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Abstract

While different measures of problem difficulty of fitness landscapes have been proposed,
recent studies have shown that many of the common ones do not closely correspond to the
actual difficulty of problems when solved by evolutionary algorithms. One of the reasons for
this is that most problem difficulty measures are based on neighborhood structures that are
quite different from those used in most evolutionary algorithms. This paper examines several
ways to increase the accuracy of problem difficulty measures by including linkage information in
the measure to more accurately take into account the advanced neighborhoods explored by some
evolutionary algorithms. The effects of these modifications of problem difficulty are examined
in the context of several simple and advanced evolutionary algorithms. The results are then
discussed and promising areas for future research are proposed.

Keywords: Hierarchical BOA, genetic algorithms, crossover, model structure, estimation of dis-
tribution algorithms, difficulty measures.

1 Introduction

Understanding why certain problems are more difficult than others would aid researchers greatly in
evolutionary computation. Towards this goal, many different measures have been proposed to assess
problem difficulty for evolutionary algorithms and other metaheuristics. Some of the most common
are the fitness distance correlation (Jones & Forrest, 1995), the autocorrelation function (Wein-
berger, 1990), the signal-to-noise ratio (Goldberg, Deb, & Clark, 1992), and scaling (Thierens,
Goldberg, & Pereira, 1998). A number of studies have been done to measure the effectiveness of
these measures on various types of optimization problems (Weinberger, 1990; Jones & Forrest, 1995;
Merz, 2004; Sutton, Whitley, & Howe, 2009). However, a recent study (Pelikan, 2010) showed that
in many cases these measures of problem difficulty did not correlate with the actual computational
requirements of an advanced evolutionary algorithm, the hybrid hierarchical Bayesian optimization
algorithm (hBOA) (Pelikan & Goldberg, 2001; Pelikan & Goldberg, 2003; Pelikan, 2005) and there
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are several studies that presented critical views on various measures of problem difficulty (Rochet,
Venturini, Slimane, & Kharoubi, 1998; Naudts & Kallel, 1998).

One of the reasons for the lack of correlation between the measures of problem difficulty and the
actual performance of advanced evolutionary algorithms is that the measures of difficulty and the
evolutionary algorithms use different neighborhood structures. In most analyses to date, problem
difficulty measures would exclusively use the single-bit flip neighborhood, in which candidate solu-
tions are represented by binary strings and any two strings different in exactly one string position
are considered neighbors. This means that the evolutionary algorithm is assumed to explore the
search space by changing one bit or one variable at a time and the distance of two solutions is
defined by the Hamming distance. On the other hand, many advanced evolutionary algorithms
are capable of identifying interactions between problem variables and they use this information
to change groups of bits or problem variables at a time, or they use other advanced operators
capable of performing nontrivial modifications to solutions strings. It is possible that difficulty
measures that use simple distance measures such as Hamming distance are simply not able to cap-
ture the difficulties inherent to certain types of problems when algorithms are using more complex
neighborhoods to explore the search space.

The purpose of this paper is to explore whether it is possible to increase the accuracy of the
problem difficulty measures in the context of advanced evolutionary algorithms by using the neigh-
borhood structures that more closely correspond to the variation operators used. As the starting
point, this paper considers two difficulty measures, the fitness distance correlation and the correla-
tion length. These measures are then extended to explore nontrivial neighborhoods by exploiting
linkage information. The resultant measures are then applied to a large number of random instances
of additively separable problems. To see how closely the resulting difficulty measure matches up to
advanced evolutionary algorithms, their accuracy in measuring the difficulty of randomly separable
problems is compared to the actual performance from an ideal extended compact genetic algorithm
(ECGA) (Harik, 1999) given exact linkage information and the hierarchical Bayesian optimization
algorithm (hBOA) (Pelikan & Goldberg, 2001; Pelikan & Goldberg, 2003; Pelikan, 2005). To pro-
vide a point of reference, the results are also analyzed with respect to the performance of the simple
genetic algorithm (GA) with uniform crossover.

The paper is organized as follows. Section 2 outlines the class of random additively separable
problems. Section 4 describes the problem difficulty measures considered in this paper and their
modifications using nontrivial neighborhoods. Section 3 describes the algorithms tested. Section 5
presents the experimental results. Lastly, section 6 summarizes and concludes the paper.

2 Random Additively Separable Problems

The fitness of an additively separable problem is defined by a sum of subfunctions of non-overlapping
proper subsets of its variables (Goldberg, 2002):

fsep(X0,X1, . . . ,Xn−1) =

m−1∑

i=0

fi(XIi
) (1)

where each XIi
denotes one of the subsets of {X0, . . . ,Xn−1, and each fi denotes one subfunction.

In this paper we consider instances of random additively separable problems (rASP) where each
subset is of the same size k. Each subfunction is defined as a lookup table which specifies a return
value for each combination of bits of the corresponding subset. This lookup table covers all possible
instantiations of bits in each subfunction and is generated randomly using the same distribution for
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each entry in the table (in our case, the values are generated using the uniform distribution over
the interval [0, 1). Each random instance is fully described by its total size n, the partition size k
and the lookup tables for each partition.

To make the instances more challenging, string positions in each instance are shuffled by reording
string positions according to a randomly generated permutation using the uniform distribution over
all permutations. The algorithm used to solve the rASP instances in this paper is based on refs.
(Pelikan, Sastry, Butz, & Goldberg, 2006; Pelikan, Sastry, Goldberg, Butz, & Hauschild, 2009).

3 Algorithms

3.1 Simple Genetic Algorithm

The genetic algorithm(GA) (Holland, 1975; Goldberg, 1989) evolves a population of candidate so-
lutions typically represented by binary strings of fixed length. The starting population is generated
at random according to a uniform distribution over all binary strings. Each iteration starts by
selecting promising solutions from the current population; in this work we use binary tournament
selection without replacement. New solutions are created by applying uniform crossover and bit
flip mutation. These new candidate solutions are then incorporated into the population using re-
stricted tournament replacement (RTR) (Pelikan, 2005). (RTR) is a niching method that helps
to ensure diversity in a population by having new candidate solutions replace solutions that are
similar to themselves in the population. The next iteration is executed unless some predefined
termination criteria are met. For example, the run can be terminated when the maximum number
of generations is reached or the entire population consists of copies of the same candidate solution.

3.2 hBOA

Some of the most powerful evolutionary algorithms are estimation of distribution algorithms (EDA) (Baluja,
1994; Mühlenbein & Paaß, 1996; Larrañaga & Lozano, 2002; Pelikan, Goldberg, & Lobo, 2002).
EDAs work by building a probabilistic model of promising solutions and sampling new candidate
solutions from the built model. The hierarchical Bayesian optimization algorithm (hBOA) (Pelikan
& Goldberg, 2001; Pelikan & Goldberg, 2003; Pelikan, 2005) is an EDA that uses Bayesian networks
to represent the probabilistic model. The initial population is generated at random according to
the uniform distribution over the set of all potential solutions. Each iteration (generation) starts
by selecting promising solutions from the current population using any standard selection method
of genetic and evolutionary algorithms.

After selecting the promising solutions, hBOA uses these solutions to automatically learn both
the structure (edges) as well as the parameters (conditional probabilities) of the Bayesian network.
In this paper, a greedy algorithm is used to learn the structure of BNs with local structures (Pelikan,
2005). To evaluate structures, the Bayesian-Dirichlet metric with likelihood equivalence for BNs
with local structures (Chickering, Heckerman, & Meek, 1997) is used with an additional penalty
for model complexity (Friedman & Goldszmidt, 1999; Pelikan, 2005).

The Bayesian network model is then sampled to generate new candidate solutions, which are
incorporated into the population with RTR. The next iteration is executed unless the termination
criteria are met. For more details about the basic hBOA procedure, see Pelikan and Goldberg
(2001) or Pelikan (2005).
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Figure 1: Graphical example of a MPM model built by ECGA. The variables are partitioned into
independent groups.

3.3 Ideal ECGA

The extended compact genetic algorithm (ECGA) (Harik, 1999) starts by generating a population at
random according to a uniform distribution over all binary strings. Each iteration of the algorithm,
ECGA builds a marginal product model (MPM) that divides the variables into multiple partitions,
which are processed as independent variables. Once the model is complete, the algorithm then
stores the probability of any particular instance of a partition. This model is then sampled to
generate new candidate solutions, which are then incorporated into the population using RTR.

For example, consider a problem with variables {x1, x2, . . . x8}. After model building the ECGA
might divide them up into the disjoint partitions {x1, x4}, {x2, x6} and {x3, x5, x7, x8}. ECGA
would then store the probability of any particular instance of that partition in the promising
solutions and use that probability to generate new instantiations of the partitions when sampling
to generate new candidate solutions. An example of a MPM dividing the variables in our example
into partitions that are treated independently is given in Figure 1

While in the regular ECGA the partitions are divided up according to the MDL metric, in this
paper we consider an idealized version of ECGA in which the model building phase is replaced by
a perfect model built from knowledge of the problem instances being solved. By doing this, the
results should not be biased by incorrect linkage groups learned during the model building phase. In
this way we can compare the performance of an idealized operator with fixed linkage groups against
the different neighborhood difficulty operators in section 4. For the separable problems examined
in this paper, each partition will contain all the variables in one of the separable subfunctions of
size k. In the rest of this paper we will refer to this version of ECGA as ECGAperfect.

3.4 Deterministic Hill Climber

For all GA, hBOA and ECGAperfect runs, a deterministic hill climber(DHC) was incorporated to
improve performance. DHC takes a candidate solution represented by a n-bit binary string and
performs one-bit changes on the solution that lead to the maximum improvement. This process is
terminated when no possible single-bit flip improves solution quality.
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4 Problem Difficulty

A fitness landscape consists of three main components: (1) A set S of admissible solutions, (2)
a fitness function f that assigns a real value to each solution in S, and (3) a distance measure d
that defines a distance between any two solutions in S. S and f define the problem being solved.
Specifically, the task is to find argmaxx∈Sf(x). On the other hand, the distance measure depends
on the operators used. Specifically, d(x, y) defines the number of steps to get from x to y.

Defining a good distance measure that defines these steps is not always a trivial matter. For
binary strings, Hamming distance is often used, which is equal to the number of string positions in
which the two binary strings differ. This makes sense for evolutionary algorithms that use simple
variation operators such as bit flip mutation, as solutions varying in a few bits should always be
close to each other in steps. However, for more complex variation operators, it is possible that
more complex neighborhoods should be considered. For example, the ECGA manipulates groups
of bits at once when sampling a partition so it is possible that even though two solutions have many
different bits between them, they should still be considered close. In this paper we will consider 3
different neighborhoods, which are described in section 4.3.

4.1 Correlation Length

Consider a random walk through the landscape which starts in a random solution and moves to
a random neighbor of the current solution in each step (neighbors of a candidate solution are all
solutions at distance 1 from it). To measure problem difficulty based on random walks, we can use
the random walk correlation function (also called the fitness autocorrelation function) (Weinberger,
1990), which quantifies the strength of the relationship between the fitness values of a candidate
solution x and the solutions that are obtained by taking a given number s of steps starting in x.
In other words, the correlation function quantifies ruggedness of the landscape. For a random walk
of m − 1 steps passing through solutions of fitness values {ft}t=1...m, the random walk correlation
function ρ(s) for gap s is defined as (Weinberger, 1990)

ρ(s) =
1

σ2
F (m − s)

m−s∑

t=1

(ft − f̄)(ft+s − f̄), (2)

where s is the number of steps (gap), and f̄ and σF denote the average fitness and the standard
deviation of the fitness values, respectively. Typically, the larger the value of s, the weaker the
correlations between fitness values; ρ(s) can thus be expected to decrease with increasing s. Fur-
thermore, the smaller the value of ρ(s), the more rugged the landscape is. Therefore, the landscape
should be relatively easier to explore for smaller ρ(s) than for larger ρ(s).

The correlation function can be used to compute the correlation length, which estimates the
effective range of correlations between states in a random walk. The correlation length may be
defined as (Stadler, 1996)

l = −
1

ln(|ρ(1)|)
, (3)

The correlation function ρ(s) can also be used to compute the autocorrelation coefficient
δ = 1/(1 − ρ(1)) (Angel & Zissimopoulos, 1998), which has approximately the same value as the
correlation length (Merz & Freisleben, 2002). The smaller the correlation length or autocorrelation
coefficient, the harder the problem instance.
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4.2 Fitness Distance Correlation

Consider a set of n candidate solutions with fitness values F = {f1, f2, . . . , fn} and a corresponding
set D = {d1, d2, ..., dn} of the distances of these solutions to the nearest global optimum. The
fitness distance correlation (FDC) (Jones & Forrest, 1995) quantifies the strength and nature of
the relationship between the fitness value and the distance to the nearest global optimum as

τ =
cFD

σFσD
(4)

where σF and σD are standard deviations of F and D, respectively, and cFD is the covariance of
F and D. The covariance cFD is defined as

cFD =
1

n

n∑

i=1

(fi − f̄)(di − d̄), (5)

where f̄ and d̄ are the means of F and D, respectively. Note that the computation of FDC
necessitates knowledge of all global optima. FDC takes values from [.1, 1]. In general it should
be easier to find the global optimum for smaller values of FDC than for larger ones as small FDC
values means high fitness values are more likely to be consistently closer to the global optima than
high FDC values.On the other hand, higher values of FDC indicate that the fitness may often
mislead the search away from the global optimum. Thus, the smaller the values of r, the easier the
maximization problem should be. For example, for onemax, r = -1, whereas for the fully deceptive
trap function of size 20, r ≈ +1 (Jones & Forrest, 1995).

Since in this paper we are using DHC with both algorithms, we use a variant where only local
optima are considered when calculating FDC. Each value of fi is one local optima and di is the
distance of that local optima from the closest global optima.

4.3 Neighborhoods

While using the simple bit-flip neighborhood can be sufficient for many problems, evolutionary
algorithms often modify large numbers of related bits at the same time. In these cases, the simple
bit-flip neighborhoods used could be misleading the difficulty measures, as solutions far apart in
Hamming distance might be close together in the algorithms search space. For example, when you
modify even just one of the k bits in one partition, it is the same as if you modified all of them,
because they correspond to a single subfunction and the bits or variables in one partition may thus
be strongly correlated or interdependent. To attempt to isolate the effect of different neighborhoods
on the aforementioned difficulty measures, in this work we consider 3 different neighborhoods for
correlation length:

Fixed partition This neighborhood is composed of all strings that are reachable by changing any
combination of bits in a subfunction. For the rASP instances in this paper, this is all the
strings that are reachable by changing any of the k bits in one of the subfunctions.

Random partition The neighborhood composed of all solutions that are reachable by changing
at most x random bits. When used on the rASP instances in this paper, x = k, so that
random neighborhoods of k can be compared to the strongly correlated neighborhoods of the
fixed partition flip. This neighborhood is included to show that any change was not due to
simply increasing the number of changed bits.

Single bit-flip This neighborhood is the simple bit-flip neighborhood commonly used.
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Incorporating these neighborhoods into correlation length is straightforward. To implement
the fixed partition neighborhood, the standard random bit walk is replaced by instead each step
modifying randomly all of the variables that are in a single subfunction in the underlying instance.
For the random partition neighborhood, a random set of size k is generated and all the variables
in this set are modified randomly.

Incorporating these measures into FDC is more difficulty. We must choose a distance metric
such that if two solutions are next to each other in an advanced neighborhood, they will be of
distance 1 in the metric. To do this, in this paper we consider 2 metrics when using FDC:

Single bit distance The simple hamming distance most commonly used with FDC, the sum total
of the bit difference between two strings. This is used to compare the base fitness distance
correlation against one that uses a more advanced neighborhood.

Partition distance This measures the distance by the amount of differing partitions in two
strings. If the bits in a partition of one solution string are different from the correspond-
ing bits in the same partition of a second solution string, then they are considered at least
one apart. Their total distance from each other is the sum of how many different partitions
they have from each other.

By comparing the two difficulty measures and the methods of incorporating different neighbor-
hoods, it should be possible to see whether by changing the type of neighborhood the difficulty
measure uses it is possible to improve the measures. For example, since the fixed partition flip
neighborhood should strongly correspond to the type of neighborhoods in ECGAperfect, it should
be expected that the difficulty measures should more strongly correspond to the actual computa-
tional complexity of ECGAperfect when using the fixed partition neighborhood. On the other hand,
it would be expected that the difficulty measures when used with the random neighborhoods (sin-
gle bit-flip and random partition ) would be less likely to correspond to the actual computational
complexity of the instances was solved by ECGAperfect.

5 Experiments

5.1 Experimental Setup

For each problem instance, the correlation length was estimated by starting with 100 random
walks of 1000 steps each, with all 3 neighborhood step operators used (bit-flip, random set flip and
fixed partition flip). The correlation length and autocorrelation coefficient were estimated and if
both these values were within 1% of their actual value with 99% probability (assuming Gaussian
distribution of their means), the estimates were used. Otherwise, the random walks were repeated,
this time extended by 1000 points each, with the maximum length of any walk restricted to one
million steps. If the maximum length was exceeded, then the previous estimate is used.

The fitness distance correlation for each instance was calculated by starting with 100 samples
of 1000 points each and then the fitness distance correlation r was computed, with this being done
with all 3 different distance metrics. The local optima for these solutions was then found using DHC
and the fitness distance correlation rl was computed for the local optima. These two means were
returned if they were within 1% of their true value with 99% probability. If not, an additional 1,000
points for each of the 100 samples was generated and the procedure repeated. As with correlation
length, if the number of points exceeded one million, the procedure was terminated.

The GA, hBOA and ECGAperfect were applied to all problem instances. For all GA runs, bit-
flip mutation was used with a probability of flipping each bit of pm = 1/n, with a probability of
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crossover of 0.6. All algorithms used restricted tournament replacement (RTR) (Pelikan, 2005) as
the replacement operator.

For all problem instances, bisection (Sastry, 2001; Pelikan, 2005) was used to determine the
minimum population size to ensure convergence to the global optimum in 10 out of 10 independent
runs, with the results averaged over the 10 runs. The number of generations was upper bounded
according to preliminary experiments by n ∗ 4, where n is the number of bits in the instance. Each
run of GA, hBOA and ECGAperfect was terminated when the global optimum was found (success)
or when the upper bound on the number of generations had been reached without discovering the
global optimum (failure).

In this paper instances of rASP of n = 120 are examined, with k = 3 and k = 5. 1000 random
instances were considered for each of these types. The number of DHC flips required to solve an
instance is used to rank instance difficulty, as using CPU time is not reliable when using a variety
of hardware.

5.2 Correlation Length Results

The relationship between correlation length using the three different neighborhood types and their
actual difficulty when solving instances with a GA with k = 3 is shown in Table 1a. The first
column is the type of instances ranked by percentage difficulty (decided by number of local search
steps). The second column shows the number of local search steps used for its set of instances.
The remaining columns show the correlation length using the various neighborhood operators, with
the ranking of the values shown in brackets. Noting that correlation length should be higher for
the easier instances, the results show a strong relationship between correlation length using the
bit flip neighborhood and the random partition neighborhood. In general as the problem diffi-
culty increases, the correlation length decreases. However,correlation length using the set partition
neighborhood seems to have no relation to the actual difficulty of the instances when solved with
the GA.

The results for correlation length with respect to the instance difficulty when using hBOA to
solve separable problems with n = 120 and k = 3 is shown in Table 1b. In the case of bit flip and
random partition neighborhoods, there seems to be a very weak correlation between the difficulty of
the instance and the corresponding correlation length. As with GA, the set partition neighborhood
shows no relation, with the 50% most difficult instances having the lowest correlation length of any
of the difficulty classes.

To examine the effect of the different neighborhoods on correlation length on an algorithm
using ideal recombination, Table 1c shows the results on separable problems of n = 120 and k = 3
when solved with ECGAperfect. Unlike the previous two algorithms, correlation length with bit flip
neighborhood and random partition neighborhood does not show any relation to instance difficulty.
The set partition neighborhood did not do any better either, failing to show any relation between
instance difficulty and correlation length.

To examine the effect of increasing problem difficulty on the relationship between the different
neighborhood types, algorithms and difficulty classes, instances of separable problems of n = 120
and k = 5 were examined. Table 2a shows relationship between the difficulty of instances for the
GA and their corresponding correlation length using the three neighborhood types. Correlation
length with bit-flip neighborhood shows little relation with instance difficulty, with the highest
correlation length given to the 50% hardest instances. The set partition neighborhood also is not
effective in ranking difficulty. However, the random partition does show a relationship.

In Table 2b the results for hBOA are shown on separable problems of n = 120 and k = 5. For
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the bit flip and random partition neighborhoods, there is a weak relationship between their actual
difficulty and their correlation length. The set partition seems ineffective in this case, with the
lowest correlation length going to the 25% easiest instances.

Lastly, the results for ECGAperfect are shown in Table 2c. The bit flip and random partition
neighborhoods are unable to accurately rank the difficulty of the instances. The set partition
neighborhood is even worse, showing an inverse relationship from what we would expect if the
measure was working accurately, with higher correlation lengths corresponding to harder sets of
instances.

As was suggested by the study of Pelikan (Pelikan, 2010), correlation length is not a good
indicator for problem difficulty for decomposable problems of fixed size and order of subproblems
(although in the study in ref (Pelikan, 2010), the target class of problems were NK landscapes with
nearest-neighbor interactions). Except for a few isolated cases, the use of advanced neighborhoods
did not seem to improve the situation for any algorithm.

5.3 Fitness Distance Correlation Results

The relationship between fitness distance correlation for local optima using the two distance mea-
sures and the actual difficulty when solving instances of separable problems with k = 3 using a GA
is shown in Table 3a. In the case of FDC, as instance difficulty increases the measure should also
increase. The results show a strong relationship when using bit distance, with it able to accurately
rank the instances. The results using partition distance are also good, only showing a problem
differentiating between the 25% and 10% easiest instances.

When solving the aforementioned instances with hBOA, FDC when using both distance mea-
sures is able to accurately rank instance difficulty, as shown in Table 3b. As the class of instances
becomes more difficult, the fitness distance correlation increases in all cases. However, Table 3c
shows that when solving the same instances with ECGAperfect, the measures are unable to accu-
rately differentiate between the harder classes of instances.

To explore the effects of increasing problem difficulty on FDC for local optima, instances of
size n = 120 and k = 5 were examined. Table 4 shows that for these harder instances, FDC with
both distance measures was able to accurately rank all the instances. The results for FDC for local
optima show that FDC was able to accurately rank problem difficulty for all algorithms using both
distance measures when k = 5. Only when using ECGAperfect on the smaller instances was FDC
unable to accurately rank instance difficulty.

6 Summary and Conclusions

Most common problem difficulty measures assume standard bit flip neighborhoods, where the dis-
tance between solutions is measured with Hamming distance. However, many advanced evolution-
ary algorithms use more complex search operators than simple bit flips, which can result in more
complex neighborhoods. By modifying some common measures of problem difficulty to take into
account more complex neighborhoods, this paper attempted to increase their correspondence with
the actual difficulty of problem instances when solved by evolutionary algorithms. These modified
difficulty measures were then used on separable problems and compared to the actual computa-
tional requirements of the simple GA, hBOA and an ideal version of ECGA using a perfect model
structure.

For correlation length based on Hamming distance, the results show a weak relationship be-
tween the difficulty of instances solved by the GA. As problem difficulty increases, this correlation
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seems to get even weaker. This pattern is also repeated for hBOA. Unfortunately, using the more
advanced neighborhoods based on linkage information about the problem did not seem to improve
the results. The results are even worse with ECGAperfect, with correlation length using set partition
neighborhood actually ranking them in reverse of their actual difficulty. Fitness distance correlation
had noisy results using both distance measures when ranking difficulties for the algorithms tested
when k = 3, but as problem difficulty increased it was able to accurately rank all of the different
classes of instance difficulty.

We expected that using more advanced neighborhoods in difficulty measures would help improve
their accuracy in predicting the difficulty of solving these problems with advanced evolutionary
algorithms. However, our results on separable problems did not show this. Incorporating a more
advanced neighborhood into correlation length did not seem to help at all. This could possibly
be due to correlation length not measuring what is actually making some of the instances more
difficult than others. In a similar fashion, the more advanced distance metric in FDC was only able
to match the simple Hamming distance measure for accuracy.

Many critical studies exist that point out that some of the most common measures of problem
difficulty for evolutionary algorithms and other metaheuristics have only little to do with the actual
problem difficulty. Since it turns out that using advanced neighborhood structures that more closely
correspond to the operators used in evolutionary algorithm does not seem to improve the results,
the question of what measures to use to assess problem difficulty remains open. One way to tackle
this question would be to learn from the theoretical studies of scalability of GAs (Goldberg, 2002;
Thierens, Goldberg, & Pereira, 1998), which suggest signal-to-noise ratio, scaling, and fluctuating
crosstalk as some of the major factors influencing problem difficulty. Nonetheless, these factors and
other problem difficulty measures cannot be studied in isolation; otherwise, each measure will only
have a limited scope and the potential for misleading results will remain great.
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Table 1: Correlation length using different neighborhood types vs instance difficulty for randomly
separable problems of n = 120 and k = 3. The ranking of the measures is shown in brackets.

(a) Separable problems solved with GA of n = 120, k = 3

desc. of DHC steps for correlation length correlation length correlation length
instances GA using bit flip using random partition using set partition

10% easiest 3130.5 27.722(1) 13.882(1) 29.415(5)
25% easiest 3577.6 27.668(3) 13.851(3) 29.424(1)
50% easiest 4165 27.674(2) 13.855(2) 29.420(3)
all instances 5655.3 27.603(4) 13.818(4) 29.417(4)
50% hardest 7145.6 27.531(5) 13.781(5) 29.413(6)
25% hardest 8545.6 27.519(6) 13.770(6) 29.407(7)
10% hardest 10556 27.479(7) 13.740(7) 29.422(2)

(b) Separable problems solved with hBOA of n = 120, k = 3

desc. of DHC steps for correlation length correlation length correlation length
instances hBOA using bit flip using random partition using set partition

10% easiest 4371.6 27.817(1) 13.922(1) 29.417(4)
25% easiest 4645.4 27.719(2) 13.874(2) 29.419(2)
50% easiest 4890.6 27.685(3) 13.855(3) 29.414(6)
all instances 5540.4 27.603(4) 13.818(4) 29.417(5)
50% hardest 6190.3 27.520(6) 13.781(6) 29.419(1)
25% hardest 6798 27.504(7) 13.777(7) 29.418(3)
10% hardest 7828.5 27.556(5) 13.800(5) 29.412(7)

(c) Separable problems solved with ECGAperfect of n = 120, k = 3

desc. of DHC steps for correlation length correlation length correlation length
instances ECGAperfect using bit flip using random partition using set partition

10% easiest 1487.8 27.581(4) 13.804(5) 29.427(1)
25% easiest 1569.9 27.556(7) 13.794(7) 29.426(2)
50% easiest 1669.3 27.581(5) 13.805(4) 29.426(3)
all instances 1873 27.603(3) 13.818(3) 29.417(5)
50% hardest 2076.7 27.624(2) 13.831(2) 29.407(7)
25% hardest 2201.5 27.577(6) 13.803(6) 29.411(6)
10% hardest 2316.3 27.745(1) 13.875(1) 29.421(4)
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Table 2: Correlation length using different neighborhood types vs instance difficulty for randomly
separable problems of n = 120 and k = 5. The ranking of the measures is shown in brackets.

(a) Separable problems solved with GA of n = 120, k = 5

desc. of DHC steps for correlation length correlation length correlation length
instances GA using bit flip using random partition using set partition

10% easiest 13328 19.139(2) 6.399(1) 19.435(7)
25% easiest 16877 19.134(4) 6.395(2) 19.448(1)
50% easiest 21211 19.128(5) 6.395(3) 19.446(5)
all instances 33457 19.137(3) 6.395(4) 19.447(4)
50% hardest 45703 19.145(1) 6.394(5) 19.448(2)
25% hardest 56967 19.124(6) 6.387(6) 19.447(3)
10% hardest 71993 19.073(7) 6.373(7) 19.438(6)

(b) Separable problems solved with hBOA of n = 120, k = 5

desc. of DHC steps for correlation length correlation length correlation length
instances hBOA using bit flip using random partition using set partition

10% easiest 7482.9 19.207(1) 6.416(1) 19.444(5)
25% easiest 7945.3 19.203(2) 6.414(2) 19.440(7)
50% easiest 8399.8 19.179(3) 6.408(3) 19.447(1)
all instances 9311.6 19.137(4) 6.395(4) 19.447(2)
50% hardest 10223 19.095(6) 6.381(6) 19.447(3)
25% hardest 10900 19.066(7) 6.374(7) 19.444(4)
10% hardest 11806 19.119(5) 6.390(5) 19.441(6)

(c) Separable problems solved with ECGAperfect of n = 120, k = 5

desc. of DHC steps for correlation length correlation length correlation length
instances ECGAperfect using bit flip using random partition using set partition

10% easiest 2128.3 19.157(2) 6.396(3) 19.437(7)
25% easiest 2273.6 19.129(5) 6.390(5) 19.443(6)
50% easiest 2428.9 19.112(7) 6.386(6) 19.445(5)
all instances 2770.3 19.137(4) 6.395(4) 19.447(4)
50% hardest 3111.7 19.162(1) 6.403(1) 19.449(3)
25% hardest 3415.5 19.153(3) 6.399(2) 19.452(2)
10% hardest 3869.8 19.121(6) 6.383(7) 19.452(1)
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Table 3: Fitness distance correlation with local optima using different neighborhood types vs
instance difficulty for randomly separable problems of n = 120 and k = 3. The ranking of the
measures is shown in brackets.

(a) Separable problems solved with GA of n = 120, k = 3

desc. of DHC steps for fitness dist. corr. fitness dist. corr.
instances GA using bit distance using part. distance

10% easiest 3130.5 -0.65915(7) -0.67115(6)
25% easiest 3577.6 -0.65378(6) -0.67190(7)
50% easiest 4165 -0.64500(5) -0.66583(5)
all instances 5655.3 -0.62917(4) -0.65771(4)
50% hardest 7145.6 -0.61334(3) -0.64959(3)
25% hardest 8545.6 -0.60603(2) -0.64778(2)
10% hardest 10556 -0.59750(1) -0.64301(1)

(b) Separable problems solved with hBOA of n = 120, k = 3

desc. of DHC steps for fitness dist. corr. fitness dist. corr.
instances hBOA using bit distance using part. distance

10% easiest 4371.6 -0.65842(7) -0.68031(7)
25% easiest 4645.4 -0.64346(6) -0.67007(6)
50% easiest 4890.6 -0.63894(5) -0.66447(5)
all instances 5540.4 -0.62917(4) -0.65771(4)
50% hardest 6190.3 -0.61940(3) -0.65095(3)
25% hardest 6798 -0.61141(2) -0.64588(2)
10% hardest 7828.5 -0.60218(1) -0.64098(1)

(c) Separable problems solved with ECGAperfect of n = 120, k = 3

desc. of DHC steps for fitness dist. corr. fitness dist. corr.
instances ECGAperfect using bit distance using part. distance

10% easiest 1487.8 -0.64460(7) -0.67060(7)
25% easiest 1569.9 -0.63868(6) -0.66548(6)
50% easiest 1669.3 -0.63145(5) -0.66049(5)
all instances 1873 -0.62917(3) -0.65771(3)
50% hardest 2076.7 -0.62689(2) -0.65493(2)
25% hardest 2201.5 -0.62623(1) -0.65466(1)
10% hardest 2316.3 -0.63102(4) -0.65841(4)
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Table 4: Fitness distance correlation with local optima using different neighborhood types vs
instance difficulty for randomly separable problems of n = 120 and k = 5. The ranking of the
measures is shown in brackets.

(a) Separable problems solved with GA of n = 120, k = 5

desc. of DHC steps for fitness dist. corr. fitness dist. corr.
instances GA using bit distance using part. distance

10% easiest 13328 -0.40403(7) -0.44834(7)
25% easiest 16877 -0.39321(6) -0.44414(6)
50% easiest 21211 -0.38170(5) -0.44055(5)
all instances 33457 -0.36075(4) -0.43371(4)
50% hardest 45703 -0.33981(3) -0.42687(3)
25% hardest 56967 -0.32773(2) -0.42079(2)
10% hardest 71993 -0.30975(1) -0.41416(1)

(b) Separable problems solved with hBOA of n = 120, k = 5

desc. of DHC steps for fitness dist. corr. fitness dist. corr.
instances hBOA using bit distance using part. distance

10% easiest 7482.9 -0.37490(7) -0.45194(7)
25% easiest 7945.3 -0.37354(6) -0.44697(6)
50% easiest 8399.8 -0.36649(5) -0.43962(5)
all instances 9311.6 -0.36075(4) -0.43371(4)
50% hardest 10223 -0.35501(3) -0.42780(3)
25% hardest 10900 -0.35022(2) -0.42226(2)
10% hardest 11806 -0.34699(1) -0.41737(1)

(c) Separable problems solved with ECGAperfect of n = 120, k = 5

desc. of DHC steps for fitness dist. corr. fitness dist. corr.
instances ECGAperfect using bit distance using part. distance

10% easiest 2128.3 -0.36917(7) -0.443970(7)
25% easiest 2273.6 -0.36651(6) -0.438740(6)
50% easiest 2428.9 -0.36419(5) -0.435860(5)
all instances 2770.3 -0.36075(4) -0.433710(4)
50% hardest 3111.7 -0.35731(3) -0.431560(3)
25% hardest 3415.5 -0.35088(2) -0.426320(2)
10% hardest 3869.8 -0.34526(1) -0.421470(1)
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