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ABSTRACT
Broadcasting algorithms have a various range of applica-
tions in different fields of computer science. In this paper we
analyze the number of message transmissions generated by
efficient randomized broadcasting algorithms in random-like
networks. We mainly consider the classical random graph
model, i.e., a graph Gp with n nodes in which any two arbi-
trary nodes are connected with probability p, independently.
For these graphs, we present an efficient broadcasting algo-
rithm based on the random phone call model introduced by
Karp et al. [21], and show that the total number of message
transmissions generated by this algorithm is bounded by an
asymptotically optimal value in almost all connected ran-
dom graphs. More precisely, we show that if p ≥ logδ n/n for
some constant δ > 2, then we are able to broadcast any in-
formation r in a random graph Gp of size n in O(log n) steps
by using at most O(n max{log log n, log n/ log d}) transmis-
sions related to r, where d = pn denotes the expected av-
erage degree in Gp. We also show that for these kind of
graphs there is a a matching lower bound on the number of
transmissions generated by any efficient broadcasting algo-
rithm which works within the limits of the random phone
call model. Please note that the main result holds with
probability 1− 1/nΩ(1), even if n and d are unknown to the
nodes of the graph.

The algorithm we present in this paper is based on a sim-
ple communication model [21], is scalable, and robust. It
can efficiently handle restricted communication failures and
certain changes in the size of the network, and can also be
extended to certain types of truncated power law graphs
based on the models of [1, 2, 5]. In addition, our methods
and results might be useful for further research on this field.
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1. INTRODUCTION
Randomized broadcasting has extensively been studied in

various network topologies. Such algorithms naturally pro-
vide robustness, simplicity and scalability. As an example,
consider the so-called push model [10]: In a graph G = (V, E)
we place at some time t an information r on one of the
nodes. Then, in each succeeding round, any informed ver-
tex forwards the information to a communication partner
over an incident edge selected independently and uniformly
at random. It is known that the push algorithm spreads any
information within O(log n) rounds to all nodes of a random
graph Gp of size n, with probability 1 − o(1/n), whenever
p exceeds some threshold value [17]. However, this algo-
rithm generates Ω(n log n) transmissions of r. Therefore,
some modifications of this scheme have been considered in
order to decrease the number of message transmissions [10,
21]. These variants are described in the subsections below.

1.1 Models and Motivation
The study of information spreading in large networks has

various fields of application in distributed computing. Con-
sider for example the maintenance of replicated databases
in name servers in a large corporate network [10]. There are
updates injected at various nodes, and these updates must
be propagated to all the nodes in the network. In order to
let all copies of the database converge to the same content,
efficient broadcasting algorithms have to be developed.

There is an enormous amount of experimental and theo-
retical study of (deterministic and randomized) broadcast-
ing in various models and on different networks. In this
paper we only concentrate on randomized broadcasting al-
gorithms, and study their time and communication com-
plexity in a simple communication model. The advantage of
randomized broadcasting is its inherent robustness against
failures and dynamical changes compared to deterministic
schemes that either need substantially more time [18] or can
tolerate only a relatively small number of faults [23]. Our in-
tention is to develop time efficient randomized broadcasting
algorithms which have the following properties:

• They can successfully handle restricted communica-
tion failures in the network.



• They are fully adaptive and work correctly if the size
and/or topology of the network change slightly during
the execution of the algorithm.

• The number of message transmissions they produce is
asymptotically minimal.

When using the push algorithm, the effects of node failures
are very limited and dynamical changes in the size of the
network do not really affect its efficiency. However, as de-
scribed above, the push algorithm produces a large amount
of transmissions.

Several termination mechanisms noticing when a specific
information becomes available to all nodes so that its trans-
mission can be stopped were investigated. Using simple
mechanisms for the push model, it is possible to restrict
the number of transmissions in a random graph of size n to
O(n log n).

An idea introduced in [10] consists of so called pull trans-
missions, i.e., any (informed or uninformed) node is allowed
to call a randomly chosen neighbor, and information is sent
from the called to the calling node. In this model it may
happen that some nodes transmit messages to several neigh-
bors within one step, however, the number of transmissions
within one step is bounded by the number of nodes in the
graph. These kind of transmission makes only sense if new
or updated informations occur frequently in the network so
that almost every node has to place a random call in each
round anyway. It was observed in complete graphs that af-
ter a constant fraction of the nodes is informed, then within
O(log log n) additional steps every node of a Kn becomes
informed as well [10, 21]. This implies that in such graphs
at most O(n log log n) transmissions are enough, if the dis-
tribution of the information is stopped at the right time.

In this paper we are particularly interested in randomized
broadcasting algorithms on the class of random-like graphs.
The theory of random graphs was founded by Erdős and
Rényi [14, 15]. They considered the elements in a proba-
bility space consisting of graphs of a particular type. The
simplest such probability space consists of all graphs with
n vertices and m edges, and each such graph Gn,m is as-
signed the same probability. Another random graph model
has been introduced by Gilbert in [19], in which a graph
Gp is constructed by letting two pairs of vertices be con-
nected independently and with probability p. In this paper
we mainly concentrate on this random graph model, however
our results also hold for Erdős-Rényi graphs.

In order to describe large real world networks, some mod-
ifications of these random graph models have been consid-
ered. In [2, 16] it has been observed that in many real-world
networks (such as the Web) the degrees of the nodes have
a so called power law distribution, i.e., the fraction of ver-
tices with degree d is proportional to d−β , where β > 1 is a
fixed constant. A modified version of the classical random
graph model, which approximates such power law graphs, is
discussed in Subsection 1.2.

1.2 Related Work
Most papers dealing with randomized broadcasting ana-

lyze the runtime of the push algorithm in different graph
classes. Pittel [26] proved that it is possible to broadcast an
information within log2(n)+ln(n)+O(1) steps in a complete
graph of size n, by using the push algorithm. In [17], Feige
et al. determined asymptotically optimal upper bounds for

the runtime of this algorithm in random graphs, bounded
degree graphs, and the hypercube. Kempe et al. considered
geometric networks in [22] and proved that any information
is spread to nodes at distance t in O(ln1+ε t) steps.

In [21], Karp et al. introduced the so called random phone
call model by combining push and pull, and presented a
termination mechanism for this model, which reduces the
number of total transmissions to O(n log log n) in complete
graphs of size n. It has also been shown that this result
is asymptotically optimal among these kind of algorithms.
They also considered communication failures and analyzed
the performance of the algorithm in the case when the ran-
dom connections established in each round follow an arbi-
trary probability distribution. This algorithm works fully
distributed, whereby the nodes are supposed to have an es-
timation on the size of the network. However, we could
not use the termination mechanism of [21] for the random
graphs Gp, whenever pn is below some threshold and noth-
ing is known to the nodes of the graph.

Most papers on random graphs deal with their structural
properties. Please refer to [3] for an excellent survey on
the properties of Erdős-Rényi graphs. Chung and Lu gen-
eralized the classical random graph model in the following
way: For a sequence d = (d1, . . . , dn) let G(d) be the graph
of size n in which edges are independently assigned to each
pair of vertices (i, j) with probability didj/

Pn
k=1 dk. Now if

d obeys a power law, then the resulting graph is well suited
to model power law graphs. Chung et al. also analyzed the
connectivity, distances, and eigenvalues of these graphs for
certain sequences of d [5, 6, 8]. We should mention that
most real world networks possess further properties (e.g. ex-
hibit high levels of clustering, cf. [25]) which are unspecific
in such generalized random graphs. However, a termination
mechanism similar to the one considered in this paper leads
to optimal results not only in the graphs G(d), but also
in some dynamically constructed random power law graph
models (e.g. [1, 2]) [11].

1.3 Our Results
In this paper we present an adaptive randomized broad-

casting algorithm which is able, with probability 1−1/nΩ(1) ,
to distribute an information r, placed initially on a node of
a random graph Gp of size n and expected average degree
d = pn, to all nodes of the graph in O(log n) steps by us-
ing O(n max{log log n, log n

log d
}) transmissions of r, whenever

p ≥ logδ n/n for some constant δ > 2. This algorithm is ro-
bust against restricted communication failures or restricted
short time changes in the size of the network, and can be
adapted to some generalized random graph models as well.
Moreover, since we do not require any previous knowledge
about the size or average degree of the network, our algo-
rithm is robust against any kind of long time changes in
the size of the network. The results of this paper can be
extended to the case p ≥ δ′ log n/n, where δ′ is a large con-
stant, however, the proofs would be much more complicated,
and we only consider therefore the weaker case in this paper.

Our algorithm is based on the so called random phone
call model [21], in which every node is allowed (in each time
step) to choose a neighbor, uniformly at random, and to es-
tablish a communication channel with this neighbor. Then,
any node may send/receive messages to/from each neighbor
which has established a communication channel with this
node in the current step. In this model, even if a node does



not know anything about some specific information that has
to be transmitted to all nodes in the network, it still estab-
lishes communication channels with neighbors to exchange
messages. This kind of model makes only sense, if new or up-
dated informations occur frequently in the network so that
every node has to transmit some messages in each step any-
way. Then, the cost of establishing communication amor-
tizes over all transmissions [21], and we are allowed to con-
sider the number of transmissions of one single message only,
since the total number of transmissions will asymptotically
be bounded by the number of transmissions produced by all
informations occuring in the system [21]. However, if there
are only a few informations to be broadcasted to all nodes,
then the cost of establishing communication could exceed
the total cost for transmissions. Therefore, we assume in
this paper that new informations are frequently generated
by almost every node, however, we only focus on the distri-
bution and lifetime of a single information.

The rest of the paper is organized in four sections. In
Section 2 we concentrate on the case when the nodes are
supposed to have an estimation of log n/ log d, and present
an algorithm with the properties described above. In Section
3, we improve our algorithm by using an additional trick
that enables us to solve the broadcasting problem efficiently
even if nothing is known to the nodes about the graph. In
Section 4 we discuss the applicability of our methods in some
truncated power law networks. Finally, Section 5 contains
our conclusions.

2. ALGORITHM WITH PARTIAL
KNOWLEDGE

In this section we analyze the behavior of a randomized
broadcasting algorithm which is based on the random phone
call model introduced in [21]. For a graph G = (V, E), the
random phone call model is defined in the following way:
In each time step, every node of G chooses a neighbor, uni-
formly and random, and establishes a communication chan-
nel with this neighbor. Any node u ∈ V is then allowed
to send/receive messages to/from all nodes which have es-
tablished communication chanles with u in the current step.
Hereby we assume that all nodes have access to a global
clock, and they work in a synchronous environment. Due
to the definition of the model, a node may transmit/receive
messages to/from several neighbors within one step, how-
ever, the number of total messages in one step is bounded
by the number of vertices.

We consider the model described above on random graphs

Gp of size n and average degree d = pn, where p ≥ logδ n
n

for some δ > 2. We assume in this section that every
node has an estimation of τ = log n/ log d (n and d, how-
ever, are still unknown), and present an algorithm which is
able, with high probability1, to broadcast an information
r to all nodes of Gp within O(log n) time steps, whereby
the number of transmissions related to r is bounded by
O(n max{log log n, log n

log d
}).

As mentioned in the introduction, we assume that new
informations occur frequently in the network so that almost
every node places a call in each round anyway. However,
we only focus here on the distribution and lifetime of a sin-
gle information. The algorithm we describe in the following

1When we write “with high probability” or “w.h.p.”, we
mean with probability at least 1 − o(1/n).

paragraphs contains several rounds. In each round, when-
ever a communication channel is established between two
nodes, each one of them has to decide what to transmit to
the other node, without knowing if the vertex at the other
end of the edge has already received some specific informa-
tion prior to this step. Concerning the flow of information
we distinguish between push and pull transmissions. The
size of information exchanged in any way is not limited and
each information exchange between two neighbors in a round
is counted as a single transmission.

Let r denote the information we consider and assume
w.l.o.g. that r is placed on one of the nodes at time 0. In
each step, any node which decides to transmit r, also sends
its node ID and a constant number of other messages related
to the information (cf. algorithm below).

At the beginning, we initialize at each node u an array
T [cmax] with T [i] = 0 for any i = 1, · · · , cmax, where cmax is
a (large) constant, and the integers age = 0, itime = 0, and
ctr = 0. The array T and the integers itime, age, and ctr
are local variables and may differ from node to node. During
the algorithm proceeds, at any node u the array T is used
to store at most cmax different node ID’s, age denotes the
age of r (if u is informed), itime is used to store the most
recent time step (known to u) in which a node has been
newly informed in the system, and ctr counts the number of
consecutive time steps, in which u receives r (from a different
node in each step).

During the execution of the algorithm, each node can be
in one of the states U (uninformed), A (active), G (going
down), or S (sleeping). At the beginning, the node on which
r has initially been placed is in state A. All other nodes are
in state U . Now, in each step t any node u ∈ V executes
the following procedure:

1. Choose a neighbor, uniformly at random, and call this
node to establish a communication channel with it.
Furthermore, establish a communication channel with
all nodes which call u in this step.

2. If u is in state A or G, then send to all nodes which
have established a communication channel with u the
message (r, itime, age, ID(u)).

3. Receive messages from all neighbors which have es-
tablished a communication channel with u. Let these
messages be denoted by (r, itime1, age1, ID(v1)), . . . ,
(r, itimek, agek, ID(vk)) (if any). Then, close all com-
munication channels.

4. Perform the following local computations:

4.1. If u is in state A,G, or S, and itime is smaller
than max

1≤i≤k
itimei, then set itime = max

1≤i≤k
itimei.

If u is not in state U , then increment age by 1.

4.2. If u is in state U and there is a neighbor vi, which
transmitted r to u, then switch state of u to A,
and set itime and age to agei + 1.

4.3. If u is in state A, then:

∗ if u does not receive r in this step, then set
ctr = 0 and T [j] = 0 for any j = 1, . . . , cmax.

∗ if u receives r in this step and there are some
i ∈ {1, . . . , k} such that ID(vi) 6∈ T , then
choose such an i (e.g. uniformly at random),



set T [ctr+1] = ID(vi), and increment ctr by
1. If ctr = cmax, then switch state of u to G.

4.4. If u is in state G and age is equal to itime +
α max{log itime, τ}, where α is a large constant,
then switch state of u to S.

4.5. If u is in state S and age is smaller than itime +
α max{log itime, τ}, then switch back to state G.

Please note that in this algorithm, the nodes are aware
of τ = log n/ log d (the modified algorithm for the case in
which nothing is known to the nodes is given in the next
section).

In the rest of this section we analyze the behavior of the
algorithm presented above. First, we state a combinatorial
result needed for the main analysis.

For some u, v let Au,v denote the event that u and v are
connected by an edge, and let Au,v,l denote the event that
u and v share an edge and u chooses v in step l (according
to the random phone call model described above). In the
next lemma, we deal with the distribution of the neighbors
of a node u in a graph Gp, after it has chosen t neighbors,
uniformly at random, in t = O(log n) consecutive steps. In
particular, we show that the probability of u being connected
with some node v, not chosen within these t steps, is not
substantially modified after O(log n) steps.

Lemma 1. Let V = {v1, . . . , vn} be a set of n nodes and
let every pair of nodes vi, vj be connected with probability
p, independently, where p ≥ logδ n/n for some constant
δ > 2. If t = O(log n), u, v ∈ V , and A(U0, U1, U2) =

V

0<l≤t

(vi,vj ,l)∈U0

Avi,vj ,l

V

(vi′ ,vj′ )∈U1

Avi′ ,vj′

V

(vi′′ ,vj′′ )∈U2

A(vi′′ ,vj′′ )
,

for some U0 ⊂ V ×V ×{0, . . . , t} and U1, U2 ⊂ V ×V , then
it holds that

Pr [(u, v) ∈ E | A(U0, U1, U2) ] = p(1 ± O(t/d)),

for any U0, U1, U2 satisfying the following properties:

• |U0 ∩ {(vi, vj , l)|vj ∈ V }| = 1 for any vi ∈ V and
l ∈ {0, . . . , t},

• |U1 ∩ {(u, u′)|u′ ∈ V }| = Ω(d) and |U1 ∩ {(v, v′)|v′ ∈
V }| = Ω(d),

• (u, v) 6∈ U1 ∪ U2, and (u, v, i) 6∈ U0 for any i.

Proof. In our proof, we simplify the condition on U0 by
assuming that only node u is allowed to choose a neighbor,
uniformly at random, in each step 1, . . . , t. The other nodes
do not choose and call any neighbor in these steps. Then,
{vi | (vi, vj , l) ∈ V ×V ×{1, . . . , t}}∩U0 = {u}. Please note
that the proof techniques required for the general case (in
which any node chooses a neighbor, uniformly at random, in
each step 1, . . . , t) are the same as in the proof presented be-
low, however, the presentation becomes more complicated,
and therefore we omit the general case here.

Let Su = {vj | (u, vj , l) ∈ U0 for 1 ≤ l ≤ t, and (u, vj) 6∈
U1}, and denote by w1, . . . , wt the elements of Su. Let V ′ de-
note the set of nodes obtained from V by deleting any node
u′ with the property (u, u′) ∈ U1 ∪ U2 or u′ ∈ Su. First we
consider the distribution of the neighbors of u after one sin-
gle step. Let A denote the event that u is connected to the
nodes of Su and (

V

(vi′ ,vj′ )∈U1

Avi′ ,vj′

V

(vi′′ ,vj′′ )∈U2

A(vi′ ,vj′ )
)

holds. Let A1 denote the event that u chooses w1 in step

l = 1. If we denote by pj the probability that u has j neigh-
bors among the nodes of V ′, then it holds that

Pr[A1 | A] = p

|V ′|−1
X

j=0

pj

j + |Su| + |U1 ∩ N(u)| + 1

+ (1 − p)

|V ′|−1
X

j=0

pj

j + |Su| + |U1 ∩ N(u)| .

Here, the first term on the right hand side expresses the fact
that with probability p the vertices u and v are connected,
and with probability pj the vertex u has exactly j neigh-
bors among the elements of V ′. Then, u chooses w1 with
probability 1/(j + |Su|+ |U1 ∩N(u)|+1), where |U1 ∩N(u)|
denotes the number of edges which are incident to u and are
contained in U1. The second term handles the case when u
and v are not connected. Then, with probability pj the ver-
tex u has exactly j neighbors in V ′, however now u chooses
w1 with probability 1/(j + |Su| + |U1 ∩ N(u)|).

The conditional probability p′
u,v = Pr[(u, v) ∈ E | A1 ∧A]

satisfies the equality

p′
u,v =

p
P|V ′|−1

j=0 pj/(j + |Su| + |U1 ∩ N(u)| + 1)

Pr[A1 | A]
.

Let e′ =
P|V ′|−1

j=0 pj/(j + |Su| + |U1 ∩ N(u)| + 1). Then it
holds that

Pr[A1 | A] = (1 − p)

|V ′|−1
X

j=0

pj

j + |Su| + |U1 ∩ N(u)| + 1
·

· j + |Su| + |U1 ∩ N(u)| + 1

j + |Su| + |U1 ∩ N(u)| + pe′

≤ pe′ +

|V ′|−1
X

j=0

pj

j + |Su| + |U1 ∩ N(u)| + 1
·

· j + |Su| + |U1 ∩ N(u)| + 1

j + |Su| + |U1 ∩ N(u)| − pe′

since

|V ′|−1
X

j=0

p · pj

j + |Su| + |U1 ∩ N(u)| + 1
· j + |Su| + |U1 ∩ N(u)| + 1

j + |Su| + |U1 ∩ N(u)|

≥
|V ′|−1

X

j=0

p · pj

j + |Su| + |U1 ∩ N(u)| + 1
≥ pe′.

Then,

Pr[A1 | A] ≤
|V ′|−1

X

j=0

pj

j + |Su| + |U1 ∩ N(u)| + 1
·

· j + |Su| + |U1 ∩ N(u)| + 1

j + |Su| + |U1 ∩ N(u)|

≤
|V ′|−1

X

j=0

pj(1 + 1/Ω(d))

j + |Su| + |U1 ∩ N(u)| + 1

and the claim follows.
Similar techniques lead to the result for arbitrary t =

O(log n). The desired upper bound on the conditional prob-
ability Pr [(u, v) ∈ E | A(U0, U1, U2) ] can be obtained in a
similar way.



This lemma implies that even if the occurrence of the edges
are not necessarily independent after t = O(log n) steps, in
certain cases (as in the lemmas below) we still can apply
some known results which require independency (like the
Chernoff bounds [4, 20]) if Pr [(u, v) ∈ E | A(U0, U1, U2) ] is
properly approximated by p(1 ± O(t/d)).

Now we are ready to analyze the algorithm presented at
the beginning of this section. Let I(t) denote the set of
informed nodes at time t. The set of uninformed nodes is
denoted by H(t) = V \ I(t). In order to show that the algo-
rithm is able to spread an information among all nodes of a
graph Gp within O(log n) rounds, and the number of total

transmissions is bounded by O
“

n max
n

log log n, log n
log d

o”

,

we assume that, as long as I(t) ≤ n/2, only push transmis-
sions are performed. When I(t) ≥ n/2, then the information
is transmitted only by pull transmissions. These assump-
tions simplify the proof, and there is only a difference in a
constant factor between the runtime or communication com-
plexity in this modified version and the original algorithm.
We omit the details due to space limitations.

In our proofs, age and t are considered to be the same
at any informed node, since we assumed that r is placed on
one of the nodes at time 0. In order to show that the algo-
rithm has the claimed properties, we first prove the following
lemmas.

Lemma 2. Let I(t) be the set of informed nodes in Gp

at time t. Let us assume that |I(t)| ≤ q log n, where q is a
properly chosen constant value. Then, within O(log n) steps
the number of informed nodes will exceed the value q log n
with probability 1 − o(1/n).

Proof. Let u be the node at which the information r is
placed at time 0. Let tree Tt(u) = (V ′, E′) be defined in
the following way: V ′ contains the nodes informed by time
t, and there is an edge between two nodes u′, u′′ ∈ V ′ in
Tt(u) if u′′ is informed by u′ before step t + 1. If some node
gets the information from several nodes simultaneously, then
only one of them (chosen randomly) is considered to share
an edge in Tt(u) with this node.

We consider now two cases. In the first case we assume
that p ≤ 1/

√
n. Let Iu′(t) denote the set of nodes which

have been informed by u′ before time step t + 1. Then,
with probability 1 − o(1/n2), at most 3 edges can occur
between a node u′ ∈ I(t) and some other nodes of I(t) \
Iu′(t). Therefore, as long as I(t) ≤ q log n, the probability
that a node with |Iu′(t)| ≤ cmax − 3 will switch to state G
is o(1/n2).

We ignore now the probability that a node with less than
cmax − 2 neighbors in Tt(u) will be stopped by the algo-
rithm. Clearly, Tt(u) has less than |I(t)|/(cmax − 4) nodes
with more than cmax −3 neighbors in Tt(u). Since a node u′

with |Iu′(t)| ≤ cmax − 3 propagates the information to some
uninformed node with probability 1−O(1/ logδ n), applying
the methods of [17] we conclude that the number of informed
nodes will exceed q log n within O(log n) steps, w.h.p.

If p ≥ 1/
√

n, then the probability that a node u′ ∈ I(t)
chooses a node from I(t) (or is chosen by a node from I(t))
in step t + 1 is O(log n/

√
n). Therefore, as long as I(t) ≤

q log n, an arbitrary node u′ will switch to state G with
probability o(1/n2). Similarly, each node pushes r to some
uninformed node with probability 1 − O(log n/

√
n). Thus,

there exists a constant c so that |I(t + 3)| ≥ |I(t)|(1 + c)
with probability 1 − o(1/n2), and the lemma follows.

Lemma 2 implies that after O(log n) rounds, we have |I(t)| ≥
q log n. The total number of message transmissions after
these rounds does not exceed the value O(log2 n).

Now we consider the case when |I(t)| lies between q lnn

and n/24 max{log n/ log d,log log n}.

Lemma 3. Let I(t) be the set of informed nodes in Gp

at time t = O(log n), and assume that q lnn ≤ |I(t)| ≤
n/24 max{log n/ log d,log log n}, where q is the constant defined
in Lemma 2. We also assume that the number of active
nodes |Ia(t)| before step t+1 is at least |I(t)|(1−O( t

logδ−1 n
)).

Then, a constant c exists such that |I(t + 1)| ≥ |I(t)|(1 + c)
and |Ia(t + 1)| ≥ |I(t + 1)|(1 − O((t + 1)/ logδ−1 n)) with
probability 1 − o(1/n2).

Proof. Lemma 1 implies that every node of I(t) has at

most p|I(t)| + O(
p

p|I(t)| log n + log n) neighbors in I(t)

(w.h.p.). Since there are |I(t)|(1 − O(t/ logδ−1 n)) active
nodes in I(t), and any of these active nodes chooses an un-
informed neighbor with probability 1 − 1/ logδ−1 n, it fol-
lows that |I(t)|(1−O(t/ logδ−1 n))(1− (1 + o(1))/ logδ−1 n)
nodes propagate r to some uninformed nodes, with prob-
ability 1 − o(1/n3). Applying Lemma 1 together with the
Chernoff bounds [4, 20] as in [17], it can be shown that with
probability 1 − o(1/n2) at least |I(t + 1)| − |I(t)| > |I(t)|/2
uninformed nodes are informed in step t + 1.

On the other hand, since any active node chooses an in-
formed neighbor with probability 1/ logδ−1 n, and |Ia(t)| ≤
|I(t)|, at most |I(t)|

logδ−1 n
(1 + o(1)) nodes of I(t) will choose

some informed neighbor, with probability 1−o(1/n2). There-
fore, the number of nodes switching to state G in step t is less
than |I(t)|(1+ o(1))/ logδ−1 n, with probability 1− o(1/n2).
Since there have been |I(t)|O(t/ logδ−1 n) inactive informed
nodes before (with probability 1−o(1/n2)), and |I(t+1)| ≥
|I(t)|, the lemma follows.

Lemma 3 implies that after additional O(log n) steps, we

have |I(t)| ≥ n/24 max{log n/ log d,log log n}. Furthermore, there
are at most O(n) transmissions during these rounds.

In the following lemma we consider the case when I(t) ∈
[n/24 max{log n/ log d,log log n}, n/2].

Lemma 4. Let I(t) be the set of informed nodes in Gp

at time t = O(log n). Assume that |I(t)| is larger than

n/2
4 max{ log n

log d
,log log n}

and smaller than n/2, and |I(t)|(1 −
o(1)) nodes of I(t) are either in state A, or in state G with
itime = t0(1− o(1)), where t0 is the first time step in which

|I(t)| is larger than n/2
4 max{ log n

log d
,log log n}

. Then, there ex-
ists a constant c such that |I(t + 1)| ≥ |I(t)|(1 + c) with
probability 1−o(1/n2). Moreover, all vertices informed after
step t0 will transmit for at least 7α/8 · max{ log n

log d
, log log n}

further steps, w.h.p.

Proof. We assumed at the beginning that we only con-
sider push transmissions as long as the number of informed
nodes does not reach n/2. Lemma 3 implies that if |I(t)| ≤
n/24 max{log n/ log d,log log n}, then |I(t)|(1−o(1)) nodes are ac-
tive, w.h.p. Since I(t0)(1−o(1)) nodes have been informed in
the most recent o(t0) steps, and I(t0)(1−o(1)) of these nodes
are active at time t0, I(t0)(1−o(1)) nodes are in state A and
have itime = t0(1− o(1)). Since t0 = Ω(log n) [17], all these
vertices will be transmitting for Ω(max{log log n, log n

log d
}) ad-

ditional steps. As in the proof of Lemma 3, we can show



that, with probability 1 − o(1/n2), the number of informed
nodes is increased by a constant factor in every succeeding
step. This implies that if α is large enough, then within
additional α/8 · max{log log n, log n/ log d}) steps, I(t) be-
comes larger than n/2 and all vertices informed after time
step t0 are either in state A or in state G with itime ≥
t0, w.h.p. Moreover, all these vertices transmit r for at
least 7α/8·max{log log n, log n/ log d}) further steps, w.h.p.,
whenever α is large enough.

Lemma 4 implies that within O(max{ log n
log d

, log log n}) rounds

we have |I(t)| ≥ n/2. Moreover, the number of total trans-
missions is at most O(n) after these rounds.

As mentioned above, after informing more than n/2 nodes
we only count the pull transmissions in the network. Then,
we can state the following lemma.

Lemma 5. Let |H(t)| ∈ [n/
√

d, n/2] be the number of un-
informed nodes in Gp at some time t = O(log n), and as-
sume that there are at most |H(t)|(1 + O(t/ logδ−1 n)) in-
formed nodes in state S, or in states A,G with itime ≤ t0,
where t0 denotes the time step defined in Lemma 4. Then,
at time t + 1 it holds that |H(t + 1)| ≤ |H(t)|2(2 + o(1))/n,
and at most |H(t + 1)|(1 + O((t + 1)/ logδ−1 n)) informed
nodes are in state S, or in state A, G with itime ≤ t0.

Proof. Let t1 be the time step in which |I(t1)| ≥ n/2 for
the first time and let H ′(t1) denote the set of vertices which
already have r, but are either in state S or in state A, G with
itime < t0. From Lemma 3 and 4 we know that |H ′(t1)| =

o(n/24 max{log n/ log d,log log n}). We assume therefore that at
time t1, any node informed before step t0 is either in state S
or has itime < t0. We denote the set of these nodes by Dt1 .
We know that a node u′ ∈ Dt1 is connected to some node
u′′ ∈ Dt1 , not already chosen by u′ in some step t′ ≤ t1,
with probability at most p(1 + o(1)). Due to Lemma 1, u′

has p|V \ Dt1 |(1 − o(1)) neighbors in V \ Dt1 .

Clearly, as long as |H(t)|+|H ′(t)| > n/
√

d, we can use the
methods of [21] to show that at most a fraction of (|H(t)|+
|H ′(t)|)(1 + o(1/ log n))/n of the |H(t)| uninformed nodes
remain uninformed after the t+1st step (or have itime < t0).
Since a node of H ′(t) does not switch back to G, or does not
set itime ≥ t0, with nearly the same probability (|H(t)| +
|H ′(t)|)(1 + o(1/ log n))/n, the lemma follows. Moreover,
all nodes which have been informed after step t0 (or have
reset itime to some value ≥ t0) will transmit for 3α/4 ·
max{log n/ log d, log log n} further steps, w.h.p., whenever
α is large enough.

Lemma 5 implies that after additional O(log log n) steps it

holds that |H(t)| ≤ n/
√

d. The number of transmissions is
at most O(n log log n).

The next lemma deals with the case |H(t)| ≤ n/
√

d.

Lemma 6. Let |H(t)| ∈ [q ln n, n/
√

d] be the number of
uninformed nodes in Gp at some time t = O(log n), where
q is the constant defined in Lemma 2. Then, |H(t + 1)| ≤
|H(t)|O(

p

log n/d), and |H ′(t + 1)| ≤ |H(t)|O(
p

log n/d)

Proof. Lemma 5 implies that when |H(t)| ≤ n/
√

d for

the first time, then |H ′(t)| ≤ n(1+o(1))/
√

d, w.h.p. Lemma
1 implies that any node of H ′(t) or H(t) has less than
O(

√
d log n) neighbors in H ′(t), w.h.p. Applying now Lemma

1 together with the Chernoff bounds [4, 20], we conclude

that an arbitrary uninformed node remains uninformed in
some step t with probability O(

p

log n/d). Similarly, a
node of H ′(t) does not set itime ≥ t0 with probability

O(
p

log n/d).

Lemmas 6 ensures that after additional O(log n/ log d)
rounds all nodes are informed, w.h.p. The overall communi-
cation complexity is O(n max{log n/ log d, log log n}). More-
over, if α is large enough, then all nodes will transmit r
simultaneously for at least α

4
· max{ log n

log d
, log log n} further

steps, w.h.p. This implies that during these steps, all nodes
switch to state G, and since the largest itime occuring in
the system is bounded by t0+O(max{log n/ log d, log log n}),
all nodes stop transmitting r within O(max{ log n

log d
, log log n})

additional steps.
Please remember, we assumed that during the algorithm

proceeds the nodes are aware of an estimate of log n/ log d.
In the following section we present a method which allows
most nodes to determine the desired estimate while the algo-
rithm is executed, without substantially increasing the run-
time or the number of message transmissions.

3. FULLY ADAPTIVE ALGORITHM
In order to describe the fully adaptive algorithm, first we

initialize at any node some additional integers, apart from
the array T , and the integers age, itime, and ctr. These
additional integers at a node u are denoted by timeu(r), τ ′,
τ ′′, h, h′, and ctr2. These integers are local variables and
may differ from node to node. At the beginning, however,
they are all set to 0 at any node.

We also introduce the special states O, R, and R′. During
the algorithm proceeds, any node is simultaneously in one
of the states U , A, G, or S, and in one of the special states
O, R, or R′. The special state of a node u is denoted in the
rest of this section by sstate(u) and is initialized with O.

In each of the steps 0 and 1, let any node choose a neigh-
bor, uniformly at random, and compare the neighbors ID,
chosen in step 1, with the ID of the neighbor reached in
step 0. If the two IDs at some node w are the same, then
w sends out a special information rw. These special mes-
sages perform random walks in the system and some node
w′ ∈ V checks how many of these messages are lying on
it at time t = α · timew′ (r), where timew′ (r) denotes the
time when w′ has got r. Now, if timew′ (r) is large enough
(i.e., timew′ (r) = Ω(log n)), then any such message lies
on w′ with probability (1 ± o(1/n2))/n [3, 12]. Combin-
ing the results of [12] with [24] (Lemma 2.13), it holds that
if timew′(r) is large enough, then some nodes of Gp have an
estimate of log n/ log d, w.h.p. Please note that in any step
there are O(n/d) special messages performing random walks
in the system, and therefore the total number of transmis-
sions does not increase substantially in the system.

Now we modify the algorithm described at the beginning
of the previous section so that some nodes compute an es-
timate on log n/ log d during the algorithm proceeds and
broadcast the information to the other nodes.

To describe the algorithm, first define si = 2i for any
i ∈ {0, . . . , αdlog log ne}. Two numbers j1 and j2 are called
s2-equivalent, and denoted j1 ∼s2 j2, if an i exists such
that si ≤ j1, j2 ≤ si+1. Two nodes w′ and w′′ are called
s2-equivalent if timew′ (r) and timew′′ (r) are s2-equivalent.

In the algorithm presented below, any node u may use
the subrutine restate(u,SpecS, v, age, τ̃), where SpecS de-



notes one of the special states R or R′, and τ̃ is an integer.
restate(u, SpecS, v, age, τ̃ ) is used when node u has switches
its state to SpecS, either on its own, or forced by some neigh-
bor v (cf. algorithm below).

restate(u,SpecS, age, τ̃):

• Switch sstate(u) to SpecS and state of u to A. Fur-
thermore, set τ ′ = τ̃ , itime = age, ctr = 0, and
T [j] = 0 for any j = 1, . . . , cmax.

Now we are ready to describe the algorithm. At the be-
ginning, the node on which r is placed is in state A. All
other nodes are in state U . In each step t, any node u ∈ V
executes the following procedure:

1. Choose a neighbor, uniformly at random, and call this
node to establish a communication channel with it.
Furthermore, establish a communication channel with
all nodes which call u in this step.

2. If u is in state A or G, then send to all nodes which
have established a communication channel with u the
message (r, itime, age, ID(u), sstate(u), h′, τ ′).

3. Receive messages from all nodes which have estab-
lished a communication channel with u in this step. In
the following, (r, itime1, age1, ID(v1), sstate(v1), h

′
1),

. . . , (r, itimek, agek, ID(vk), sstate(vk), h′
k) denote the

messages (related to r) received in this step, if any.
Then, close all communication channels

4. If u is in state A, G, or S, then increment age by 1.

5. Perform the following local computations:

5.1 If sstate(u) = O and sstate(vi) = O for all i =
1, . . . , k, then consider the following cases:

5.1.1 If u is in state U and there is a neighbor vi,
which transmitted r to u, then switch state of
u to A, and set itime, age, and timeu(r) to

agei+1. Furthermore, set h′ = 2blog timeu(r)c.

5.1.2. If u is in state A, then:

· if u does not receive r in step t, then set
ctr = 0 and T [j] = 0 for any j.

· if u receives r in this step and there are
some i ∈ {1, . . . , k} such that ID(vi) 6∈ T ,
then choose such an i (e.g. uniformly at
random), set T [ctr + 1] = ID(vi), and
increment ctr by 1.

· if itime < max1≤i≤k itimei, then set itime
= max1≤i≤k itimei. If there exists an i
such that vi transmits r to u for the first
time, u ∼s2 vi, and vi has not been in-
formed by u, then increment ctr2 by 1. If
ctr = cmax, then switch state of u to G.

5.1.3. If u is in state G and age = itime + α ·
log itime, then switch to state S.

5.1.4. If ctr2 ≥ 5 and age = α · itime, then check
the number of rw’s on u. If this number is
larger than 0, then let τ ′′ be this number.
Otherwise, set τ ′′ = 1.

5.1.5. If τ ′′ > log itime and age = 8α·2blog timeu(r)c+
h, then restate(u,R, age, τ ′′). Here h depends
on τ ′′ and timeu(r), and is defined later in
this section.

5.1.6. If τ ′′ ≥ 1 and age = 32α · 2blog timeu(r)c, then
restate(u,R′, age, log itime).

5.2. If sstate(u) = O and there is an i such that
sstate(vi) 6= O, then restate(u, sstate(vi), age, τ ′

i),
and set h′ to h′

i.

5.3. If sstate(u) = R and sstate(vi) 6= R′ for all i =
1, . . . , k, then consider the following cases:

5.3.1. If there is an i such that τ ′
i is larger than τ ′

of u, and τ ′
i is not s2-equivalent with τ ′ of u,

then restate(u,R, age, τ ′
i).

5.3.2. If u is in state A, then

· if itime < max1≤i≤k itimei, then set itime
= max1≤i≤k itimei.

· if u does not receive r in this step, or there
is an i such that sstate(vi) 6= R or τ ′

i is
not s2-equivalent with τ ′ of u, then set
ctr = 0 and T [j] = 0 for all j.

· otherwise, if there are some i ∈ {1, . . . , k}
such that ID(vi) 6∈ T , then choose such
an i, set T [ctr + 1] = ID(vi), and incre-
ment ctr by 1. If ctr = cmax, then switch
state of u to G.

5.3.3. If u is in state G and age > itime+ατ ′, then
switch to state S.

5.3.4. If τ ′′ > log itime and age = 8α·2blog timeu(r)c+
h, then restate(u,R, age, τ ′′).

5.3.5. If age = 16αh′, then restate(u,R′, age, τ ′).

5.4 If sstate(u) = R and there is an i such that
sstate(vi) = R′, then restate(u,R′, age, τ ′

i).

5.5 If sstate(u) = R′, then consider the following
cases:

5.5.1 Let i1, . . . , il represent the indices for which
sstate(vij ) = R′ and τ ′

ij
is s2-equivalent with

τ ′ of u. Now, if itime < max1≤j≤l itimeij ,
then set itime = max1≤j≤l itimeij . However,
if there is an i such that sstate(vi) = R′, τ ′

i is
larger than τ ′ of u, and τ ′

i is not s2-equivalent
with τ ′ of u, then restate(u,R′, age, τ ′

i ).

5.5.2. If state of u is A, then

· if u does not receive r in this step, or there
is an i such that sstate(vi) 6= R′ or τ ′

i is
not s2-equivalent with τ ′ of u, then set
ctr = 0 and T [j] = 0 for all j.

· otherwise, if there are some i ∈ {1, . . . , k}
such that ID(vi) 6∈ T , then choose such
an i (e.g. uniformly at random), set T [ctr+
1] = ID(vi), and increment ctr by 1. If
ctr = cmax, then switch state of u to G.

5.5.3. If state of u is G and age = itime+ατ ′, then
switch state of u to S.

5.5.4. If state of u is S and age < itime+ατ ′, then
switch state of u back to G.

As mentioned in the algorithm, the value h depends on
τ ′′ and timeu(r). If τ ′′ ∈ [log h′ +1, 2 log h′] then h = 0. For
τ ′′ ∈ [2 log h′ + 1, 4 log h′] set h = αh′/ log h′, and generally,
if τ ′′ ∈ [2i log h′ + 1, 2i+1 log h′], then h = iαh′/ log h′.

The nodes in the algorithm presented above are in one
of the special states O, R, or R′. As long as a node is



in special state O, it executes a similar procedure to the
one presented in the previous section, however itime is only
checked and updated in state A. The cases, when a node
u with sstate(u) = O switches to special state R or R′,
are described in 5.1.4.-5.1.6., and 5.2. In order to switch
to R, u first checks, if it has seen 5 different nodes which
are s2-equivalent with u, have not been informed by u, and
transmit r to u. If this is the case, and at time αtimeu(r)
there are more than log itime messages of type rw lying on
u, then u switches to state R at time 8αh′ + h. Otherwise
a node can only switch to state R if it receives r from a
neighbor being already in state R.

As described in 5.1.6. and 5.2. a node can switch directly
to special state R′ at time 32αh′, if it has seen 5 different
nodes with the properties described above, but it does not
satisfy the other condition which would allow him to switch
to special state R; or it receives r from a node being already
in special state R′.

If a node u is in special state R, then it executes a pro-
cedure similar to the one described in the previous section,
however, itime is only updated in state A, or if some re-
ceived τ ′

i is larger than and not s2-equivalent with τ ′ of
u. Moreover, if some received τ ′

i is larger than and not
s2-equivalent with τ ′ of u, or at time 8αh′ + h it holds
that τ ′′ > log itime, then the own τ ′ is also updated and
u switches (back) to state A. This implies that most nodes
run Ω(log(log n/ log d)) times through states A, G, and S,
and before switching to state R′ (in time step 16α ·h′) their
τ ′ equals Ω(log n/ log d).

In state R′ the nodes getting the largest τ ′ values perform
the same procedure as described in the previous section, and
transmit r to all nodes in the graph.

Now we analyze the runtime and number of transmissions
generated by the algorithm described in this section. In
our proofs, we only concentrate on the case log n/ log d ≥
log log n, and assume, as in the previous section, that if
|I(t)| ≤ n/2, then r is only transmitted by push transmis-
sions. If |I(t)| > n/2, then r is only transmitted by pull
transmissions. First, we show in the next lemma that any
node switching to special state R on his own has itime =
Θ(log n).

Lemma 7. Any node, which checks the number of rw’s on
itself, has itime = Θ(log n), w.h.p. Moreover, there exists
such a node in Gp (w.h.p.).

Proof. As in the proof of Lemma 2, we consider two
cases. Let us first assume that p <

√
n/n, and let t′ be

the largest integer such that |I(t′)| < 4
√

n. Then, using the
Chernoff bounds [4, 20] as in the proof of Lemma 2, it can
be shown that, with probability 1 − o(n2), none of the first
|I(t′)| nodes will have more than 4 informed neighbors at
time t′, apart from the vertices informed by the node itself,
or the vertex which informed the node.

In the second case let p ≥ √
n/n, and let t′ be defined as

before. Then, the probability that a node chooses 4 times
an informed neighbor before step t′ is O(1/n3). Thus, with
probability 1−o(1/n2), there does not exist any vertex which
is informed before step t′ and checks the number of rw’s on
itself.

In order to show the second statement of the lemma, let
t1 be the time step defined in the proof of Lemma 5. (Due
to Lemmas 2-4, I(t) will exceed n/2 even if itime is never
updated in state G.) Then, with constant probability, a

node in I(t) with some t > t1 will be contacted in step
t + 1 by an informed node which has not been contacted by
this node before. This implies that, with high probability, a
constant fraction of the nodes will check the number of rws
on themself, and the lemma follows.

Lemma 7 implies that vertices exist, which will switch to
state R, and all these vertices have itime = Θ(log n) and
τ ′′ = Ω(log log n) (please remember that we only analyze
the case when log n/ log d > log log n).

The next lemma deals with the distribution of the vertices
in special state R.

Lemma 8. There are at most O(n/ log n) nodes in state
R, which transmit r for more than ω(log n/ log d) steps,
w.h.p.

Proof. For simplicity we assume that any node which
checks the number of rw’s on itself has the same h′. Let
τ1 and τ2 be two integers in the range [log log n, log n/ log d]
such that τ1 6∼s2 τ2. Assume w.l.o.g. that τ1 < τ2. Further-
more, let U1 and U2 denote the set of vertices with τ ′′ = τ1

and τ ′′ = τ2, respectively. Due to the results of [24, 12],

n/ logΩ(log log n) n = |U1| > |U2|. Since the nodes of U1 set
τ ′ ∼s2 τ1 in step 8αh′ + blog τ1cαh′/ log h′, and the nodes
of U2 set τ ′ ∼s2 τ2 in step 8αh′ + blog τ2cαh′/ log h′, we
conclude that when Θ(n/ log n) nodes are in special state R

and have τ ′ ∼s2 τ1, then at most n/ logΩ(log log n) n nodes
have τ ′ ∼s2 τ2. Then, for each i = blog log log nc, . . . ,
dlog log n−log log de at least n−O(n/ log n) nodes will switch
to state G after being active for at most O(τ ′) rounds, where
τ ′ is in the range [2i, 2i+1].

Since itime will not be updated at a node after the node
switches to state G (excepting when τ ′ has to be significantly
increased), n − O(n/ log n) nodes are transmitting for at

most
Plog O

“

log n
log log n·log d

”

i=0 2i log log n = O(log n/ log d) steps
in special state R.

Lemma 8 implies that the number of transmissions is less
than O(n log n/ log d) as long as the vertices are in state R.

In the next lemma we show that, with probability 1 −
1/nΩ(1), at least n − O(n/

√
d) informed nodes will simulta-

neously be in state R′ for Ω(log n/ log d) consecutive steps,
whenever log n/ log d > γ log log n, where γ is a large con-
stant.

Lemma 9. Let Gp be a random graph with p ≥ logδ n/n
and perform the algorithm presented at the beginning of this
section on this graph. If log n/ log d > γ log log n, then, with

probability 1 − 1/nΩ(1), there are n − O(n/
√

d) informed
nodes which transmit r simultaneously for Ω(log n/ log d)
consecutive steps. However, n − O(n/ log n) nodes trans-
mit r for at most O(log n/ log d) steps, and all nodes will
switch to state S and special state R′ after a total number
of O(log n) steps, with probability 1 − 1/nΩ(1).

Proof. Again, we assume for simplicity that all nodes
which check the number of rw’s on them have the same h′

value. Lemma 2-5 imply that the algorithm described at
the beginning of this section, in which we allow any node
to transmit for O(log log n) steps in state G, informs all but
O(n/ log4 n) nodes in Gp, w.h.p. Furthermore, since itime
is not updated in state G, at least n − O(n/ log4 n) nodes
will transmit for at most O(log log n) steps in the first phase.



Let τmax be the maximal number of rw’s occurring on a
node in the system, and let u be the node with the small-
est timeu(r) checking the number of rw’s lying on itself.

Then, with probability 1 − 1/nΩ(1), there is a node u′ with

2blog timeu(r)c = 2blog timeu′ (r)c, which checks the number of
rw’s on itself, and sets τ ′′ ≥ τmax/4.

Clearly, there are n − O(n/ log n) nodes which set their
τ ′ ≥ τmax/4 while being in state R. All these nodes switch
into special state R′, and start to transmit r at time 16αh′.
We can now apply Lemmas 4-6, and conclude that after
O(log n/ log d) steps all vertices have r, and are in special
state R′ with τ ′ ≥ τmax/4. Then, if α is large enough,
all vertices will have switched to state G within additional
O(log n/ log d) steps.

The arguments above imply that now the difference be-
tween the smallest and largest itime’s is at most O( log n

log d
).

Since τ ′ = O(log n/ log d), we obtain the lemma.

Now we summarize the results in the following theorem.

Theorem 1. Let Gp be a random graph with p ≥ logδ n/n.
The algorithm presented in this section informs all nodes of
the graph within O(log n) steps, whereby the number of mes-
sage transmissions is bounded by O(n max{log log n, log n

log d
}),

with probability 1 − 1/nΩ(1).

Using the techniques of [21] it can be shown that the results
of Theorem 1 are asymptotically optimal.

Theorem 2. Let Gp be a random graph with p ≥ logδ n/n
and assume that an information r is placed on one of the
nodes at time 0. Furthermore, we assume that in any suc-
ceeding step, each node is allowed to choose one neighbor,
uniformly at random, and to establish a communication chan-
nel with this neighbor. Now, even if every node is allowed
to transmit r in both directions along an incident commu-
nication channel, then any broadcasting algorithm obeying
the rules above needs at least Θ(log n) time steps, w.h.p., to
spread r to all nodes of Gp. Moreover, any such time effi-
cient broadcasting algorithm produces, with high probability,
at least Ω(n max{log log n, log n/ log d}) transmissions of r.

Proof. We start the proof with the first statement of
the theorem, and show that any algorithm satisfying the
assumptions of the theorem requires at least Ω(log n) time
steps to inform

√
n nodes of Gp. Obviously, such a broad-

casting algorithm has fastest performance, if all informed
nodes transmit the information in any time step (we do not
consider the number of transmissions at this time). If I(t)
denotes the set of informed nodes at time t, then due to
[17] there can be at most |I(t)| nodes, which are informed
in step t + 1 by push transmissions. Since any node has
d(1 ± o(1)) neighbors in Gp, w.h.p. [3], and each node con-
tacts a neighbor independently and uniformly at random,
we apply the Chernoff bounds [4, 20] to conclude that there
can be at most O(log n) different nodes contacting a node
v ∈ V in some step t, with probability 1 − o(1/n2). There-
fore, it is sufficient to show that |I(t + 1)| = O(|I(t)|) in the
case when r is only transmitted by pull transmissions, and
|I(t)| ≥ logq n, where q is a large constant.

Now let us analyze the distribution of the edges between
I(t) and H(t). If |I(t)| ≤ √

n, then there can be at most
|I(t)|d(1 + o(1)) edges between I(t) and H(t) (w.h.p.) [3],
and let N(I(t)) be the set of nodes, which are in H(t) but
have at least one neighbor in I(t). Furthermore, let dI(t)(vj)

be the number of neighbors of some node vj ∈ N(I(t))
in I(t). Then, vj becomes informed in step t + 1 with
probability dI(t)(vj)/d(1 ± o(1)) (please note that we con-
sider the spread of information by pull transmissions only).
Now, since any uninformed node chooses some neighbor in-
dependently, and the expected value E(|I(t+ 1)| − |I(t)|) ≤
|I(t)|(1+o(1)), applying the Chernoff bounds [4, 20] we con-
clude that |I(t + 1)| − |I(t)| = O(|I(t)|), whenever |I(t)| ≥
logq n with q large enough.

In the following paragraphs we analyze the number of
transmissions. We allow an algorithm to execute at most
q log n broadcasting steps, where q is a large constant. We
show that there is a constant ε such that at least εn log n

log d
transmissions of r are needed in order to inform all nodes of
the graph.

Let I(t) denote the set of informed nodes at time t, and let
Ir(t) ⊆ I(t) be the set of nodes transmitting r at time t. Let
ε′ be a small constant, and let U be the set of vertices such
that no node of U is informed within the first ε′n vertices,
and it contains an 1-factor of size Θ(|U |). Let U ′ be the set of
vertices belonging to this 1-factor, and let M ′ be the 1-factor
we consider. Now, two vertices v, v′ ∈ U ′ with (v, v′) ∈ M ′

call each other (i.e., v chooses v′, and v′ chooses v) in some
step t with probability Θ(1/d2). If t1 denotes the number
of steps in which more than ε′n nodes are transmitting r,
and t2 is the number of steps in which at most ε′n nodes
are transmitting, then the probability that v and v′ choose
eachother in every step, in which more than ε′n nodes are
transmitting r, is 1/dΘ(2t1). The probability that in these
steps no node will choose v or v′ is Ω(1).

On the other hand, Lemma 1 implies that whenever |I(t)|−
|Ir(t)| informed vertices decide not to transmit the informa-
tion r in step t+1, each node of U has at least p(n−|Ir(t)|)−
O(

p

p(n − |Ir(t)|) log n+log n) neighbors in V \Ir(t), w.h.p.
(Hereby, we used the fact that if a node decides not to trans-
mit, it cannot know that it has no edges to the set H(t), and
hence Lemma 1 applies.) Therefore, if |Ir(t)| ≤ ε′n, nodes
v and v′ do not establish connection with a vertex trans-
mitting r with some constant probability pε′ . Decreasing
now ε′, the probability pε′ can be increased to any constant
between 0 and 1.

Summarizing, if t1 ≤ ε log n/(ε′ log d), and t2 ≤ q log n,
where ε and ε′ are two properly chosen constants, then v
and v′ remain uninformed with some probability ω(1/n).
Since |U ′| = Θ(n), the claim follows.

Similar techniques can also be used to show that the al-
gorithm requires at least ε · n log log n transmissions of r, if
d ≥ n1/ log log n, where ε is a small constant. We omit this
case here due to space limitations.

4. APPLICATION TO OTHER CLASSES
OF RANDOM GRAPHS

In this section, we discuss the applicability of our algo-
rithms in certain classes of more general random graph mod-
els. First, we consider the genralized random graph model
of [5]. Then, we briefly extend the analysis to some modified
dynamic random power law graph models [1, 2].

In [5], Chung and Lu generalized the classical random
graph model to a general model with arbitrary degree dis-
tributions: For a sequence d = (d1, . . . , dn) let G(d) be the
graph in which edges are independently assigned to each pair
of vertices (vi, vj) with probability didj/

Pn
k=1 dk. If now



the degree distribution d obeys a power law, then the re-
sulting graph is well suited for modelling power law graphs.

As described in the introduction, the results of the pre-
vious sections can be generalized to certain types of trun-
cated power law graphs described by the G(d) random graph
model. If dmin is larger than logδ n, where δ > 2 is a con-
stant, and the number of vertices with expected degree di

is proportional to d−β
i , β > 2, then we can apply the algo-

rithm presented in Section 2, whenever the nodes are sup-
posed to have an estimate of log n/ log dmin, and obtain for
these graphs the same results as in Section 2.

Now, in order to generalize the result of Section 3 to the
G(d) model, we have to modify the algorithm. If we applied
the algorithm of Section 3 to a graph G(d), in which dmin ≥
logδ n and the number of vertices with expected degree di

is proportional to d−β
i , β > 2, then the nodes with largest

expected degree would attract most messages of type rw,
and τ ′′ would significantly exceed the value log n

log dmin
.

We can avoid this effect by letting at the beginning any
node w send out a special message r′

w which will perform
random walks in the system, too. Then, after a sufficient
number of time steps, any such message lies on a node w′

with probability dw′/
Pn

k=1 dk [13, 24]. Therefore, all nodes

with degree d
2+Ω(1)
min will possess messges of type r′

w, with
high probability. Now, if we only count and consider the
number of messages of type rw on the nodes which do not
possess any message of type r′

w, then we are able to estimate
log n/ log dmin as in the algorithm described in Section 3. By
using this modified algorithm, we obtain the result of Section
3 for these kind of graphs.

The same results can also be extended to certain modi-
fications of the random power law graph models [1, 2] by
combining the coupling methods of [7] with the techniques
described in the previous sections. However, in order to be
able to apply the methods of this paper, the minimal degree
in these graphs has to be larger than logδ n. We should note
that we explicitely use here the assumption that the mini-
mal degree in the graph is bounded by logδ n, and we could
not generalize the result for the case when this assumption
is not fulfilled.

5. CONCLUSION
In this paper, we analyzed the performance of randomized

broadcasting algorithms in random-like graphs. We have
shown that algorithms exist, which are able to broadcast a
message to all nodes of a random graph Gp within O(log n)
steps by using O(n max{log log n, log n

log d
}) transmissions, with

probability 1 − 1/nΩ(1), whenever p ≥ logδ n/n, where δ is
a large constant. We have also shown that this result holds
even if the nodes do not know anything about the size or
degree of the graph.

We briefly discussed the applicability of similar algorithms
in certain truncated power law graphs, in which the mini-
mal degree is bounded by logδ n. However, the problem of
whether the results of this paper can be generalized to tra-
ditional power law graph models is still open. Nevertheless,
we hope that this paper provides insights at more general
level, too.
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