
1Optimization Flow Control, II: ImplementationSanjeewa Athuraliya Steven H. LowDepartment of EEE, University of Melbourne, Australiafsadsa, slowg@ee.mu.oz.auAbstractA duality model of
ow control is proposed in Part I of this paper and leads to a basic
ow control algorithm. In this sequel wedevelop a practical implementation of the basic algorithm, Random Exponential Marking (REM). It consists of a link algorithm, thatprobabilistically marks packets inside the network, and a source algorithm, that adapts source rate to observed marking. REM hasthree advantages. First the marking probability is exponential in a link congestionmeasure, so that the end{to{end marking probabilityobserved at a source is exponential in its path congestion measure. Marking allows the source to estimate its path congestion measureand adjusts its rate in a way that aligns individual optimality with social optimality. Second REM achieves high link utilization withvery low backlog, and hence negligible loss and queueing delay. Third sources stabilize around a globally optimal equilibrium, thusavoiding the perpetual cycle of sinking into and recovering from congestion. Moreover the equilibrium can be chosen to achieve di�erentfairness criteria. We present extensive simulation results to demonstrate that REM is not only stable and fair, but more importantly,scalable and robust. Finally, the link algorithm itself can also be used for active queue management that interact with existing sourcealgorithms. We compare the performance of Reno, Reno/RED and Reno/REM.I. Introduction and summaryA. MotivationFlow control is a distributed algorithm to share network resources among competing sources. It often consists oftwo (sub)algorithms: a link algorithm executed inside the network at routers or switches, and a source algorithmexecuted at edge devices such as host computers or edge routers. The link algorithm detects congestion and feedsback information to sources, and in response, the source algorithm adjusts the rate at which tra�c is injected intothe network. The basic design issue is what to feed back (link algorithm) and how to react (source algorithm), andthe objective is to achieve stability, fairness and robustness. Ideally one should design the link and source algorithmjointly so that they work in concert to steer the network to track a possibly moving desirable operating point. Thismotivates a recent approach to
ow control based on optimization e.g., [6], [14], [16], [12], [18], [23], [19], [1], [13], [25],[26], [17], [3], where the goal is to choose source rates to maximize a global measure of network performance. Flowcontrol, both the link and the source algorithms, is derived as a distributed solution to this welfare maximizationproblem. Di�erent proposals in the literature di�er in their objective function, or solution approach, which leadto di�erent link and source algorithms and their implementation. Though it may not be possible, nor critical,that exact optimality is attained in practice, the optimization framework allows us to understand, and control, thebehavior of the network as a whole. Indeed we may regard the sources and links as processors in an asynchronousdistributed computation system and
ow control as a computation to maximize welfare. Under mild conditionson the welfare function, the computation can be proved to converge, i.e., the
ow control algorithm is globallystable. Moreover, convergence can be maintained even in an asynchronous environment where sources and linkscommunicate and update at di�erent times, with di�erent frequencies, using outdated information, and feedbackdelays are di�erent and time-varying [23]. Unlike the works [14], [16], [13], [17] that take a penalty function approachto the solution of the welfare maximization problem, in Part I of this paper we develop a duality approach and derivethe
ow control as a gradient projection algorithm to solve the dual problem (this will be reviewed in Section II).It is signi�cant that major TCP
ow control schemes, Vegas, Reno, Reno/RED, Reno/REM, can all be interpretedwithin this framework as a dual method [22]; see also [15], [17].Sanjeewa Athuraliya is supported by the University of Melbourne scholarships.Steven Low is supported by the Australian Research Council through grants S499705, A49930405 and S4005343.

2 The basic algorithm of Part I however requires communication between network links and sources that cannotbe accommodated on the current Internet. The purpose of this paper is to design and evaluate, through extensivesimulations, a practical implementation of the basic algorithm using binary feedback. This is motivated by therecent proposal to introduce Explicit Congestion Noti�cation (ECN) bits in IP (Internet Protocol) headers [10],[28]. A preliminary version of REM is �rst proposed in [19]; see Section II-C for the di�erence between this andthe current scheme.B. Random Exponential Marking (REM)We now summarize the REM algorithm. Detail derivation and justi�cation are given in Section II. A pseudocodeimplementation is given in Section III.For our purposes a network is a set L of links with �nite capacities cl; l 2 L. It is shared by a set S of sources.A source s traverses a subset L(s) � L of links to the destination, and attains a utility Us(xs) when it transmitsat rate xs that satis�es 0 � ms � xs �Ms <1. REM is de�ned by the following link algorithm (1{2) and sourcealgorithm (4{5).Each link l updates a congestion measure pl(t) in period t based on the aggregate input rate x̂l(t) and the bu�erbacklog bl(t) at link l: pl(t+ 1) = [pl(t) +
(�lbl(t) + x̂l(t)� cl)]+ (1)where
 > 0 and �l > 0 are small constants and [z]+ = maxfz; 0g. Hence pl(t) is increased when the backlog bl(t)or the aggregate input rate x̂l(t) at link l is large compared with its capacity cl, and is reduced otherwise. Notethat the algorithm does not require per{
ow information and works with any work conserving service discipline atthe link. As we will see in Section II-C, (1) leads to a small backlog (b�l ' 0) and high utilization (x̂�l ' cl) atbottleneck links l in equilibrium. Link l marks each packet arriving in period t, that is not already marked at anupstream link, with a probability ml(t) that is exponentially increasing in the congestion measure pl(t):ml(t) = 1� ��pl(t) (2)where � > 1 is a constant. Once a packet is marked, its mark is carried to the destination and then conveyed backto the source via acknowledgement.The exponential form is critical for a multilink network, because the end{to{end probability that a packet ofsource s is marked after traversing a set L(s) of links is thenms(t) = 1� Yl2L(s)(1�ml(t)) = 1� ��ps(t) (3)where ps(t) = Pl2L(s) pl(t) is the sum of link congestion measures along the path of source s, a path congestionmeasure. The end{to{end marking probability is high when ps(t) is large.Source s estimates this end{to{end marking probability ms(t) by the fraction m̂s(t) of its packets marked inperiod t, and estimates the path congestion measure ps(t) by inverting (3):p̂s(t) = � log�(1 � m̂s(t)) (4)where log� is logorithm to base �. It then adjusts its rate using marginal utility:xs(t) = [U 0�1s (p̂s(t))]Msms (5)where U 0�1s is the inverse of the marginal utility, [z]ba = maxfminfz; bg; ag. If Us is strictly concave, then U 0�1sexists and is strictly decreasing. Hence the source algorithm (5) says: if the path L(s) is congested (p̂s(t) is large),transmit at a small rate, and vice versa.

3For example, if Us(xs) = ws logxs, xs � 0, then xs(t) = ws=p̂s(t); if Us(xs) = �(Ms � xs)2=2ws, 0 � xs �Ms,then xs(t) = Ms �wsp̂s(t) if p̂s(t) �Ms=ws and 0 otherwise.The link marking probability (2) and the source rate (5) are illustrated in Figure 1.
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Link congestion measure

Lin
k m

ark
ing

 pr
ob

ab
ility (a) Marking probability 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

Fraction of marks

So
urc

e r
ate (b) Source rateFig. 1. (a) Marking probabilityml = 1� ��pl as a function of pl. (b) Source rate xs = U 0�1s (� log�(1� m̂s)) as a function of m̂s.Here, � = 1:2 and Us(xs) = 2 logxs.C. Key features of REMRandom Exponential Marking (REM) has three advantages. First it is ideally suited for networks with multiplecongested links, where the end{to{end marking probability of a packet incorporates a congestion measure of itspath. This allows a source to estimate its path congestion measure by observing the fraction of its packets thatare marked. The use of marking as a means for sources to estimate information on their paths seems novel andapplicable in other contexts. Second, by equalizing input rate x̂�l with capacity cl and driving backlog b�l to zero,the update rule (1) leads to very high utilization with negligible loss or queueing delay. Third, as we will see, underREM, the sources and links can be thought of as carrying out a stochastic approximation algorithm to maximizethe aggregate utilityPs Us(xs) over the source rates xs, s 2 S, subject to link capacity constraints. As alluded toearlier, it is not critical that optimality is exactly attained in practice. It is however signi�cant that REM attemptsto steer the network as a whole towards a desirable operating point. Moreover this operating point can be chosento achieve desired fairness.We have done extensive simulations to evaluate four properties of REM: stability, fairness, scalability and ro-bustness. We now summarize our �ndings.REM can be regarded as a stochastic version of the basic algorithm in [18], [23]. Though we have not provedanalytically the stability and fairness of REM, our simulation results con�rm that it inherits the stability andfairness properties of the basic algorithm. It is proved that the basic algorithm converge to the unique optimalthat maximizes aggregate source utility even in an asynchronous environment [23, Theorems 1 and 2]. Moreover,the equilibrium can be chosen to achieve di�erent fairness criteria, such as proportional [14] or maxmin fairness,by appropriate choice of source utility functions [23, Theorems 3 and 4]. Simulation results in later sections showthat REM converges quickly to a neighborhood of the equilibrium, and then
uctuates around it. Hence the basicalgorithm determines the macroscopic behavior of REM, including stability and fairness.A focus of our simulation study is to explore the scalability and robustness of REM. There are two aspects ofscalability: complexity and performance. Both the link algorithm (1{2) and the source algorithm (4{5) use onlylocal, and aggregate, information. Their complexity does not increase with the number of sources or the numberof links or their capacities. Moreover they do not need to be restarted as network conditions, such as the linkcapacities, the set of sources, their routes or utility functions, change. Hence REM is applicable in a dynamicnetwork even though it is derived from a static model. A critical issue however is whether performance scales. Wepresent simulation results to demonstrate that REM's performance, such as throughput, utilization, queue length

4and loss, remains stable when tra�c load, link capacity, propagation delay, or network size is scaled up by a factorof 10.We evaluate robustness both with regard to parameter setting and to modeling assumptions. First REM is char-acterized by three main parameters:
 that determines the rate of convergence, �l that trades o� link utilizationand delay, and � that a�ects the marking probability. The scalability experiments also demonstrate REM's robust-ness to parameter setting, i.e., its performance remains stable in an environment that is drastically di�erent fromthe nominal environment with respect to which the parameter values have been chosen. Second REM estimatesround trip time in order to translate rate to window control. Simulations indicate that REM is robust to error inround trip time estimation.D. Structure of paperIn Section II we �rst review the optimization framework and the basic
ow control algorithm developed in [18],[23]. We then derive REM by simplifying the communication requirement of the basic algorithm. In Section III wedescribe our simulation setup and pseudocode. We then present simulation results on stability and fairness of REMin Section IV and on scalability and robustness in Section V. In Section VI we discuss how to set parameters inREM. We also contrast REM with TCP Reno, Vegas and RED, and argue that the fundamental di�erence betweenthem is the way congestion is measured and that this di�erence is the underlying reason for the key features of REM.The link algorithm of REM can interwork with current TCP schemes, and in Section VII, we present simulationresults to compare the performance of Reno (with DropTail), Reno/RED and Reno/REM. We conclude in SectionVIII with some applications and limitations of this work.II. Derivation of REMA. ModelConsider a network that consists of a set L of unidirectional links of capacity cl, l 2 L. The network is shared bya set S of sources. Source s is characterized by four parameters (L(s); Us;ms;Ms). The path L(s) � L is a set oflinks that source s uses, Us : <+ ! < is a utility function, ms � 0 and Ms <1 are the minimum and maximumtransmission rates, respectively, required by source s. Source s attains a utility Us(xs) when it transmits at ratexs that satis�es ms � xs �Ms. We assume Us is strictly concave increasing and twice continuously di�erentiablein its argument. For each link l let S(l) = fs 2 S j l 2 L(s)g be the set of sources that use link l. By de�nitionl 2 L(s) if and only if s 2 S(l).Our objective is to choose source rates x = (xs, s 2 S) so as to:maxms�xs�Ms Xs Us(xs) (6)subject to Xs2S(l)xs � cl; l = 1; : : : ; L (7)The constraints (7) say that the aggregate source rate at any link l does not exceed the capacity. A uniquemaximizer, called the (primal) optimal rates, exists since the objective function is concave, and hence continuous,and the feasible solution set is compact.Solving the primal problem (6{7) directly is impractical over a large network since it may require coordinationamong possibly all sources due to coupling through shared links. The key to a distributed and decentralized solutioncan be obtained by looking at its dual [23].Associated with each link l is a dual variable pl. The dual problem of (6{7) is to choose the dual vectorp = (pl; l 2 L) so as to minp�0 D(p) := Xs Bs(ps) +Xl plcl (8)

5where Bs(ps) = maxxs�0 Us(xs)� xsps (9)ps = Xl2L(s) pl (10)If we interpret the dual variable pl as the price per unit bandwidth at link l, then ps in (10) is the price per unitbandwidth in the path of s. Hence xsps in (9) is the bandwidth cost to source s when it transmits at rate xs,Us(xs)�xsps is the net bene�t of transmitting at rate xs, and Bs(ps) is the maximum bene�t s can achieve at thegiven (scalar) price ps. A vector p � 0 that minimizes the dual problem (8) is called dual optimal. Given a vectorprice p = (pl; l 2 L) or a scalar price ps =Pl2L(s) pl, we will abuse notation and denote the unique maximizer in(9) by xs(p) or by xs(ps).There are two important points to note. First, given scalar prices ps, sources s can easily solve (9) to obtainthe individually optimal source rates x(p) = (xs(ps); s 2 S) without having to coordinate with any other sources.Indeed by the Karush{Kuhn{Tucker theorem, we havexs(ps) = [U 0�1s (ps)]Msms (11)where [z]ba = minfmaxfz; ag; bg. Here U 0�1s is the inverse of U 0s, which exists over the range [U 0s(Ms); U 0s(ms)] whenUs is continuously di�erentiable and strictly concave. Second, by duality theory, there exists a dual optimal pricep� � 0 such that these individually optimal rates x� = (xs(p�s); s 2 S), i.e., each xs(p�s) solves (9), are also sociallyoptimal, i.e., solve (6{7) as well. Furthermore, as we will see below, solution of the dual problem can be distributedto individual links and sources. Hence a better alternative to solving the primal problem (6{7) directly is to solveits dual (8) instead.In the rest of the paper, given a price (vector) p, we will refer to pl as link price and ps =Pl2L(s) pl as path priceof source s. It can be interpreted in two ways. First, the price p is a congestion measure at the links: the largerthe link price pl, the more severe the congestion at link l. The path price ps is thus a congestion measure on thepath of source s. Second, an optimal p� is a shadow price (Lagrange multiplier) associated with the constrainedmaximization (6{7); i.e., p�l is the marginal increment in aggregate utility PsUs(xs) for a marginal increment inlink l's capacity cl. We emphasize however that p may be unrelated to the actual charge users pay. If sources areindeed charged according to these prices, then p� aligns individual optimality with social optimality, thus providingthe right incentive for sources to choose the optimal rates.B. Basic algorithmThe dual problem is solved in [18], [23] using gradient projection method (e.g., [24], [4]) where link prices areadjusted in opposite direction to the gradient rD(p(t)) = (@D=@pl(p(t)); l 2 L):pl(t+ 1) = [pl(t) �
 @D@pl (p(t))]+Here
 > 0 is a stepsize, and the gradient is given by@D@pl (p(t)) = cl � xl(p(t))Hence the price computation can be distributed to each individual link. Indeed the algorithm takes the familiarform of
ow control: in each iteration t, each link l individually updates its own price pl(t) based on the aggregaterate at link l, and each source s individually adjusts its rate based on its path price ps(t).To describe it precisely, we abuse notation and use xs(�) both as a function of time t and a function of price p(t)given by (11); the meaning should be clear from the context. Let xl(t) = Ps2S(l) xs(t) represent the aggregate

6source rate at link l at time t, and ps(t) = Pl2L(s) pl(t) represent the path price of source s at time t. Then theprice computation (link algorithm) and rate adjustment (source algorithm) are given by:Basic algorithm: pl(t+ 1) = [pl(t) +
(xl(t) � cl)]+; l 2 L (12)xs(t+ 1) = xs(ps(t)); s 2 S (13)In (12), xl(t) represents the demand for bandwidth at link l and cl represents the supply. The price is adjustedaccording to the law of demand and supply: if demand exceeds supply, raise the price; otherwise reduce it. In (13),xs(ps(t)) is referred to as the demand function in microeconomics: the higher the path price ps(t) (i.e., the morecongested the path), the lower the source rate.It is proved in [23] that the basic algorithm (12{13) converges to the unique optimal rates provided the utilityfunctions are strictly concave increasing, their second derivatives are bounded away from zero, and the stepsize
 > 0 is su�ciently small. Speci�cally if f(x(t); p(t))g is a sequence generated by (12{13) then any limit point(x�; p�) is primal{dual optimal. Moreover, provided that the sources and links perform their updates frequentlyenough, convergence is maintained even in an asynchronous environment where sources and links may computeand communicate at di�erent times with di�erent frequencies, and where feedback delays are substantial andtime{varying.It is also proved there that di�erent utility functions can be chosen to achieve di�erent fairness criteria on theoptimal rates.C. Implementation: REMUnder the basic algorithm (12{13) a link l needs the aggregate source rate xl(t) for price computation and asource s needs feedback of a scalar price ps(t) for rate adjustment. This communication requirement cannot beaccommodated on the current Internet. In this subsection, we �rst explain how to perform price computation basedon input rate and bu�er occupancy locally at a link, thus eliminating the need for explicit communication fromsources to links. We then describe how to feed back the prices to sources using only a single bit. The combination isthe REM algorithm introduced in Section I-B. As we see below, the price computation rule (PC3) here is di�erentfrom those in [21], [19] (PC1 and PC2), and the di�erence is critical in achieving very high utilization with ngegliblebacklog or loss.C.1 Price computationNotice that xs(t) is the source rate and is generally di�erent from the input rate at a link l 2 L(s) from sources, unless the link is the �rst in the path of source s, because the
uid
ow is modi�ed as it passes throughsuccessive links. Let xls(t) be the input rate from source s at link l at time t, and x̂l(t) = Ps2S(l) xls(t) be theaggregate input rate at link l. The aggregate input rate x̂l(t) is generally di�erent from the aggregate source ratexl(t) = Ps2S(l) xs(t) used in the basic algorithm. They are equal in equilibrium when bu�er stabilizes [21]. Weassume each link has a large bu�er so that no packets are lost. Let bl(t) be the (aggregate) bu�er backlog at link lat time t. Then bl(t) evolves according to:bl(t + 1) = [bl(t) + x̂l(t)� cl]+: (14)Both the aggregate input rate x̂l(t) and the backlog bl(t) can be measured at link l.We now present three algorithms for price computation. All three are based on the idea of approximating thegradient rlD(t) = cl � xl(t) in carrying out the gradient projection algorithm (12) using local information. Thiseliminates the need for sources to communicate their rates to links in their paths.

7The �rst algorithm approximates the gradient cl � xl(t) by estimating the aggregate source rate xl(t) by theaggregate input rate x̂l(t) (cf. (12)):PC1: pl(t+ 1) = [pl(t) +
(x̂l(t)� cl)]+Multiplying both sides of (14) by the positive stepsize
, we see that the bu�er process automatically performs theprice computation PC1, provided that cl is the true link capacity available to serve the sources in S(l) and that weidentify pl(t) with
bl(t). Our second algorithm thus simply sets the price to a fraction of the bu�er occupancy:PC2: pl(t) =
bl(t)PC2, originally proposed in [21], is simpler to implement as links do not need to measure the aggregate inputrate. It however does not scale: as the number of sources increases, the equilibrium price vector p�, and hence theequilibrium bu�er vector b� =
�1p�, increases steadily. This not only necessitates large bu�er in the network, butworse still, it leads to large feedback delays. Algorithm PC1, used in [19], can alleviate the problem by setting clin PC1 to be a fraction � 2 (0; 1) of the true link capacity. Then in equilibrium, the input rate x̂l(t) = cl is strictlyless than the true link capacity and hence backlogs will clear. However, to be e�ective, � needs to be signi�cantlyless than 1, leading to low utilization. These will be illustrated in the simulation results below.These considerations motivate our third algorithm (the one introduced in Section I):PC3: pl(t + 1) = [pl(t) +
(�lbl(t) + x̂l(t)� cl)]+where cl can be the true link capacity. Here �l > 0 is a small constant that can be di�erent at di�erent links. Inequilibrium, price p� stabilizes. For a nonbottleneck link with p�l = 0, backlog is zero b�l = 0 and x̂�l � cl. For abottleneck link with p�l > 0, we must have �lb�l + x̂�l = cl. If the equilibrium bu�er is nonzero b�l > 0, then theinput rate is strictly less than the capacity x̂�l < cl, and hence the bu�er b�l could not have been in equilibrium.Hence, by contradiction, we must have both zero bu�er b�l = 0 and full utilization x̂�l = cl in equilibrium, providedprices are fed back exactly to sources. When prices are fed back only approximately using a single bit, as in REM,the source rates and backlogs
uctuate around their equilibrium values. The random
uctuation can be attributedto noise and delay associated with estimation of path prices by the sources from marked packets. See the simulationresults in Section IV-A.The term x̂l(t) � cl in PC3 equalizes input rate with capacity and the term bl(t) empties the bu�er. We canreplace bl(t) by a general function fl(bl(t)). For example, in the simulations in Section VII on Reno/REM, we haveused fl(bl(t)) = bl(t)� bl0. This has the e�ect of stabilizing the equilibrium bu�er around bl0 > 0 in order to attainhigher utilization during transient.We prove in [21] that, when (12) is replaced by PC1 or PC2, the price updates are still in the descent direction,i.e., D(t+1) < D(t), provided the stepsize
 is su�ciently small. This implies that the error in gradient estimationconverges to zero and the algorithm converges to yield the optimal rates. We are however unable to prove analyt-ically the convergence of PC3, except in the single{link case. Di�culty arises because PC3 is no longer a descentalgorithm. It has however always converged in all our simulation experiments.C.2 Price feedbackTo feedback prices using a single bit, the basic idea is for a source s to estimate the path price ps(t) from packetmarking and adjust its rate according to (13) using the estimate p̂s(t) in place of the true value ps(t). This is �rstproposed in [19]. We now describe the method for price feedback in an abstract synchronous model where time isslotted into update periods. Sources and links update their prices and rates at the beginning of each period.11In the simulation below, however, sources estimate their end{to{end marking probabilities asynchronously on the arrival of everyacknowledgement based on marks in the past N acknowledgements; see the pseudocode in Section III.

8 On packet arrival in period t, if it is not marked, a link l marks it with probabilityml(t) given by (2), independentof all other packets. Hence the higher the price the more likely packets are marked. The end{to{end markingprobability for packets of source s is then ms(t) given by (3). A mark is placed in the ECN bit of a packet enrouteto its destination and is carried back to its source in the ECN bit of the packet's acknowledgement, unmodi�ed inthe return path.A source estimates ms(t) by the fraction of marked packets in period t. Suppose source s receives acknowledge-ment for packets 1; 2; : : : ; N (t) in period t. Let Ek(t) be 1 if the kth packet in period t is marked and 0 otherwise,k = 1; 2; : : : ; N (t). Let m̂s(t) be an estimate of the end{to{end marking probability ms(t):m̂s(t) = 1N (t) N(t)Xk=1 Ek(t)Then we obtain a price estimate p̂s(t) through (4). The estimate is used to determine a new source rate through(5), in place of the true path price ps(t) in the basic algorithm.Putting the price computation and price feedback method together yields the REM algorithm in Section I-B.D. Smoothed REMWe have found from simulations that a smoothed version of REM performs better especially when the end{to{end marking probabilities in the network take extreme values (close to 0 or 1); see Section VI. In smoothedREM, a source adjusts its window once every round trip time. For each adjustment, the window is incrementedor decremented by 1 (or a small fraction, say, 10%, of the current window size) according as the target valuedetermined by the price is larger or smaller than the current window. This is in the spirit of Vegas [5].III. Simulation setupWe list here the network topology, source parameters, and link parameters that are common to most simulations.Other details that may vary across simulations will be given in the following subsections.All simulations are conducted for one of the two networks shown in Figure 2. The single (bottleneck) link networkconsists of n sources transmitting to a common destination. Each source is connected to a router via an access linkand then to the destination via a shared link. In the multilink network, only the shared links are shown, not theaccess links. There are n shared links all with the same capacity, one long connection using all the n links and nshort connections each using a single link as shown in the �gure. This network is widely used in previous studies,e.g., in [9]. In both networks the shared link(s) has (have) a lower capacity than the access links and is (are) theonly bottleneck(s). At each link packets are served in FIFO order.The utility functions of the REM sources are ws logxs, where wsmay take di�erent values in di�erent experiments.The source rate is controlled through windowing, where the rate calculated at a source is converted to a windowsize by multiplying it by estimated round trip time. The sources are greedy and always exhaust the window.Destination immediately sends an acknowledgement on receipt of a packet. The maximum rate Ms for each sourceis 2� c where c in packets/ms is the bottleneck link capacity. The minimum source rate ms is 0.1 packets/ms.Our discrete time packet{level simulations are written in MATLAB. The pseudocode are given in Figure 3 forlink algorithm and Figure 4 for source algorithm. We make two remarks. First we initialize fraction of marksin the source algorithm to 1 so that window starts at its minimum and increases gradually2. Second the variablefraction in Figure 4 is updated on each ACK arrival as follows. Let earliest denote the variable which is 1 if theearliest of the last N ACKs is marked, and 0 otherwise. Let mark of ACK denote the mark on the newly arrivedACK. Then, fraction is updated thus:2Since we focus on the equilibrium situation in this paper, sources in our simulations increases their rates linearly from their initialminimum. An alternative is to increase exponentially as in the slow{start phase of TCP.

9
ROUTER

S1

Sn

D

c packets/ms.(a) Single (bottleneck) link network
Link 1

Router Router
Link 2

Router Router
Link n

Router

Connection group 0

Connection group 2Connection group 1 Connection group n

c packets/ms(b) Multilink networkFig. 2. Network topologies. In the single-link network, propagation delays vary across simulations. In the multilink network, shortconnections each has round trip propagation delay of 7ms, long connection 2n+ 3ms.for each ACK arrivalif (earliest = 1) and (mark of ACK = 0)fraction fraction� 1Nelseif (earliest = 0) and (mark of ACK = 1)fraction fraction+ 1NendifendforUnless otherwise speci�ed, the parameter values are (refer to pseudocode): � = 0:1, � = 0:01, N = 100, �l = 0:1,
 = 0:005. The value of � varies; see the following sections.IV. Stability and fairnessIn this section we present simulation results to con�rm that it inherits the stability and fairness properties ofthe basic algorithm: REM tracks the behavior of the basic algorithm with added oscillations. Through appropriatechoice of utility functions, di�erent fairness criteria can be enforced, in equilibrium, regardless of the propagationdelays of the sources. The results also con�rm that PC3 is superior to PC1 and PC2. Hence the rest of thesimulations all use PC3.A. StabilitySimulation has been conducted on the single{link network in Figure 2(a) with four sources. The capacity c ofthe bottleneck link is 12 packets/ms. The parameter � = 1:4. The round trip propagation delays of the sources are

10 periodicallyupdate aggregate input rate:in (1� �)� in+ � � new inudpate marking probability ml:pl maxfpl +
(�l � buffer + in� capacity); 0gml 1� ��plendperiodicallywhile bu�er not emptymark packet with probabilityml as it leavesendwhileSaved variables:in: aggregate input rate estimatepl: link priceml: current marking probabilityFixed parameters:�: weight in aggregate input rate estimation
: stepsize in price adjustment�l: weight of bu�er in price adjustment�: base in marking probability computationTemporary variables:new in: current aggregate input ratebuffer: current bu�er occupancy (may be smoothed)capacity: current link capacity (may be estimated)Fig. 3. Pseudocode for link algorithm7, 9, 11, 13 ms. The utility function of the REM sources is ws logxs, where, for all s, ws = 12 packets/ms. Thestarting times of the sessions are staggered by 2 s. S1 has been active prior to time t = 0s and remains active forthe entire simulation. The second source, S2, is active from 0s-10s, S3 from 2s-8s and S4 from 4s-6s.Simulation results for PC1, PC2, and PC3 are shown in Figures 5{7. We �rst describe some common featuresand then contrast their di�erences.The straight lines in the �gures show the theoretical equilibrium values if basic algorithm were used. The windowsizes exhibit more severe oscillation initially when only few (two) sources are active. This is because the equilibriumprice p� of the bottleneck link is small then and, for log utility function, the source rate x� = xs(p�) = ws=p� issensitive to changes in p� when p� is small (see Figure 1(b)). As new sources become active, p� increases and x�becomes less sensitive.The
uctuation around the equilibrium values can be attributed to the use of binary feedback and to thetranslation from rate to window control. The binary feedback introduces both noise and delay into the priceestimation at the sources. The translation from rate to window control relies on estimation of the current roundtrip time, which introduces noise and delay into the price computation at the links. Despite these factors, REMtracks the behavior of the basic algorithm, and in this sense, it seems stable.We now compare the performance of PC1, PC2 and PC3.A.1 PC1Figure 5 shows the simulation results for PC1. Unlike all other simulations presented, cl is set to 85% of the truelink capacities to avoid bu�er buildup. The bu�er level exhibits brief spikes when a source activates. Because thetarget utilization is 85%, the bu�er tends to a neighborhood of zero in the steady state. Notice that the largestand smallest round trip bandwidth{delay product to the bottleneck link are 156 and 84 packets, respectively, while

11for each ACK arrivalupdate round trip time estimate:RTT (1� �)�RTT + � �RTT of ACKupdate fraction of marks in the last N ACKscalculate new rate:if fraction = 0xs max rateelseif fraction = 1xs min rateelse ps � log(1�fraction)log �xs maxfminfws=ps; max rateg; min rategendifset window size:window ceiling (xs �RTT)endforSaved variables:RTT : round trip time estimatefraction: fraction of marks in last N ACKswindow: window sizeFixed parameters:�: weight in RTT estimationN : sample size for price estimation�: base in price estimationmax rate: maximum source ratemin rate: minimum source rateTemporary variables:RTT of ACK: round trip time of new ACKps: path pricexs: source rate Fig. 4. Pseudocode for source algorithm with Us(xs) = ws logxs.the peak backlog is only about 90 packets. The disadvantage of this scheme is low utilization.A.2 PC2Figure 6 shows that congestion windows and bu�er occupancy oscillate more severely under PC2. This isbecause the stepsize
 = 0:01 is two times larger than that for PC1. A large
 has been chosen to control thesize of the equilibrium bu�er occupancy. This highlights a major disadvantage of this scheme: the equilibriumbacklog b�l = p�l =
 increases with the equilibrium price p�l . Since equilibrium price p�l increases with the number ofactive sources, we need a large
 to maintain a low equilibrium backlog b�l . Notice the steady increase in averagebacklog in Figure 6(b) as sources activate. A large
 however leads to severe oscillation and even divergence ofprices and rates ([23, Theorem 1]). A small
, on the other hand, yields a large equilibrium backlog and increasesthe round trip time, leading to lag{induced oscillation. The utilization is however the highest (> 98%) among thethree algorithms due to a much larger backlog (notice the di�erent scales).A.3 PC3Figure 7 shows the simulation results for PC3. As in PC1, the congestion windows and the prices rapidly convergeto a neighborhood of their equilibrium values after each disturbance, while the backlog oscillates about zero. Again,the average backlog is a small fraction of the round trip bandwidth{delay product to the bottleneck link. UnlikePC1, the bottleneck link is better utilitized (cl is set to true link capacities).

12
0 2000 4000 6000 8000 10000

20

40

60

80

100

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 1

0 2000 4000 6000 8000 10000

20

40

60

80

100

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 2

0 2000 4000 6000 8000 10000

20

40

60

80

100

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 3

0 2000 4000 6000 8000 10000

20

40

60

80

100

time (ms)

Source 4

win
dow

 siz
e (

pkt
s.)(a) Window size

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

time ms

queu
e len

gth p
kts (b) Bu�er occupancyFig. 5. Stability { PC1.All simulations presented below use PC3 because of its superiority over PC1 and PC2.Table I summarizes the link utilization and equilibrium backlog under PC1, PC2, and PC3 for each 2{secondperiod.B. FairnessThe parameters ws in utility functions Us(xs) = ws logxs determine the relative share of bandwidth each sourcereceives in equilibrium. In this section we present three sets of results to demonstrate that by appropriate choiceof ws it is possible to achieve di�erent fairness criteria regardless of the propagation delay of the sources; cf. [23,Theorem 4].The �rst set of results is for the single{link network in Figure 2(a) with the same topology and parameter valuesas in the stability experiments. The parameters ws have been set to c= �dsPs2S 1=ds� where c = 12 packets/msis the bottleneck link capacity and ds is the round trip propagation delay of source s, so that all sources wouldhave the same equilibrium window size (but di�erent rate) under the basic algorithm. Source 1 has been activebefore time 0s. Source 2 turns on at time 0s, source 3 at time 1s, and source 4 at time 2s. Once active each sourcecontinues to transmit for the duration of the simulation. Figure 8(a) gives the simulation results. As expected, thewindows settle around the common equilibrium value.The second set of simulations are for the multilink network in Figure 2(b) where all sources have equal ws = 12packets/ms. This implies that the equilibrium rates should be proportionally fair. Figure 8(b) shows the results of10 experiments with networks of sizes 1; : : : ; 10 links. For a network of n links, we measure the throughput shareof the long connection at each of the n links, x�0=(x�0 + x�i), i = 1; : : : ; n, where x�i are the equilibrium rates ofconnections i, i = 0; 1; : : : ; n. It is represented by each bar in the �gure. As the network size increases the long

13
0 2000 4000 6000 8000 10000

50

100

150

200

250

300

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 1

0 2000 4000 6000 8000 10000

50

100

150

200

250

300

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 2

0 2000 4000 6000 8000 10000

50

100

150

200

250

300

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 3

0 2000 4000 6000 8000 10000

50

100

150

200

250

300

time (ms)

Source 4

win
dow

 siz
e (

pkt
s.)(a) Window size

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
50

100

150

200

250

300

350

400

450

500

550

time ms

queu
e len

gth p
kts (b) Bu�er occupancyFig. 6. Stability { PC2.connection sees a higher price and hence its share steadily decreases. The measured share matches very well theexpected value.Similar results for maxmin fairness is presented in the next section for scalability experiments.V. Scalability and robustnessIn this section we present experimental results on scalability and robustness. As discussed in Introduction theREM algorithm, (1{2) and (4{5), involves only local and aggregate information, and hence its complexity scales.A critical issue however is whether its performance remains stable as we scale up the number of sources, the linkcapacity, the propagation delay, or the network size. We present four experiments to demonstrate that it does.The scalability experiments also show that REM performs well across a wide range of network conditions. Thismakes tuning of its parameters easier. We present, in addition, two experiments to demonstrate REM's robustnessto packet loss and to errors in round trip time estimation.A. ScalabilityA.1 Tra�c loadThis set of 10 experiments shows that REM copes well as tra�c load increases. Each experiment uses thesingle{link network of Figure 2(a) with n sources, n = 10; 20; :::;100. All sources have the same utility functionUs(xs) = 12:5 logxs and round trip propagation delay of 10ms. The bottleneck link has a capacity of 25 packets/msand a �nite bu�er of size 50 packets. The equilibrium price for the nth experiment, with n sources, is thusp�(n) = n=2. For all the 10 experiments, the REM parameters are:
 = 0:001, �l = 0:1, � = 1:05.The results are shown in Figure 9. The equilibrium source rate, averaged over all sources, decreases steadily as

14
0 2000 4000 6000 8000 10000

20

40

60

80

100

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 1

0 2000 4000 6000 8000 10000

20

40

60

80

100

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 2

0 2000 4000 6000 8000 10000

20

40

60

80

100

time (ms)

win
dow

 siz
e (

pkt
s.)

Source 3

0 2000 4000 6000 8000 10000

20

40

60

80

100

time (ms)

Source 4

win
dow

 siz
e (

pkt
s.)(a) Window size

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

time ms

queu
e len

gth p
kts (b) Bu�er occupancyFig. 7. Stability { PC3.

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

90

time (ms)

W
ind

ow
 S

ize

Source1
Source2
Source3
Source4(a) Same window size 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of links

Sh
ar

e o
f th

ro
ug

hp
ut

for
 th

e l
on

g c
on

ne
cti

on

link1
link2
link3
link4
link5
link6
link7
linlk8
link9
link10(b) Proportional fairnessFig. 8. Fairness. For proportional fairness, each bar represents the throughput share of the long connection at one of the links andstar `*' represents the theoretical value.

15Time interval 0{2s 2{4s 4{6s 6{8s 8{10sPC1 Utilization 86% 86% 86% 84% 84%Avg. backlog (pkts) 4.8 2.6 2.4 1.5 2.3PC2 Utilization 100% 100% 100% 100% 100%Avg. backlog (pkts) 196.9 293.5 386.4 313.3 209.9PC3 Utilization 94% 96% 96% 95% 94%Avg. backlog (pkts) 7.8 6.5 5.8 5.7 6.6TABLE IComparison of PC1, PC2, PC3.the number of sources increases and matches well the theoretical value. The equilibrium link utilization remainsabove 96% while the equilibrium loss (< 0:2%) and backlog (< 10 packets) remains low.A.2 CapacityThis set of 10 experiments are similar to the previous set, except that the number of sources is �xed at 20 butthe link capacity is increased from 10 to 100 pkts/ms at 10 pkts/ms increment. The round trip propagation delayis 10ms and the bu�er size is 40 pkts. REM parameters for all 10 experiments are:
 = 0:005, �l = 0:1, � = 1:1.The results are shown in Figure 10. The equilibrium source rate, averaged over all sources, increases linearly aslink capacity increases and matches well the theoretical value. The equilibrium link utilization remains above 96%while the equilibrium loss (< 1%) and backlog (< 14 packets) remains low.A.3 Propagation delayThis set of 10 experiments are similar to the previous set, except that the link capacity is �xed at 20 pkts/msbut the round trip propagation delay is increased from 10 to 100 ms at 10 ms increment. For all 10 experiments,the bu�er size is 120 pkts and the REM parameters are:
 = 0:001, �l = 0:1, � = 1:1.The results are shown in Figure 11. The equilibrium source rate, averaged over all sources, remains steady aspropagation delay increases and matches well the theoretical value. The equilibrium link utilization remains above94% while the equilibrium loss (< 0:2%) and backlog (< 13 packets) remains low.A.4 Network sizeA large network presents two di�culties. First it necessitates a small
 > 0 in price adjustment, which leadsto slower convergence. Second it makes price estimation more di�cult, which often leads to wild oscillation andpoor utilization. The second di�culty is exposed most sharply in the multilink network of Figure 2(b). When theshort connections all have the same utility functions the long connection sees a price that is n times what a shortconnection sees. It hence sees an end{to{end marking probability that is much larger than that short connectionssee. Extreme marking probabilities (when n is large) can lead to severe oscillation in the bu�er occupancies. Thenext set of 10 experiments show that a small �l(= 0:1) reduces the e�ect of bu�er oscillation on prices. Thisproduces smoother price and window processes and a better utilitzation, improving the scalability of REM withnetwork size.In the simulation, utility functions are Us(xs) = ws logxs, with w0 for the long connection set to n times thosew1 = � � � = wn for short connections, when there were n links in the network. This is to achieve maxmin fairness,according to which the long connection should receive 50% of bandwidth for all network sizes. We measure boththe throughput share of the long connection and link utilization. Throughput share is x�0=(x�0 + x�i), i = 1; : : : ; n,where x�i are the equilibrium rates of connections i, i = 0; 1; : : : ; n. Link utilization is x�0+x�i at link i. The results

16
0 10 20 30 40 50 60 70 80 90 100 110

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

number of sources

eq
ui

lib
riu

m
 s

ou
rc

e
ra

te
 (p

kt
s/

m
s) (a) Source rate 0 10 20 30 40 50 60 70 80 90 100 110

0

10

20

30

40

50

60

70

80

90

100

number of sources

eq
ui

lib
riu

m
 li

nk
 u

til
iz

at
io

n
(%

) (b) Link utilization 0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

number of sources

equilibrium packet loss (%)
equilibrium queue (pkts)

(c) Loss and backlogFig. 9. Scalability with tra�c load. In (a) each bar represents the measured value and each star `*' represents the theoretical value.
0 10 20 30 40 50 60 70 80 90 100 110

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

eq
ui

lib
riu

m
 s

ou
rc

e
ra

te
 (p

kt
s/

m
s)

link capacity (pkts/ms)(a) Source rate 0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

eq
ui

lib
riu

m
 li

nk
 u

til
iz

at
io

n
(%

)

link capacity (pkts/ms)(b) Link utilization 0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

link capacity (pkts/ms)

equilibrium packet loss (%)
equilibrium queue (pkts)

(c) Loss and backlogFig. 10. Scalability with link capacity. In (a) each bar represents the measured value and each star `*' represents the theoretical value.
0 10 20 30 40 50 60 70 80 90 100 110

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

eq
ui

lib
riu

m
 s

ou
rc

e
ra

te
 (p

kt
s/

m
s)

propagation delay (ms)(a) Source rate 0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

eq
ui

lib
riu

m
 li

nk
 u

til
iz

at
io

n
(%

)

propagation delay (ms)(b) Link utilization 0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

propagation delay (ms)

equilibrium packet loss (%)
equilibrium queue (pkts)

(c) Loss and backlogFig. 11. Scalability with propagation delay. In (a) each bar represents the measured value and each star `*' represents the theoreticalvalue.

17are shown in Figure 12 for network sizes above 5. The throughput share matches very well the theoretical value
5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of links

Th
rou

gh
pu

t s
ha

re
of

lon
g c

on
ne

cti
on

link1
link2
link3
link4
link5
link6
link7
link8
link9
link10(a) Throughput share of long connection 5 6 7 8 9 10

0

0.5

1

1.5

number of links

Lin
k U

tiliz
ati

on

link1
link2
link3
link4
link5
link6
link7
link8
link9
link10(b) Link utilizationFig. 12. Scalability with network size. In (a) each bar represents the measured throughput share at each of the n links and each star`*' represents the theoretical value. In (b) each bar represents the measured utilization at each of the n links and the straight linerepresents 100% utilization.and the link utilization is very high. More importantly, the performance remains stable as network size increases.Figure 13(b) shows the result of another simulation with 20 links. Sources have identical utility parameters toachieve proportional fairness. The throughput shares of the long connection at each of the 20 links are shown in

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Link number

Th
ro

ug
hp

ut
 s

ha
re

 o
f l

on
g

co
nn

ec
tio

n

(a) Throughput share of long connection 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

time (ms)

W
in

do
w

 s
iz

e
(p

ac
ke

ts
)

Congestion window for connection 0

Congestion window for connections 1−20(b) Window sizeFig. 13. Scalability with network size. In (a) the straight line shows the theoretical share of 1/21 for the long connection. In (b) thelower curve is the window process for the long connection, and the upper ones are those for the 20 short connections. Markingprobability varies over [0:1972;0:9876].Figure 13(a). The window process for the 21 connections are shown in Figure 13(b). The performance is very closeto expected.B. RobustnessNote that the REM parameters are �xed in each set of the scalability experiments. This demonstrates thatREM is robust to parameter setting. The next experiment demonstrates its robustness to error in round trip timeestimation.

18B.1 Round trip time estimationRound trip time is estimated at sources to translate source rate into window size. A source maintains anexponential weighted average of past round trip times, which is updated on the arrival of every acknowledgement;see the pseudocode in Figure 4.We use the same setup as that for PC3 and consider both systematic and random error. In the �rst set ofexperiments, the estimate at all sources was corrupted by constant error of magnitude -1, 0, 1, 2, or 3ms. In thesecond set of experiments, the estimate at all sources was corrupted by additive white Gaussian noise of mean zeroand variance one. In the third set of experiments, di�erent sources su�er from di�erent but (randomly chosen)constant errors: S1 su�ers no error, S2 -1ms, S3 4ms, and S4 1ms. Since average bu�er is small, the average roundtrip time is close to the round trip propagation delay. The round trip propagation delays of the sources rangesfrom 7ms to 13ms, and hence the percentage error introduced is very signi�cant.Table II summarizes the utilization, average backlog, maximumbacklog, and average window sizes. As the resultindicates REM seems quite robust against errors in round trip time estimation.Error in RTT -1 0 1 2 3 random1 random2Utilization 94.09% 94.33% 95.38% 95.12% 96% 94.94% 95.26%Avg. backlog(packets) 4.93 4.82 4.90 5.15 5.21 6.07 4.91Max. backlog(packets) 30 30 27 28 26 37 27Mean window sizeS1 (21 packets) 19.21 20.54 21.44 21.68 22.84 21.76 19.36S2 (39 packets) 39.76 38.73 37.93 37.72 37.07 39.67 32.05S3 (33 packets) 33.06 32.21 32.53 32.28 31.82 31.15 40.68S4 (27 packets) 26.79 26.66 27.09 27.07 27.56 27.26 27.00Throughput1+�sS1 (k packets) 13.8 12.6 11.5 10.3 9.7 13.1 11.9S2 (k packets) 14.3 12.9 11.7 10.9 10.0 13.1 11.6S3 (k packets) 14.3 12.6 11.7 10.7 9.8 12.1 11.7S4 (k packets) 14.4 12.8 11.7 10.6 9.9 12.9 11.6TABLE IIRobustness to round trip time estimation. Window sizes in brackets are theoretical equilibrium values (under basicalgorithm). Backlog and window size do not vary significantly with error.We now o�er a heuristic explanation of our simulation results, assuming that round trip time (propagation plusqueueing delay) is constant. This assumption is reasonable as the average backlog is very small under REM. LetDs denote the constant round trip time of source s and �s be the percentage error in its estimation. Then given apath price ps, source s appears to choose its rate xs according toxs = U 0�1s (ps) (1 + �s)DsDsas opposed to xs = U 0�1s (ps). Hence its marginal utility appears to beps = U 0s� xs1 + �s� =: Û 0s(xs) (15)

19Since this holds for all xs integrating (15) implies that source s appears to have a utility function Ûs(xs) given by:Ûs(xs) = (1 + �s) Us� xs1 + �s� (16)Hence round trip time error distorts the source utility function from Us(xs) to Ûs(xs). (16) allows us to calculatethe new equilibrium rates in a general network, given percentage errors. In the distorted utility function Ûs therate is reduced by a factor of 1 + � but the utility is increased by the same factor. This self{regulating featureprovides robustness to error in round trip time estimation. Notice that only the percentage error matters, not theround trip time itself.For a single{link network, (15) implies that (since all sources see the same path price): for all r; s 2 S,U 0s� xs1 + �s� = U 0r � xr1 + �r� = psIf Us are identical and strictly increasing, as in our simulations, we must havexs1 + �s = xr1 + �rThe last row of Table II shows the equilibrium throughput divided by 1 + �s, and as expected, they are similaracross sources. VI. Discussion: parameter setting, comparison with TCPA. Parameter settingIn this subsection we summarize our experience with parameter setting of REM. The three main parameters are
 and �l in price adjustment (1), and � in marking probability (2). We emphasize that we do not yet undersandthe best way to set these parameters, but will comment on their e�ect on performance.The parameter
 must be strictly positive, and usually small. It determines the convergence of REM:
 > 0must be small enough for REM to converge, but should not be unnecessarily small so that the rate of convergenceis not exceedingly slow [23, Theorems 1 and 2]. We have found that
 = 0:005 or 0.001 works well.The parameter �l must be strictly positive, usually between 0 and 1, and can be di�erent at di�erent links. Alarge �l, say, �l = 1, ampli�es the e�ect of backlog on price, and often leads to a small backlog, and hence a lowutilization. A small �l, say, �l = 0:1, improves signi�cantly utilization with only a modest increase in averagebacklog. The size of �l thus trades o� utilitzation and delay. A small �l also smoothens the price process byreducing the e�ect of bu�er oscillation on price.3 Our experience suggests that �l = 0:1 works well.Among the factors that a�ect the performance of REM, the most critical is the range of the end{to{end markingprobabilities seen by the sources. Extreme probability leads to severe oscillation and poor utilization. The parameter� controls marking probability and must be strictly greater than 1. Ideally it should be chosen so that the end{to{end marking probabilities under nominal tra�c condition fall within a range where reasonable price estimation canbe made. Call this the good range. From our experience (smoothed) REM works well when the probabilities are in[0:05; 0:99]. Outside this good range there is severe oscillation in bu�er and window processes. The asymmetry ofthe range (i.e., the right boundary is much closer to 1 than the left boundary is to 0) is due to the fact that, withlog utility function, the source rate is sensitive to price when the price, or equivalently the marking probability, issmall; see Figure 1 or Section IV-A.Scalability of REM depends largely on our ability to control the end{to{end marking probability to lie withinthis range. When we scale up the number of sources or the size of the network, the path prices and hence theend{to{end marking probabilities vary over a wider range. The boundaries of this good range hence determine thenumber of sources or the size of the network for which REM performs well. Techniques that enlarge the good rangeimprove the scalability of REM.3This can be achieved also by using average, instead of instantaneous, bu�er occupancy in price adjustment (1).

20B. Comparison with current TCP schemesWe contrast how congestion is measured in TCP Reno [30], TCP Vegas [5], RED [11] and REM. Related markingschemes are discussed in [29], [12], [17].Network congestion can be measured in di�erent ways. Reno without RED measures congestion with bu�erover
ow, Vegas measures it with queueing (not including propagation) delay [20], RED measures it with averagequeue length, and REM measures it with the price vector p(t) = (pl(t); l 2 L). A critical di�erence among them isthe coupling of congestion measure and performance measure, such as loss, delay or queue length, in the �rst threeschemes. We believe that congestion measure should summarize the status of the network such as the available linkcapacities, the number of sources, their routing and utility functions. This is desirable as they provide to a newsource the necessary information to decide its rate. The equilibrium value of the congestion measure should dependnot on the
ow control algorithm used but solely on these network conditions. Coupling it with a performancemeasure creates a dilemma. On the one hand, if the congestion measure re
ects network conditions such as thenumber of sources, then its value steadily increases as more sources activate. This implies that performance suchas loss or delay must steadily deteriorate. This is the case with Reno [17, Remark 2] and Vegas [20], where loss,and respectively delay, increases with the number of sources. On the other hand, if the congestion measure, suchas the average queue length in RED, should remain steady regardless of the number of sources, then strongercongestion signals must be sent to every source as new sources activate to ensure further reduction in its rate. Thisnecessitates adapting parameters to network conditions as proposed in [8] for RED. A more subtle disadvantage isthat the equilibrium value of the congestion measure carries little information about current network conditions,and hence new sources must probe harder. The attempt to decouple congestion measure and network conditionsseems fundamental to the di�culty with parameter setting of RED that would work well in di�erent conditions, asobserved in [8], [7], [27]. In contrast the equilibrium prices of REM summarize network conditions in a precise senseand are decoupled from performance measure; see Section II. This is the underlying reason for the robustness ofREM to parameter setting. Indeed the prices steadily increase as new sources activate while the backlog is made toalways converge to a neighborhood of zero. High utilitzation is achieved not through maintaining a large backlog,but through the precise congestion information sources obtain from marking to set their rates.In summary, if congestion measure is coupled with performance measure, then `congestion' necessarily means`bad performance' such as large loss or delay. If they are decoupled, as in REM, then `congestion' simply meansthat `demand for exceeds supply of' network resources. This curbs demand but maintains good performance, suchas low delay and loss. VII. Interworking with RenoThe link algorithm of REM, (1{2), can also interwork with existing source algorithms. Its unique advantages arethat it provides each source with a congestion measure that is aggregated over its path, and that it tends to clearthe bu�er, leading to low loss and delay. In this section we present preliminary simulation results to compare theperformance of Reno (with DropTail), Reno/RED and Reno/REM.All simulations have been done using the ns-2 simulator for the single link network of Figure 2(a) with n sources.All sources have the same round trip propagation delay of 120ms, with one-way propagation delay of 30ms oneach (access or shared) link. The size of each packet is 1KB. At the router a bu�er with capacity of 100 packetsis used. ECN is set so that packets are dropped only when bu�er over
ows. Packets are served in FIFO orderand are marked with a probability determined by the link algorithm (REM or RED). Note that the (equilibrium)marking probability is determined by the equilibrium source rates and their round trip times and is independent ofthe link algorithm [22]. REM exhibits a much smoother marking probability than RED; see a more comprehensivecomparison in [2].Eleven experiments have been run with n = 5; 10; 20; : : :; 100 sources each. REM parameters are:
 = 0:01,

21� = 1:001, � = 0:1. In addition we have substituted bl(t) in the price update (1) by bl(t)� b0 with b0 = 20 packets.This has the e�ect of maintaining an equilibrium queue length of around b0 = 20 packets while increasing the linkutilization during transient. RED parameters are: min thresh = 20KB, maximum thresh = 80KB and wq = 0:002.These parameter values are used in all the eleven experiments. Each experiment runs for 30s. Equilibrium linkutilization, queue length and loss are measured over the last 15s.The results are shown in Figures 14, 15 and 16. All three schemes achieve high link utilization with Reno without
0 10 20 30 40 50 60 70 80 90 100

90

91

92

93

94

95

96

97

98

99

100

number of sources

util
iza

tion
 (%

)

Reno/Droptail
Reno/RED
Reno/REM Fig. 14. Link utilization

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

number of sources

m
ea

n
qu

eu
el

en
gt

h
(p

kt
s)

Reno/Droptail
Reno/RED
Reno/REM Fig. 15. Average backlog 0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

number of sources

lo
ss

 r
at

e
(%

)

Reno/Droptail
Reno/RED
Reno/REM

Fig. 16. Lossmarking having the highest. The average queue length and loss remain very low with Reno/REM as load increases,while they steadily increase with Reno and with Reno/RED.VIII. ConclusionWe have presented a Random Exponential Marking algorithm for
ow control as a practical implementation ofthe basic algorithm of [23]. The algorithm is summarized in Section I-B and a pseudocode implementation is givenin Section III. Extensive simulations indicate that it is stable, fair, scalable, and robust; it achieves high utilizationwith negligible loss or queueing delay. Its key features are summarized in Section I-C. REM owes its robustnessand good performance fundamentally to the way it meausres congestion, as discussed in Section VI.The preliminary results on Reno/REM and the more comprehensive simulations in [2] suggest that it would beadvantageous to deploy REM in routers for active queue management. It is simple, scalable, and achieves highutilization with negligible loss or delay. Moreover, for sources that are not ECN-capable, routers can just drop, as

22opposed to mark, their packets according the REM algorithm. This does not require any modi�cation to Reno.REM can also be applied in a (private sub-) network to control the aggregate. Then new source algorithms, e.g.,TCP Vegas, as well as the link algorithm, can be implemented to maximize performance.We comment on two limitation of this work. First REM prescribes a way to control rate{adaptive
ows toachieve social optimality. It does not however itself provide incentive for sources to cooperate, a critical but openproblem. Congestion pricing is a possibility that aligns social and individual optimality. Second even though REMseems robust to parameter setting, a potential di�culty is that � must be chosen in a way that maintains markingprobabilities to within a good range. Moreover this is a constant that must be �xed and known globally. A criticalfuture work is to investigate ways to alleviate or get around this di�culty.Acknowledgements: We gratefully acknowledge very helpful discussions with Sally Floyd, Frank Kelly, DavidLapsley, and K. K. Ramakrishnan. References[1] Sanjeewa Athuraliya, David Lapsley, and Steven Low. An Enhanced Random Early Marking Algorithm for Internet Flow Control.In Proceedings of IEEE Infocom, March 2000.[2] Sanjeewa Athuraliya, Victor H. Li, and Steven H. Low. Simulation comparison of RED and REM. Submitted for publication,May 2000.[3] Yair Bartal, J. Byers, and D. Raz. Global optimizationusing local informationwith applications to
ow control. In STOC, October1997.[4] D. Bertsekas. Nonlinear Programming. Athena Scienti�c, 1995.[5] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: end to end congestion avoidance on a global Internet. IEEE Journal onSelected Areas in Communications, 13(8), October 1995.[6] Costas Courcoubetis, Vasilios A. Siris, and George D. Stamoulis. Integration of pricing and
ow control for ABR services in ATMnetworks. Proceedings of Globecom'96, November 1996.[7] W. Feng, D. Kandlur, D. Saha, and K. Shin. BLUE: a new class of active queue management algorithms. Technical report,University of Michigan, Michigan, USA, 1999. UM CSE{TR{387{99.[8] W. Feng, D. Kandlur, D. Saha, and K. Shin. A self{con�guring RED gateway. In Proceedings of INFOCOM'99, March 1999.[9] S. Floyd. Connections with multiple congested gateways in packet{switched networks, Part I: one{way tra�c. Computer Com-munications Review, 21(5), October 1991.[10] S. Floyd. TCP and Explicit Congestion Noti�cation. ACM Computer Communication Review, 24(5), October 1994.[11] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. on Networking,1(4):397{413, August 1993.[12] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion control. Automatica, 35, 1999.[13] Jamal Golestani and Supratik Bhattacharyya. End-to-end congestion control for the Internet: A global optimization framework.In Proceedings of International Conf. on Network Protocols (ICNP), October 1998.[14] F. P. Kelly. Charging and rate control for elastic tra�c. European Transactions on Telecommunications, 8:33{37, 1997.http://www.statslab.cam.ac.uk/~frank/elastic.html.[15] Frank Kelly. Mathematical modelling of the Internet. Preprint, 1999.[16] Frank P. Kelly, Aman Maulloo, and David Tan. Rate control for communication networks: Shadow prices, proportional fairnessand stability. Journal of Operations Research Society, 49(3):237{252, March 1998.[17] Srisankar Kunniyur and R. Srikant. End{to{end congestion control schemes: utility functions, random losses and ECN marks. InProceedings of IEEE Infocom, March 2000.[18] David E. Lapsley and Steven H. Low. An optimization approach to ABR control. In Proceedings of the ICC, June 1998.[19] DavidE. Lapsley and StevenH. Low. RandomEarlyMarking for InternetCongestionControl. InProceedings of IEEE Globecom'99,December 1999.[20] Steven Low, Larry Peterson, and Limin Wang. Understanding Vegas: theory and practice. Submitted for publication,http://www.ee.mu.oz.au/sta�/slow/research/, February 2000.[21] Steven H. Low. Optimization
ow control with on-line measurement. In Proceedings of the ITC, volume 16, June 1999.[22] Steven H. Low. Flow control through duality. Submitted for publication, March 2000.[23] Steven H. Low and David E. Lapsley. Optimization
ow control, I: basic algorithm and convergence. IEEE/ACM Transactionson Networking, 7(6):861{874, December 1999. http://www.ee.mu.oz.au/sta�/slow/research/.[24] David G. Luenberger. Linear and Nonlinear Programming, 2nd Ed. Addison-Wesley Publishing Company, 1984.[25] L. Massoulie and J. Roberts. Bandwidth sharing: objectives and algorithms. In Infocom'99, March 1999. Available athttp://www.dmi.ens.fr/%7Emistral/tcpworkshop.html.[26] Jeonghoon Mo and Jean Walrand. Fair end{to{end window{based congestion control. Preprint, 1999.[27] T. J. Ott, T. V. Lakshman, and L. Wong. SRED: Stabilized RED. In Proceedings of IEEE Infocom'99, March 1999.

23[28] K. K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion Noti�cation (ECN) to IP. Internet draft draft-kksjf-ecn-01.txt, July 1998.[29] K. K. Ramakrishnan and Ran Jain. A binary feedback scheme for congestion avoidance in computer networks. ACM Transactionson Computer Systems, 8(2):158{181, May 1990.[30] W. Stevens. TCP/IP illustrated: the protocols, volume 1. Addison{Wesley, 1999. 15th printing.

