Optimization Flow Control, II: Implementation

Sanjeewa Athuraliya Steven H. Low
Department of EEE, University of Melbourne, Australia

{sadsa, slow}@ee.mu.oz.au

Abstract

A duality model of flow control is proposed in Part I of this paper and leads to a basic flow control algorithm. In this sequel we
develop a practical implementation of the basic algorithm, Random Exponential Marking (REM). It consists of a link algorithm, that
probabilistically marks packets inside the network, and a source algorithm, that adapts source rate to observed marking. REM has
three advantages. First the marking probability is exponential in a link congestion measure, so that the end—to—end marking probability
observed at a source is exponential in its path congestion measure. Marking allows the source to estimate its path congestion measure
and adjusts its rate in a way that aligns individual optimality with social optimality. Second REM achieves high link utilization with
very low backlog, and hence negligible loss and queueing delay. Third sources stabilize around a globally optimal equilibrium, thus
avoiding the perpetual cycle of sinking into and recovering from congestion. Moreover the equilibrium can be chosen to achieve different
fairness criteria. We present extensive simulation results to demonstrate that REM is not only stable and fair, but more importantly,
scalable and robust. Finally, the link algorithm itself can also be used for active queue management that interact with existing source
algorithms. We compare the performance of Reno, Reno/RED and Reno/REM.

I. Introduction and summary
A. Motivation

Flow control is a distributed algorithm to share network resources among competing sources. It often consists of
two (sub)algorithms: a link algorithm executed inside the network at routers or switches, and a source algorithm
executed at edge devices such as host computers or edge routers. The link algorithm detects congestion and feeds
back information to sources, and in response, the source algorithm adjusts the rate at which traffic is injected into
the network. The basic design issue is what to feed back (link algorithm) and how to react (source algorithm), and
the objective is to achieve stability, fairness and robustness. Ideally one should design the link and source algorithm
jointly so that they work in concert to steer the network to track a possibly moving desirable operating point. This
motivates a recent approach to flow control based on optimizatione.g., [6], [14], [16], [12], [18], [23], [19], [1], [13], [25],
[26], [17], [3], where the goal is to choose source rates to maximize a global measure of network performance. Flow
control, both the link and the source algorithms, is derived as a distributed solution to this welfare maximization
problem. Daifferent proposals in the literature differ in their objective function, or solution approach, which lead
to different link and source algorithms and their implementation. Though it may not be possible, nor critical,
that exact optimality is attained in practice, the optimization framework allows us to understand, and control, the
behavior of the network as a whole. Indeed we may regard the sources and links as processors in an asynchronous
distributed computation system and flow control as a computation to maximize welfare. Under mild conditions
on the welfare function, the computation can be proved to converge, i.e., the flow control algorithm is globally
stable. Moreover, convergence can be maintained even in an asynchronous environment where sources and links
communicate and update at different times, with different frequencies, using outdated information, and feedback
delays are different and time-varying [23]. Unlike the works [14], [16], [13], [17] that take a penalty function approach
to the solution of the welfare maximization problem, in Part I of this paper we develop a duality approach and derive
the flow control as a gradient projection algorithm to solve the dual problem (this will be reviewed in Section IT).
It is significant that major TCP flow control schemes, Vegas, Reno, Reno/RED, Reno/REM, can all be interpreted
within this framework as a dual method [22]; see also [15], [17].

Sanjeewa Athuraliya is supported by the University of Melbourne scholarships.
Steven Low is supported by the Australian Research Council through grants S499705, A49930405 and S4005343.

The basic algorithm of Part I however requires communication between network links and sources that cannot
be accommodated on the current Internet. The purpose of this paper is to design and evaluate, through extensive
simulations, a practical implementation of the basic algorithm using binary feedback. This is motivated by the
recent proposal to introduce Explicit Congestion Notification (ECN) bits in IP (Internet Protocol) headers [10],
[28]. A preliminary version of REM is first proposed in [19]; see Section II-C for the difference between this and

the current scheme.

B. Random Exponential Marking (REM)

We now summarize the REM algorithm. Detail derivation and justification are given in Section II. A pseudocode
implementation is given in Section III.

For our purposes a network is a set L of links with finite capacities ¢;,[€ L. It is shared by a set S of sources.
A source s traverses a subset L(s) C L of links to the destination, and attains a utility Us(xs) when it transmits
at rate z; that satisfies 0 < m; < z; < M; < oo. REM is defined by the following link algorithm (1-2) and source
algorithm (4-5).

Each link [updates a congestion measure p;(¢) in period ¢ based on the aggregate input rate #'(t) and the buffer
backlog b;(t) at link {:

pit+1) = [mi(t) +y(eabi(t) + &' (1) — e))* (1)

where v > 0 and «a; > 0 are small constants and [2]* = max{z,0}. Hence p;(¢) is increased when the backlog b;(t)
or the aggregate input rate #'(t) at link [is large compared with its capacity ¢;, and is reduced otherwise. Note
that the algorithm does not require per—flow information and works with any work conserving service discipline at
the link. As we will see in Section II-C, (1) leads to a small backlog (b7 ~ 0) and high utilization (#*' ~ ¢) at
bottleneck links ! in equilibrium. Link [marks each packet arriving in period ¢, that is not already marked at an

upstream link, with a probability my;(t) that is exponentially increasing in the congestion measure p;(¢):
ml(t) = 1- qf)_pl(t) (2)

where ¢ > 1 is a constant. Once a packet is marked, its mark is carried to the destination and then conveyed back
to the source via acknowledgement.
The exponential form is critical for a multilink network, because the end—to—end probability that a packet of

source s is marked after traversing a set L(s) of links is then

mt) = 1- [[(=m@) = 1-¢7"® (3)

leL(s)

where p*(t) = ZlEL(s)pl (t) is the sum of link congestion measures along the path of source s, a path congestion
measure. The end-to—end marking probability is high when p®(¢) is large.
Source s estimates this end-to—end marking probability m?®(¢) by the fraction m*(¢) of its packets marked in

period ¢, and estimates the path congestion measure p®(¢) by inverting (3):

p'(t) = —logy(l—m*(1)) (4)

where log 1s logorithm to base ¢. It then adjusts its rate using marginal utility:

w(t) = (U700 ()

b

where [/,~1 is the inverse of the marginal utility, [z} = max{min{z,b},a}. If U, is strictly concave, then /,”*
exists and is strictly decreasing. Hence the source algorithm (5) says: if the path L(s) is congested (p°(¢) is large),

transmit at a small rate, and vice versa.

For example, if Us(xs) = wslogrs, x5 > 0, then x,(t) = w, /p*(t); if Us(zs) = —(M;s — x5)?/2ws, 0 < x5 < Mj,
then z,(t) = My — w,p*(t) if p°(t) < M, /w;s and 0 otherwise.
The link marking probability (2) and the source rate (5) are illustrated in Figure 1.

Soucele

(a) Marking probability (b) Source rate

Fig. 1. (a) Marking probability m; = 1 — ¢ P! as a function of p;. (b) Source rate z; = U;_l(—log¢(1 — m*®)) as a function of 7 *.
Here, ¢ = 1.2 and Us () = 2logzs.

C. Key features of REM

Random Exponential Marking (REM) has three advantages. First it is ideally suited for networks with multiple
congested links, where the end-to—end marking probability of a packet incorporates a congestion measure of its
path. This allows a source to estimate its path congestion measure by observing the fraction of its packets that
are marked. The use of marking as a means for sources to estimate information on their paths seems novel and
applicable in other contexts. Second, by equalizing input rate z*' with capacity ¢; and driving backlog b7 to zero,
the update rule (1) leads to very high utilization with negligible loss or queueing delay. Third, as we will see, under
REM, the sources and links can be thought of as carrying out a stochastic approximation algorithm to maximize
the aggregate utility >~ U,(x,) over the source rates z,, s € S, subject to link capacity constraints. As alluded to
earlier, it is not critical that optimality is exactly attained in practice. It is however significant that REM attempts
to steer the network as a whole towards a desirable operating point. Moreover this operating point can be chosen
to achieve desired fairness.

We have done extensive simulations to evaluate four properties of REM: stability, fairness, scalability and ro-
bustness. We now summarize our findings.

REM can be regarded as a stochastic version of the basic algorithm in [18], [23]. Though we have not proved
analytically the stability and fairness of REM, our simulation results confirm that it inherits the stability and
fairness properties of the basic algorithm. It is proved that the basic algorithm converge to the unique optimal
that maximizes aggregate source utility even in an asynchronous environment [23, Theorems 1 and 2]. Moreover,
the equilibrium can be chosen to achieve different fairness criteria, such as proportional [14] or maxmin fairness,
by appropriate choice of source utility functions [23, Theorems 3 and 4]. Simulation results in later sections show
that REM converges quickly to a neighborhood of the equilibrium, and then fluctuates around it. Hence the basic
algorithm determines the macroscopic behavior of REM, including stability and fairness.

A focus of our simulation study is to explore the scalability and robustness of REM. There are two aspects of
scalability: complexity and performance. Both the link algorithm (1-2) and the source algorithm (4-5) use only
local, and aggregate, information. Their complexity does not increase with the number of sources or the number
of links or their capacities. Moreover they do not need to be restarted as network conditions, such as the link
capacities, the set of sources, their routes or utility functions, change. Hence REM is applicable in a dynamic
network even though it is derived from a static model. A critical issue however is whether performance scales. We

present simulation results to demonstrate that REM’s performance, such as throughput, utilization, queue length

and loss, remains stable when traffic load, link capacity, propagation delay, or network size is scaled up by a factor
of 10.

We evaluate robustness both with regard to parameter setting and to modeling assumptions. First REM is char-
acterized by three main parameters: v that determines the rate of convergence, a; that trades off link utilization
and delay, and ¢ that affects the marking probability. The scalability experiments also demonstrate REM’s robust-
ness to parameter setting, i.e., its performance remains stable in an environment that is drastically different from
the nominal environment with respect to which the parameter values have been chosen. Second REM estimates
round trip time in order to translate rate to window control. Simulations indicate that REM is robust to error in

round trip time estimation.

D. Structure of paper

In Section IT we first review the optimization framework and the basic flow control algorithm developed in [18],
[23]. We then derive REM by simplifying the communication requirement of the basic algorithm. In Section IIT we
describe our simulation setup and pseudocode. We then present simulation results on stability and fairness of REM
in Section IV and on scalability and robustness in Section V. In Section VI we discuss how to set parameters in
REM. We also contrast REM with TCP Reno, Vegas and RED, and argue that the fundamental difference between
them is the way congestion is measured and that this difference is the underlying reason for the key features of REM.
The link algorithm of REM can interwork with current TCP schemes, and in Section VII, we present simulation
results to compare the performance of Reno (with DropTail), Reno/RED and Reno/REM. We conclude in Section

VIII with some applications and limitations of this work.

II. Derivation of REM
A. Model

Consider a network that consists of a set L of unidirectional links of capacity ¢;, I € L. The network is shared by
a set S of sources. Source s is characterized by four parameters (L(s), Us, ms, My). The path L(s) C L is a set of
links that source s uses, Us : 4 — R is a utility function, m; > 0 and M; < oo are the minimum and maximum
transmission rates, respectively, required by source s. Source s attains a utility Us(z;) when it transmits at rate
z, that satisfies m; < z; < M;. We assume Uj is strictly concave increasing and twice continuously differentiable
in its argument. For each link [let S(I) = {s € S |l € L(s)} be the set of sources that use link /. By definition
l € L(s) if and only if s € S(I).

Our objective is to choose source rates © = (x5, s € S) so as to:

max Z Us(xs) (6)

mes<w:s <M

subject to Z s < ¢, I=1,...,L (7)

The constraints (7) say that the aggregate source rate at any link [does not exceed the capacity. A unique
maximizer, called the (primal) optimal rates, exists since the objective function is concave, and hence continuous,
and the feasible solution set 1s compact.

Solving the primal problem (6-7) directly is impractical over a large network since it may require coordination
among possibly all sources due to coupling through shared links. The key to a distributed and decentralized solution
can be obtained by looking at its dual [23].

Associated with each link [is a dual variable p;. The dual problem of (6-7) is to choose the dual vector
p=(pi,l € L) so as to

p20

min D(p) = Z B:(p*)+ Zplcl (8)

where

B:(p*) = max Us(zg) — z5p° 9)
Po= > (10)
leL(s)

If we interpret the dual variable p; as the price per unit bandwidth at link {, then p® in (10) is the price per unit
bandwidth in the path of s. Hence z,p® in (9) is the bandwidth cost to source s when it transmits at rate x,
Us(xs) — xsp® is the net benefit of transmitting at rate z;, and B, (p®) is the maximum benefit s can achieve at the
given (scalar) price p°. A vector p > 0 that minimizes the dual problem (8) is called dual optimal. Given a vector
price p = (p1,! € L) or a scalar price p* = ZlEL(s) pi, we will abuse notation and denote the unique maximizer in
(9) by z4(p) or by z.(p*).

There are two important points to note. First, given scalar prices p, sources s can easily solve (9) to obtain
the individually optimal source rates z(p) = (#5(p°),s € S) without having to coordinate with any other sources.
Indeed by the Karush—Kuhn—Tucker theorem, we have

r(p') = (U7 (11)

= min{max{z,a},b}. Here U/,~! is the inverse of U/, which exists over the range [U/(M,), U!(m,)] when

b

where [2];,

Us 1s continuously differentiable and strictly concave. Second, by duality theory, there exists a dual optimal price
p* > 0 such that these individually optimal rates ™ = (2,(p*®), s € 9), i.e., each z(p**) solves (9), are also socially
optimal, i.e., solve (6-7) as well. Furthermore, as we will see below, solution of the dual problem can be distributed
to individual links and sources. Hence a better alternative to solving the primal problem (6-7) directly is to solve
its dual (8) instead.

In the rest of the paper, given a price (vector) p, we will refer to p; as link price and p* = ZlEL(s) p; as path price
of source s. It can be interpreted in two ways. First, the price p is a congestion measure at the links: the larger
the link price p;, the more severe the congestion at link /. The path price p® is thus a congestion measure on the
path of source s. Second, an optimal p* is a shadow price (Lagrange multiplier) associated with the constrained
maximization (6-7); i.e., pf is the marginal increment in aggregate utility >~ U, (x,) for a marginal increment in
link I’s capacity ¢;. We emphasize however that p may be unrelated to the actual charge users pay. If sources are
indeed charged according to these prices, then p* aligns individual optimality with social optimality, thus providing

the right incentive for sources to choose the optimal rates.

B. Basic algorithm

The dual problem is solved in [18], [23] using gradient projection method (e.g., [24], [4]) where link prices are
adjusted in opposite direction to the gradient VD(p(t)) = (8D/0pi(p(t)),l € L):

pi(t 4 1) = [pi(1) — vg—gww

Here v > 0 is a stepsize, and the gradient is given by

g—;jw»)

Hence the price computation can be distributed to each individual link. Indeed the algorithm takes the familiar
form of flow control: in each iteration ¢, each link [individually updates its own price p;(t) based on the aggregate
rate at link /, and each source s individually adjusts its rate based on its path price p*(t).

To describe it precisely, we abuse notation and use #,(-) both as a function of time ¢ and a function of price p(?)

given by (11); the meaning should be clear from the context. Let z'(t) = 2565(1) z(t) represent the aggregate

source rate at link { at time ¢, and p*(t) = ZIEL(s)pl(t) represent the path price of source s at time ¢. Then the

price computation (link algorithm) and rate adjustment (source algorithm) are given by:

Basic algorithm:

[1(t) +7(e'(t) —en)]*, L€ L (12)
zs(t+1) = 2:(p°(t)), s€S (13)

3
~~
o~
+
—
~—
(l

In (12), z'(¢) represents the demand for bandwidth at link / and ¢; represents the supply. The price is adjusted
according to the law of demand and supply: if demand exceeds supply, raise the price; otherwise reduce it. In (13),
z5(p®(t)) is referred to as the demand function in microeconomics: the higher the path price p(¢) (i.e., the more
congested the path), the lower the source rate.

It is proved in [23] that the basic algorithm (12-13) converges to the unique optimal rates provided the utility
functions are strictly concave increasing, their second derivatives are bounded away from zero, and the stepsize
v > 0 is sufficiently small. Specifically if {(x(¢),p())} is a sequence generated by (12-13) then any limit point
(z*,p*) is primal-dual optimal. Moreover, provided that the sources and links perform their updates frequently
enough, convergence is maintained even in an asynchronous environment where sources and links may compute
and communicate at different times with different frequencies, and where feedback delays are substantial and
time—varying.

It is also proved there that different utility functions can be chosen to achieve different fairness criteria on the

optimal rates.

C. Implementation: REM

Under the basic algorithm (12-13) a link [needs the aggregate source rate z'(t) for price computation and a
source s needs feedback of a scalar price p*(t) for rate adjustment. This communication requirement cannot be
accommodated on the current Internet. In this subsection, we first explain how to perform price computation based
on input rate and buffer occupancy locally at a link, thus eliminating the need for explicit communication from
sources to links. We then describe how to feed back the prices to sources using only a single bit. The combination is
the REM algorithm introduced in Section I-B. As we see below, the price computation rule (PC3) here is different
from those in [21], [19] (PC1 and PC2), and the difference is critical in achieving very high utilization with ngeglible

backlog or loss.

C.1 Price computation

Notice that z,(¢) is the source rate and is generally different from the input rate at a link [€ L(s) from source
s, unless the link is the first in the path of source s, because the fluid flow is modified as it passes through
successive links. Let z5(t) be the input rate from source s at link { at time ¢, and #'(t) = ZseS(l) 215(t) be the
aggregate input rate at link [. The aggregate input rate 2/(¢) is generally different from the aggregate source rate
zl(t) = 2565(1) z5(t) used in the basic algorithm. They are equal in equilibrium when buffer stabilizes [21]. We
assume each link has a large buffer so that no packets are lost. Let b;(¢) be the (aggregate) buffer backlog at link

at time t. Then b;(t) evolves according to:
bit+1) = [bi(t)+2'(t)— et (14)

Both the aggregate input rate 2/(¢) and the backlog b;(t) can be measured at link [.
We now present three algorithms for price computation. All three are based on the idea of approximating the
gradient V;D(t) = ¢; — z'(¢) in carrying out the gradient projection algorithm (12) using local information. This

eliminates the need for sources to communicate their rates to links in their paths.

The first algorithm approximates the gradient ¢; — 2!(t) by estimating the aggregate source rate z'(t) by the
aggregate input rate #'(¢) (cf. (12)):

PCl: p(t+1) = [p(t)++(@' @) —)]t

Multiplying both sides of (14) by the positive stepsize v, we see that the buffer process automatically performs the
price computation PC1, provided that ¢; is the true link capacity available to serve the sources in S(I) and that we

identify p;(t) with vb;(¢). Our second algorithm thus simply sets the price to a fraction of the buffer occupancy:
PC2: pi(t) = 7bi(t)

PC2, originally proposed in [21], is simpler to implement as links do not need to measure the aggregate input
rate. It however does not scale: as the number of sources increases, the equilibrium price vector p*, and hence the
equilibrium buffer vector b = v~ !p*, increases steadily. This not only necessitates large buffer in the network, but
worse still, it leads to large feedback delays. Algorithm PCI1, used in [19], can alleviate the problem by setting ¢
in PC1 to be a fraction p € (0, 1) of the true link capacity. Then in equilibrium, the input rate 2!(¢) = ¢; is strictly
less than the true link capacity and hence backlogs will clear. However, to be effective, p needs to be significantly
less than 1, leading to low utilization. These will be illustrated in the simulation results below.

These considerations motivate our third algorithm (the one introduced in Section I):
PC3: pl(t + 1) = [pl(t) + 'y(albl(t) + i‘l(t) - Cl)]+

where ¢; can be the true link capacity. Here a; > 0 is a small constant that can be different at different links. In
equilibrium, price p* stabilizes. For a nonbottleneck link with p; = 0, backlog is zero b7 = 0 and #*! < ¢. For a
bottleneck link with py > 0, we must have a;bf + #*! = ¢;. If the equilibrium buffer is nonzero by > 0, then the
input rate is strictly less than the capacity #*!' < ¢;, and hence the buffer b could not have been in equilibrium.

"= ¢; in equilibrium, provided

Hence, by contradiction, we must have both zero buffer 67 = 0 and full utilization z*
prices are fed back exactly to sources. When prices are fed back only approximately using a single bit, as in REM,
the source rates and backlogs fluctuate around their equilibrium values. The random fluctuation can be attributed
to noise and delay associated with estimation of path prices by the sources from marked packets. See the simulation
results in Section IV-A.

The term #'(t) — ¢; in PC3 equalizes input rate with capacity and the term b;(t) empties the buffer. We can
replace b;(t) by a general function f;(6;(¢)). For example, in the simulations in Section VIT on Reno/REM, we have
used fi(bi(t)) = bi(t) — big. This has the effect of stabilizing the equilibrium buffer around b;5 > 0 in order to attain
higher utilization during transient.

We prove in [21] that, when (12) is replaced by PC1 or PC2, the price updates are still in the descent direction,
ie., D(t+1) < D(t), provided the stepsize v is sufficiently small. This implies that the error in gradient estimation
converges to zero and the algorithm converges to yield the optimal rates. We are however unable to prove analyt-
ically the convergence of PC3, except in the single-link case. Difficulty arises because PC3 is no longer a descent

algorithm. It has however always converged in all our simulation experiments.

C.2 Price feedback

To feedback prices using a single bit, the basic idea is for a source s to estimate the path price p(¢) from packet
marking and adjust its rate according to (13) using the estimate p°(¢) in place of the true value p?(¢). This is first
proposed in [19]. We now describe the method for price feedback in an abstract synchronous model where time is
slotted into update periods. Sources and links update their prices and rates at the beginning of each period.!

1In the simulation below, however, sources estimate their end—to—end marking probabilities asynchronously on the arrival of every
acknowledgement based on marks in the past N acknowledgements; see the pseudocode in Section III.

On packet arrival in period ¢, if it is not marked, a link { marks it with probability m;(¢) given by (2), independent
of all other packets. Hence the higher the price the more likely packets are marked. The end-to—end marking
probability for packets of source s is then m?(¢) given by (3). A mark is placed in the ECN bit of a packet enroute
to its destination and is carried back to its source in the ECN bit of the packet’s acknowledgement, unmodified in
the return path.

A source estimates m’(¢) by the fraction of marked packets in period t. Suppose source s receives acknowledge-
ment for packets 1,2, ..., N(¢) in period ¢. Let Ey(¢) be 1 if the kth packet in period ¢ is marked and 0 otherwise,
k=1,2,...,N(t). Let /m*(t) be an estimate of the end—to—end marking probability m?(t):

1 N(t)
mi(t) = WZEk(t)

Then we obtain a price estimate p®(¢) through (4). The estimate is used to determine a new source rate through
(5), in place of the true path price p’(¢) in the basic algorithm.
Putting the price computation and price feedback method together yields the REM algorithm in Section I-B.

D. Smoothed REM

We have found from simulations that a smoothed version of REM performs better especially when the end-
to—end marking probabilities in the network take extreme values (close to 0 or 1); see Section VI. In smoothed
REM, a source adjusts its window once every round trip time. For each adjustment, the window is incremented
or decremented by 1 (or a small fraction, say, 10%, of the current window size) according as the target value

determined by the price is larger or smaller than the current window. This is in the spirit of Vegas [5].

III. Simulation setup

We list here the network topology, source parameters, and link parameters that are common to most simulations.
Other details that may vary across simulations will be given in the following subsections.

All simulations are conducted for one of the two networks shown in Figure 2. The single (bottleneck) link network
consists of n sources transmitting to a common destination. Each source is connected to a router via an access link
and then to the destination via a shared link. In the multilink network, only the shared links are shown, not the
access links. There are n shared links all with the same capacity, one long connection using all the n links and n
short connections each using a single link as shown in the figure. This network i1s widely used in previous studies,
e.g., in [9]. In both networks the shared link(s) has (have) a lower capacity than the access links and is (are) the
only bottleneck(s). At each link packets are served in FIFO order.

The utility functions of the REM sources are w;, log 5, where w, may take different values in different experiments.
The source rate is controlled through windowing, where the rate calculated at a source 1s converted to a window
size by multiplying it by estimated round trip time. The sources are greedy and always exhaust the window.
Destination immediately sends an acknowledgement on receipt of a packet. The maximum rate M, for each source
is 2 X ¢ where ¢ in packets/ms is the bottleneck link capacity. The minimum source rate m; is 0.1 packets/ms.

Our discrete time packet—level simulations are written in MATLAB. The pseudocode are given in Figure 3 for
link algorithm and Figure 4 for source algorithm. We make two remarks. First we initialize fraction of marks
in the source algorithm to 1 so that window starts at its minimum and increases gradually?. Second the variable
fraction in Figure 4 is updated on each ACK arrival as follows. Let earliest denote the variable which is 1 if the
earliest of the last N ACKs is marked, and 0 otherwise. Let mark_of ACK denote the mark on the newly arrived
ACK. Then, fraction is updated thus:

2Since we focus on the equilibrium situation in this paper, sources in our simulations increases their rates linearly from their initial
minimum. An alternative is to increase exponentially as in the slow—start phase of TCP.

[
I
I
I
I
I
| ROUTER @
I
I
I
I
I

c packetsms.

(a) Single (bottleneck) link network

Connection group 0
Link 1 Link 2 Link n
Router Router Router = = = = | Router Router
Connection group 1 Connection group 2 Connection group n
¢ packetsms

(b) Multilink network

Fig. 2. Network topologies. In the single-link network, propagation delays vary across simulations. In the multilink network, short

connections each has round trip propagation delay of 7ms, long connection 2n + 3ms.

for each ACK arrival
if (earliest = 1) and (markof_ACK = 0)
fraction «— fraction — %
elseif (earliest = 0) and (mark-of ACK =1)
fraction «— fraction + %
endif
endfor

Unless otherwise specified, the parameter values are (refer to pseudocode): 6 = 0.1, 3 =0.01, N = 100, oy = 0.1,

v = 0.005. The value of ¢ varies; see the following sections.

IV. Stability and fairness

In this section we present simulation results to confirm that it inherits the stability and fairness properties of
the basic algorithm: REM tracks the behavior of the basic algorithm with added oscillations. Through appropriate
choice of utility functions, different fairness criteria can be enforced, in equilibrium, regardless of the propagation
delays of the sources. The results also confirm that PC3 is superior to PC1 and PC2. Hence the rest of the

simulations all use PC3.

A. Stability

Simulation has been conducted on the single-link network in Figure 2(a) with four sources. The capacity ¢ of

the bottleneck link is 12 packets/ms. The parameter ¢ = 1.4. The round trip propagation delays of the sources are

10

periodically
update aggregate input rate:
in — (1—=96)xXin+ 36X new_in
udpate marking probability m;:
p; — max{p; + v(a; X buffer + in — capacity), 0}
my; — 1—¢ P

endperiodically

while buffer not empty
mark packet with probability m; as it leaves
endwhile

Saved variables:
in: aggregate input rate estimate
py: link price
my: current marking probability
Fixed parameters:
§: weight in aggregate input rate estimation
~y: stepsize in price adjustment
o: weight of buffer in price adjustment
¢: base in marking probability computation
Temporary variables:
new_in: current aggregate input rate
buffer: current buffer occupancy (may be smoothed)
capacity: current link capacity (may be estimated)

Fig. 3. Pseudocode for link algorithm

7,9, 11, 13 ms. The utility function of the REM sources is w; logz,, where, for all s, w; = 12 packets/ms. The
starting times of the sessions are staggered by 2 s. S1 has been active prior to time { = 0s and remains active for
the entire simulation. The second source, S2, is active from 0s-10s, S3 from 2s-8s and S4 from 4s-6s.

Simulation results for PC1, PC2, and PC3 are shown in Figures 5-7. We first describe some common features
and then contrast their differences.

The straight lines in the figures show the theoretical equilibrium values if basic algorithm were used. The window
sizes exhibit more severe oscillation initially when only few (two) sources are active. This is because the equilibrium
price p* of the bottleneck link is small then and, for log utility function, the source rate z* = x,(p*) = w,/p* is
sensitive to changes in p* when p* is small (see Figure 1(b)). As new sources become active, p* increases and z*
becomes less sensitive.

The fluctuation around the equilibrium values can be attributed to the use of binary feedback and to the
translation from rate to window control. The binary feedback introduces both noise and delay into the price
estimation at the sources. The translation from rate to window control relies on estimation of the current round
trip time, which introduces noise and delay into the price computation at the links. Despite these factors, REM
tracks the behavior of the basic algorithm, and in this sense, it seems stable.

We now compare the performance of PC1, PC2 and PC3.

A1 PC1

Figure 5 shows the simulation results for PC1. Unlike all other simulations presented, ¢; is set to 85% of the true
link capacities to avoid buffer buildup. The buffer level exhibits brief spikes when a source activates. Because the
target utilization is 85%, the buffer tends to a neighborhood of zero in the steady state. Notice that the largest
and smallest round trip bandwidth—delay product to the bottleneck link are 156 and 84 packets, respectively, while

11

for each ACK arrival
update round trip time estimate:

RTT — (1-08)xRTT+ 3 x RTT of ACK
update fraction of marks in the last N ACKs
calculate new rate:

if fraction =0

rs« «— max_rate
elseif fraction =1

rs — min_rate

else
< _log(1—fraction
po= log ¢)
re — max{min{w./p*, maz_rate}, min_rate}
endif

set window size:
window «— ceiling (zs x RTT)
endfor

Saved variables:
RTT: round trip time estimate
fraction: fraction of marks in last N ACKs
window: window size
Fixed parameters:
B: weight in RTT estimation
N: sample size for price estimation
¢: base in price estimation
maz_rate: maximum source rate
min_rate: minimum source rate
Temporary variables:
RIT of ACK: round trip time of new ACK
p%: path price
rs: source rate

Fig. 4. Pseudocode for source algorithm with Us(acs) = w; log zs.

the peak backlog is only about 90 packets. The disadvantage of this scheme is low utilization.

A2 PC2

Figure 6 shows that congestion windows and buffer occupancy oscillate more severely under PC2. This is
because the stepsize v = 0.01 is two times larger than that for PC1. A large v has been chosen to control the
size of the equilibrium buffer occupancy. This highlights a major disadvantage of this scheme: the equilibrium
backlog b} = p} /7 increases with the equilibrium price p;. Since equilibrium price pf increases with the number of
active sources, we need a large v to maintain a low equilibrium backlog 7. Notice the steady increase in average
backlog in Figure 6(b) as sources activate. A large y however leads to severe oscillation and even divergence of
prices and rates ([23, Theorem 1]). A small 54, on the other hand, yields a large equilibrium backlog and increases
the round trip time, leading to lag-induced oscillation. The utilization is however the highest (> 98%) among the

three algorithms due to a much larger backlog (notice the different scales).

A3 PC3

Figure 7 shows the simulation results for PC3. Asin PC1, the congestion windows and the prices rapidly converge
to a neighborhood of their equilibrium values after each disturbance, while the backlog oscillates about zero. Again,
the average backlog i1s a small fraction of the round trip bandwidth—delay product to the bottleneck link. Unlike
PC1, the bottleneck link is better utilitized (¢; is set to true link capacities).

12

Source 1 Source 2

window size (pkis)
window size (pkis.)

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
time (ms) time (ms)

Source 3 Source 4

100 100

. 80 1 —. 8O
£ £
= =
= eo 4 = eof
kS R
g ao q g aof
= =

20 1 20

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
time (ms) time (ms)

(a) Window size

leelerghis

(b) Buffer occupancy

Fig. 5. Stability — PC1.

All simulations presented below use PC3 because of its superiority over PC1 and PC2.

Table I summarizes the link utilization and equilibrium backlog under PC1, PC2, and PC3 for each 2-second
period.

B. Fairness

The parameters w; in utility functions U, () = w; log x5 determine the relative share of bandwidth each source
receives in equilibrium. In this section we present three sets of results to demonstrate that by appropriate choice
of wy it is possible to achieve different fairness criteria regardless of the propagation delay of the sources; cf. [23,
Theorem 4].

The first set of results is for the single-link network in Figure 2(a) with the same topology and parameter values
as in the stability experiments. The parameters w; have been set to ¢/ (ds Y oses 1/ds) where ¢ = 12 packets/ms
is the bottleneck link capacity and d; is the round trip propagation delay of source s, so that all sources would
have the same equilibrium window size (but different rate) under the basic algorithm. Source 1 has been active
before time 0s. Source 2 turns on at time Os, source 3 at time 1s, and source 4 at time 2s. Once active each source
continues to transmit for the duration of the simulation. Figure 8(a) gives the simulation results. As expected, the
windows settle around the common equilibrium value.

The second set of simulations are for the multilink network in Figure 2(b) where all sources have equal w, = 12
packets/ms. This implies that the equilibrium rates should be proportionally fair. Figure 8(b) shows the results of
10 experiments with networks of sizes 1,...,10 links. For a network of n links, we measure the throughput share
of the long connection at each of the n links, #§/(xf + #7), i = 1,...,n, where 2} are the equilibrium rates of

connections ¢, ¢ = 0,1,...,n. It is represented by each bar in the figure. As the network size increases the long

13

Source 1 Source 2

W
[o]
o]

window size (pkis)
window size (pkis.)
B N N
0 o a
0 0 O

B
o]
o]

50

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
time (ms) time (ms)

Source 3 Source 4

N N W

o 0 0

o 0 O
N
a
o}

window size (pkis.)
[
a
o}

n
o}
o

window size (pkis.)

a
e}

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
time (ms) time (ms)

(a) Window size

(b) Buffer occupancy

Fig. 6. Stability — PC2.

connection sees a higher price and hence its share steadily decreases. The measured share matches very well the

expected value.

Similar results for maxmin fairness is presented in the next section for scalability experiments.

V. Scalability and robustness

In this section we present experimental results on scalability and robustness. As discussed in Introduction the
REM algorithm, (1-2) and (4-5), involves only local and aggregate information, and hence its complexity scales.
A critical 1ssue however is whether its performance remains stable as we scale up the number of sources, the link
capacity, the propagation delay, or the network size. We present four experiments to demonstrate that it does.

The scalability experiments also show that REM performs well across a wide range of network conditions. This
makes tuning of its parameters easier. We present, in addition, two experiments to demonstrate REM’s robustness

to packet loss and to errors in round trip time estimation.

A. Scalability
A.1 Traffic load

This set of 10 experiments shows that REM copes well as traffic load increases. FEach experiment uses the
single-link network of Figure 2(a) with n sources, n = 10,20, ...,100. All sources have the same utility function
Us(zs) = 12.5logz, and round trip propagation delay of 10ms. The bottleneck link has a capacity of 25 packets/ms
and a finite buffer of size 50 packets. The equilibrium price for the nth experiment, with n sources, is thus
p*(n) = n/2. For all the 10 experiments, the REM parameters are: v = 0.001, oy = 0.1, ¢ = 1.05.

The results are shown in Figure 9. The equilibrium source rate, averaged over all sources, decreases steadily as

14

Source 1 Source 2

= =
e e
= =
] 3
H s
= =
£ £
o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
time (ms) time (ms)
Source 3 Source 4
100 100
_. 80 1 . 8sof q
] 2
= =
= 60 1 = eof 1
3 8
£ ao 1 S aof q
s £
20 1 20 1
o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
time (ms) time (ms)
(a) Window size
1oo

N
0

W
0

\H“ m\“ “’”l u“l L “u, L) “ ity J lu i ll'm‘ “M ﬁ M\M

Ml

* KU

(b) Buffer occupancy

Fig. 7. Stability — PC3.

90

80

S
3

2
3

o6 link10| o

Window Size
PO
5 &

©
8
Share of troughput fo the long comnecton

N
S

10

. I L L . .
o

o 500 1000 1500 2000 2500 3000 3500 s 6
time (ms) number of links

(a) Same window size (b) Proportional fairness

Fig. 8. Fairness. For proportional fairness, each bar represents the throughput share of the long connection at one of the links and

(3

star represents the theoretical value.

15

Time interval 0-2s | 2-4s | 4-6s | 6-8s | 8-10s

PC1 Utilization 86% | 86% | 86% | 84% | 84%
Avg. backlog (pkts) | 4.8 2.6 2.4 1.5 2.3

PC2 Utilization 100% | 100% | 100% | 100% | 100%

Avg. backlog (pkts) | 196.9 | 293.5 | 386.4 | 313.3 | 209.9

PC3 Utilization 94% | 96% | 96% | 95% | 94%
Avg. backlog (pkts) | 7.8 6.5 5.8 5.7 6.6

TABLE 1
COMPARISON OF PC1, PC2, PC3.

the number of sources increases and matches well the theoretical value. The equilibrium link utilization remains
above 96% while the equilibrium loss (< 0.2%) and backlog (< 10 packets) remains low.

A.2 Capacity

This set of 10 experiments are similar to the previous set, except that the number of sources is fixed at 20 but
the link capacity is increased from 10 to 100 pkts/ms at 10 pkts/ms increment. The round trip propagation delay
is 10ms and the buffer size is 40 pkts. REM parameters for all 10 experiments are: v = 0.005, a; = 0.1, ¢ = 1.1.

The results are shown in Figure 10. The equilibrium source rate, averaged over all sources, increases linearly as
link capacity increases and matches well the theoretical value. The equilibrium link utilization remains above 96%

while the equilibrium loss (< 1%) and backlog (< 14 packets) remains low.

A.3 Propagation delay

This set of 10 experiments are similar to the previous set, except that the link capacity is fixed at 20 pkts/ms
but the round trip propagation delay is increased from 10 to 100 ms at 10 ms increment. For all 10 experiments,
the buffer size is 120 pkts and the REM parameters are: v = 0.001, oy = 0.1, ¢ = 1.1.

The results are shown in Figure 11. The equilibrium source rate, averaged over all sources, remains steady as
propagation delay increases and matches well the theoretical value. The equilibrium link utilization remains above
94% while the equilibrium loss (< 0.2%) and backlog (< 13 packets) remains low.

A .4 Network size

A large network presents two difficulties. First it necessitates a small v > 0 in price adjustment, which leads
to slower convergence. Second it makes price estimation more difficult, which often leads to wild oscillation and
poor utilization. The second difficulty is exposed most sharply in the multilink network of Figure 2(b). When the
short connections all have the same utility functions the long connection sees a price that is n times what a short
connection sees. It hence sees an end—to—end marking probability that is much larger than that short connections
see. Extreme marking probabilities (when n is large) can lead to severe oscillation in the buffer occupancies. The
next set of 10 experiments show that a small o;(= 0.1) reduces the effect of buffer oscillation on prices. This
produces smoother price and window processes and a better utilitzation, improving the scalability of REM with
network size.

In the simulation, utility functions are Us(z;) = w; logxs, with wq for the long connection set to n times those
wy = - - - = wy, for short connections, when there were n links in the network. This is to achieve maxmin fairness,
according to which the long connection should receive 50% of bandwidth for all network sizes. We measure both
the throughput share of the long connection and link utilization. Throughput share is «f/(xf + 27), i = 1,...,n,

where 2 are the equilibrium rates of connections ¢, ¢ = 0,1, ..., n. Link utilization is & +] at link 7. The results

16

s 1001 151
equilibrium packet [0ss (%)
equilibrium queue (pkis)

asp oo

at 8ol

equiliorium source rate (pkisims)

110 o 0 20 30 40 70 80 e 10 110

50 60
number of sources

50 60
number of sources.

50 60
number of sources.

(a) Source rate (b) Link utilization (c) Loss and backlog

ek

Fig. 9. Scalability with traffic load. In (a) each bar represents the measured value and each star ‘“*’ represents the theoretical value.

s 1001 151
W equilibrium packet [0ss (%)
B equilibrium queue (pkis)
asp oo
at 8ol

equiliorium source rate (pkisims)

50 6 70 0 60 70 © s s 70
link capacity (pkts/ms) link capacity (pktsims) link capacity (pkts/ms)

(a) Source rate (b) Link utilization (c) Loss and backlog

Fig. 10. Scalability with link capacity. In (a) each bar represents the measured value and each star ‘*’ represents the theoretical value.

s 1001 151
equilibrium packet 055 (%)
equilibrium queue (pkis)

asp o0

at 8ol

10

o 0 20 30 40 50 60 70 80

propagation delay (ms)

equilirium source rate (pkisims)

% 100 110

0 s 6 70 o s 6 7
propagation delay (ms) propagation delay (ms)

(a) Source rate (b) Link utilization (c) Loss and backlog

ek

Fig. 11. Scalability with propagation delay. In (a) each bar represents the measured value and each star ‘“*’ represents the theoretical

value.

17

are shown in Figure 12 for network sizes above 5. The throughput share matches very well the theoretical value

Tkl
link2
link3
linka

1 15
link3 H
linka
1Nks.
linké H
link7
linka
linko H
link10 1

Tkl
““| “““ “““ ““‘ “““ ““ | |||| |||||| |||||| ‘||||| “|||| ““ |
o
5 6 7 8 ° 10 5 6 7 8 ° 10

LT

lin
link10 ||

o

)
T

I

o
o

‘Throughput share of long connection
o o
W »
T

o
N
T

o
s
T

o

(a) Throughput share of long connection (b) Link utilization

Fig. 12. Scalability with network size. In (a) each bar represents the measured throughput share at each of the n links and each star

“*? represents the theoretical value. In (b) each bar represents the measured utilization at each of the n links and the straight line

represents 100% utilization.

and the link utilization is very high. More importantly, the performance remains stable as network size increases.

Figure 13(b) shows the result of another simulation with 20 links. Sources have identical utility parameters to

achieve proportional fairness. The throughput shares of the long connection at each of the 20 links are shown in

0.071 ~

0.06 - ~

60l Congestion window for connections 1-20 |

50 B

a0F 4
Congestion window for connection 0

S VA AW A A

10

Throughput share of long connection
Window size (packets)

L L L L L L L L
14 16 18 20 o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

o 2 4 6 8 10 2
Link number time (ms)
(a) Throughput share of long connection (b) Window size

Fig. 13. Scalability with network size. In (a) the straight line shows the theoretical share of 1/21 for the long connection. In (b) the
lower curve is the window process for the long connection, and the upper ones are those for the 20 short connections. Marking
probability varies over [0.1972,0.9876].

Figure 13(a). The window process for the 21 connections are shown in Figure 13(b). The performance is very close

to expected.

B. Robustness

Note that the REM parameters are fixed in each set of the scalability experiments. This demonstrates that
REM is robust to parameter setting. The next experiment demonstrates its robustness to error in round trip time

estimation.

18

B.1 Round trip time estimation

Round trip time is estimated at sources to translate source rate into window size. A source maintains an
exponential weighted average of past round trip times, which is updated on the arrival of every acknowledgement;
see the pseudocode in Figure 4.

We use the same setup as that for PC3 and consider both systematic and random error. In the first set of
experiments, the estimate at all sources was corrupted by constant error of magnitude -1, 0, 1, 2, or 3ms. In the
second set of experiments, the estimate at all sources was corrupted by additive white Gaussian noise of mean zero
and variance one. In the third set of experiments, different sources suffer from different but (randomly chosen)
constant errors: S1 suffers no error, S2 -1ms, S3 4ms, and S4 1ms. Since average buffer is small, the average round
trip time is close to the round trip propagation delay. The round trip propagation delays of the sources ranges
from 7ms to 13ms, and hence the percentage error introduced is very significant.

Table IT summarizes the utilization, average backlog, maximum backlog, and average window sizes. As the result

indicates REM seems quite robust against errors in round trip time estimation.

Error in RTT -1 0 1 2 3 randoml | random2
Utilization 94.09% | 94.33% | 95.38% | 95.12% | 96% 94.94% 95.26%
Avg. backlog
(packets) 4.93 4.82 4.90 5.15 5.21 6.07 4.91
Max. backlog
(packets) 30 30 27 28 26 37 27
Mean window size
S1 (21 packets) 19.21 20.54 21.44 21.68 | 22.84 21.76 19.36
S2 (39 packets) 39.76 38.73 37.93 37.72 | 37.07 39.67 32.05
S3 (33 packets) 33.06 32.21 32.53 32.28 | 31.82 31.15 40.68
S4 (27 packets) 26.79 26.66 27.09 27.07 | 27.56 27.26 27.00
Throughput
1+es
S1 (k ;)—ackets) 13.8 12.6 11.5 10.3 9.7 13.1 11.9
S2 (k packets) 14.3 12.9 11.7 10.9 10.0 13.1 11.6
S3 (k packets) 14.3 12.6 11.7 10.7 9.8 12.1 11.7
S4 (k packets) 14.4 12.8 11.7 10.6 9.9 12.9 11.6
TABLE II

ROBUSTNESS TO ROUND TRIP TIME ESTIMATION. WINDOW SIZES IN BRACKETS ARE THEORETICAL EQUILIBRIUM VALUES (UNDER BASIC

ALGORITHM). BACKLOG AND WINDOW SIZE DO NOT VARY SIGNIFICANTLY WITH ERROR.

We now offer a heuristic explanation of our simulation results, assuming that round trip time (propagation plus
queueing delay) is constant. This assumption is reasonable as the average backlog is very small under REM. Let
Dy denote the constant round trip time of source s and €, be the percentage error in its estimation. Then given a

path price p°, source s appears to choose its rate z; according to

_ . (1+€5)D5
Ls - Us (p) Ds

as opposed to z; = Ul_l(ps). Hence its marginal utility appears to be

Ts N
o= () = e (15)

19

Since this holds for all #, integrating (15) implies that source s appears to have a utility function Us(xs) given by:

Udes) = (1+6) U, (1:6_568) (16)

Hence round trip time error distorts the source utility function from U (#;) to ﬁs(xs). (16) allows us to calculate
the new equilibrium rates in a general network, given percentage errors. In the distorted utility function U, the
rate is reduced by a factor of 1 4+ € but the utility 1s increased by the same factor. This self-regulating feature
provides robustness to error in round trip time estimation. Notice that only the percentage error matters, not the
round trip time itself.

For a single-link network, (15) implies that (since all sources see the same path price): for all r;s € S,

x x
U/ s — U/ T — s
s<1—|—€s) T(l—l—q) p

If Us are 1dentical and sirictly increasing, as in our simulations, we must have

T Ty

14+e l+e,
The last row of Table II shows the equilibrium throughput divided by 1 + €, and as expected, they are similar

acCross sources.

VI. Discussion: parameter setting, comparison with TCP
A. Parameter setting

In this subsection we summarize our experience with parameter setting of REM. The three main parameters are
v and «; in price adjustment (1), and ¢ in marking probability (2). We emphasize that we do not yet undersand
the best way to set these parameters, but will comment on their effect on performance.

The parameter ¥ must be strictly positive, and usually small. It determines the convergence of REM: v > 0
must be small enough for REM to converge, but should not be unnecessarily small so that the rate of convergence
is not exceedingly slow [23, Theorems 1 and 2]. We have found that v = 0.005 or 0.001 works well.

The parameter «; must be strictly positive, usually between 0 and 1, and can be different at different links. A
large ag, say, oy = 1, amplifies the effect of backlog on price, and often leads to a small backlog, and hence a low
utilization. A small oy, say, oy = 0.1, improves significantly utilization with only a modest increase in average
backlog. The size of a; thus trades off utilitzation and delay. A small «; also smoothens the price process by
reducing the effect of buffer oscillation on price.® Our experience suggests that a; = 0.1 works well.

Among the factors that affect the performance of REM, the most critical is the range of the end—to—end marking
probabilities seen by the sources. Extreme probability leads to severe oscillation and poor utilization. The parameter
¢ controls marking probability and must be strictly greater than 1. Ideally it should be chosen so that the end—to—
end marking probabilities under nominal traffic condition fall within a range where reasonable price estimation can
be made. Call this the good range. From our experience (smoothed) REM works well when the probabilities are in
[0.05,0.99]. Outside this good range there is severe oscillation in buffer and window processes. The asymmetry of
the range (i.e., the right boundary is much closer to 1 than the left boundary is to 0) is due to the fact that, with
log utility function, the source rate is sensitive to price when the price, or equivalently the marking probability, is
small; see Figure 1 or Section IV-A.

Scalability of REM depends largely on our ability to control the end—to—end marking probability to lie within
this range. When we scale up the number of sources or the size of the network, the path prices and hence the
end-to—end marking probabilities vary over a wider range. The boundaries of this good range hence determine the
number of sources or the size of the network for which REM performs well. Techniques that enlarge the good range
improve the scalability of REM.

3This can be achieved also by using average, instead of instantaneous, buffer occupancy in price adjustment (1).

20

B. Comparison with current TCP schemes

We contrast how congestion is measured in TCP Reno [30], TCP Vegas [5], RED [11] and REM. Related marking
schemes are discussed in [29], [12], [17].

Network congestion can be measured in different ways. Reno without RED measures congestion with buffer
overflow, Vegas measures it with queueing (not including propagation) delay [20], RED measures it with average
queue length, and REM measures it with the price vector p(t) = (pi(t),{ € L). A critical difference among them is
the coupling of congestion measure and performance measure, such as loss, delay or queue length, in the first three
schemes. We believe that congestion measure should summarize the status of the network such as the available link
capacities, the number of sources, their routing and utility functions. This is desirable as they provide to a new
source the necessary information to decide its rate. The equilibrium value of the congestion measure should depend
not on the flow control algorithm used but solely on these network conditions. Coupling it with a performance
measure creates a dilemma. On the one hand, if the congestion measure reflects network conditions such as the
number of sources, then its value steadily increases as more sources activate. This implies that performance such
as loss or delay must steadily deteriorate. This is the case with Reno [17, Remark 2] and Vegas [20], where loss,
and respectively delay, increases with the number of sources. On the other hand, if the congestion measure, such
as the average queue length in RED, should remain steady regardless of the number of sources, then stronger
congestion signals must be sent to every source as new sources activate to ensure further reduction in its rate. This
necessitates adapting parameters to network conditions as proposed in [8] for RED. A more subtle disadvantage is
that the equilibrium value of the congestion measure carries little information about current network conditions,
and hence new sources must probe harder. The attempt to decouple congestion measure and network conditions
seems fundamental to the difficulty with parameter setting of RED that would work well in different conditions, as
observed in [8], [7], [27]. In contrast the equilibrium prices of REM summarize network conditions in a precise sense
and are decoupled from performance measure; see Section II. This is the underlying reason for the robustness of
REM to parameter setting. Indeed the prices steadily increase as new sources activate while the backlog is made to
always converge to a neighborhood of zero. High utilitzation is achieved not through maintaining a large backlog,
but through the precise congestion information sources obtain from marking to set their rates.

In summary, if congestion measure is coupled with performance measure, then ‘congestion’ necessarily means
‘bad performance’ such as large loss or delay. If they are decoupled, as in REM, then ‘congestion’ simply means
that ‘demand for exceeds supply of” network resources. This curbs demand but maintains good performance, such

as low delay and loss.

VI1I. Interworking with Reno

The link algorithm of REM, (1-2), can also interwork with existing source algorithms. Tts unique advantages are
that it provides each source with a congestion measure that is aggregated over its path, and that it tends to clear
the buffer, leading to low loss and delay. In this section we present preliminary simulation results to compare the
performance of Reno (with DropTail), Reno/RED and Reno/REM.

All simulations have been done using the ns-2 simulator for the single link network of Figure 2(a) with n sources.
All sources have the same round trip propagation delay of 120ms, with one-way propagation delay of 30ms on
each (access or shared) link. The size of each packet is 1KB. At the router a buffer with capacity of 100 packets
is used. ECN is set so that packets are dropped only when buffer overflows. Packets are served in FIFO order
and are marked with a probability determined by the link algorithm (REM or RED). Note that the (equilibrium)
marking probability is determined by the equilibrium source rates and their round trip times and is independent of
the link algorithm [22]. REM exhibits a much smoother marking probability than RED; see a more comprehensive
comparison in [2].

Eleven experiments have been run with n = 5,10,20,...,100 sources each. REM parameters are: v = 0.01,

21

¢ = 1.001, « = 0.1. In addition we have substituted b;(¢) in the price update (1) by b;(¥) — by with by = 20 packets.
This has the effect of maintaining an equilibrium queue length of around by = 20 packets while increasing the link
utilization during transient. RED parameters are: min thresh = 20KB, maximum thresh = 80KB and wq = 0.002.
These parameter values are used in all the eleven experiments. Each experiment runs for 30s. Equilibrium link
utilization, queue length and loss are measured over the last 15s.

The results are shown in Figures 14, 15 and 16. All three schemes achieve high link utilization with Reno without

100 — PN “
99
o8 —
97 -
96

95 —

94
93 -
92

o1 —2— Reno/Droptail
—— Reno/RED
—%— Reno/REM

90

L L L L
o 10 20 30 a0 50 60 70 80 90 100
number of sources

Fig. 14. Link utilization

»—\
1
3

1
®

—& Reno/Droptail
—— Reno/RED
—= Reno/REM

71

2 N @ ©
3 3 3 8
T T T T

@
3
:

loss rate (%)
S

mean queuelength (pkts)
IS
8
-

@
8
T

N
S
T

10

L * " " " " " " "
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
number of sources number of sources

Fig. 15. Average backlog Fig. 16. Loss

marking having the highest. The average queue length and loss remain very low with Reno/REM as load increases,
while they steadily increase with Reno and with Reno/RED.

VIII. Conclusion

We have presented a Random Exponential Marking algorithm for flow control as a practical implementation of
the basic algorithm of [23]. The algorithm is summarized in Section I-B and a pseudocode implementation is given
in Section III. Extensive simulations indicate that it is stable, fair, scalable, and robust; it achieves high utilization
with negligible loss or queueing delay. Its key features are summarized in Section I-C. REM owes its robustness
and good performance fundamentally to the way 1t meausres congestion, as discussed in Section VI.

The preliminary results on Reno/REM and the more comprehensive simulations in [2] suggest that it would be
advantageous to deploy REM in routers for active queue management. It is simple, scalable, and achieves high

utilization with negligible loss or delay. Moreover, for sources that are not ECN-capable, routers can just drop, as

22

opposed to mark, their packets according the REM algorithm. This does not require any modification to Reno.
REM can also be applied in a (private sub-) network to control the aggregate. Then new source algorithms, e.g.,
TCP Vegas, as well as the link algorithm, can be implemented to maximize performance.

We comment on two limitation of this work. First REM prescribes a way to control rate—adaptive flows to
achieve social optimality. It does not however itself provide incentive for sources to cooperate, a critical but open
problem. Congestion pricing is a possibility that aligns social and individual optimality. Second even though REM
seems robust to parameter setting, a potential difficulty is that ¢ must be chosen in a way that maintains marking
probabilities to within a good range. Moreover this is a constant that must be fixed and known globally. A critical

future work is to investigate ways to alleviate or get around this difficulty.

Acknowledgements: We gratefully acknowledge very helpful discussions with Sally Floyd, Frank Kelly, David
Lapsley, and K. K. Ramakrishnan.

REFERENCES

[1] Sanjeewa Athuraliya, David Lapsley, and Steven Low. An Enhanced Random Early Marking Algorithm for Internet Flow Control.
In Proceedings of IEEE Infocom, March 2000.

[2] Sanjeewa Athuraliya, Victor H. Li, and Steven H. Low. Simulation comparison of RED and REM. Submitted for publication,
May 2000.

[3] Yair Bartal, J. Byers, and D. Raz. Global optimization using local information with applications to flow control. In STOC, October
1997.

[4] D. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

[5] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: end to end congestion avoidance on a global Internet. JEEE Journal on
Selected Areas in Communications, 13(8), October 1995.

[6] Costas Courcoubetis, Vasilios A. Siris, and George D. Stamoulis. Integration of pricing and flow control for ABR services in ATM
networks. Proceedings of Globecom’96, November 1996.

[7] W. Feng, D. Kandlur, D. Saha, and K. Shin. BLUE: a new class of active queue management algorithms. Technical report,
University of Michigan, Michigan, USA, 1999. UM CSE-TR-387-99.

[8] W. Feng, D. Kandlur, D. Saha, and K. Shin. A self—configuring RED gateway. In Proceedings of INFOCOM’99, March 1999.

[9] S. Floyd. Connections with multiple congested gateways in packet—switched networks, Part I: one-way traffic. Computer Com-
munications Review, 21(5), October 1991.

[10] S. Floyd. TCP and Explicit Congestion Notification. ACM Computer Communication Review, 24(5), October 1994.

[11] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. on Networking,
1(4):397-413, August 1993.

[12] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion control. Automatica, 35, 1999.

[13] Jamal Golestani and Supratik Bhattacharyya. End-to-end congestion control for the Internet: A global optimization framework.
In Proceedings of International Conf. on Network Protocols (ICNP), October 1998.

[14] F. P. Kelly. Charging and rate control for elastic traffic. FEuropean Transactions on Telecommunications, 8:33-37, 1997.
http://www.statslab.cam.ac.uk/frank/elastic.html.

[15] Frank Kelly. Mathematical modelling of the Internet. Preprint, 1999.

[16] Frank P. Kelly, Aman Maulloo, and David Tan. Rate control for communication networks: Shadow prices, proportional fairness
and stability. Journal of Operations Research Society, 49(3):237-252, March 1998.

[17] Srisankar Kunniyur and R. Srikant. End—to—end congestion control schemes: utility functions, random losses and ECN marks. In
Proceedings of IEEE Infocom, March 2000.

[18] David E. Lapsley and Steven H. Low. An optimization approach to ABR control. In Proceedings of the ICC, June 1998.

[19] David E. Lapsley and Steven H. Low. Random Early Marking for Internet Congestion Control. In Proceedings of IEEE Globecom’99,
December 1999.

[20] Steven Low, Larry Peterson, and Limin Wang. Understanding Vegas: theory and practice. Submitted for publication,
http://www.ee.mu.oz.au/staff /slow /research/, February 2000.

[21] Steven H. Low. Optimization flow control with on-line measurement. In Proceedings of the ITC, volume 16, June 1999.

[22] Steven H. Low. Flow control through duality. Submitted for publication, March 2000.

[23] Steven H. Low and David E. Lapsley. Optimization flow control, I: basic algorithm and convergence. IEEE/ACM Transactions
on Networking, 7(6):861-874, December 1999. http://www.ee.mu.oz.au/staff/slow/research/.

[24] David G. Luenberger. Linear and Nonlinear Programming, 2nd Ed. Addison-Wesley Publishing Company, 1984.

[25] L. Massoulie and J. Roberts. Bandwidth sharing: objectives and algorithms. In Infocom’99, March 1999. Available at
http://www.dmi.ens.fr/%7Emistral /tcpworkshop.html.

[26] Jeonghoon Mo and Jean Walrand. Fair end—to—end window—based congestion control. Preprint, 1999.

[27] T. J. Ott, T. V. Lakshman, and L. Wong. SRED: Stabilized RED. In Proceedings of IEEE Infocom’99, March 1999.

23

[28] K. K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion Notification (ECN) to IP. Internet draft draft-kksjf-
ecn-01.txt, July 1998.

[29] K. K. Ramakrishnan and Ran Jain. A binary feedback scheme for congestion avoidance in computer networks. ACM Transactions
on Computer Systems, 8(2):158-181, May 1990.

[30] W. Stevens. TCP/IP illustrated: the protocols, volume 1. Addison—Wesley, 1999. 15th printing.

