of use, and there exist
efficient algorithms that exploited the properties of the binary represen-
tation and its matching rules [17]. However, there are practical issues that
prevent the binary NSA from being applied more extensively:

� Scalability is one such issue. To guarantee good levels of detection,
a large number of detectors have to be generated (depending on
the size of the self). For some problems, the number of detectors
could be unmanageable.

� The low-level detector representation prevents the extraction of
meaningful domain knowledge. This makes it difficult to analyze
reasons for reporting an anomaly in a monitored system or process.

Figure 7.1 Conceptual view of self and nonself. Here, F1, F2, and F3 indicate 
different known attack types.
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� A sharp distinction exists between the normal and abnormal. This
divides the space into two subsets: self (the normal) and the nonself
(abnormal). An element in the space is considered to be abnormal
if there exists a detector that matches it. In reality, normalcy is not
a crisp concept. A natural way to characterize the self space is to
define a degree of normalcy; this can be accomplished, for instance,
by defining the self as a fuzzy set.

� Other immune-inspired algorithms use higher-level representation
(e.g., real-valued vectors). A low-level representation, such as
binary, makes it difficult to integrate the NS algorithm with other
immune algorithms.

This chapter describes a real-valued negative-selection (RNS) algorithm,
which uses different encoding schemes to speed up the detector gener-
ation process and to alleviate the limitations previously mentioned.

7.3 RNS
The RNS algorithm applies a heuristic process that iteratively changes the
position of the detectors. It is driven by two goals: to maximize the
coverage of the nonself subspace and to minimize the coverage of the
self samples. Different versions of RNS algorithms are being studied for
the generation of variably sized and shaped detectors, including spherical,
hyper-rectangular, and fuzzy-rule detectors [11,23]. In all these cases, the
self/nonself space, U, corresponds to a subset of Rn, unitary hypercube
[0,1]n, and each detector covers some nonself area in this high-dimensional
space.

7.3.1 Negative Selection for Detection Rules (NSDR)

The first approach uses real-valued representation to characterize the
self/nonself space and evolves a set of detectors that can cover the
(nonself) complementary subspace (as shown in Figure 7.2). The structure
of these detection rules is (R1, R2, …, Rm):

Ri ≥ If Condi X {= x1 ∈ [low1
i ,  high1

i ] and … 
and xn ∈ [lown

i , highn
i ]} then NonSelf

where X = (x1, …, xn) is a feature vector, and [lowi
i , highi

i ] specifies the
lower and upper values for the feature xi in the condition part of the rule Ri.

The condition part of each rule defines hyper-rectangle in the self/non-
self space, [0.0,1.0]n. A set of these rules tries to cover the nonself space
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with hyper-rectangles. For the case n = 2, the condition part of a rule
represents a rectangle. Figure 7.2(a) illustrates an example of such a
coverage for n = 2.

The nonself characteristic function (crisp version) generated by a set
of rules R = {R1, …, Rm} is defined as follows:

Alternatively, the nonself space can be divided into different levels of
deviation. In Figure 7.2(b), these levels of deviation are shown as con-
centric regions around the self regions.

To characterize the different levels of abnormality, we considered a
variability parameter (v) to the set of normal descriptor samples, in which
v represents the level of variability that we allow in the normal (self)
space. A higher value of v means more variability (allows larger variation
in self characterization); a lower value of v represents less variability (a
smaller self space). Figure 7.3 shows two sets of rules that characterize
self subspaces with large and small values of v. Figure 7.3(a) shows
coverage using smaller v. Figure 7.3(b) shows coverage using a larger
value of v. The variability parameter can be assumed as the radius of a
hypersphere around the self samples. Figure 7.3(c) shows the levels of
deviation defined by two coverings.

In the nonself space, different values of v are used to generate a set
of rules that can provide maximum coverage. An example of such a set
of rules:

Figure 7.2 Self/nonself space. (a) Approximation of the nonself space by rect-
angular interval rules. (b) Levels of deviation from the normal in the nonself space.
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R1: If Cond1 then Level 1
. . .
. . .
. . .

Ri: If Condi then Level 1

Ri + 1: If Condi+1 then Level 2
. . .
. . .
. . .

R j: If Condj then Level 2
. . .
. . .
. . .

Figure 7.3 A set of normal samples is represented as points in 2-D space. The 
circle around each sample point represents the allowable deviation. (a) Rectan-
gular rules cover the nonself (abnormal) space using a small value of v. (b) 
Rectangular rules cover the nonself space using a large value of v. (c) Level of 
deviation defined by each v, in which level 1 corresponds to nonself cover in (a) 
and level 2 corresponds to nonself cover in (b).
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Self

Level 1

Level 2
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The different levels of deviation are organized hierarchically such that
level 1 contains level 2, level 2 contains level 3, and so forth. This means
that an element in the self/nonself space can be matched by more than
one rule, but the highest level reported will be assigned as its level. This
set of rules generates a graded characteristic function for the nonself space:

µnon_self ( ) = max ({l | R j  R,  R j and l =level(R j)}U{0})

where level Rj represents the deviation level reported by the rule Rj.

7.4 Intrusion Detection Problem
The anomaly-based intrusion detection problem can be viewed as a
learning task that tries to induce, from a training set, a general function
that can discriminate between normal and abnormal samples. However,
in many anomaly detection problems, only normal samples are available
for training. This means that the application of a conventional classification
algorithm is not straightforward.

7.4.1 Positive or Negative Characterization?

Normal behavior or normal data patterns will be represented by a subspace
S (called SELF) of the feature space, X. On the other hand, the complement
of S, N = X−S, will be referred to as NON_SELF. The techniques to generate
detectors can be classified as follows [19]:

� Positive characterization (PC): All the representative patterns are
chosen from the set of normal patterns, i.e., normal entities of the
system, denoted by S.

� Negative characterization: All the representative patterns are cho-
sen from the set of patterns in X−S, i.e., abnormal entities of the
system.

The most existing approaches use to build models of the normal set
(PC). It is also possible to accomplish the same goal by building models
of the abnormal set (negative characterization), as in the NSA (Section
7.3). Negative characterization does not seem to be as natural as PC in
cases in which the normal is relatively small. So, what is the justification
for negative characterization? Esponda and Forrest [18] provided three
main reasons:

x
��

x
��
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� There is practical evidence that the negative-detection approach
works, because it has been applied with some success to solve
practical problems.

� From an information theory point of view, characterizing the nor-
mal space is equivalent to characterizing the abnormal space.

� Negative characterization is more suitable for distributed anomaly
detection. That is, it is possible to divide a set of negative detectors
into subsets and apply them into a distributed fashion, because
the activation of only one negative detector is enough to classify
a sample as abnormal. If we use positive detection, it is necessary
to apply all the positive detectors before it can be concluded that
a sample is abnormal.

The third reason appears to be the strongest. However, if the descrip-
tion of the normal set is compact enough, it would be more efficient to
have multiple, redundant copies of positive detectors perform distributed
anomaly detection. Accordingly, negative detection is more suitable than
positive detection for performing distributed detection but only if the
normal subspace is not very small.

Keogh et al. [31] argued that “a major limitation of the approach
(negative selection) is that is only defined when the space of self is not
exhaustive.” The authors provided an example of random walk data series,
in which the self set can have all possible patterns, causing the nonself
set to be an empty set. Notice that this is also a possible issue for the
positive detection strategy and, in general, for any learning strategy that
tries to induce a model of the normal profile from samples. So, the problem
is not associated to the algorithm itself, but to the set of features selected
to represent the system behavior, which are not useful to characterize the
system or process normalcy. For instance, in the case of the random walk
time series, a set of features that includes high-level statistical character-
istics of the time series may perform better than a set of features based
on a sliding-window scheme.

Depending on the type of datasets to be monitored, different repre-
sentations may be used for the elements in the parameter (or feature)
space, X. If the parameters correspond to categorical data, then a symbolic
representation is suitable. Typically, data items are represented as binary
strings. On the other hand, if the data items are real-valued, then a real-
valued representation may be used. Each element of the feature space is
described by a set of features. Thus, it can be represented as a m-tuple
(x1, …, xm), where xi is in the unit interval [0,1] when xi is real-valued,
otherwise xi is in a set {0, 1, …, M} whenever you are dealing with
categorical data. Typically, for numerical features, the feature space is Im,
the unit m-dimensional hypercube.
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Once a uniform representation for the parameter space is chosen, a
set of patterns that correspond to normal entities is presented to the NSA.
Such a set is called the set of self patterns, and it is used during the learning
process to determine a set of representative elements that will be used
to detect novelties in the system. Depending on the context, a represen-
tative pattern is called a detector or a classification rule. We use these
terms interchangeably. In next section, we test the proposed approach
with network traffic data.

7.4.2 Dataset

We experimented the proposed approaches with network traffic data. The
idea is to examine if the system is able to detect some attacks after it is
trained with normal traffic patterns. This dataset is a version of the 1999
DARPA intrusion detection evaluation dataset generated and managed by
MIT Lincoln Labs [35]. This data represents both normal and abnormal
information collected in a test network, in which simulated attacks were
performed. The purpose of this data is to test the performance of intrusion
detection systems. The datasets contain normal data (not mixed with
attacks) obtained over a period of several weeks. This provides enough
samples to train the detection system.

The dataset is composed of network traffic data (tcpdump, inside and
outside network traffic), audit data (BSM), and file systems data. For our
initial set of experiments, we used only the outside tcpdump network
data for a specific computer (e.g., hostname: marx), and then we applied
the tool tcpstat to get traffic statistics. We used the first week’s data for
training (attack free), and the second week’s data for testing, which
included some attacks. Some of these were network attacks, and the others
were inside attacks. Only network attacks were considered for our testing.
These attacks are described in Table 7.1, and the attack timeline is shown
in Figure 7.4.

Table 7.1 Second-Week Attack Description

Day Attack Name Attack Type Start Duration

1 Back DoS 9:39:16 00:59

2 Portsweep Probe 8:44:17 26:56

3 Satan Probe 12:02:13 02:29

4 Portsweep Probe 10:50:11 17:29

5 Neptune DoS 11:20:15 04:00
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Three parameters were selected to detect some specific types of attacks.
These parameters were sampled each minute (using tcpstat) and normal-
ized. Table 7.2 lists six time series Si and Ti for training and testing,
respectively.

The set S of normal descriptors is generated from a time series R =
{r1, r2, …, rn} in an overlapping-sliding-window fashion:

where w is the window size. In general, from a time series with n points,
a set of n − w + 1 of w-dimensional descriptors can be generated. In
some cases, we used more than one time series to generate the feature
vectors. In those cases, the descriptors were put side by side to produce
the final feature vector. For instance, if we used the three time series S1,
S2, and S3 with a window size of 3, a set of 9-dimensional feature vectors
was generated.

To evaluate the ability of the proposed approach to produce a good
estimation of the level of deviation, we implemented a simple (but
inefficient) anomaly detection mechanism. It uses the actual distance of
an element to the nearest neighbor in the self set as an estimation of the
degree of abnormality.

Figure 7.4 Network attacks on the second week.

Table 7.2 Parameters Used and Preprocessing

Name Description Week Type

S1 Number of bytes per second 1 Training

S2 Number of packets per second 1 Training

S3 Number of ICMP packets per second 1 Training

T1 Number of bytes per second 2 Testing

T2 Number of packets per second 2 Testing

T1 Number of ICMP packets per second 2 Testing
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7.5 Experimentation

7.5.1 PC Approach

In this approach, we used the positive samples to build a characterization
of the self space, Self. In particular, we did not assume a model for the
self set. Instead, we used the positive sample set itself for a representation
of the self space. The degree of abnormality of an element is calculated
as the distance from itself to the nearest neighbor in the self set. We chose
to define the characteristic function of the nonself set, non_self, because
its definition is more natural, and the derivation of the self set characteristic
function is straightforward.

Here, d(x, s) is a Euclidean distance metric (or any Minkowski metric).
D( , Self ) is the nearest-neighbor distance, that is, the distance from 
to the closest point in Self. Then, the closer an element x is to the self
set, the closer the value of µnon_self (x) is to 0.

The crisp version of the characteristic function is the following:

In a dynamic environment, the parameter values that characterize
normal system behavior may vary within a certain range over a period of
time. The term (1 − t) represents the amount of allowable variability in
the self space (the maximum distance that a point can be from the self-
samples to be considered normal). This PC can be implemented efficiently
by using spatial trees. In our implementation, a KD-tree [5,6] was used.
A KD-tree represents a set of k-dimensional points and is a generalization
of the standard one-dimensional binary search tree. The nodes of a KD-
tree are divided into two classes: internal nodes, which partition the space
with a cut plane defined by a value in one of the k dimensions, and
external nodes (leaves), which define “buckets” (resulting in hyper-rect-
angles) in which the points are stored.

This representation allows answering queries in an efficient way. The
amortized cost of a nearest-neighbor query is O(log N) [6]. We used a
library (which implements the KD-tree structure) developed at the Uni-
versity of Maryland [37].
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7.5.1.1 PC Experiments

In each experiment, the training set was used to build a KD-tree to
represent the self set. Then, the distance (nearest neighbor) from each
point in the testing set to the self set was measured to determine deviations.
For this set of experiments, the variables were considered independently;
that is, the feature vectors were built using only one variable (time series)
each time. Figure 7.5 shows an example of the training and testing datasets
for the parameter number of packets per second. Figure 7.6(a) represents

Figure 7.5 Behavior of the parameter number of packets per second. (a) Training 
(self) set corresponding to the first week. (b) Testing set corresponding to the 
second week.
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Figure 7.6 Distance from the testing set (T2) to the self set (S2) (µnon_self (x). (a) 
Using window size 1. (b) Using window size 3 and Euclidean distance. (c) Using 
window size 3 and D∞∞∞∞ distance.
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the nonself characteristic function µnon_self( ), that is, the distance from the
test set to the training set for the same parameter. In this case, the window
size used to build the descriptors was 1. Figure 7.6(b) and Figure 7.6(c)
show µnon_self ( ) for using a window size of 3.

In Figure 7.6(b), the Euclidean distance is used, and in Figure 7.6(c),
the D∞ distance is used.

The plots (in Figure 7.6) of the nonself characteristic function show
some peaks that correspond to significant deviations from the normal. It
is easy to check that these peaks coincide with the network attacks present
on the testing data (Table 7.1 and Figure 7.6). We conclude the following
from these results:

� Using only one parameter is not enough to detect all five attacks.
Figure 7.8 shows how the function µnon_self( ) detects deviations
that correspond to attacks; however, none of the parameters is
able to independently detect all five attacks.

� A higher window size increases the sensitivity; this is reflected in
the higher values of deviation.

� A higher window size allows for the detection of temporal patterns.
For the time series T1 and T3, increasing the window size does
not modify the number of detected anomalies. But, for the time
series T2, when the window size is increased from 1 in Figure
7.6(a) to 3 in Figure 7.6(b) and Figure 7.6(c), one additional
deviation (corresponding to attack 5) is detected. Clearly, this
deviation was not caused by a value of this parameter (number of
bytes per second) out of range; otherwise, it would be detected
by the window size 1. There was a temporal pattern that was not
seen in the training set, and that might be the reason why it was
reported as an anomaly.

� The change of the distance metric from Euclidean in Figure 7.6(b)
to D∞ in Figure 7.6(c) does not modify the number and type of
deviations detected.

As we found in previous experiments, to detect the four attacks, it is
necessary to take into account more than one parameter. In the following
experiments, we used three parameters to build the feature vector to test
whether the PC technique can detect all the attacks. Accordingly, we
performed two experiments by varying the sliding-window size.

Figure 7.7 shows the nonself characteristic function for feature vectors
conformed to samples of three time series. In all cases, there are five
remarkable anomalies that correspond to five attacks. Similar to previous
experiments, an increase in the size of the window increases the sensitivity
of the anomaly detection function. However, this could generate more

x
��

x
��

x
��



184 � Enhancing Computer Security with Smart Technology

AU3045_C007.fm  Page 184  Saturday, June 25, 2005  9:06 AM
false-positives. To measure the accuracy of the anomaly detection function,
it is necessary to convert them to a crisp version. In this case, the output
of the function will be normal or abnormal. This output can be compared
with attack information to calculate how many anomalies (caused by an
attack) were detected accurately.

The crisp version of the anomaly detection function µnon_self(x) is
generated by specifying a threshold (t), indicating the frontier between
normal and abnormal. Clearly, the value of t will affect the capabilities of
the system to detect accurately. A very large value of t will allow large
variability on the normal (self), increasing the rate of false-negatives; a
very small value of t will restrict the normal set, causing an increase in
the number of detections, but also increasing the number of false-positives
(false alarms). To show this trade-off between the false-alarm rate and
the detection rate, receiver operating characteristics (ROC) diagrams [39]
are drawn. The anomaly detection function µnon_self , t(x) is tested with
different values of t, the detection and false-alarm rates are calculated,
and this generates a set of points that constitute the ROC diagram. The
detection and false-alarm rates are calculated using the following equations:

(7.1)

(7.2)

where:

TP: true positives, anomalous elements identified as anomalous
TN: true negatives, normal elements identified as normal

Figure 7.7 Distance from test sets to the self set (µµµµnon_self(( )) using S1, S2, and 
S3. (a) Window size 1. (b) Window size 3.
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FP: false-positives, normal elements identified as anomalous
FN: false-negatives, anomalous elements identified as normal

Figure 7.8 shows the ROC diagrams for the µnon_self (x) functions shown
in Figure 7.9. In general, the behavior of these four functions is very
similar: high detection rates with a small false-alarm rate. The anomaly
detection functions that use window size 3 show a slightly better perfor-
mance in terms of detection rates. This could be attributed to the higher
sensitivity, produced by a larger window, to temporal patterns. However,
this causes more false alarms. A possible explanation is that after an attack,
some disturbance may still remain in the system, and the function with a
larger window size was able to detect it.

The PC technique has been shown to work well on the performed
experiments. The main drawback of this technique is its memory require-
ments, because it is necessary to store the samples that constitute the
normal profile. The amount of data generated by network traffic can be
large, making this approach unfeasible. This is the main motivation for
the negative characterization approach, e.g., NSDR (discussed in the
following subsection), compressing the information of the normal profile
without significant loss in accuracy.

7.5.2 Evolving Negative-Selection Detection Rules (NSDR)
We used a genetic algorithm (GA) to evolve rules to cover the nonself
space. These rules constitute the complement of the normal values of the
feature vectors. Several criteria guide the evolution process performed by
the GA [9,10]. Hence, a rule is considered good if it does not cover positive
samples, and its area is large. Accordingly, the soundness of a rule is
determined by various factors: the number of normal samples that it covers,
its area, and the overlap with other rules. This is a multiobjective, multimodal
optimization problem, because a set of rules (solutions) that can collectively
solve the problem (covering of the nonself region) is desired.

A niching technique is used with GAs to generate different rules. The
input to the GA is a set of feature vectors S’ = {x1, …, x1}, which indicate
normal behavior. Each element x j in S’ is an n-dimensional vector x j = (x1

j,
…, x j

n ). The algorithm for the rule generation is shown in Figure 7.9, where:

S’: self-samples training set
v: level of variability
maxRules: maximum number of rules in the solution set
minFitness: minimum fitness allowed for a rule to be included in the 

solution set
maxAttempts: maximum number of attempts to try to evolve a rule with 

a fitness greater or equal to minFitness
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Figure 7.8 ROC diagrams for the µµµµnon_self (x) function shown in Figure 7.7. (a) 
Full scale. (b) Detail of the upper-left corner.
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The algorithm tries to generate a set of rules (ruleSet) using a GA
(procedure RunGA( )). Each rule in ruleSet is generated with different
runs of the GA. The rule must have a fitness value of at least minFitness.
If after a maximum number of attempts (maxAttempts) it cannot generate
a good rule, the algorithm stops (typical values for maxAttempts lie
between 3 and 5 runs).

The procedure RunGA( ) executes a tournament-selection-based GA.
Its execution time is O num_gen pop_size ftime, where num_gen is the
number of generations, pop_size is the population size, and ftime is the
execution time of the fitness evaluation. In this case, ftime = O(|S|), where
|S| is the size of the self sample set. Therefore, the execution time of
the NSDR algorithm is O(m. num_gen. pop_size.|S’|), where m is the
number of generated rules.

Figure 7.9 NSDR rule generation using a genetic algorithm (GA) with sequential 
niching (SN).

Rule Generation
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numAttempts ← 
numAttempts ÷ 1
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Each individual (chromosome) in the GA represents the condition part
of a rule because the consequent part is the same for all the rules (the
descriptor belongs to the nonself). However, the levels of deviation in the
nonself space are determined by the variability factor (v). The condition
part of the rule is determined by the low and high limits for each dimension.
The chromosome that represents these values consists of an array of float
numbers. Uniform crossover and Gaussian mutation operators are used.

Given a rule R with a condition part (x1 ∈ [low1, high1] AND …AND
xn ∈ [lown, highn]), we say that a feature vector x j = (x1

j , …, xn
j ) satisfies

the rule (represented for x j ∈ R) if the hypersphere with center x j and
radius v intercepts the hyper-rectangle defined by the points (lowi, …,
lown) and (high1, …, highn).

The raw fitness of a rule is calculated considering the following two
factors:

1. The number of elements in the training set S ′ that are covered by
the rule:

num_elements (R) = {xi ∈ S | xi ∈ R}

2. The volume of the subspace represented by the rule:

volume(R) =  (highi = lowi)

The raw fitness is defined as:

raw_fitnessR = volume(R) = C. num_elements(R)

where, C is the coefficient of sensitivity. It specifies the amount of
penalization that a rule suffers if it covers some normal samples. So, the
larger the coefficient (C), the higher is the imposed penalty. Raw fitness
can also take negative values.

The idea is to run the GA multiple times [4] to generate different rules
so as to cover the entire nonself region. In each run, we want to generate
a new rule, that is, a rule that can cover a portion of the nonself region.
The raw fitness of each rule is modified according to the overlap with
the previously chosen rules. The following pseudocode segment shows
how the final fitness of the rule R is calculated.

fitness ← raw_ fitnessR

for each R j ∈ ruleSet do

i

n

=
∏

1
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fitnessR ← raw_ fitnessR = volume(R R j )
end-For

where volume( ) calculates the volume of the subspace specified by the
argument.

Because the coverage of the nonself space is accomplished by a set
of rules, it is necessary to evolve multiple rules. To evolve different rules,
a sequential niching (SN) algorithm is applied.

7.5.2.1 Experiments: NSDR-GA with SN

To test the negative characterization approach (NSDR), we used the MIT
DARPA 99 dataset (mentioned in Section 7.4) [35]. We used as training set
the time series S1, S2, and S3, and as testing set the time series T1, T2,
and T3, with window sizes of 3 and 1, respectively (the time series are
described in Table 4.2).

The parameters for the GA were population size 100, number of
generations 1500, mutation rate 0.2, crossover rate 1.0, and coefficient of
sensitivity 1.0 (high sensitivity).

The GA was run with variability parameter (v) equal to 0.05, 0.1, 0.15,
and 0.2, respectively. Then, the elements in the testing set were classified
using rules generated for each level (different values of v). This process
was repeated ten times, and the results reported corresponded to the
average of these runs.

Table 7.3 shows the number of rules generated by the GA for each
level. There is a clear difference between the number of rules when the
window size changes; the number of rules changes with the size of the
window as the pattern space becomes larger.

Figure 7.10 shows two typical attack profiles produced by evolved
rules applied to the testing set. With a window size of 1, three out of five
attacks are detected, whereas with a window size of 3, four out of five
attacks are detected.

Table 7.3 Number of Generated Rules for Each Deviation Level

Level Radius
Average Number Rules 

(Window Size = 1 )
Average Number Rules 

(Window Size = 3 )

1 0.05 1.1 19.5

2 0.1 1.1 20.7

3 0.15 1 26

4 0.2 1.1 28
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Figure 7.10 Indicates the deviations in the testing set detected by the evolved 
rule set. (a) For window size 1. (b) For window size 3.
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The negative characterization technique (NSDR) is more efficient (in
time and space) compared to the PC technique. In the case of a window
size of 1, the PC needs to store 5,202 × 3 = 15,606 floating-point values;
the NSDR technique only has to store 4 × 6 = 24 floating-point values,
so the compression ratio is approximately 1000:1.5. In the case of the
window size of 3, the ratio is 46,728:1,698,3 approximately 100:8. It seems
to be a trade-off between compactness of the rule set representation and
accuracy. Validity of these arguments is observed in our results. Figure
7.11 shows how the rate of true positives (detection rate) changes accord-
ing to the value of the threshold t. In both cases, the PC technique has
better performance than the NSDR technique, but only by a small differ-
ence. In general, the NSDR technique shows detection rates similar to the
more accurate (but more expensive) PC technique. Table 7.4 summarizes
the best true positive rates (with a maximum false alarm of 1 percent)
accomplished by the two techniques. Esponda et al. [19] suggested that
this comparison between the PC technique and the NSDR method is not
meaningful, because the two methods are quite different. However, the
PC technique provides a point reference that facilitates the evaluation of
the performance of the NSDR technique.

As mentioned earlier, the proposed NSDR technique produces a good
estimate of the levels of deviation. To evaluate this estimate, a detailed
comparison of the NSDR output levels and PC distance range was per-
formed. The results are illustrated in Table 7.5 in the form of a confusion
matrix. For each element in the testing set, the function µnon_self (x) gen-
erated by the NSDR is applied to determine the level of deviation. This
level of deviation is compared with the distance range reported by the
PC algorithm. Each row (and column) corresponds to a range or level of
deviation. The ranges are specified in square brackets. A perfect output
from the NSDR algorithm should generate only values in the diagonal.

The results in Table 7.5 suggest that the NSDR approach better approx-
imates the deviation reported by PC using the D∞ distance. To support
this claim precisely, we measured the number of testing samples for all
the possible differences between the PC-reported level and the NSDR-
reported level. A difference of zero means that the reported levels are the
same, a difference of one means that the results differ by one level, etc.
The results for two distances and two window sizes are reported in Table
7.6. The results are very different when different distances are used for
the PC algorithm. Clearly, when the D∞ distance is used in the PC, results
of the comparison improved. Despite the fact that only 50.3 percent of
the outputs from the NSDR algorithm are same as the PC approach, 100
percent of the NSDR outputs are in the range of 0 or 1 level of difference
from that of the PC. The distance metric determines the structure of a
metric space. For instance, in a Euclidean space, the set of points that are

A
ca
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Figure 7.11 Comparison of the true positives rate of the detection function 
µµµµnon_self , t(x) generated by positive characterization (PC) and negative character-
ization (NSDR) for different values of t. (a) Window size 1. (b) Window size 3.
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at the same distance from a fixed point corresponds to a circle (a
hypersphere in higher dimensions). In the D∞ metric space, this set of
points corresponds to a rectangle (hyper-rectangle). Therefore, the rect-
angular rules used by the NSDR approach are better suited to approximate
the structure of the D∞ metric space, and this is reflected in the experi-
mental results.

We investigated GAs to evolve detectors in the complement pattern
space to identify any changes in the normal behavior of monitored

Table 7.4 Best True Positive Rates for the Different Techniques with a 
Maximum False-Alarm Rate of 1 Percent

Detection Technique
Window Size 1 

(Percentage)
Window Size 3 

(Percentage)

Positive characterization 
(Euclidean)

92.8 96.4

Positive characterization (D) 92.8 92.8

Negative characterization 82.1 87.5

Table 7.5 Confusion Matrix for PC- and NSDR-Reported Deviations

PC Output Level NSDR Output Level

Euclidean
No Deviation

[0.0,0.05]
Level 1

[0.05,0.1]
Level 2

[0.1,0.15]
Level 3

[0.15,0.2]
Level 4
[0.2,...]

[0.0,0.05] 5131 0 0 0 0

[0.05,0.1] 4 1 0 0 0

[0.1,0.15] 0 2.9 2.1 0 0

[0.15,0.2] 0 22 2 0 0

[0.2,...] 0 0 6.9 10.5 9.6

D

[0.0,0.05] 5132 0 0 0 0

[0.05,0.1] 3 7.8 0.2 0 0

[0.1,0.15] 0 18.1 3.9 0 0

[0.15,0.2] 0 0 6.9 9.5 0.6

[0.2,...] 0 0 0 1 9

Note: The values of the matrix elements correspond to the number of testing
samples in each class, and the diagonal values represent correct classification.
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behavior patterns. This technique (NSDR) is used to characterize and
identify different intrusive activities by monitoring network traffic, and is
compared with the other approach (PC). We used a real-world dataset
(MIT Lincoln Labs) that has been used by other researchers for testing
different approaches. The following are some preliminary observations
from these experiments:

� When PC and NSDR approaches are compared, PC appears to be
more precise, but it requires more time and space resources. The
negative characterization is less precise but requires fewer resources.

� Results demonstrate that the NSDR approach to detector generation
is feasible. It was able to detect four of the five attacks detected
by the PC (with a detection rate of 87.5 percent and a maximum
false-alarm rate of 1 percent).

� The best results were produced when we used a window size of
3. We observed that a bigger window size makes the system more
sensitive to deviations.

7.5.2.2 NSDR-GA Using Deterministic Crowding

The main drawback of SN approach is that the GA must be run multiple
times to generate multiple rules. The deterministic crowding (DC) [34]
approach allows the generation of multiple rules in a single run. The
NSDR algorithm using DC is shown in Figure 7.12. The main inputs to
the algorithm are a set of n-dimensional feature vectors S ={x1, …, xl},

Table 7.6 The Difference between PC- and 
NSDR-Reported Levels for Test Dataset

Difference
Euclidean Distance 

(Percentage)
D∞ Distance 
(Percentage)

0 20.8 50.3

1 31.8 49.7

2 47.3 0.0

3 0.0 0.0

4 0.0 0.0

Note: The difference is expressed as a percentage
of the abnormal feature vectors (distance greater
than 0.05). A difference of 0 means that the levels
reported by PC and NSDR are the same; a difference
of one means that the results differ by 1 level, etc.
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which represents samples of the normal behavior of the parameter, the
number of different levels of deviation (num_levels), and the allowed
variability for each level {v1, …, vnumLevels}. Additional parameters to the
algorithm are the population size (pop_size) and number of generations
(num_gen).

The execution time of this algorithm is O(num_levels.num_gen.pop_size
|S1|, where |S1| is the number of self-samples, which is included in the
expression because the time complexity of the fitness calculation is O( |
S1|). Notice that the time complexity depends on the number of levels
and not on the number of rules; this makes this algorithm more efficient
than the NSDR algorithm based on SN. A good measure of distance
between individuals is important for DC niching, because it allows the
algorithm to replace individuals with closer individuals. This allows the
algorithm to preserve niche formation. The distance measure used in this
work is the following:

where c is a child, and p is its parent.

Figure 7.12 Evolving negative-selection detection rules (NSDR) using determin-
istic crowding (DC).

NS-DETECTOR-RULES(S’, num_levels,{ v1,..............,vnumLevels})
S : set of self samples
num_levels : number of deviation levels
{ v1,..............,vnumLevels}: allowed variability for each level
1:for i = 1 to num_levels
2: initialize population with random individuals
3: For j = 1 to num_gen
4: For k = 1 to pop_size/2
5: select two individuals,(parent1 parent2) , with uniform probability
and without replacement
6: apply crossover to generate an offspring(child)
7: mutate child
8: If dist ( child, parent1) < dist( child, parent2)

^ fitness(child)> fitness( parent1)

10: Then parent1 ← child
11: ElseIf dist(child, parent1)>= dist(child, parent2)
12: ^ fitness(child)> fitness(parent2)

13: Then parent2 ← child
14: EndIf
15: EndFor
16: EndFor
17: extract the best individuals from the population and add them to
the final solution
18:EndFor

dist c p
volume p volume p c

volume p
, ,( ) =

( ) − ∩( )
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Note that the distance measure is not symmetric. The purpose is to
give more importance to the area of the parent that is not covered. The
justification is as follows: if the child covers a high proportion of the
parent, that means that the child is a good generalization of it, but if the
child covers only a small portion, then it is not so. We used the same
dataset as before as the training set time series S1, S2 and S3, and as the
testing set time series T1, T2 and T3, with a window size of 3. This means
that the size of the feature vectors was 9.

The parameters for the GA were population size 200, number of gener-
ations 2000, mutation rate 0.1, and coefficient of sensitivity 1.0 (high sensi-
tivity). The GA was run with variability for each level equal to 0.05, 0.1,
0.15, and 0.2, respectively. Then, the elements in the testing set are classified
using rules generated for each level (radius). This process is repeated ten
times, and the results reported correspond to the average of these runs.

Table 7.7 shows the number of rules NSDR generated by the GA with
two niching techniques (NSDR with SN and NSDR with DC). The DC
technique produces less rules, which suggests the possibility that the DC
technique is discarding some good rules and, therefore, ignoring some
niches. However, the performance of the set of rules generated by each
technique is apparently similar. This shows that the DC technique is able
to find a set of more compact rules producing the same performance.
This can be explained by the fact that SN is more sensitive to the definition
of the distance between individuals than DC.

Another notable point is the efficiency of the DC technique, as it only
needs four runs (one per level) to generate a rule set. For the NC technique,
it is necessary to run the GA as many times as the number of rules we
want to generate. This is a clear improvement on computational time.

In Section 5.1, it is shown that the NSDR with NC technique produces
a good estimate of the level of deviation when this is calculated using
the D∞ distance. Table 7.8 shows the confusion matrix for the NSDR
technique using SN and DC. For each element in the testing set, the

Table 7.7 Number of Generated Rules for Each Deviation Level

Level Radius

Average Number Rules

Sequential Niching Deterministic Crowding

1 0.05 19.5 7.75

2 0.1 20.7 8.25

3 0.15 26 10

4 0.2 28 10

A
th
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function µnon_self (x) generated by the NSDR is applied to determine the
level of deviation. This level of deviation is compared with the distance
range reported by the PC algorithm (using the D∞ distance). Each row
(and column) corresponds to a range or level of deviation. The ranges
are specified on square brackets. A perfect output from the NSDR algorithm
will generate values only in the diagonal.

In both cases, the values are concentrated around the diagonal, indi-
cating that the two techniques produced a good estimate of the distance
to the self set. However, the NSDR approach with DC appears to be more
precise. One possible explanation for this performance difference seems
to be the fact that the SN requires derating the fitness function for each
evolved rule. This arbitrary modification in the fitness landscape can
prevent evolving better rules in subsequent runs.

7.5.3 Extending NSDR to Use Fuzzy Rules
We next extended the NSDR algorithm to evolve fuzzy rules instead of
crisp rules. That is, given a set of self-samples, the algorithm will generate

Table 7.8 The Values of the Matrix Elements Correspond 
to the Number of Testing Samples in Each Class

PC Output Level

NSDR Output Level

Sequential Niching

0 1 2 3 4

1: [0.0,0.05] 5132 0 0 0 0

2: [0.05,0.1] 3 7.8 0.2 0 0

3: [0.1,0.15] 0 18.1 3.9 0 0

4: [0.15,0.2] 0 0 6.9 9.5 0.6

5: [0.2,...] 0 0 0 1 9

Deterministic Crowding

0 1 2 3 0

1: [0.0,0.05] 5132 0 0 0 0

2: [0.05,0.1] 3 4 4 0 0

3: [0.1,0.15] 0 0 22 0 0

4: [0.15,0.2] 0 0 0 17 0

5: [0.2,...] 0 0 0 0 10

Note: The diagonal values represent correct classification.
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fuzzy detection rules in the nonself space that can determine if a new
sample is normal or abnormal. The use of fuzzy rules appears to further
improve the accuracy of the method and produces a measure of deviation
from the normal that does not need to partition the nonself space.

The normal and the abnormal behaviors in networked computers are
hard to predict, as the boundaries cannot be well defined. Hence, fuzzy
logic can provide varying degrees of normalcy in system behavior.

A fuzzy detection rule has the following structure:

where
(x1, …, xn): elements of the self/nonself space being evaluated
Ti: fuzzy set

^: fuzzy conjunction operator (in this case, min)

The fuzzy set Ti is defined by a combination of basic fuzzy sets
(linguistic values).

Given a set of linguistic values S = {S1, …, Sm} and a subset associated
with each fuzzy set Ti,

where U corresponds to a fuzzy disjunction operator. We used the addition
operator defined as follows:

An example of fuzzy detection rules in the self/nonself space with
dimension n = 3 and linguistic values S = {L, M, H}:

In our experiments, the basic fuzzy sets correspond to a fuzzy division
of the real interval [0.0,1.0] using triangular and trapezoidal fuzzy mem-
bership functions. Figure 7.13 shows an example of such a division using
five basic fuzzy sets representing the linguistic values low, medium-low,
medium, medium-high and high.

If thenx T x Tn n1 1∈ ∧ … ∈ non_self,

T Si j
S Tj i

=
∈

,
ˆ

∪

µ µ µA B A Bx x x∪ ( ) = ( ) + ( ){ }min ,1

If thenx L x L M x M H1 2 3∈ ∧ ∈ ∪( ) ∧ ∈ ∪( ) non_self,
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Given a set of rules {R1, …, Rk}, each one with a condition part Condi,
the degree of abnormality of a sample x is defined by

where Condi(x) represents the fuzzy true value produced by the evaluation
of Condi in x, and µnon_self(x) represents the degree of membership of x
to the nonself set; thus, a value close to 0 means that x is normal, and a
value close to 1 indicates that x is abnormal.

To generate the fuzzy-rule detectors, we will use the same evolutionary
algorithm described in NSDR with DC. However, the use of fuzzy rules
does not require the generation of rules for different levels of deviation.
Thus, all the rules are generated in a simple run of the DC algorithm.
Figure 7.14 shows the NSFDR algorithm. The time complexity of the
algorithm is O(num_gen.pop_size.|Self′|).

The use of fuzzy rules requires changes in GA implementation such
as chromosome representation, fitness evaluation, and distance calculation.
These changes are described in the following text.

Each individual (chromosome) in the GA represents the condition part
of a rule, because the consequent part is same for all rules (the sample
belongs to nonself). As was described before, a condition is a conjunction
of atomic conditions. Each atomic condition, xi, Ti, corresponds to a gene
in the chromosome that is represented by a sequence (si

1, …, si
m ) of bits,

where m = |S| (the size of the set of linguistic values), and si
j = 1 if and

only if Sj ⊆ Ti. That is, the bit si
j is “on” if and only if the corresponding

basic fuzzy set Sj is part of the composite fuzzy set Tj . Figure 7.14 shows
the structure of a chromosome that is n × m bits long (n is the dimension
of the space and m is the number of basic fuzzy sets).

Figure 7.13 Partition of the interval [0,1] in basic fuzzy sets.
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Given here is the structure of the chromosome representing the con-
dition part of a rule. Each gene represents an atomic condition xi, Ti, and
each bit s i

j is “on” if and only if the corresponding basic fuzzy set Sj is
part of the composite fuzzy set Tj . The fitness of a rule Ri is calculated
by taking into account the following two factors:

� The fuzzy true value produced when the condition part of a rule,
Condi, is evaluated for each element x from the self set:

� The fuzzy measure of the volume of the subspace represented by
the rule:

Figure 7.14 Negative selection with fuzzy detection rules (NSFDR) algorithm.

s1
1,…,s1

m … sn
1,…,sn

m

gene 1 gene n

NS-FUZZY-DETECTOR-RULES(Sel f )
Sel f’ : set of self samples
1: initialize population with random individuals
2: For j = 1 to num_gen
3: For k = 1 to pop_size/2
4: select two individuals,(parent1 parent2) ,with uniform probability
and without replacement
5: apply crossover to generate an offspring (child)
6: mutate child
7: If dist( child, parent1)< dist( child, parent2)

^ fitness( child)> fitness( parent1)

8: Then parent1 child

9: ElseIf dist( child, parent1)≥ dist( child, parent2)
10: ^ fitness( child)> fitness( parent2)

11: Then parent2 ← child
12: EndIf
13: EndFor
14: EndFor
15: extract the best individuals from the population and add them to
the final solution
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where measure(Ti) corresponds to the area under the membership func-
tion of the fuzzy set Ti.

The fitness is defined as follows:

fitness(R) = C.(1 − selfCovering(R)) + (1 − C).volume(R)

where C, 0 C 1, is a coefficient that determines the amount of penalization
that a rule suffers if it covers normal samples. The closer the value of the
coefficient to 1, higher is the penalization. In our experiment, we used
values between 0.8 and 0.9.

In this work, we used Hamming distance because there is a strong
relation between each bit in the chromosome with a single fuzzy set of
some particular attribute in the search space. For example, if the s j

i  bit in
both parent and child fuzzy-rule detectors is set to 1, both individuals
include the atomic sentence xi ∈ sj, i.e., they use the jth fuzzy set to cover
some part of the ith attribute. Then, the more bits the parent and the
child have in common, the more common area they will cover.

7.5.3.1 NSFDR Experimentation

We applied the fuzzy algorithm (negative selection with fuzzy detection
rules—NSFDR) and the crisp version (NSDR using DC) to three different
datasets as shown in Table 7.9 (two of these are considered here). The
algorithms were run 1000 iterations with a population size of 200 indi-
viduals. The mutation probability was fixed to 0.1, and the NSDR algorithm
was run four times, each time with a different level of deviation (0.1, 0.2,
0.3, and 0.4). The crisp detectors (hyper-rectangles) generated by each
run were combined to define the final set of detectors produced by the
NSDR.

To access the performance of both methods, we calculate the detection
rate (DR, Equation 7.1) and false-alarm rate (FA, Equation 7.2) and plot
the result using ROC curves. Also, the reported DR was obtained for each
algorithm when the FA was fixed to 3 percent.

Table 7.9 Datasets Used for Experimentation

Dataset Training

Testing

Normal Abnormal

Mackey-Glass 497 396 101

MIT DARPA 99 4,000 5,136 56

MIT DARPA 98 1,474 19,056 396,745
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We used the same MIT DARPA 99 dataset described in Section 7.4.
Additionally, we used the dataset corresponding to the 1998 version of
the DARPA intrusion detection evaluation, also prepared and managed by
MIT Lincoln Labs [34]. The dataset was generated by processing the original
tcpdump data to extract 42 attributes (33 of them numerical) that charac-
terize the network traffic. This set was used in the KDD Cup 99 competition
and is available at the University of California Machine Learning repository
[35]. Even though the dataset corresponds to 10 percent of the original
data, its size is still considerably large (492,021 records).

We generated a reduced version of the 10-percent dataset, taking only
the numerical attributes. Therefore, the reduced 10-percent dataset is
composed of 33 attributes. The attributes were normalized between 0 and
1 using the maximum and minimum values found. Of the normal samples,
80 percent were picked randomly and used as training datasets, whereas
the remaining 20 percent was used along with the abnormal samples as
a testing set. Five fuzzy sets were defined for the 33 attributes. One percent
of the normal dataset (randomly generated) was used as a training dataset
(MIT DARPA 98 dataset).

The NSFDR algorithm shows a better performance than the NSDR
algorithm (Figure 7.15) with MIT DARPA 98 dataset. The results of the
NSDR algorithm are competitive only for a high FA rate (greater than 4
percent). Table 7.10 compares the performance of the tested algorithms
and some results reported in the literature. The result produced by the
NSFDR algorithm and reported in Table 7.10 is the closest value to the
optimum point (0,1). Amazingly, the number of detectors using fuzzyfication
is very small compared to the number of detectors using the crisp charac-
terization. This suggests that the fuzzy representation can handle high dimen-
sionality better (the dimensionality of this dataset is 33 attributes).

According to Table 7.10, the performance of NSFDR is comparable
with the performance of other approaches reported in the literature and
in many cases is better. For example, when NSFDR is compared with
RIPPER-AA, the FA rate is almost the same (close to 2 percent), but NSFDR
has a higher DR (4 percent more abnormal samples detected). Now,
compared with the crisp approach (NSDR), the performance is also
superior (2.2 percent more abnormal samples detected). Clearly, the fuzzy
characterization of abnormal space reduces the number of false alarms
while the detection rate is increased.

When MIT DARPA 99 dataset is used, the performance of the NSDR
algorithm is better than that of the NSFDR algorithm for very small values
of the FA rate. However, if the FA rate is allowed to be at most 2 percent,
the NSFDR is clearly superior (Figure 7.16). Table 7.11 compares the
performance of the tested algorithms over the MIT DARPA 99 dataset (for
an FA rate less than 3 percent). Again, the fuzzy method (NSFDR) generates
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a smaller set of rules without sacrificing performance. This supports our
claim that the fuzzy representation permits a more compact representation
of the self/nonself space.

7.6 Summary
In this chapter, we investigate a technique to perform intrusion detection
based on the NSA. Earlier studies showed that binary NS performed well

Figure 7.15 ROC curves generated by the two algorithms tested with the MIT 
DARPA 98 dataset.

Table 7.10 Comparative Performance in the MIT DARPA 98 Dataset

Algorithm DR (Percentage) FA (Percentage) Number of Detectors

NSFDR 98.22 1.9 14

NSDR 96.02 1.9 699

EFRID[64] 98.95 7.0 —

RIPPER-AA[53] 94.26 2.02 —
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in two of the experiments; however, it failed to produce acceptable results
in two other cases. The real-valued NSA takes as input a set of hyper-
spherical antibodies (detectors) randomly distributed in the self/nonself
space. The algorithm applies a heuristic process that changes iteratively
the position of the detectors driven by two goals: to maximize the coverage
of the nonself subspace and to minimize the coverage of the self-samples.
The NSDR algorithm uses a GA to evolve detectors with a hyper-rectan-
gular shape that can cover the nonself space. These detectors can be
interpreted as If-Then rules, which produce a high-level characterization
of the self/nonself space. The first version of the algorithm [11] used an
SN technique to evolve multiple detectors. The second version of the

Figure 7.16 ROC curves generated by the two algorithms tested with the MIT 
DARPA 99 dataset.

Table 7.11 Comparative Performance in the MIT DARPA 99 Problem

Algorithm DR (Percentage) Number of Detectors

NSFDR 94.63 7

NSDR 89.37 35
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algorithm used DC as the niching technique. The algorithm was applied
to detect attacks in network traffic data. We further extended the NSDR
algorithm to use fuzzy rules, which is called NSFDR. This improves the
accuracy of the method and produces a measure of deviation from the
normal that does not need a discrete division of the nonself space.

The MIT DARPA 98 dataset is one of the datasets in which BNS failed.
This is consistent with the results reported by Kim and Bentley [42,43];
these results were used by them to support the claim that NSA suffers
from severe scaling problems. However, our work shows that the problem
is not with the NSA itself, but with the kinds of representation (binary)
and matching rule (r-contiguous) that were used. This was also suggested
by Balthrop et al. [3].

The real-valued NSDR technique uses a GA to generate good anomaly
detector rules. To test this technique, a set of experiments to detect
anomalies in network traffic data was performed. We used a real-world
dataset (MIT Lincoln Labs), used by different researchers in computer
security, for testing. The following are some preliminary observations:

� The immunogenetic algorithm was able to produce good detectors
that gave a good estimation of the amount of deviation from the
normal. This shows that it is possible to apply the NSA to detect
anomalies on real network traffic data. The real representation of
the detectors was very useful in this work.

� The proposed algorithm is efficient; it was able to detect four of
the five attacks detected by the PC (with a detection rate of 87.5
percent and a maximum false-alarm rate of 1 percent), while only
using a fraction of the space (when compared to PC).

� The use of DC as a niching technique improved the results obtained
using SN. While retaining the performance, in terms of a high
detection rate, the new algorithm generated a smaller set of rules
that estimated the amount of deviation in a more precise way. The
new technique is also more efficient in terms of computational
power because it is able to generate multiple rules for each
individual run of the GA.

The NSFDR technique fuzzy rules as negative detection. The experi-
ments performed showed that the proposed approach performs better
than the previous one and is comparable with other results reported in
the literature. The following are the main advantages of the NSFDR
approach:

� It provides a better definition of the boundary between normal
and abnormal. The previous approach used a discrete division of
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the nonself space, whereas the new approach does not need such
a division because the fuzzy character of the rules provide a natural
estimate of the amount of deviation from the normal.

� It shows an improved accuracy in the anomaly detection problem.
This can be attributed to the fuzzy representation of the rules that
reduce the search space, allowing the evolutionary algorithm to
find better solutions.

� It generates a more compact representation of the nonself space
by reducing the number of detectors. This is also a consequence
of the expressiveness of the fuzzy rules.
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