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F-INJECTIVE SINGULARITIES ARE DU BOIS

KARL SCHWEDE

Abstract. In this paper, we prove that singularities of F -injective type are Du Bois. This
extends the correspondence between singularities associated to the minimal model program
and singularities defined by the action of Frobenius in positive characteristic.

1. Introduction and background

The main result of this paper is the following theorem:

Theorem 6.1. Suppose that X is a reduced scheme of finite type over a field of characteristic
zero. If X has dense F -injective type, then X has Du Bois singularities.

A reduced scheme of finite type over a perfect field of characteristic p > 0 is called F -injective
if for every point Q ∈ X with stalk RQ = OX,Q, the action of Frobenius on each local
cohomology module H i

QRQ
(RQ) is injective. Now suppose that X is a scheme of finite type

over a field of characteristic zero. Roughly speaking, we say that X has dense F -injective
type if, in a family of characteristic p models for X (obtained by reduction to positive
characteristic), an infinite set of those models are themselves F -injective. See Definitions 4.1
and 6.9 for more details.

The notion of Du Bois singularities, which has its origins in Hodge theory (see [Ste81] and
[DB81]), is somewhat harder to define; see Definition 5.1 and Theorem 5.3. However, Du Bois
singularities have the following important property: If X is a reduced proper scheme over
C with Du Bois singularities, then the natural map H i(Xan, C) → H i(X,OX) is surjective.
Note that if X is smooth, this surjectivity follows from the degeneration of the Hodge De
Rham spectral sequence. Furthermore, this surjectivity is an important topological condition
which naturally appears in several contexts (for example, see [Kol95, Chapter 9] to see how
it relates to Kodaira-type vanishing theorems).

We now briefly review some of the history that leads us to the result above. The minimal
model program in dimension three, concerned with finding “minimal” birational models of
algebraic varieties, was one of the major developments in Algebraic Geometry in the 1980s.
A key aspect of the progress made at that time was the discovery that one had to deal with
singular, instead of simply smooth, varieties. Some of the types of singularities associated
with the minimal model program are terminal, canonical, log terminal, log canonical, and
rational singularities; see [KM98], [KMM87], [Kol97] and [Rei87].

The action of Frobenius, or pth power map, on rings of prime characteristic has been an
important tool for studying singularities for many years and has had a number of interest-
ing applications to commutative algebra since the 1970s; see for example [HR76], [HS77],
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and [PS73]. In the early 1980s, Richard Fedder demonstrated that F -pure and F -injective
singularities (which are defined by the action of Frobenius, see Remark 4.2) were connected
to rational singularities [Fed83]. This was interesting because the definition of rational sin-
gularities is very different from the purely algebraic definitions of F -pure and F -injective
singularities.

In the mid 1980s, Melvin Hochster and Craig Huneke introduced tight closure [HH90],
a powerful new method of commutative algebra that also relied on the Frobenius action.
Associated with tight closure were other new types of singularities, particularly F -regular
and F -rational singularities, which are more restrictive classes than F -pure and F -injective
singularities respectively. An excellent survey article on tight closure from a geometric point
of view is [Smi01].

In the 1990s, the correspondence between singularities associated to the minimal model
program with those coming from the action of Frobenius became well established. Karen
Smith proved that singularities of open F -rational type are rational; see [Smi97]. The fact
that rational singularities are of open F -rational type was independently proved by Hara and
also by Mehta and Srinivas; see [Har98a] and [MS97] respectively. This result also implies
that log terminal Q-Gorenstein singularities are of dense F -regular type; see [Har98a]. Fur-
thermore, Watanabe established that normal Q-Gorenstein singularities of open F -regular
type (respectively dense F -pure type) are log terminal (respectively log canonical). Watan-
abe’s results were generalized to the context of pairs with the help of Hara and published in
[HW02]. Further generalizations were made by Takagi; see [Tak04] and [Tak08]. It is still
an open question whether log canonical singularities are of dense F -pure type (although it is
known in certain special cases; see [Har98b], [MS91], [Sri91], and [TW04]). Also see [Har01],
[Smi00], and [HY03] for additional discussion of related notions.

F -injective singularities fit naturally into the lower right corner of the right square of
the diagram below. It is also known that Gorenstein F -injective singularities are F -pure;
see [Fed83]. On the other hand, Du Bois singularities, historically connected to more ana-
lytic methods, (conjecturally) naturally fill the lower right hand corner of the left square;
see [Ste83] and [Ish87]. In particular, rational singularities are known to be Du Bois, see
[Kov99] and [Sai00], and it was conjectured by Kollár, see [K+92, 1.13], that log canonical
singularities are Du Bois. The best progress towards this conjecture can be found in [Ish87],
[Kov99], [Kov00], and [Sch07]. In [Kov99], it is also shown that normal quasi-Gorenstein Du
Bois singularities are log canonical (also see [Doh08]).

Canonical

��
Log Terminal

qy %-
+3

��

Rational

��

qy %-
F -Regular +3

��

F -Rational

��
Log Canonical

conj. +3
emW_

+ Gor. & normal

Du Boisem F -Pure/F -Split +3
Ya

+ Gor.

F -Injective

We propose a correspondence between F -injective and Du Bois singularities. As men-
tioned before, the main goal of this paper is to prove that singularities of dense F -injective
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type are Du Bois. In the process of proving this result, we will show that seminormality
partially characterizes Du Bois singularities and that weak normality partially characterizes
F -injective singularities; see Lemma 5.6 and Theorem 4.7.
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The results that appear in this paper originally appeared in my doctoral dissertation at the
University of Washington, which was directed by Sándor Kovács. I would like to thank
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me to the algebraic side of seminormality, Davis Doherty for several valuable discussions,
and Karen Smith for comments on an earlier draft of this paper. I would also like to thank
the referee for many useful suggestions and for pointing out several typos in an earlier draft.

2. Preliminaries

All rings will be assumed to be commutative, noetherian and essentially of finite type over
a field or Z. In particular, all rings will be assumed to be excellent. All schemes will be
assumed to be separated and noetherian.

We begin with a definition of a log resolution. Let π : X̃ → X be a morphism of reduced
schemes of finite type over a field k. Suppose that a is a sheaf of ideals on X. We say that
π is a log resolution of a if it satisfies the following four properties.

(i) π is birational and proper (typically it is chosen to be projective).

(ii) X̃ is smooth over k
(iii) aO eX = O eX(−G) is an invertible sheaf corresponding to a divisor, −G.
(iv) If E is the exceptional set of π, then Supp(G) ∪ E has simple normal crossings.

We say that π is a strong log resolution if it is a log resolution and π is an isomorphism
outside of the subscheme V (a) defined by a. Log resolutions always exist if the characteristic
of k (the underlying field), is zero. Strong log resolutions always exist if X is smooth over
a field k of characteristic zero; see [Hir64]. The reader may also wish to consult [BM97],
[BEV05], or [W lo05] for an algorithmic approach to constructing log resolutions.

We now review the forms of duality we will need. We first fix some notation. Suppose X is
a scheme. The notation Db(X) will denote the derived category of bounded complexes of OX-
modules, D+(X) will correspond to bounded below complexes and D−(X) will correspond
to bounded above complexes. The notation Dcoh(X) will denote the derived category of OX-
modules with coherent cohomology and Dqcoh(X) will denote the derived category of OX-
modules with quasi-coherent cohomology. The various combinations Db

coh(X), D+
qcoh(X),

etc. will denote the obvious derived categories, (ie. bounded complexes with coherent
cohomology, bounded below complexes with quasi-coherent cohomology, etc.). If F

q

and
G

q

are complexes, we will write F
q

≃qis G
q

if F
q

and G
q

are quasi-isomorphic. See [Har66]
for precise definitions of these notions.

Recall that a dualizing complex ω
q

X for X is an object in D+
coh(X) of finite injective di-

mension such that the natural map

F
q

→ RH om
q

OX
(RH om

q

OX
(F

q

, ω
q

X), ω
q

X)

is an isomorphism for all F
q

∈ D+
coh(X); see [Har66, V.2]. Dualizing complexes exist for

schemes essentially of finite type over a field or Z, and are unique up to shifting and tensoring
with an invertible sheaf [Har66, V.3.1]. Note that this implies that dualizing complexes exist
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for all schemes considered in this paper. Analogous definitions can be made for rings, and
we will freely switch between affine schemes and rings.

Often, we will be working with local rings (R, m), in which case tensoring with an invertible
sheaf is uninteresting. However we can specify the shift to a certain extent. If k = R/m is
the residue field then there is a d such that

Exti(k, ω
q

R) = 0 for i 6= d, and Extd(k, ω
q

R) = k, [Har66, V.3.4].

A dualizing complex is called normalized if the d above is equal to zero.
We are now in a position to state the duality theorems we will use. First, we state local

duality for complexes.

Theorem 2.1. [Har66, V.6.2], [Lip02, 2.4] Let (A, m) be a local ring and of dimension d
and C

q

∈ D+
coh(A). Suppose ω

q

A is a normalized dualizing complex for A and suppose I is
an injective hull of the residue field k = A/m. Then the natural morphism of functors

RΓm(C
q

) → R Hom
q

A(R Hom
q

A(C
q

, ω
q

A), I)

is an isomorphism.

Second, we state Grothendieck duality for proper morphisms.

Theorem 2.2. [Har66, III.11.1, VII.3.4], [Con00] Let f : X → Y be a proper morphism of
noetherian schemes of finite dimension. Suppose F

q

∈ D−

qcoh(X) and G
q

∈ D+
coh(Y ). Then

the duality morphism

Rf∗RH om
q

OX
(F

q

, f !
G

q

) → RH om
q

OY
(Rf∗F

q

, G
q

),

is an isomorphism.

Remark 2.3. The case we will usually consider is when G
q

is a dualizing complex for Y so
that f !(ω

q

Y ) = ω
q

X , giving us the following form of duality

Rf∗RH om
q

OX
(F

q

, ω
q

X) ≃qis RH om
q

OY
(Rf∗F

q

, ω
q

Y ).

In many cases F
q

will be replaced by a module (viewed as a complex in degree zero). One
should take particular note that when f corresponds to a finite map of rings A → B, then
f ! has a particularly nice interpretation. Specifically, f !( ) = R Hom

q

A(B, ); see [Har66,
III.6, VI].

3. Seminormality

In this section we lay out the basic definitions of seminormality and weak normality. Recall
that we have assumed that all rings are excellent.

Definition 3.1. [AB69], [GT80], [Swa80] A finite integral extension of reduced rings i : A ⊂
B is said to be subintegral (respectively weakly subintegral) if

(i) it induces a bijection on the prime spectra, and
(ii) for every prime P ∈ Spec B, the induced map on the residue fields, k(i−1(P )) → k(P ),

is an isomorphism (respectively, is a purely inseparable extension of fields).

Remark 3.2. A subintegral extension of rings has also been called a quasi-isomorphism; see
for example [GT80].
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Remark 3.3. Condition (ii) is unnecessary in the case of extensions of rings of finite type
over an algebraically closed field of characteristic zero.

Definition 3.4. [GT80, 1.2], [Swa80, 2.2] Let A ⊂ B be a finite extension of reduced
rings. Define +

BA to be the (unique) largest subextension of A in B such that A ⊂ +
BA is

subintegral. This is called the seminormalization of A inside B. A is said to be seminormal
in B if A = +

BA.

Definition 3.5. [Yan85], [RRS96, 1.1] Let A ⊂ B be a finite extension of reduced rings.
Define ∗

BA to be the (unique) largest subextension of A in B such that A ⊂ ∗

BA is weakly
subintegral. This is called the weak normalization of A inside B. A is said to be weakly
normal in B if A = ∗

BA.

Definition 3.6. A reduced ring A is said to be seminormal (respectively weakly normal)
if it is seminormal (respectively weakly normal) in its integral closure A (in its total field
of fractions). Its seminormalization is +

A
A and will be denoted by +A, respectively its weak

normalization is ∗

A
A which will be denoted by ∗A. If X = Spec A is a scheme, Xsn will be

used to denote the scheme Spec +
A
A and Xwn will be used to denote the scheme Spec ∗

A
A. A

scheme is said to be seminormal (respectively, weakly normal), if all of its local rings are
seminormal (respectively, weakly normal).

Remark 3.7. Note the following set of implications.

Normal +3 Weakly Normal +3 Seminormal

Consider the following examples:

(i) The union of two axes in A2, Spec k[x, y]/(xy), is both weakly normal and seminormal,
but not normal (an irreducible node is seminormal as well).

(ii) The union of three lines through the origin in A2, Spec k[x, y]/(xy(x− y)), is neither
seminormal nor weakly normal.

(iii) The union of three axes in A3, Spec k[x, y, z]/(x, y)∩(y, z)∩(x, z), is both seminormal
and weakly normal. In fact, it is isomorphic to the seminormalization of (ii).

(iv) The pinch point Spec k[a, b, c]/(a2b − c2) ∼= Spec k[x2, y, xy] is both seminormal and
weakly normal as long as the characteristic of k is not equal to two. In the case that
char k = 2, then the pinch point is seminormal but not weakly normal. Notice that
if char k = 2 then the inclusion k[x2, y, xy] ⊂ k[x, y] induces a bijection on spectra.
Furthermore the induced maps on residue fields are isomorphisms at all closed points.
However, at the generic point of the singular locus P = (y, xy), the induced extension
of residue fields is purely inseparable. This proves that it is not weakly normal.

Remark 3.8. Seminormality and weak normality localize; see [GT80] and [Yan85]. In par-
ticular, a scheme is seminormal if and only if it has an affine cover by the spectrums of
seminormal rings.

There are other characterizations of weakly normal and seminormal which are of a more
algebraic nature, and are often very useful.

Proposition 3.9. [LV81, 1.4] Let A ⊂ B be a finite integral extension of reduced rings; the
following are then equivalent:

(i) A is seminormal in B
5



(ii) For a fixed pair of relatively prime integers e > f > 1, A contains each element b ∈ B
such that be, bf ∈ A. (also see [Ham75] and [Swa80] for the case where e = 2, f = 3).

Proposition 3.10. [RRS96, 4.3, 6.8] Let A ⊂ B be a finite integral extension of reduced
rings where A contains Fp for some prime p; the following are then equivalent:

(i) A is weakly normal in B.
(ii) If b ∈ B and bp ∈ A then b ∈ A.

The property of seminormality is also intrinsic in the following sense:

Theorem 3.11. [Swa80] A reduced ring A is seminormal if and only if for every pair of
elements b, c ∈ A such that b3 = c2, there exists a unique a ∈ A such that a2 = b and a3 = c.

Remark 3.12. There is no equivalently intrinsic characterization of weak normality. See
[Yan85] for further discussion.

Corollary 3.13. Suppose X is a seminormal scheme. Then for any open U ⊂ X, Γ(U,OX)
is a seminormal ring.

Proof. Without loss of generality we may assume that U = X. Note that Γ(X,OX) is
necessarily a reduced ring since X is a reduced scheme. Choose an affine cover of X by the
spectrums of seminormal rings, Ai. Suppose there exist elements b, c ∈ Γ(X,OX) such that
b3 = c2. Then these elements have images in each Ai, which we will call bi and ci respectively,
and note that these images still satisfy the relation b3

i = c2
i . Thus, in each Ai there exists

a unique ai such that a2
i = bi and a3

i = ci. The uniqueness of these ai guarantee that they
will glue together to an element a of Γ(X,OX). But then, we must also have a2 = b and
a3 = c and because Γ(X,OX) is reduced, a is the unique element satisfying this property;
see [Swa80]. �

4. F -injective singularities

Let R be a ring containing a field of characteristic p. By the action of Frobenius we mean
the pth power map, F : R → R, which sends x to xp. If R is reduced, this map may be
reinterpreted as Rp → R or R → R1/p. We will use 1R to denote R viewed as an R-module
via the action of Frobenius. Recall that a ring is said to be F -finite if 1R is a finite R-module.
Note that a ring of finite type over a finite field is always F -finite.

Definition 4.1. [Fed83] Suppose (R, m) is a reduced local ring containing a field of charac-
teristic p. We say that R is F -injective if the map F : H i

m(R) → H i
m(1R), induced by the

action of Frobenius, injects for all i.

Remark 4.2. There is another closely related class of singularities called F -pure singularities.
A reduced local ring R is said to be F -pure if the Frobenius map F : R → 1R is a pure
map of rings. If R is F -finite, this is equivalent to the map splitting as a map of R-modules.
By applying RΓm to such a splitting, it is obvious that F -finite F -pure local rings are
F -injective. See [Fed83] for additional discussion of F -pure and F -injective rings.

The property of F -injectivity localizes, as proven in the proposition below. I would like
to thank Nobuo Hara for suggesting the proof used in this paper. This fact certainly was
known previously, but I do not know of a reference.
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Proposition 4.3. Suppose (S, m) is an F -finite F -injective local ring with a dualizing com-
plex and P ∈ Spec S. Then (SP , P ) is an F -injective local ring.

Proof. Let X = Spec S and let I be an injective hull of the residue field S/m. Frobenius
induces a map OX → F∗OX . Note F∗OX can be identified with RF∗OX since F is an affine
(in fact finite) map. Since (S, m) is F -injective, we have

H i
m(X,OX) → Hi

m(X,RF∗OX)

injective for all i. Therefore, by Matlis duality, we see that

HomS(Hi
m(X,RF∗OX), I) → HomS(H i

m(X,OX), I)

is surjective for each i, since HomS( , I) is exact.
Finally we apply local duality to see that

HomS(HomS(h−i(RH omOX
(RF∗OX , ω

q

X), I), I)) →

HomS(HomS(h−i(RH omOX
(OX , ω

q

X), I), I))

is surjective for each i (note that we have pulled the cohomology functor, hi which became
h−i, through HomS( , I), which we can do since HomS( , I) is an exact functor). We
have also abused notation by freely switching between a sheaf on an affine scheme and the
associated module. Note that for a finite module M over a local ring RP ,

Hom
q

R̂P
(Hom

q

RP
(M, I), I)

is naturally identified with M̂ where ˆ is completion, [BH93, 3.5.4], [BH93, Exercise 3.2.14(b)]
or see [BS98, 10.2.19]. Since completion of a local ring does not send finite non-zero mod-
ules to zero (or, more generally, since completion is faithfully flat [Mat80, Section 24]), this
implies that

(4.3.1) h−i(RH om
q

OX
(RF∗OX , ω

q

X)) → h−i(RH om
q

OX
(OX , ω

q

X))

is surjective for every i (see the proof of Proposition 5.11 for a similar argument). Now,
when we localize the map 4.3.1 at P , it remains surjective (since R is F -finite). Since all the
relevant objects and functors behave well with respect to localization, we obtain a surjection

h−i(RH om
q

OXP

(RF∗OXP
, ω

q

XP
)) → h−i(RH om

q

OXP

(OXP
, ω

q

XP
)).

Note that we are suppressing a shift, determined by the height of P , which normalizes the
dualizing complex ω

q

XP
. We then apply local duality again to complete the proof. �

Definition 4.4. Let R be any ring containing a field of characteristic p and suppose that
R is F -finite and has a dualizing complex. Then we say that R is F -injective if (RP , P ) is
F -injective for every P ∈ Spec R.

Remark 4.5. If R is F -finite and has a dualizing complex, note that R is F -injective if and
only if (Rm, m) is F -injective for every maximal ideal in Spec R. Fedder defined an arbitrary
ring to be F -injective if R localized at every maximal ideal is F -injective.

We also need to show that F -injective singularities are seminormal (we will actually show
more: we will prove that they are weakly normal). It is known that F -pure singularities are
seminormal; see [HR76, 5.31], also see [Gib89].
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Lemma 4.6. Suppose that (R, m) is a reduced local ring of characteristic p, X = Spec R
and that X \ m is weakly normal. Then X is weakly normal if and only if the action of
Frobenius is injective on H1

m(R).

Proof. We assume that the dimension of R is greater than 0 since the zero-dimensional case
is trivial. Embed R in its weak normalization R ⊂ ∗R (which is of course an isomorphism
outside of m). We have the following diagram of R-modules.

0 // R
� � //

� _

��

Γ(X \ m,OX−m)

∼=
��

// // H1
m(R) //

��

0

0 // ∗R
� � // Γ(Xwn \ m,OXwn−m) // // H1

m(∗R) // 0

The left horizontal maps are injective because R and ∗R are reduced. One can check that
Frobenius is compatible with all of these maps. Now, R is weakly normal if and only if
R is weakly normal in ∗R if and only if every r ∈ ∗R with rp ∈ R also satisfies r ∈ R by
Proposition 3.10.

First assume that the action of Frobenius is injective on H1
m(R). So suppose that there is

such an r ∈ ∗R with rp ∈ R. Then r has an image in Γ(X \m,OX−m) and therefore an image
in H1

m(R). But rp has a zero image in H1
m(R), which means r has zero image in H1

m(R),
which guarantees that r ∈ R as desired.

Conversely, suppose that R is weakly normal. Let r ∈ Γ(X \m,OX−m) be an element such
that the action of Frobenius annihilates its image r in H1

m(R). Since r ∈ Γ(X \ m,OX−m)
we identify r with a unique element of the total field of fractions of R. On the other hand,
rp ∈ R so r ∈ ∗R = R. Thus we obtain that r ∈ R and so r is zero as desired. �

Theorem 4.7. Let R be a reduced F -finite rin with a dualizing complex. If R is F -injective
then R is weakly normal (and thus in particular seminormal).

Proof. A ring is weakly normal if and only if all its localizations at prime ideals are weakly
normal [RRS96, 6.8]. If R is not weakly normal, choose a prime P ∈ Spec R of minimal
height with respect to the condition that RP is not weakly normal. Apply Lemma 4.6 to get
a contradiction. �

F -injective singularities also glue together nicely. Compare this result with [DB81, 3.8,
4.10].

Proposition 4.8. Let X be a F -finite reduced scheme over a field of characteristic p. Sup-
pose X is the union of two closed Cohen-Macaulay subschemes, Y1 and Y2, of the same
dimension. If Y1 ∩ Y2 is reduced, and Y1, Y2 and Y1 ∩ Y2 all have F -injective singularities,
then X has F -injective singularities.

Proof. Gluing in this manner behaves well with respect to localization, so we may assume
that X is the spectrum of a local ring (R, m) and that I1, I2 ⊂ R are the defining ideals of
Y1 and Y2. Note since I1 ∩ I2 = 0, we have a short exact sequence

(4.8.1) 0 → R → R/I1 ⊕ R/I2 → R/(I1 + I2) → 0.
8



Now we apply RΓm to obtain a long exact sequence

. . . // H i
m(R) // H i

m(R/I1) ⊕ H i
m(R/I2) // H i

m(R/(I1 + I2))
δi //

// H i+1
m (R) // H i+1

m (R/I1) ⊕ H i+1
m (R/I2) // . . . .

We wish to consider the action of Frobenius on each term of this long exact sequence. Note
that the action is compatible since the action of Frobenius on each individual ring in the
short exact sequence 4.8.1 is compatible with the maps of that sequence.

Recall that R/I1, R/I2 and R all have the same (pure) dimension d. Then since R/I1

and R/I2 are Cohen-Macaulay we see that the δi induce isomorphisms between H i
m(R) and

H i−1
m (R/(I1 + I2)) for i < d; thus we need only consider the case of i = d. We have the

following exact sequence to consider

0 // Hd−1
m (R/(I1 + I2))

δd−1 // Hd
m(R)

φd // Hd
m(R/I1) ⊕ Hd

m(R/I1).

So suppose that x ∈ Hd
m(R) and x is annihilated by the action of Frobenius. Then φd(x) = 0

and so there exists a y ∈ Hd−1
m (R/(I1+I2)) such that δd−1(y) = x. But the action of Frobenius

is injective on Hd−1
m (R/(I1 + I2)) and δd−1 injects, proving that x = 0 as desired. �

5. Du Bois singularities

Historically, Du Bois singularities were defined using Hodge-theoretic methods. In partic-
ular, for each reduced separated scheme of finite type over C (or any field of characteristic
zero) one can associate a filtered complex (Ω

q

X , F ) (in the filtered derived category of X with
differentials of orders ≤ 1) corresponding to the De Rham complex for smooth varieties; see
[Del74], [DB81], [Ste85] and [GNPP88] for constructions and see [Kol95, Chapter 12] and
[Kov99] for enumerations of basic properties. Each graded piece of this complex, Gri

F Ω
q

X

is an object in Db
coh(X) and, in the case that X is smooth, is quasi-isomorphic to Ωi

X [−i].
In particular the zeroth graded piece of this complex Ω0

X
∼= Gr0

F Ω
q

X is a complex related to
Ω0

X , which is the structure sheaf of X. Furthermore, there is a natural map OX → Ω0
X in

Db
coh(X).

Definition 5.1. X is said to have Du Bois singularities if the natural map OX → Ω0
X is a

quasi-isomorphism.

Du Bois singularities behave well with respect to general hyperplane sections, specifically,

Proposition 5.2. [GNPP88, V, 1], [Kol95, 12.6.2] Suppose that X is a reduced separated
scheme of finite type over C. Suppose that D is a sufficiently general member of a base point
free linear system. Then we have the following:

Ω0
D ≃qis OD ⊗ Ω0

X, and hi(Ω0
D) ∼= OD ⊗ hi(Ω0

X).

There is another characterization of the complex Ω0
X which we will find to be very useful.

Theorem 5.3. [Sch07], [Sch06] Let X be a reduced separated scheme of finite type over a
field of characteristic zero embedded in a variety Y . Call IX the ideal sheaf of X in Y .

Assume Y is smooth and let π : Ỹ → Y be a strong log resolution of X; that is, Ỹ is smooth,
the pre-image of X has simple normal crossings and π is an isomorphism outside of X.
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Let E be the reduced total transform (pre-image) of X; (note that this is a divisor). Then
Ω0

X ≃qis Rπ∗OE.

Remark 5.4. The proof of this theorem is essentially an application of the octahedral axiom.
The main ideas were present in [DB90, 7.7] and [Kov99, 3.2]. The quasi-isomorphism Ω0

X ≃qis

Rπ∗OE also identifies the natural map OX → Ω0
X with the natural map OX → Rπ∗OE .

Corollary 5.5. With the notation from Theorem 5.3, X has Du Bois singularities if and
only if the natural map OX → Rπ∗OE is a quasi-isomorphism.

We relate Du Bois singularities to seminormality. Du Bois knew that Du Bois singularities
were seminormal, although he did not use the language of seminormality; see [DB81, 4.8, 4.9].
However, even more is true. In [Sai00, 5.2], it was shown that h0(Ω0

X) is the structure sheaf
of the seminormalization of X. For completeness, an alternate proof which uses Theorem
5.3 is provided below.

Lemma 5.6. [Sai00, 5.2] Suppose that X is a reduced separated scheme of finite type over
an algebraically closed field of characteristic zero. Then h0(Ω0

X) = OXsn where OXsn is the
structure sheaf of the seminormalization of X.

Proof. Without loss of generality we may assume that X is affine. We need only consider
π∗OE by Theorem 5.3. By Corollary 3.13 π∗OE is a sheaf of seminormal rings. Now let
X ′ = Spec(π∗OE) and consider the factorization

E → X ′ → X.

Note E → X ′ must be surjective since it is dominant by construction and is proper by [Har77,
II.4.8(e)]. Since the composition has connected fibers, so must ρ : X ′ → X. On the other
hand, ρ is a finite map since π was proper. Therefore ρ is a bijection on points. Because
these maps and schemes are of finite type over an algebraically closed field of characteristic
zero, we see that Γ(X,OX) → Γ(X ′,OX′) is a subintegral extension of rings. Since X ′ is
seminormal, so is Γ(X ′,OX′), which completes the proof. �

Corollary 5.7. Suppose that X is a reduced separated scheme of finite type over a field k
of characteristic zero. Then h0(Ω0

X) = OX if and only if X is seminormal.

Proof. The only thing to do here is to check statements of base change. The condition that
X is seminormal is invariant under separable (faithfully flat) base change of k by [GT80,
5.7]. Likewise the condition that

OX ≃qis Rπ∗OE

is also invariant under base change of k. This completes the proof. �

Remark 5.8. Compare the previous seminormality results with [Amb98].

Remark 5.9. Proposition 5.2, Lemma 5.6 and standard results about hyperplane sections
and log resolutions also allow one to easily re-obtain certain results on general hyperplanes
sections of seminormal varieties; see [Vit83] and [CGM83]. Related statements about general
hyperplane sections of the seminormalization of a variety also easily follow.

We need to prove a certain injectivity into local cohomology in order to prove that singu-
larities of dense F -injective type are Du Bois. We generalize the following lemma of Kovács
to the case of a non-closed point. Kovács’ lemma often plays the same role for Du Bois sin-
gularities that Grauert-Riemenschneider vanishing, [GR70], plays for rational singularities.
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Lemma 5.10. [Kov00, 1.4] Let X be a complex scheme with a finite set of closed points, P ,
such that X \ P has only Du Bois singularities. Then

H i
P (X,OX) → Hi

P (X, Ω0
X)

is surjective for all i.

Below is the slightly generalized version of this lemma. The idea of the proof is to use
local duality and apply general hyperplane sections to reduce to Lemma 5.10.

Proposition 5.11. Suppose that X = Spec R is a reduced closed subscheme of Y = An
C

=
Spec C[x1, . . . , xn]. Further suppose that P ∈ X = Spec R is a prime such that (Spec RP )\P
has Du Bois singularities (for example, this occurs if P is a minimal prime of the non-Du
Bois locus). Then

H i
P (RP ) // // Hi

P (X, Ω0
XP

)

is surjective for every i, or dually,

hj((Rπ∗ω
q

E)P ) � � // hj(ω
q

X)P

is injective for every j. Here E is the pre-image of X under a strong log resolution π : Ỹ → Y
of X as above and P is the localization at P .

Proof. As in Theorem 5.3, we have X in Y , where Y is a smooth variety. Perform a strong
log resolution of X in Y and let E be the reduced pre-image. Let k = RP /PRP be the
residue field of RP and let I be an injective hull of k.

Because the proof is rather long, we break it up into several steps.

Step 1. We use local duality to reduce our question to a statement about dualizing complexes.
We have a natural map OX → Rπ∗OE which we localize at P (that is, take the product

with SpecOXP
over X) to obtain

(5.11.1) OXP
→ Rπ∗OEP

.

Now apply R Hom
q

OXP

( , ω
q

XP
). By Theorem 2.2 (Grothendieck duality) we see that 5.11.1

is dual to Rπ∗ω
q

EP
→ ω

q

XP
. Apply R Hom

q

RP
( , I); local duality then identifies this map

with

RΓP (X,OXP
) → RΓP (X,Rπ∗OEP

).

Note that since HomRP
( , I) is exact, we abuse notation and associate it with R Hom

q

RP
( , I),

its right derived functor. If we apply R Hom
q

RP
( , I) to these complexes, as in the proof of

Proposition 4.3, Matlis duality guarantees that each

hi(RΓP (X,OXP
)) → hi(RΓP (X,Rπ∗OEP

))

map is surjective if and only if each

(5.11.2) HomRP
(HomRP

(h−i(Rπ∗ω
q

EP
), I), I) // HomRP

(HomRP
(h−i(ω

q

XP
), I), I)

is injective (since HomRP
( , I) is exact). By the same argument as the proof of Proposition

4.3 we see that

h−i(Rπ∗ω
q

EP
) → h−i(ω

q

XP
)

11



injects if and only if the map above, 5.11.2, injects, and so we are reduced to proving this
new injectivity. In other words, our desired result is equivalent to

(5.11.3) h−i(Rπ∗ω
q

E) → h−i(ω
q

X)

injecting at the stalk associated to P (since P is not maximal, there is a shift of complexes
here that I am suppressing). This conclude step 1.

Step 2. We explain the inductive setup and the choice of a general hyperplane.
So suppose the map 5.11.3 does not inject at the stalk associated to P . We apply induction

on the dimension of Spec(R/P ) (the case where P has maximal height is simply Lemma 5.10).
Choose a general hyperplane H ′ ⊂ Y . Let f ′ be the generator of the ideal of H ′. We will

use the fact that H ′ is general in the following way. The element f ′ has nonzero, nonunit
image f ∈ R, and geometrically speaking, will intersect X = Spec R in a lower dimensional
subscheme. Furthermore we may view f ′ as a global section of E by the map OX → π∗OE ,
and so we may require that f does not annihilate any elements of OE on any open set of a
fixed affine cover (since it also corresponds to a general member of a base point free linear

system on Ỹ ). Note that H ′ = Spec C[x1, . . . , xn]/f ′ is smooth and π induces a log resolution

H̃ ′ → H ′ of H = Spec R/fR with reduced exceptional divisor EH , where EH corresponds to
OE/fOE . Similarly, we choose f sufficiently generally so that it satisfies the conclusion of
Proposition 5.2. Finally we require that f does not annihilate any element of h−i(Rπ∗ω

q

E),
any element of h−i(ω

q

X) or any elements in the kernel or cokernel of the natural maps between
these various modules. This completes step 2.

Step 3. We use homological algebra and our general hyperplane to reduce the dimension of
R/P in order to apply our inductive hypothesis.

Apply R Hom
q

R(R/f, ) = R Hom
q

OX
(OH , ) to Rπ∗ω

q

E → ω
q

X . Because

R
×f // R // R/f

is a (free) resolution of R/f , we see that R Hom
q

R(R/f, M) ≃qis (M/fM)[−1] ≃qis M ⊗R

(R/f)[−1] for any R-module M with no elements annihilated by f . Since we chose f to be
general, the hyper-cohomology spectral sequences computing R Hom

q

OX
(OH , ) applied to

the complexes Rπ∗ω
q

E and ω
q

X collapse (that is, have only one non-zero column). Thus we
consider the maps

(5.11.4) h−i(Rπ∗ω
q

E) ⊗OH → h−i(ω
q

X) ⊗OH ,

coming from the map of the two spectral sequences. Now note that R Hom
q

OX
(OH , ω

q

X) is

just ω
q

H by the definition of f ! for finite maps. Consider R Hom
q

OX
(OH , (Rπ∗ω

q

E)). This can

be viewed as

R Hom
q

OX
(OH ,R Hom

q

OX
(Rπ∗OE, ω

q

X))

which is naturally isomorphic to

(5.11.5) R Hom
q

OX
((OH⊗(Rπ∗OE)), ω

q

X)
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by [Har66, II.5.15] (here ⊗ denotes the left derived functor of ⊗ and the tensor product is

over OX). However,

OH⊗Rπ∗OE ≃qis Rπ∗OEH
,

also see Proposition 5.2. That quasi-isomorphism is also functorial in the sense that we have
the following commutative diagram.

OH⊗OX
∼= //

��

OH

��
OH⊗Rπ∗OE

∼= // Rπ∗OEH

The commutativity is particularly easy to see if one employs a Čech resolution (made up of
⊗OH-acyclic objects) to compute Rπ∗OE. By Grothendieck duality, and the description

of f ! for finite maps, we see that 5.11.5 can be re-written as

Rπ∗ H om
q

OE
(OEH

, ω
q

E) ≃qis Rπ∗ω
q

EH
.

So we see that 5.11.4 is compatibly identified with the natural map

h−i+1(Rπ∗ω
q

EH
) → h−i+1(ω

q

H).

Therefore if the map we were originally interested in,

h−i(Rπ∗ω
q

E) → h−i(ω
q

X),

had kernel with P as a minimal associated prime, then the new associated map
(
h−i(Rπ∗ω

q

E)) ⊗OH
∼= h−i+1(Rπ∗ω

q

EH
)
)
→

(
h−i(ω

q

X) ⊗OH
∼= h−i+1(ω

q

H)
)

has kernel with the components of P ∩ H among the minimal associated primes (since H
was chosen to be general). Note also that H localized at each of the components of P ∩ H
has Du Bois singularities outside of P ∩ H (that is, on the punctured spectrum). But now
our inductive hypothesis guarantees that this is impossible, proving the proposition. �

Remark 5.12. This also allows us to make the following reduction. Suppose that P is a
minimal prime of the non-Du Bois locus of a variety X = Spec R. Then, by inverting a
single element f of R \ P and replacing R by R[f−1], we may assume that P is the unique
minimal prime of the non-Du Bois locus and, furthermore, that h−i(Rπ∗ω

q

E) → h−i(ω
q

X)
injects for every i. This is done without completely reducing to the case of a local ring.
Therefore, this can be thought of as additional progress towards something like a Grauert-
Riemenschneider vanishing for Du Bois singularities. It would be interesting to know if the
above injectivity holds without the need to invert any elements; also see Question 8.3.

6. The main theorem and reduction to characteristic p

Theorem 6.1. Suppose that X is a reduced scheme of finite type over a field of characteristic
zero. If X dense F -injective type, then X has Du Bois singularities.

Remark 6.2. The definition of dense F -injective type is given in Definition 6.9.
13



Let us now sketch the proof of Theorem 6.1. We will discuss the process of reduction to
characteristic p later in this section. The rest of the proof can then be broken down into
three steps.

(i) We will show in Theorem 7.1 that, after generically reducing to characteristic p, the
higher cohomology of Ω0

X is annihilated by a sufficiently high power of Frobenius.
(ii) In the previous section, we proved that if Spec RP \ P is Du Bois, then the natural

map
H i

P (RP ) → Hi
P (X, Ω0

XP
)

is surjective. In Proposition 7.4, we will show that the same surjectivity can also be
obtained after generic reduction to positive characteristic.

(iii) We finally apply a spectral sequence argument which will show that the natural map

hi(Ω0
XP

) → H i+1
P (RP )

is injective for i ≥ 1. Frobenius acts injectively on the right, and annihilates the left,
proving that hi(Ω0

XP
) = 0 for i > 0.

This then allows us to conclude that our original variety in characteristic zero had Du Bois
singularities as well.

Before actually proving this theorem, let us first state a corollary.

Corollary 6.3. Suppose that X is a scheme of finite type over a field of characteristic zero
of dense F -pure type. Then X has Du Bois singularities.

Remark 6.4. The key point here is that we do not need to assume that X is Q-Gorenstein
or normal.

Fedder’s criterion is a powerful characterization of F -purity which is often easily com-
putable (especially if I is a principal ideal). Suppose that (S, m) be a regular local ring of
characteristic p and let R = S/I. Then R is F -pure if and only if (I [p] : I) 6⊂ m[p]; see [Fed83,
1.12].

Remark 6.5. In his thesis, Davis Doherty used Corollary 6.3 and Fedder’s criterion to prove
that certain (non-normal) schemes had Du Bois singularities; see [Doh08].

We now lay out the basics of reduction to characteristic p. An excellent and far more
complete reference is [HH06, 2.1]. Similar reductions have also been used when establishing
links between the other characteristic zero and F -singularities mentioned in the introduction.

Let R be a finitely generated algebra over a field k of characteristic zero. We can write
R = k[x1, . . . , xn]/I for some ideal I and let S denote k[x1, . . . , xn]. Let X = Spec R,
Y = Spec S, and note that we can certainly assume that the codimension of X in Y is
greater than 1 if desired. Let π : BJ(Y ) = Ỹ → Y be a strong (projective) log resolution of
X in Y corresponding to the blow-up of an ideal J , which has exceptional divisor E (where
OeY (−E) = (JOeY )red) mapping to X.

There exists a finitely generated Z algebra A ⊂ k (including all the coefficients of the
generators of I and J), a finitely generated A algebra RA ⊂ R, an ideal JA ⊂ RA, and schemes

ỸA and EA of finite type over A such that RA ⊗A k = R, JAR = J , YA ×Spec A Spec k = Y ,
and EA ×Spec A Spec k = E with EA effective and with support equal to the blow-up of JA.
We may localize A at a single element so that YA is smooth over A and EA is a simple normal
crossings divisor over A, if desired. By further localizing A (at a single element), we may
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assume any finite set of finitely generated RA modules is A-free (see [Hun96, 3.4] or [HR76,
2.3]) and we may assume that A itself is regular. We may also assume that a fixed affine

cover of EA and a fixed affine cover of ỸA are also A-free.
We will now form a family of positive characteristic models of X by looking at all the rings

Rt = RA⊗A k(t) where k(t) is the residue field of a maximal ideal t ∈ T = Spec A. Note that
k(t) is a finite, and thus perfect, field of characteristic p. We may also tensor the various
schemes XA, EA, etc. with k(t) to produce a characteristic p model of an entire situation.

By making various cokernels of maps free A-modules, we may also assume that maps
between modules that are surjective (respectively injective) over k correspond to surjec-
tive (respectively injective) maps over A, and thus surjective (respectively injective) in our
characteristic p model as well; see [HH06].

Various properties of rings that we are interested in descend well from characteristic zero.
For example, smoothness, normality, being reduced, and being Cohen-Macaulay all descend
well [Hun96, Appendix 1]. Specifically, Rt has one of the above properties for an open set of
maximal ideals of A if and only if R(Frac A) has the same property (in which case so does R).
In this spirit, we will need the following lemma.

Lemma 6.6. Suppose that R is reduced and of finite type over a field of characteristic zero
and that Rt is a family of positive characteristic models as above (where A is sufficiently
large). If Rt is seminormal for a Zariski dense set of choices of maximal t ∈ Spec A, then
R is seminormal.

This was done for domains in [HR76, 5.31].

Proof. Suppose that R is not seminormal, then there are elements a, b ∈ R such that a3 = b2

and no d ∈ R with d2 = a and d3 = b. Therefore there exists an elementary subintegral
extension R ⊂ S = (R[x]/(x2 − a, x3 − b))red inside the normalization of R; see [Swa80]. Let
c denote the image of x in S and note that c /∈ R by assumption so that R is a proper subset
of S. We then reduce this inclusion to an extension of models

(6.6.1) RA ⊂ SA,

of rings of finite type over A, where A is a sufficiently large finitely generated Z-algebra (as
above) and such that RA ⊂ R and SA ⊂ S in a compatible way (in particular, SA is reduced
since S is). We localize A so that the cokernel of 6.6.1 is A-free (note the extension must
be proper since it is proper in characteristic zero). We can certainly arrange things so that
there still exists cA ∈ SA \ RA which is identified with c ∈ S such that c2

A = aA, c3
A = bA.

Note that in particular cA has non-zero image cA in SA/RA.
We now choose a generic maximal ideal t in A satisfying the properties that Rt = RA⊗A/t

is seminormal and that St = SA⊗A/t is reduced. This gives us an inclusion of rings Rt ⊂ St

and a non-zero element cA ⊗ 1 = ct ∈ St. The element ct ∈ St/Rt
∼= (SA/RA) ⊗ A/t is non-

zero by [HR76, 2.3(c)] and so ct has no pre-image Rt. However, c2
t , c

3
t ∈ Rt, contradicting

the seminormality of Rt (or the fact that St is reduced). �

The following lemma is very useful for reducing cohomology to prime characteristic. A
sketch of the proof can be found in [Har98a].

Lemma 6.7. [Har98a, 4.1] Let X be a noetherian separated scheme of finite type over a
noetherian ring A, and let F be a quasi-coherent sheaf on X, flat over A. Suppose that
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H i(X, F ) is a flat A-module for each i > 0. Then one has an isomorphism

H i(X, F ) ⊗A k(t) ∼= H i(Xk(t), Fk(t))

for every point t ∈ T = Spec A and i ≥ 0, where k(t) is the residue field of t ∈ T , Xk(t) =
X ×T Spec(k(t)), and Fk(t) is the induced sheaf on Xk(t).

Remark 6.8. In particular, given a map of schemes over a field of characteristic zero, π : E →
X, and a corresponding family of maps of schemes, πt : Et → Xt as above, the previous
lemma and (faithfully) flat base change imply that hi(Rπ∗OE) = 0 for some i if and only if
hi(R(πt)∗OEt

) = 0 for the same i and all but a finite number of t.

Definition 6.9. Given a class of singularities, F - (such as F -injective, F -pure, F -rational,
F -regular) in characteristic p, we say that a ring R of finite type over a field of characteristic
zero has open F - type if for a single (equivalently, every sufficiently large) choice of A as
above, Rt is F - for an open set of maximal ideals t ∈ Spec A. We say that such a ring R
has dense F - type (or simply F - type) if Rt is F - for a Zariski-dense set of maximal
ideals t ∈ Spec A.

Finally we should note that extending the ring A by a finite number of additional scalars
from k (and thus also adding those scalars to RA) does not change whether a dense set of
models is F -injective. Extending A by additional scalars and modding out by a new maximal
ideal t ∈ A simply yields a model which extends the finite field we are working with (from
some original model). Flat base change for local cohomology makes it easy to see that this
does not affect the property of F -injectivity since all these field extensions are of finite fields.
This technique has been used for other classes of singularities as well, such as F -rational,
F -regular and F -pure, and this fact has been explicitly stated for F -injective singularities
in [MS97].

7. Proof of the main theorem

The first goal of this section is to show that the action of Frobenius annihilates the higher
cohomology of Ω0

X after an appropriate reduction to characteristic p. This is perhaps not
unexpected since rational singularities exhibit a similar behavior.

Suppose that (R, m) is a normal local ring reduced generically from characteristic zero to p

with a resolution X̃ → Spec R satisfying the condition that Spec R\m has rational singulari-

ties. Then Hd−1(X̃,O eX) naturally injects into Hd
m(R) by the dual Grauert-Riemenschneider

vanishing. Furthermore, that injection naturally identifies Hd−1(X̃,O eX) with 0∗

Hd
m(R), the

tight closure of zero in Hd
m(R); see [Har98a, 4.7], [MS97, 7.3], and [Har01, 5.4]. In the Du

Bois case, we have perhaps an even more interesting behavior. Without reference to any lo-
cal cohomology, Frobenius naturally acts on the higher cohomology of the Du Bois complex,
and we will show that Frobenius annihilates it.

Theorem 7.1. Suppose that R is a ring of finite type over a perfect field k of characteristic

p. Further suppose that k[x1, . . . , xn] // // R, corresponds to a (codimension 2 or greater)

embedding of X = Spec R, which was reduced generically from characteristic zero with a

strong (projective) log resolution of X, π : Ỹ → Y = Spec k[x1, . . . , xn]. Let E be the reduced

pre-image of X in Ỹ . Then

F e(hi(Rπ∗OE)) = F e(hi(Ω0
X)) = 0
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for all i > 0 and all sufficiently large e.

Proof. Using the alternate Du Bois construction of Theorem 5.3, this proof is actually re-
markably easy! We have a natural isomorphism hi(Rπ∗OE) ∼= hi+1(Rπ∗OeY (−E)) for i > 0

since the resolution π : Ỹ → Y was reduced generically from characteristic zero where it had
rational singularities. There is an anti-effective π-ample divisor D with support equal to E

corresponding to the ideal that was blown up. Now, the Frobenius action on E and Ỹ is
somewhat subtle. We have the following factorization for q = pe and i > 0

hi(Rπ∗OE)

��

hi+1(Rπ∗OeY (−E))

F e

��

hi(Rπ∗OqE)

��

hi+1(Rπ∗OeY (−qE))

ρ

��

hi(Rπ∗OE) hi+1(Rπ∗OeY (−E))

where the composition of the left column is the Frobenius action on E, and the map ρ is
just the one associated to the inclusion OeY (−qE) → OeY (−E). Note that all these maps are
compatible. We can now choose n large enough so that hi+1(Rπ∗OeY (−nD)) = 0 by Serre
Vanishing, [Gro61, 2.2.1]. However, we can pick q = pe much larger so that we obtain the
following factorization:

OeY (−qE) ⊂ OeY (−nD) ⊂ OeY (−E)

This means that the composition of the right column in the diagram is zero for q sufficiently
large, and thus F e(hi(Rπ∗OE)) = 0 as desired. �

As stated before, our next goal is to force the higher cohomology of the Du Bois complex
to embed into local cohomology. However, to do that we first need a lemma which will be
used to reduce properties of a dualizing complex from a variety over C to a model over A
(where A is a finitely generated Z algebra); also see [Smi97].

Lemma 7.2. Suppose that A is a finitely generated Z-algebra that is a regular ring. Let
SA = A[x1, . . . , xn] and note that SA is Gorenstein and we may take ω

q

SA
to be SA (or with

a shift if desired). If A ⊂ B with B a field (so in particular it is a flat A-algebra) then for
any bounded complex of SA-modules N

q

with coherent cohomology, we have

(R Hom
q

SA
(N

q

, SA)) ⊗A B ≃qis (R Hom
q

SA⊗AB(N
q

⊗A B, SA ⊗A B)).

In particular, if we replace N
q

by RA, a quotient of SA, then using the characterization of
f ! for finite maps, we see that

(ω
q

RA
) ⊗A B ≃qis ω

q

(RA⊗AB).

Note that this quasi-isomorphism is not typically going to be of normalized dualizing com-
plexes; however, up to a shift (by [dim A]), it will be.

Proof. This follows from standard techniques involving R Hom
q

and from the fact that
HomSA

(N, SA) ⊗A B ∼= HomSA⊗AB(N ⊗A B, SA ⊗A B) for finite SA-modules N . �

Remark 7.3. Obviously the previous statement holds under substantially more general hy-
potheses.
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The following proposition is the last major step in the proof of Theorem 6.1.

Proposition 7.4. Suppose that XC = Spec R is of finite type over C and that XC ⊂ YC =

Spec C[x1, . . . , xn]. Suppose that πC : ỸC → YC is a strong log resolution of XC in YC and
that EC = (π−1

C
(XC))red. If the natural morphism

(7.4.1) hi(R(πC)∗ω
q

EC
) → hi(ω

q

XC
)

is injective for all i, then for a generic choice of positive characteristic model, πt : Et → Xt,
the following natural morphisms are injections for all i,

hi(R(πt)∗ω
q

Et
) � � // hi(ω

q

Xt
).

Proof. We now choose an appropriate finitely generated Z-algebra A ⊂ C and reduce our
data to this situation. We let SA be the ring of polynomials in m variables over A, of which

RA is a quotient. We keep track of the corresponding map πA : ỸA → YA and the reduced
pre-image of XA, which we call EA. Note that EA ×A C ∼= EC. It is easy to see that we
may choose πA so that it is still obtained by blowing up an ideal whose total transform has
support equal to EA. Without loss of generality we may assume that A is regular.

We first wish to use the injectivity 7.4.1, to obtain the injectivity

hi(R(πA)∗ω
q

EA
) � � // hi(ω

q

XA
)

(at least after replacing A by a suitable localization). Consider the map

(7.4.2) RA → Γ(XA,R(πA)∗OEA
).

Since XA is affine, we will abuse notation and leave out the functor Γ in the future. We
may represent R(πA)∗OEA

by Čech cohomology which behaves well with respect to flat base
change (for example, see [Har77, III.9.3]). We now apply the functor R Hom

q

SA
( , SA[m])

to 7.4.2. Grothendieck duality and the description of f ! for finite maps lets us identify the
map

(7.4.3) R Hom
q

SA
(R(πA)∗OEA

, SA[m]) → R Hom
q

SA
(RA, SA[m])

with the map

R(πA)∗ω
q

EA
→ ω

q

XA

after shifting by the dimension of A. It is the characterization of the map in 7.4.3 that we
will reduce from over C to A. We now localize A to make the various modules mentioned
above (in particular, the cohomology of the above complexes) the modules corresponding
to a set of affine charts on EA, and the various kernels and cokernels of maps between the
various modules all A-free. Finally, we apply Lemma 7.2 and we see that

hi(R(πA)∗ω
q

EA
) � � // hi(ω

q

XA
)

injects for each i as desired.
We now will show that the injectivity

hi(R(πt)∗ω
q

Et
) � � // hi(ω

q

Xt
)

is preserved for each i and for a general choice (in fact at this point, any choice) of maximal
t ∈ Spec A. Therefore choose a maximal t ∈ Spec A arbitrarily.
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Now note that Rt (respectively Et) is a closed subscheme of RA (respectively EA). Apply
f !( ) = R Hom

q

RA
((RA)/(tRA), ) to the map R(πA)∗ω

q

EA
→ ω

q

XA
. By Grothendieck dual-

ity, this gives us the map in whose cohomology we are ultimately interested, R(πt)∗ω
q

Et
→

ω
q

Xt
. We wish to analyze the induced maps on cohomology by analyzing the spectral se-

quences (and the induced map between these spectral sequences)

hpR Hom
q

RA
(RA/(tRA), hqR(πA)∗ω

q

EA
) ⇒ hp+qR Hom

q

RA
(RA/(tRA),R(πA)∗ω

q

EA
)

hpR Hom
q

RA
(RA/(tRA), hqω

q

XA
) ⇒ hp+qR Hom

q

RA
(RA/(tRA), ω

q

XA
)

Suppose that M is an arbitrary RA-module that is free as an A-module. I claim that
N = Exti

RA
(RA/(tRA), M) = 0 for i 6= c = ht t. To see this, notice that the RA-module N is

zero if and only if it is zero when viewed as an A-module. On the other hand, the module
N is annihilated by t. Let us use U to denote the multiplicative system A \ t and let B be
the regular local ring U−1A. Finally set RB = U−1RA

∼= RA ⊗A B. Then notice that

N ∼= N ⊗A B ∼= (N ⊗RA
RA) ⊗A B ∼= N ⊗RA

RB
∼= Exti

RB
(RB/(tRB), M ⊗A B).

Now recall that B ⊂ RB is a regular local ring with maximal ideal tB and that the modules
M ⊗A B and RB are free B-modules (also observe that RB/(tRB) ∼= RA/(tRA)). But
then note tRB is generated by a regular sequence for the module M ⊗A B (it also forms a
regular sequence for the module RB). This implies that Exti

RB
(RB/(tRB), M ⊗A B) = 0 for

i 6= c = ht t = ht(tB), which proves the claim.
Therefore the spectral sequences mentioned above are collapsed (single column) spectral

sequences. Thus we see that the map

hi(R(πt)∗ω
q

Et
) // hi(ω

q

Xt
)

is identified with the map

Extc
RA

(RA/(tRA), hi−cR(πA)∗ω
q

EA
) // Extc

RA
(RA/(tRA), hi−cω

q

XA
).

Using the fact that we made the cokernels of the maps

hi−cR(πA)∗ω
q

EA

� � // hi−cω
q

XA

A-free, we see that we achieve our desired injectivity. �

We now complete the proof of Theorem 6.1

Proof. Furthermore, we may assume that Xk = Spec Rk is affine of dimension d and embeds

in a smooth Yk = Am
k = Spec Sk with codimension at least two. Let πk : Ỹk → Yk be a strong

(projective) log resolution of Xk ⊂ Yk and let Ek be the reduced pre-image of Xk. Let Ik

be the ideal blown up to obtain this resolution.
Now I claim that we may assume that k = C. To check this it is enough to show that the

properties of having dense F -injective type and having Du Bois singularities are invariant
under the requisite base change operations. Suppose then that k is a field of characteristic
zero and X = Xk is of finite type over k. Suppose further that K ⊆ k is isomorphic to a
subfield of C and that Xk, Yk, Ek etc. are defined over K. Abusing notation, we identify
K with that subfield of C. Then XK is Du Bois if and only if OXK

→ Ω0
XK

is a quasi-
isomorphism. But that map is a quasi-isomorphism if and only if it is a quasi-isomorphism
after tensoring with C (or with k). On the other hand, Xk has dense F -injective type if and
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only if XK has dense F -injective type if and only if XC has dense F -injective type (one may
even use the same set of characteristic p models). Thus it is harmless to assume that k = C.

Note that being of dense F -injective type implies seminormality by Theorem 4.7 and
Lemma 6.6. Therefore we have π∗OEk

∼= OXk
and so we only need to show that

hi(R(πk)∗(OEk
))Pk

= 0

for i > 0. Suppose that X is not Du Bois, so let Pk be a prime of Rk, minimal with respect
to the condition that (Rk)Pk

is not Du Bois. By localizing appropriately we can, without
loss of generality, assume that there is an injection

(7.4.4) hi(R(πk)∗ω
q

Ek
) � � // hi(ω

q

Xk
)

since we can apply Proposition 5.11 and since inverting a single element of Rk will preserve
dense F -injective type. Note in particular that we still have hi(R(πk)∗OEk

) 6= 0 for some
i > 0.

As before, we choose an appropriate finitely generated Z-algebra A ⊂ C and reduce our
entire situation to finite type over A. We also localize A so that all RA-modules we encounter
are A-free (in particular, so that the conclusions of Theorem 7.1 and Proposition 7.4 will
hold). Note we may assume that (πA)∗OEA

∼= OXA
.

Choose a maximal t ∈ Spec A such that Rt = RA ⊗A A/t is F -injective and tensor RA

and EA with A/t. In particular, we preserve the isomorphism Rt
∼= (πt)∗OEt

. Choose Qt a
prime minimal with respect to the condition that hi(R(πt)∗OEt

)Qt
6= 0 for some i > 0 and

localize Rt to form (Rt)Qt
. Such a Qt exists since hi(R(πt)∗OEt

) cannot be equal to zero,
for all i > 0 (this is because hi(R(πk)∗(OEk

)) is not equal to zero for all i; see Lemma 6.7).
Note, (Rt)Qt

is F -injective by assumption.
An application of local duality applied to the conclusion of Proposition 7.4 obtains the

following surjectivity for each i (note that there is a sign flip and possible shift on i that we
are suppressing):

(7.4.5) H i
Qt

((Rt)Qt
) // // Hi

Qt
((R(πt)∗OEt

)Qt
).

However, hi((R(πt)∗OEt
)Qt

) is supported at Qt for i > 0, and so we consider the spectral
sequence computing RΓQt

((R(πt)∗OEt
)Qt

). In particular, we have the spectral sequence

hp(RΓQt
(hq(R(πt)∗OEt

)Qt
)) ⇒ hp+q(RΓQt

((R(πt)∗OEt
)Qt

)) = H
p+q
Qt

((R(πt)∗OEt
)Qt

).

Since the modules hi((R(πt)∗OEt
)Qt

) have support contained in the maximal ideal of
(Rt)Qt

for i > 0, the terms Epq of this spectral sequence are zero unless either p or q are
zero. This implies that this spectral sequence caries the data of a long exact sequence:

0 → H1
Qt

(((πt)∗OEt
)Qt

) // H1
Qt

((R(πt)∗OEt
)Qt

) // h1(R(πt)∗OEt
)Qt

// . . .

· · · → H i
Qt

(((πt)∗OEt
)Qt

) // Hi
Qt

((R(πt)∗OEt
)Qt

) // hi(R(πt)∗OEt
)Qt

// . . . .

Therefore, by noting that (Rt)Qt
∼= ((πt)∗OEt

)Qt
, and applying the surjectivity 7.4.5, we

obtain the following injectivity for each i > 0,

hi(R(πt)∗OEt
)Qt

� � // H i+1
Qt

((Rt)Qt
).
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The action of Frobenius annihilates the left-hand-side and acts injectively on the right-hand-
side, which implies that hi(R(πt)∗OEt

)Qt
= 0 for i > 0. This contradicts our choice of Qt,

and thus also contradicts the existence of Pk, which completes the proof. �

8. Further questions

It is still conjectural that log canonical singularities have dense F -pure type, and likewise
the corresponding statement between Du Bois and F -injective singularities is also open.

Question 8.1. Suppose that X has Du Bois singularities, does X have dense F -injective
type?

There is a certain amount of evidence towards this question besides the results in this
paper. In particular, there are several other properties that Du Bois singularities and F -
injective singularities share; see [Sch06]. We also might hope for a result similar to what
occurs for rational singularities.

Question 8.2. Suppose that Xt is a family of models reduced from a characteristic zero scheme
X which had an embedding into a smooth variety X ⊂ Y and a strong log resolution π of
X with E the reduced pre-image of X (so that Rπ∗OE ≃qis Ω0

X with the usual notations).
Suppose X had an isolated point x such that X \ x is Du Bois. Is it true that, for a dense
set of models, hi(R(πt)∗OEt

)xt
is naturally identified with the Frobenius closure of 0 in

H i+1
xt

(Xt,OXt
)?

The following injectivity, which, if it were known to be true, could be thought of as
analogous to the Grauert-Riemenschneider vanishing theorem, and would be useful in certain
problems related to deformations of Du Bois singularities.

Question 8.3. Suppose that X embeds into a smooth scheme Y of finite type over a field

of characteristic zero, and that π : Ỹ → Y is a strong log resolution of X with reduced
pre-image E = (π−1X)red. Then is it true that for each i, the natural map

hi(Rπ∗ω
q

E) → hi(ω
q

X)

is an injection?

If X is Cohen-Macaulay, this would imply that Rπ∗ω
q

E has trivial cohomology except in
one degree, which more closely resembles the classical Grauert-Riemenschneider vanishing
theorem.

References

[Amb98] F. Ambro: The locus of log canonical singularities, Preprint available at arXiv:math.AG/9806067
(1998).

[AB69] A. Andreotti and E. Bombieri: Sugli omeomorfismi delle varietà algebriche, Ann. Scuola
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