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Abstract—Recent works have validated the possibility of en-
ergy efficiency improvement in radio access networks (RAN),
depending on dynamically turn on/off some base stations (BSs).
In this paper, we extend the research over BS switching operation,
matching up with traffic load variations. However, instead of
depending on the predicted traffic loads, which is still quite
challenging to precisely forecast, we formulate the traffic varia-
tion as a Markov decision process (MDP). Afterwards, in order
to foresightedly minimize the energy consumption of RAN, we
adopt the actor-critic method and design a reinforcement learning
framework based BS switching operation scheme. In the end, we
evaluate our proposed scheme by extensive simulations under
various practical configurations and prove the feasibility of
significant energy efficiency improvement.

I. INTRODUCTION

The explosive popularity of smartphones and tablets has

ignited a surging traffic load demand for radio access and

has been incurring massive energy consumption and huge

greenhouse gas (GHG) emission [1]. Specifically speaking, the

information and communication technologies (ICT) industry

accounts for 2% to 10% of the world’s overall power con-

sumption [2] and has emerged as one of the major contributors

to the world-wide CO2 emission. Besides that, there are also

economical benefits for cellular network operators to reduce

the power consumption of their networks. It’s envisioned that

the power bill will doubly enlarge in fives years for China

Mobile [3]. Meanwhile, the energy expenditure accounts for a

significant proportion of the overall cost. Therefore, it’s quite

essential to improve the energy efficiency of ICT industry.

Currently, over 80% of the power consumption takes place

in the radio access networks (RAN), especially the base

stations (BSs) [4]. The reason behind this is largely due to

that the present BS deployment is on the basis of peak traffic

loads and generally stays active irrespective of the traffic load

[5] while the traffic loads virtually vary heavily [6]. Recently,

there has been a substantial body of work towards traffic

load-aware BSs adaptation and the authors have validated the

possibility of energy efficiency improvement from different

perspectives. Luca Chiaraviglio et al. [7] showed the possibil-

ity of energy saving by simulations. [8] and [9] proposed how

to dynamically adjust the working status of BS, depending

on the predicted traffic loads. However, to reliably predict

the traffic loads is still quite challenging, which makes these

works suffering. On the other hand, [10] and [11] presented

dynamic BS switching algorithms with the traffic loads a prior

and preliminarily proved the effectiveness of energy saving.

Besides, it is also found that turning on/off some of the

BSs will immediately affect the BS, with which a mobile

terminal (MT) should be associated. Moreover, subsequent

user’s association choice in turn leads to the traffic load

differences of BSs. Hence, any two consecutive BS switching

operations are correlated with each other and current BS

switching operation will also further influence the overall

energy consumption in the long run. In other words, the

expected energy saving scheme must be foresighted while

minimizing the energy consumption. It should concern its

effect on both the current and future system performance to

deliver a visionary BS switching operation solution.

[5] presented a partially foresighted energy saving scheme

which combines BS switching operation and user association

by giving a heuristic solution on the basis of a stationary

traffic load profile. In this paper, we try to solve these problem

from a different perspective. In a nutshell, we apply Markov

decision process (MDP) to model the traffic load variation.

Afterwards, we can attain a solution to the formulated MDP

model, i.e., BS switching operation (and corresponding user

association as well) policy, by taking advantage of actor-critic

method, a reinforcement learning approach [12] without a prior

knowledge about the traffic loads within the BSs. Within the

reinforcement learning framework, a BS switching operation

controller1 firstly estimates the traffic loads variation based

on the on-line experience. Consequently, the controller can

select one of the possible BS switching operations under the

estimated circumstance and then decreases or increases the

probability of the same action to be selected lately based on the

needed cost. Here, the cost refers to the energy consumption

due to such a BS switching operation. After repeating the

actions and getting the corresponding cost, the controller

would know how to choose the active BSs under one specific

traffic load circumstance. Moreover, with the MDP model the

1In practice, such a centralized BS switching operation can be conducted by
the base station controller (BSC) in second generation (2G) cellular networks
or the radio network controller (RNC) in third generation (3G) or long term
evolution (LTE) cellular networks. In this paper, we generalize it as a BS
switching operation controller.
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resulting BS switching strategy is foresighted, which would

improve energy efficiency in the long run. To the best of our

knowledge, our work is the first attempt to apply reinforcement

learning framework to energy saving scheme in RANs.

The remainder of the paper is organized as follows. In

Section II, we introduce the system model and formulate the

traffic variation as an MDP. In Section III, we talk about energy

saving scheme by the proposed learning framework. Section

IV evaluates the proposed schemes and presents the simulation

results. Section V concludes this paper with a summary.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

An RAN usually consists of multiple BSs while the traffic

loads of BSs are usually fluctuating, thus often making BSs

under-utilization. In this paper, we assume there exists a BS

switching operation controller which can timely know the

traffic loads in these BSs at current stage and determine the

working status of any BS (i.e., active/sleeping mode) at next

stage. Besides, our focus is on downlink communication, i.e.,

from BSs to MTs. We assume there exists a region L ∈ R
2

served by a set of BSs B = {1, . . . , N} as Fig. 1 depicts,

where the coverage of these BSs is overlapped. Moreover, we

can turn on/off some BSs in a centralized way by the BS

switching operation controller. Beyond that, we assume that

file transfer requests at a location x ∈ L arrive following

a Poisson point process with arrival rate per unit area λ(x)
and file size 1

μ(x) . After that, we define traffic load density as

γ(x) = λ(x)/μ(x) <∞ [5]. By the way, the traffic load den-

sity also captures spatial traffic variations. For example, a hot

spot can be characterized by a high arrival rate and/or possibly

large file sizes. Hence, when the set of BSs Bon is turned on,

the traffic loads severed by BS i ∈ Bon can be represented as

Γi =
∫
L γ(x)Ii(x,Bon) dx, whereas Ii(x,Bon) = 1 is a user

association indicator and denotes location x is served by BS

Fig. 1. Illustration of BS deployment in our simulation scenario.

i ∈ Bon and vice versa. We define the traffic load for a sleeping

BS i as zero, namely Γi = 0, if i ∈ B\Bon. In this paper, we

use finite state Markov process (FSMC) to demonstrate the

traffic load variation condition, i.e., p(Γk+1
i |Γk

i ). Moreover,

the traffic load Γi for BS i is partitioned into two parts by a

boundary point Γb. Here, Γb can be the average traffic loads

in one BS over a certain period, thus feasible to be known in

advance based on the historical records. Therefore, the traffic

loads for a specific BS have merely two states, i.e., si = 0 if

Γi < Γb and si = 1 if Γi > Γb. Subsequently, we construct a

state vector s = {s1, · · · , sN} ∈ S = S1 × · · · ×SN to model

the traffic load variation for the region of interest. Furthermore,

we denote sk as the state of stage k.

Let’s denote the transmission rate of a user located at x
and served by BS i ∈ Bon as ci(x,Bon). For analytical

convenience, we assume that ci(x,Bon) does not change over

time, i.e., we do not consider fast fading or dynamic inter-

cell interferences. Instead, ci(x,Bon) is assumed as a time-

averaged transmission rate in this paper, based on the fact that

the time scale of user association is commonly much larger

than the time scale of fast fading or dynamic inter-cell in-

terferences. Hence, the inter-cell interference is considered as

static Gaussian-like noise, which is feasible under interference

randomization or fractional frequency reuse, also consistent

with the model in [5][13]. Beyond that, though ci(x,Bon)
is location-dependent, it is not necessarily determined by the

distance from the BS i due to the shadowing effect.

Furthermore, we can naturally define system load density as

the fraction of time required to deliver traffic load γ(x) from

BS i ∈ Bon to location x, namely �i(x) = γ(x)/ci(x,Bon).
Similarly, the system load for BS i ∈ Bon can be represented

as ρi =
∫
L �i(x)Ii(x,Bon) dx. Besides, we define the system

load for a sleeping BS i as zero, namely ρi = 0, if i ∈ B\Bon.

Hence, the indicator set I = {Ii(x,Bon)|i ∈ B, x ∈ L} is

feasible [14] if one BS can serve ρi < 1, ∀i ∈ B. Eventually,

our goal is to choose certain active BSs and find a feasible

user association indicator set to minimize the overall energy

consumption. By exploiting the proposed learning framework,

the controller can know the BS switching operation policy at

last without the prior knowledge of traffic loads. We will give

the details in Section III.

B. Problem formulation

In this paper, we primarily aim to minimize the whole-

scale energy consumption of BSs in RANs. Our previous

work [9] has shown the energy consumption of BS is not

linearly proportional to the traffic load within its coverage

area. Moreover, the energy consumption of BSs consists of two

categories: constant one and variant one that is proportional

to BS’s traffic load. Hence, we adopt the generalized energy

consumption model [5], which can be summarized as

ψ(ρ,Bon) =
∑

i∈Bon

[(1− qi)ρiPi + qiPi] , (1)

where ρ = {ρ1, · · · , ρN}. Besides, qi ∈ (0, 1) is the portion of

constant power consumption for BS i, and Pi is the maximum
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power consumption of BS i when it is fully utilized.

Above all, our problem is to find an optimal set of active

BSs and corresponding user association that minimizes the

function of the energy consumption, namely

min
Bon,ρ

{ψ(ρ,Bon)} ,
s.t. ρi ∈ [0, 1) ∀i ∈ B.

(2)

III. STOCHASTIC BS SWITCHING OPERATION WITH

ACTOR-CRITIC APPROACH

A. Markov decision process

An MDP is defined as a tuple M =< S,A, p, C >, where S

is the state space, A is the action space, p is a state transition

probability function, and C is a cost function2. Specifically,

at stage k, the traffic load state is sk. The controller choose

to turn some BSs into sleeping mode (Action ak) and the

users correspondingly associate themselves with the left BSs

according to an indicator set Ik3. Thereafter, the traffic load

state will transform into sk+1 with probability p(sk+1|sk,ak).
Meanwhile, the immediate cost generated by the environment

(computed by (1)) is fed back to the agent, i.e., the BS

switching operation controller.

The goal is to find a strategy π, which maps a state s to an

action π(s), i.e., ak, to minimize the discounted accumulative

cost starting from the state s. Formally, this accumulative cost

is called as a state value function, which can be calculated by

[12]

V π(s) =

∞∑
k=0

γkCk(sk, π(sk)|s0 = s)

= C(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V π(s′),
(4)

where γ is the discount factor that maps the future cost to the

current state. Given the diminishing importance of future cost

than the current one, γ is smaller than 1. The optimal strategy

π∗ satisfies the Bellman equation [12]:

V ∗(s) = V π∗
(s)

= min
a∈A

{
C(s,a) + γ

∑
s′∈S

p(s′|s,a)V π∗
(s′)

}
.

(5)

Since the optimal strategy not only minimizes the current cost,

but the cumulative cost from the beginning, it contributes to

design a foresighted energy saving scheme.

2It may be a reward function R on the basis of specific research scenarios.
Moreover, it’s worthwhile to note here that we use the lowercased ci(x,Bon)
to denote transmission rate from BS i to location x while the uppercased C
denotes the cost function.

3In this paper, we adopt and modify the approach for user association in
[5]. At stage k, the user association set Ik that achieves the minimization of
total cost would be that users at location x choose to join BS i∗, while i∗
satisfies

i∗(x) = arg max
j∈Bon

cj(x,Bon)

(1− qj)Pj
, ∀x ∈ L. (3)

It’s worthwhile to note here that this user association scheme may degrade
the quality of experience (QoE), such as increasing the delay, etc. We leave
how to strike the balance between the user QoE and energy consumption as
future work.

B. The actor-critic learning framework for energy saving
scheme

There have been some well-known methods to solve the

MDP issues such as policy iteration and value iteration of

dynamic programming [12]. Unfortunately, these methods

heavily depends on prior knowledge of the environmental

dynamics. However, it’s challenging to know the future traffic

load in advance. Therefore, in this paper, we employ an actor-

critic method, one kind of reinforcement learning to solve the

MDP problem. The reasons to adopt actor-critic method are

twofold [15]: (i) since it generates the action directly from

the stored policy, it requires little computation to select an

action to perform; (ii) it can learn an explicitly stochastic

policy which may be useful in non-Markov traffic variation

environment of RAN.

Fig. 2. Classical architecture of actor-critic method.

As the name suggests, the actor-critic method has three

components: actor, critic, and environment as illustrated in Fig.

2. At a given state, the actor selects an action in a stochastic

way and then executes it. This execution transforms the state of

environment to a new one with a certain probability, and feeds

back the cost to the actor. Then, the critic criticizes the action

executed by the actor through a time difference (TD) error.

After the criticism, the actor will prefer to select the action

yielding a smaller cost with a higher tendency, and vice versa.

The method repeats the above procedure until convergence.

We design an actor-critic learning framework for energy

saving scheme as illustrated in Fig. 3.

1) Action selection: Beforehand, we assume the system is

at the beginning of stage k, while the traffic load state is

sk. Thereafter, the controller selects an action according to

a stochastic policy. The purpose of employing a stochastic

policy is to improve performance while explicitly balancing

two competing objectives: a) searching for better BS switching

operation (exploration) and b) taking as little cost as possible

(exploitation), such that the controller not only performs the

good BS switching operation based on its past experience but

also is able to explore new one. The most common method is

to use a Boltzmann distribution. The controller chooses action
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Fig. 3. Illustration of actor-critic learning framework for energy saving scheme.

ak in state sk of stage k with probability [12]

πk(sk,ak) =
exp{p(sk,ak)}∑

ak∈A
exp{p(sk,ak)} , (6)

where p(sk,ak) indicates the tendency to select action ak at

the state sk, and it will update itself after every action. It’s

worthwhile to note that though there exists the possibility that

the remaining active BSs are not enough to serve the traffic

loads in the next stage k+1, we can start an emergent response

paradigm to quickly turn on some BSs in this case as the

conventional energy saving scheme commonly does, which

is out of the scope of this paper. Hence, in this paper, we

assume the action ak the controller finally chooses can satisfy

the traffic load requirement.

(2) User association and data transmission: After the con-

troller chooses to turn some of BSs into sleeping mode, the

users at location x choose to connect one BS according to (3)

and start the data communication.

(3) State-value function update: After the transmission part

of stage k, the traffic loads in each BS will change, thus

transforming the system to state sk+1. Meanwhile, the total

cost for the transmission would be Ck(s,a). Consequently, a

TD error δ(s) would be computed by the difference between

the state-value function V (sk) estimated at the preceding state

and the one Ck(s,a) + γ · V (sk+1) at the critic, namely

δ(sk) = Ck(s,a) + γ · V (sk+1)− V (sk). (7)

Afterwards, the TD error would feed back to the actor. By the

way, the state-value function would be updated as

V (sk) ← V (sk) + α · δ(sk), (8)

where α is a positive step-size parameter which affects the

convergence rate.

(4) Policy update: At the end of stage k, we would employ

the TD error to “criticize” the selected action, which is

implemented as

p(sk,ak) ← p(sk,ak)− β · δ(sk), (9)

where β is a positive step-size parameter. (6) and (9) ensure

one action under a specific state can be selected with higher

probability if the “foresighted” cost it takes is comparatively

smaller or δ(sk) < 0.

Now, the procedures which concern our proposed learning

framework for energy saving scheme are summarized as

Algorithm 1.

Algorithm 1 Algorithm of Energy Saving Scheme through a

Learning Framework

Initialization:

for each s ∈ S, each a ∈ A do
Initialize state-value function V (s), policy function

p(s,a)
end for
Repeat until convergent

1) Choose an action according to (6);

2) Users connect some BSs by (3) and then start data

transmission;

3) Calculate the cost function C(s,a) by (1);

4) Identify the traffic loads and accordingly update state

s → sk+1 and compute the TD error by (7);

5) Update the state-value function V (s) by (8);

6) Update the policy function p(s,a) by (9).

IV. NUMERICAL ANALYSIS

We validate the energy efficiency improvement of our

proposed scheme by extensive simulations under practical

configurations. Here, we simulate under a region consists

of three macro BSs and three micro BSs in an area of

1.5km × 1.5km as Fig. 1 shows. Moreover, we assume that

file transfer requests at location x ∈ L follow a Poisson point

process with arrival rate λ(x) and file size 1/μ(x) = 100
kbyte. Beyond that, we assume the maximum transmission

powers for BSs, i.e., 20W and 1W for macro and micro

BSs, respectively. Based on the linear relationship in [5], the

maximum operational powers for macro BS and micro BS are

865W and 38W, respectively. We set other main parameters in

the propagation model according to the COST-231 modified

Hata model [16] as summarized in Table I.

By the way, we define cumulative energy consumption ratio
as the metric to test how much energy saving can be achieved

due to the application of our proposed scheme. Specifically, we

define the cumulative energy consumption ratio as: the ratio

between accumulative energy consumptions when certain BSs
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TABLE I
USED SIMULATION PARAMETERS

Parameter description Value

Simulation area 1.5km × 1.5km
Maximum transmission power Macro BS 20W

Micro BS 1W
Maximum operational power Macro BS 865W

Micro BS 38W
Height Macro BS 32m

Micro BS 12.5m
Channel bandwidth 1.25MHz
Intra-cell interference factor 0.01

File requests Arrival rate 5× 10−6 ∼ 10−4

File size 100kbyte
Constant power percentage 0.1 ∼ 0.9

a For simplicity, we don’t consider fast fading effect and noise
influence in our simulation.
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Fig. 4. Performance comparison between learning framework (LF) based
energy saving scheme and the state of the art (SOTA) scheme under various
homogeneous traffic arrival rates.

are turned off (as our scheme runs) and when all the BSs stay

active since our simulation starts. Our definition is reasonable

since the definition can show the foresighted energy efficiency

improvement, which is exactly the goal of an energy saving

scheme. Besides, we compare the performance of our proposed

scheme (learning framework based energy saving scheme, LF)

with that of the state of the art (SOTA) scheme, which assumes

the controller can obtain a full knowledge of traffic loads in

prior and find the optimal BS switching solution by exhausting

all the possible ones.

A. Effect of traffic loads with static arrival rates on energy
saving scheme

We firstly examine how much energy saving can be achieved

versus different static traffic load arrival rates. [5] shows a

homogeneous traffic distribution of λ(x) = 10−4 for all

x ∈ L, which offers load corresponding to about 10% of BSs

utilizations when all BSs are turned on. Therefore, we vary the

homogeneous traffic arrival rate λ(x) from 5× 10−6 to 10−4.

Meanwhile, to compute the traffic load boundary points Γb,

we record the average of traffic loads, i.e., Γa, in the whole

region and then compute Γb for macro BSs and micro BSs by

Γb,macro = Γa

3 , Γb,micro = 1
10Γb,macro, respectively.

Fig. 4 shows the effect of traffic load on energy savings

when the portion of fixed power consumption qi equals 0.5.

With the decrease of traffic load arrival rate λ from 10−4 to

5×10−6, we can expect more significant energy conservation.

Moreover, the cumulative energy consumption ratio continues

decreasing as the simulation runs since the controller will have

a better understanding of the traffic loads, thereby knowing

whichever action has better energy efficiency. As a result,

when λ = 10−4, we can expect an 70% of cumulative

energy consumption ratio after 500 iterations, which is quite

approximate to the SOTA scheme. On the other hand, since the

proposed learning scheme is performed without the knowledge

of traffic loads a prior, the performance of it is inferior to

that of the SOTA scheme, especially at the beginning of the

simulations. However, we can see that the gap compensated

for the absent knowledge is quite small, which in turn proves

the effectiveness of the proposed scheme.

B. Effect of energy consumption models of BSs on energy
saving scheme

In this part, we vary the portion of fixed power consumption

qi between 0 and 1, in order to cover various types of BSs

with different energy consumption models. Fig. 5 shows the

effect of energy consumption models of BSs on energy saving

schemes when the traffic file request follows a homogeneous

distribution with arrival rate λ(x) equaling 10−4 and 10−5.

The performance of our proposed learning scheme is the

result after 5000 iterations. As Fig. 5 depicts, the proposed

LF scheme and the SOTA scheme will both perform better

when the constant power consumption accounts for a larger

proportion of the whole energy consumption. The reason lies

in that when the constant power consumption takes a larger

percentage, i.e., qi = 0.9, turning off one under-utilized

BS will make a clearer difference and save more energy.

On the other hand, more than half of the overall energy

consumption usually takes place on the constant power, i.e.,

cooling, idle-mode signaling and processing in the present

RAN infrastructure [6]. Therefore, our proposed scheme can

render a strong positive effect in saving energy. Moreover,

the performance of the proposed LF scheme is quite close

to the SOTA scheme however the portion of fixed power

consumption qi varies.

C. Performance of learning framework-based energy saving
scheme in periodic traffic load scenario

In this section, we explore the performance of the pro-

posed scheme when traffic loads periodically fluctuates. [10]

shows practical traffic load profile is periodical and can be

approximated by a sinusoidal function λ(t) = λV ·cos(2π(t+
φ)/D)+λM , where t is the index of time, D is the period of

a traffic load profile, λV is the variance of traffic profile and
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Fig. 6. Performance comparison of learning framework (LF) based energy
saving scheme in homogeneous variant traffic arrival rate λ(t, x) = (0.99 ·
cos(2π(t+10)/24)+1)×10−4 and static traffic arrival rate λ(x) = 10−4.

λM is the mean arrival rate. Therefore, we employ λ(t, x) =
(0.99·cos(2π(t+10)/24)+1)×10−4 to approximate the traffic

load arrival rate in one day (24 hours) at location x ∈ L. Fig.

6 shows the performance of the proposed LF scheme when the

variant traffic loads arrival rate λ(t, x) equals 10−4. Unfortu-

nately, we can find the cumulative energy consumption ratio

is higher than that under the same homogeneous static traffic

arrival rate. In other words, it’s more challenging to choose

an action in an uncertain traffic scenario, thus leading to some

performance degradation. Fortunately, we should also notice

our proposed scheme still yields approximate performance to

the SOTA scheme under static arrival rate after 3000 iterations.

V. CONCLUSION

In this paper, we developed a learning framework for BS

energy saving scheme. We specifically formulated the BS

switching operation under a variant traffic load as a Markov

decision process. Afterwards, we adopt the actor-critic method,

a reinforcement learning approach to give the BS switching

solution to decrease the overall energy consumption. Finally,

the extensive simulation results manifest the effectiveness

and robustness of our energy saving schemes under various

practical configurations.
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