
1

A Framework for Verifying SLA Compliance in Composed Services

Hua Xiao1, Brian Chan2, Ying Zou2, Jay W Benayon3, Bill O’Farrell3, Elena Litani3, Jen Hawkins3

School of Computing1

Queen’s University
Kingston, Ontario, Canada

huaxiao@cs.queensu.ca

Dept. of Electrical and
Computer Engineering2

Queen’s University
Kingston, Ontario, Canada

{ying.zou, 2byc}@queensu.ca

IBM Toronto Lab3

Markham, Ontario, Canada
{jayb, billo, elitani,

jlhawkin}@ca.ibm.com

Abstract
Service level agreements (SLAs) impose many non-
functional requirements on services. Business analysts
specify and check these requirements in business process
models using tools such as IBM WebSphere Business
Modeler. System integrators on the other hand use service
composition tools such as IBM WebSphere Integration
Developer to create service composition models, which
specify the integration of services. However, system
integrators rarely verify SLA compliance in their
proposed composition designs. Instead, SLA compliance
is verified after the composed services are deployed in the
field. To improve the quality of the composed services, we
propose a framework to verify SLA compliance in
composed services at design time. The framework re-uses
information in business process models to simulate
services and verify the non-functional requirements
before the service deployment. To demonstrate our
framework, we built a prototype using an industrial
process simulation engine from IBM WebSphere Business
Modeler and integrate it into an industrial service
composition tool. Through a case study, we demonstrate
that our framework and the prototype assist system
integrators in composing services while considering the
non-functional requirements.

1. Introduction
Web services permit enterprises to adapt to rapidly
changing business requirements. However, the dynamic
discovery and binding of services create great challenges
in ensuring that the composed services can achieve
various non-functional requirements, such as processing
time, availability, and processing cost. Such requirements
are derived from Service Level Agreements (SLAs)
which stipulate contracts between consumers and
providers of services. For example, an on-line ticket
service should process requests within 3 seconds (i.e.,
processing time < 3s), and the cost for processing each
request should be less than 1 dollar (i.e., cost < $1).
 Developing SOA systems requires the involvement of a
large number of individuals, such as business analysts,
system integrators and software developers. All these
individuals use various tools and industrial standards to
specify, compose, and develop web services. In the

business domain, business analysts specify business
process models (or process models) and stipulate SLAs
using modeling tools, such as IBM WebSphere Business
Modeler (WBM) [8]. In the service composition domain,
system integrators use service composition languages
such as BPEL to create more detailed models for
composing services. The detailed service composition
models (or composition models) reflect the design of the
process models as specified by the business analysts.

Business analysts commonly use a process simulator
to verify SLA compliance for a process model. Using the
simulator, the analysts can explore alternative models
using different scenarios till the optimal model is picked.
On the other hand, system integrators commonly wait for
services to be fully composed and deployed before they
can detect and correct SLA violations and design faults. A
process monitor is used to monitor the execution of the
deployed service and capture events generated from the
running service. The problems in the design of the service
composition are detected by analyzing the generated
events. Such problems should be flagged earlier during
the design and development phases of services.

Due to the unavailability of the source code for
services, testing techniques for services are limited to
black-box testing which examines if a composition model
is correctly specified and that services are accurately
referenced and wired [13]. Although composition models
(e.g., BPEL processes) are derived from process models,
composition models only capture the functional (i.e.,
structural) aspects of the process models and do not
encode the non-functional aspects. Non-Functional
Attributes (NFAs) which describe the non-function
requirements in the abstract process models are rarely
relayed to the detailed composition models due to the lack
of support for describing such attributes in composition
languages, such as BPEL.

In this paper, we provide a framework which verifies
SLA compliance of composed services. We bridge the
gaps between the process modeling domain and the
service composition domain to share NFAs and design
evaluation tools. The framework uses lightweight
techniques to annotate composition models with NFAs
that are derived from process models. The annotated
composition models are then simulated using process
simulators. Such simulators are commonly used to

2

simulate process models instead of simulating
composition models. Therefore, we have to enhance such
simulators to account for the peculiarities of composition
models. Our work helps in flagging SLA violations of
services at design time before the deployment of these
services. Using our framework, system integrators can
optimize their composition models and avoid SLA
violations.

The rest of the paper is organized as follows: Section 2
gives an overview of the business processes modeling and
service composition. Section 3 discusses our framework
for verifying SLA compliance in a composition model.
Section 4 presents our case study. We evaluate the
effectiveness of our prototype using industrial tools.
Section 5 reviews the related work. Finally, Section 6
concludes the paper and discusses future work.

Figure 1. A Loan Application process

2. Process Modeling and Service Composition
In this section, we give an overview of business process
modeling and service composition.

Business Process Modeling
A process model is a set of linked tasks to realize a
business objective [18]. A process model specifies tasks,
control flows, data flows, and resources. Tasks are the
operations to be performed in order to achieve business
objectives. For example as shown in Figure 1.(a), a loan
application business process contains tasks, such as
ReceiveApplication, CheckCredit, and Approved. A sub-
process describes a subset of tasks to be reused in
different contexts. Control flows determine execution
paths of a process following various control nodes. The
control nodes include sequence, loop, merge (i.e., OR-
Join), join (i.e., AND-Join), fork (i.e., AND-Split), and
decision (i.e., OR-Split) [18]. For example, shown in
Figure 1.(a), GoodScores is an decision control node.

Data flows present the input and output of tasks. An
instance of data flow is the data, ApplicationInformation,
which travels from ReceiveApplication task to
CheckCredit task. NFAs and the values are annotated in
the corresponding task specification.

Process models are often described in proprietary
formats used by particular process modeling tools. For
example the IBM WBM tool describes process models
using the Business Object Models languages. Business
processes can also be specified using standards, such as
XPDL (XML Process Definition Language) [19].

Service Composition
A service composition describes the implementation of a
business process through the composition of various
services. Service compositions are described using block
description and directed graph based description. Block
descriptions are inherited from XLANG [16], which does
not have explicit control flows but provides structures to
describe the flow of control. The directed graph
description comes from WSFL [17] and uses a graph to
describe the tasks and their interactions.

BPEL is a commonly used standard for describing a
service composition. It supports both description
techniques. Similar to process models, entities in a
composition model generally includes: activities, data
flows, and control flows. Activities describe the
fundamental behavior for handling services requests and
invoking services. The basic activity includes receive,
reply, invoke, assign, and wait. In Figure 1.(b),
ReceiveApplication is a receive activity which receives
requests from an external service. CheckCredit,
Approved and Declined are invoke activities which invoke
the corresponding services. Similar to sub-processes in a
process model, scope encodes a unit of activities and
control nodes. Data flows are messages exchanged
among services. The control flows determine the possible
execution paths, including sequence, switch, while, pick
and flow. In Figure 1.(b), GoodSores is an example of
switch, which directs the execution flow to one of the
possible activities: Approved activity or Declined activity.
 Comparing to process models which capture the
functional and non-functional requirements of a service,
BPEL conveys implementation details. For example,
BPEL provides extensions to encapsulate Java code in the
service composition. It also enables the declaration of
local variables in activities, and sets conditional
expressions to control the service execution. However,
NFAs of entities are not supported in composition
languages. This lack of support limits the ability of
integrators in verifying SLA compliance in created
composition models.

3

Business
Process Models

Extract Non-Functional
Attributes

Transform to Service
Composition Models

Non-Functional
Attributes (NFAs)

Composition
Models

Associate Composition
Models with NFAs

Verify SLA
Compliance

Results

Process Simulation
Engine

Process Modeling
Tool

Figure 2. A Framework for verifying SLA compliance in composition models

3. Framework for Verifying SLAs in
Composition Models
We propose a framework that analyzes a composition
model and uses information from the process model to
evaluate compliance for SLAs in the composition model.
The major steps in the framework are specified in Figure
2. A service is directly composed by a system integrator
who may have limited knowledge of the NFAs that are
critical to measure SLA compliance. To support the
verification of SLA compliance, we make use of the
NFAs that are annotated by business analysts in the
original process models.

A process model can be automatically transformed to a
composition model using process modeling tools, such as
the WBM. Each task in the process model is annotated
with the NFAs. To avoid losing NFAs and their default
values during the transformations, we provide techniques
to maintain the associations between NFAs and their
corresponding entities in the composition model.

Instead of developing a new tool to analyze the
composition models, we leverage the powerful capability
of commercial business process simulators. However, a
process simulator is not designed to analyze composition
models. We design and develop a wrapper which converts
entities in a composition model to match with the
interface of the process simulator. Meanwhile, the
transferred NFAs for a composition model are provided as
input to the process simulator. As a result, the process
simulator generates qualitative results to evaluate the
SLAs delivered in the composition model. For example,
the overall execution time for a composed service and the
probability of each executed path are provided to the
system integrators. Such qualitative results help the
integrator in assessing alternative designs and optimizing
them in order to meet the SLAs. In this ever changing
business domain, a system integrator needs to frequently
update composition models. The proposed framework
helps ensure that updated models achieve the business
objective by providing feedback on the impact of the
changes. In the following sub-sections, we discuss the
major components of our framework.

3.1 Extracting NFAs
We parse the XML representation of process models, and
extract the NFAs annotated with each entity in the

models. We extract the NFAs and the names of the
corresponding tasks. We capture three types of NFAs,
which are used to verify the achievement of SLAs: time,
cost and resource.

Specifically, time describes the temporal constraints on
performing a task. For example, the completion time
stipulates the amount of processing needed for
accomplishing a task or a process instance (i.e., an
instance of a process model in the run-time). The wait
time represents maximum queuing delay that a task is
queued for obtaining a resource (e.g., available service)
before the task fails.

Cost specifies the requirements on expenses. For
example, the processing cost is applied to each time a task
is performed. Idle cost measures the expense when a task
is idle and waiting for a resource to become available.
Revenue is generated by completing a task.

Resources specify the items (e.g., personnel,
equipment, or materials) required for executing a task. For
example, CheckCredit task is automatically executed.
Timetables are used to describe the availability of
resources. Other resources describe the quality of the
services, such as security levels and reliability of the
services.

A process model may have multiple execution paths
due to the control structures (e.g., decision node). The
achievement of SLAs is pertinent to the selection of
execution paths in a process model. For example, some
paths may take longer time to complete than others. To
evaluate the NFAs of a process, the execution of a process
can be evaluated in three ways: randomly pick a single
path to execute, select a path based on the probability of
the execution, and select a path using conditional
expressions. When a path is frequently executed, it
becomes a critical path, which has a significant impact on
the overall quality of a composed service. Therefore, we
extract the probability and expressions annotated in the
control nodes for process models and transfer this
information to the corresponding entities in the
composition models.

To improve the analysis accuracy of composition
models, the actual values of the NFAs could also be
gathered from the black-box testing tool in a service
composition environment, the historical data collected
from the past deployment and run-time logs. For example,
the black-box testing tool often provides the possible

4

values of the variables defined in activities in a
composition model. The values of the variables could be
used to determine the conditional expressions to select
possible execution paths. Therefore, we provide a NFA
editor in a service composition environment to allow a
system integrator to enter the estimated values for the
NFAs in a composition model.

3.2 Associating Composition Models with NFAs
To associate an extracted NFA and its default value to an
appropriate entity in the composition model, we need to
link entities in both models: process model and
composition model. We map process entities to
composition entities which have similar semantic
meaning. Table 1 shows the mappings between process
entities and composition entities.

Table 1. Process models vs. composition models
Process Model

Entity
Composition
Model Entity

Non-Functional
Attributes

Task Invoke

Cost, Time,
Resources,
Expression

Data Variables Initial value, Range
Sub-Processes Scope N/A

Merge, Join, Fork Empty/Assign N/A
Sequence Sequence N/A
Parallel Flow N/A

Decision Switch-Case Probability,
Expression

While Loop Probability,
Expression

As shown in Table 1, it is straightforward to map the

tasks and control structures (e.g., sequence, parallel) in
process models to the counterparts in the composition
model. The mappings transfers the NFAs attached to a
process entity to the corresponding composition entity.
For example, the mappings between the control structures
transfer the probability of different alternative execution
paths in a process model to the corresponding execution
paths in the composition model.

In the process models, data is explicitly specified in
the input and output of a task. For example in the loan
application as shown in Figure 1.(a), the data,
ApplicationInformation is specified as an input data and
the creditScores is the output of CheckCredit task. The
data types, initial values and value ranges of the data are
described by a business analyst and stored in the process
model specifications. However, such data information is
never relayed to the composition model. In a composition
model, some variables are explicitly specified as messages
to the subsequent activities. For example, as shown in
Figure 1.(b), creditScores variable is transferred as the
output of CheckCredit activity and the input variable of
GoodScores activity. Other variables could be defined in
CheckCredit activity, but are not flowed into other

activity. To retain the data information in the process
model, we map the data in a process model to the
variables which are flowed between the consecutive
activities in the converted composition model.

If a merge, join or fork node in a process model
combines several input data into one output data, we
interpret such nodes as an assign type, which has the
equivalent functionality as merging multiple variables
into one in the composition model. Otherwise, a merge,
join or fork node is translated to an empty activity which
simply distributes input variables to output variables
without any computation in the composition model.

Figure 3. An example mapping

For each process entity, we extract the associated
NFAs and store the NFAs in a separate XML document.
We want to ensure that the composition models conform
to standard specification languages which do not support
the description of NFAs. To verify SLA compliance in
the composition models, the NFAs extracted from the
process entities need to be assigned to the corresponding
composition entities. In a process model, each task and
control node (e.g., fork, decision, and join) is assigned a
unique name. The unique naming allows us to establish a
one-to-one mapping from process entities to composition
entities. When transforming a process model to a
composition model, the names are transformed as
attributes in the composition model. For example as
shown in Figure 3, the CheckCredit task is converted to
the equivalent entity, invoke activity following the
mappings specified in Table 1. The task name (i.e.,
CheckCredit) is retained as the value of “name” attribute
in the invoke activity.

However, the transformed composition model can be
further customized. For example, the name of an activity
can be changed. Therefore, it is not sufficient to rely on
naming to attach the extracted NFAs to the composition
entities. To address this issue, we extend each entity in a
composition model with a unique identifier throughout the
service composition environment. For example as shown
in Figure 3, each activity is extended with an unique
identifier attribute (WPC:id). Using the initial name
mappings between a process entity and a composition
entity, we assign the extracted NFAs of a process entity to
the composition entity of the same name. The NFAs track
the identifier (i.e., WPC:id) of the associated entity in the
composition model. When the composition model is
edited, we use the identifier to keep the composition
entity and the associated NFAs in sync. For example,

5

when the location of an entity in the composition model is
changed, it would not affect the related NFAs. When a
new entity is added to a composition model, a new
identifier is assigned to the new entity. If an entity is
deleted, its related NFAs are also deleted.

3.3 Verifying SLA Compliance in Composition
Models
To verify SLA compliance and to detect design faults in a
composed service without having to deploy it into the
run-time environment, we integrate a commercial
simulation engine into a service composition
environment. However, the simulation engine is used to
evaluate process models and therefore does not support
service composition languages. In particular, NFAs are
not normally encoded in a composition model. To bridge
the gap between the composition models and the interface
of the simulator, we design and develop a wrapper that
gathers the information from the composition model and
converts the information to match the expected inputs of
the simulator. The architecture of the wrapper is
illustrated in Figure 4. Once a process simulator is
integrated into a service composition environment, the
process simulator can be also used to analyze a new
composition model created in a service composition
environment without an initial process model.

In the simulator, a run-time task object is instantiated
for each task in a process model. Such a task object
encapsulates values for the NFAs of that task. A
converted entity in a composition model contains all the
information needed by a task object, but in a different
format. The specification for composition models
organizes the entities in a tree structure where every node
in the tree contains specific information for activities in a
composition model. Moreover, the NFAs for an entity in
a composition model are kept in a separate file as
discussed in Section 3.2. The wrapper sets the input
required for the simulation engine and produces the result
for the analysts. A wrapper contains four major
components:

The Merger component extracts NFAs from the NFA
files and combines the NFAs with the corresponding
activity in the composition model. Each activity has its
own NFAs, such as execution time and cost. We keep
track of the ordering sequence and input/output
dependencies among the activities.

The Dispatcher component instantiates a run-time task
object for the simulation engine and uses individual
activity information to initiate the internal state of the task
object. For example, the dispatcher invokes the setter
methods (e.g., task.setName(“Task Name”)) defined in
the interface of the task object to map the task object to an
activity in a composition model. Moreover, the dispatcher
links the task objects to reflect the data and control
dependencies among the activities in the composition
model. A link connects the output of a task object to the

input of the subsequent task object. These links describe
the possible execution paths taken by the simulation
engine. Once the task objects are linked, a process object
is formed as a unit of simulation.

The Analyzer component captures events at runtime.
For example, the execution time for a process object can
be triggered as an event after a trial run of all the task
objects in the process object. The Analyzer gathers such
events to analyze the design of the service composition,
and evaluate performance metrics to verify SLA
compliance.

The Result Viewer component notifies the service
composition environment with the result of the analysis.
The wrapper ensures that GUI shows the results of the
updated analysis.

Wrapper

Dispatcher

Activity &
Control Nodes

Merger

Attributes &
Values

Result Viewer

Analyzer

Metric Results

Non-Functional
Attributes File

Composition
Model File

Task Objects &
Process Objects Events

Simulation Engine

Service
Composition
Environment

Figure 4. Architecture for verifying SLA compliance

4. Case Study
To evaluate the feasibility of our proposed framework, we
design and develop a prototype that analyzes service
composition described in BPEL. We use examples to
demonstrate that our prototype helps a system integrator
verify SLA compliance and optimize a service
composition to meet the non-functional requirements
imposed by SLAs.

4.1 Prototype Implementation
Process models are created and simulated using the IBM
WBM. After simulation, the NFAs for the process entities
are annotated into the process model specification. WBM
supports the automatic conversion of a process model to a
composition model in BPEL. The BPEL process is
visualized and edited in the IBM WebSphere Integration
Developer (WID), an IBM service composition
environment. However, the NFAs for the process model
are not transformed. We develop a prototype that uses the
mapping schema presented in Section 3.2 to associate the
NFAs of a process entity to the corresponding
composition entity in BPEL. To verify SLA compliance,
we migrate the WBM business process simulator and
integrate it into the WID as an Eclipse plug in. Figure 5
depicts a screenshot of the prototype as a plug-in in the
IBM WID.

6

Figure 5. Annotated screenshot for simulating a BPEL process in IBM WID

 As shown in Figure 5, the BPEL process editor in the
WID visualizes a composition model for a system
integrator to modify and analyze. We developed a NFA
editor to list the extracted NFAs for each composition
entity in BPEL. The default value for each NFA is
extracted from a process model when a composition
model is transforms from the process model. A system
integrator can modify the values of NFAs. When a
composition model is created in the WID, we list all the
NFAs extracted from the WBM for each composition
entity in WID. The system integrator provides the values
for NFAs.

A composition model can be analyzed using the
probability of execution paths. For instance, in Figure 5,
the decision node ScoreEvaluation has two output
branches: “Yes” branch and “No” branch. Suppose “Yes”
branch has 80% probability to be executed and “No”
branch has 20% probability to be executed. The simulator
would choose an output branch based on those
probabilities. Moreover, the decision node could be
expressed using conditional expressions with variables.
For example, when the decision node uses an expression
(i.e. if(CreditScores>1000)), the simulator uses a boolean
output to choose an output branch. If the expression
“scores > 1000” evaluates to true, then the simulator goes
to “Yes” branch; otherwise, it goes to “No” branch.
Branches governed by expressions are dynamically
selected based on the values of variables while
probabilities are statically configured.

4.2. Application Examples
We choose the loan application [10] in BPEL provided
by the WID to demonstrate the uses of our prototype. The

loan application process describes the steps for applying
for a loan. Once an applicant’s information is received,
the applicant’s credit is checked. If the credit score is low,
the process declines the application. Otherwise, the
process checks the loan amount to decide whether the
application is approved automatically or manually. Loan
application process has 17 activities and 20 control nodes.
We extract six types of NFAs which are defined in the
WBM as follows: processing time, processing cost,
Revenue, startup cost, waiting time cost; probability.

4.2.1 Evaluating Performance Metrics
We use the prototype to compute four performance
metrics for verifying SLA compliance: average
processing time, average revenue, average cost and
average profit for a process. The average processing time
calculates the average time of executing different paths.
Similarly, the average profit, the average revenue and the
average cost are defined to measure profit, revenue and
cost of the process under different conditions.

To obtain the results for the aforementioned metrics,
the prototype runs the loan application process 50 times
using the probabilities provided by a business analyst.
The 50 iterations ensure that all paths are considered by
the simulator. As shown in Figure 6, there are three
possible execution paths. As the result of the simulation,
the simulator runs 42 times on path #1, 5 times on path
#2, and 3 times on path #3, as listed in Table 2. The
results for the four metrics of each execution path are
listed in Table 2. To evaluate the average processing time,
the probability of each path is considered. For example,
the prototype calculates the average processing time of
the composed services as follows:

7

Figure 6. Loan Application process

Table 2. Results of performance metrics

Path Iterations Prob. Processing
Time (Min)

Revenue
(USD)

Cost
(USD)

Profits
(USD)

1 42 84% 47 9.0 4.0 5.0
2 5 10% 67 11.0 5.5 5.5
3 3 6% 34 4.0 1.5 2.5

Average Result 48 7.9 4 4.9

)(48%634%1067%8447__ MinM timeprocessaverage ≈×+×+×=
Most of composed services involve human tasks,

which require humans to manually conduct the activity.
For instance, the loan application process has three
human tasks: HumanCompletion, HumanApproval, and
HumanFollowUp. The human task poses great challenges
to verify SLA compliance of a composed service in a run-
time environment. In particular, to evaluate the overall
processing time, a loan manager needs to be involved to
manually fulfill the required activity. However, it is a
tedious job for the loan manger to conduct the activity
tens of times. Our prototype provides a lightweight
solution to verify SLA compliance in a composed service.
It allows a system integrator to provide estimates on the
values of the NFAs of human tasks and modify any NFAs
of a composition entity using the attribute editor. The
overall performance of the composed service is
automatically computed.

4.2.2 Optimizing Service Composition
A system integrator uses the prototype to assess the
performance metrics for each alternative and selects an
optimal design. Using the qualitative results from the
prototype, a system integrator can identify the critical
path for executing the composed service, and optimize the
design to improve the performance of the critical path.

 Critical path is the path with the highest probability of
being executed. The performance of the activities in the
critical path would greatly impact the general
performance of the process. A critical path is derived by
analyzing process instances following different execution
paths. In Table 2, path #1 is the critical path since it is
executed 42 times out of 50. If a system integrator needs
to optimize the average processing time of the service,
he/she should focus on optimizing the activities in the
critical path.
 Redundant activities are two or more activities which
provide similar functionality in a critical path. The
redundant activities in a critical path could lead to a
longer proceeding time. For example as shown in Table
2, path #1, as a critical path, takes 47 minutes to
complete. Although it is not the longest runtime, ideally a
critical path should be as time efficient as possible. In
Figure 6 CheckCredit activity and CheckAutoApproval
activity in path 1 both access a user’s private information.
Therefore, its functionality is redundant and causes
additional processing time in the critical path. A more
efficient method is to merge the two activities into one in
order to reduce the number of times for accessing the
private information. Once the credit has the good score,
the AutoApprovalTest decision is triggered. The
optimization reduces one decision node ScoreEvaluation
and two activities in path #1 (i.e., AcknowledgeReceipt
and Check AutoApproval). After merging, the new
average processing time would be reduced by 9 minutes
with this optimization.

5. Related work
Research on verifying business requirements in the
composition models is divided into two major directions.
One direction focuses on transforming BPEL processes
into various formal models and checks the functional
behaviors of the composed services [4]. Qian et al. [15]
use the timed automata to verify functional properties
such as reachability, and activity dependency in BPEL
processes. Foster et al. [6] transform BPEL processes to
finite state processes notation. Yu et al. [20] use a
language named PROPOLS to describe the temporal logic
in a BPEL process. Duan et al. [5] provide a framework to
specify the semantics of tasks and control flows defined
in BPEL. Mayer and Lubke [13][14] propose a layer-
based framework to test BPEL processes. Different from
these approaches, our work focuses on verifying SLA
compliance of composed services.

Another research direction aims to check the Quality
of Services (QoS) of BPEL processes. Koizumi and
Koyama [12] propose a performance model using logs to
estimate the processing execution time. Kazhamiakin et
al. [11] use a finite state machine model to formulize time
related properties and analyze temporal requirements,
such as the duration of a process. Fung et al. [7] propose a
message tracking model to support QoS measurement in

8

BPEL processes. Barbir et al. [3] discuss the main
security requirements for web services, and test the
security of web services using web services middleware.
These approaches focus on either assessing one type of
non-functional requirements (e.g., process execution time)
or constructing their tool using the run-time data. These
approaches also require the deployment of the services in
the field before identifying the violations to the desired
QoS. Our work uses a lightweight solution to verify
multiple NFAs of the composition model without the
deployment. Our work improves the productivity for
developing web services.

6. Conclusion and Future Work
In this paper, we present a framework that verifies SLA
compliance and designs of composition models. We
bridge the gaps between the process modeling domain and
the service composition domain to share NFAs and design
evaluation tools. We present a lightweight solution that
provides qualitative feedback for a system integrator to
optimize the service composition. Through a case study,
we demonstrate the feasibility of our approach. Currently,
the prototype verifies the SLAs common to process
models and composition models. In the future, we plan to
extend the simulation engine to handle more NFAs that
are not considered in the process simulator, such as
reliability, security and reputation of a service.

Acknowledgment
We would like to thank Mr. Gary Tang and Mr. Casey
Best at IBM Toronto Laboratory for their valuable
feedback to this research. This research is supported by
Natural Sciences and Engineering Research Council of
Canada, and IBM Canada Centers for Advance Studies.

Trademarks
IBM and WebSphere are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries,
or both. Other company, product, and service names may
be trademarks or service marks of others.

References
[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, et al.,

"Business Process Execution Language for Web Services
Version 1.1," 2003.

[2] A. Alves, A. Arkin, S. Askary, C. Barreto, et al., “Web
Services Business Process Execution Language Version
2.0,” 2007.

[3] A. Barbir, Ch. Hobbs, El. Bertino, F. Hirsch, L. Martino,
“Challenges of Testing Web Services and Security in SOA
Implementations,” In book Test and Analysis of Web
Services, Springer, 2007, pp. 395-440.

[4] F. van Breugel and M. Koshkina, "Models and Verification
of BPEL," Working Paper, 2006.

[5] Z. Duan, A. Bernstein, P. Lewis, and S. Lu, “Semantics
Based Verification and Synthesis of BPEL4WS Abstract
Processes”, in Proc. of the IEEE International Conference
on Web Services (ICWS’2004), San Diego, CA, USA, July,
2004, pp. 734-737.

[6] H. Foster, S. Uchitel, J. Magee and J. Kramer, "Model-
based verification of web service compositions," 18th
International Conference on Automated Software
Engineering, 2003, pp. 152-161.

[7] Casey K. Fung, Patrick C. K. Hung, Guijun Wang, Richard
C. Linger and Gwendolyn H. Walton, "A Study of Service
Composition with QoS Management," in 2005 IEEE
International Conference on Web Services (ICWS'05),
Orlando, Florida, USA, July 12-15, 2005

[8] IBM WebSphere Business Modeler, Available at:
http://www-306.ibm.com/software/integration/wbimodeler

[9] IBM WebSphere Integration Developer, Available at:
http://www-306.ibm.com/software/integration/wid

[10] IBM WebSphere Integration Developer Sample: Loan
application, Available at :
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxm
x/topic/com.ibm.wbit.sample.appl.3.doc/loanapplication/pd
f/loanapplication.pdf

[11] R. Kazhamiakin, P. Pandya, M. Pistore, “Representation,
Verification, and Computation of Timed Properties in Web
Service Compositions,” In proceeding of International
Conference on Web Services (ICWS) 2006, Chicago, USA,
Sept. 18-22, 2006.

[12] S. Koizumi, K. Koyama, “Workload-aware Business
Process Simulation with Statistical Service Analysis and
Timed Petri Net,” In proceeding of International
Conference on Web Services (ICWS) 2007, Salt Lake City,
Utah, USA, July 9-13, 2007.

[13] D. Lübke, “Unit Testing BPEL Compositions,” in Book
Test and Analysis of Web Services, Springer, 2007, pp. 149-
171.

[14] P. Mayer, D. Lubke, “Towards a BPEL Unit Testing
Framework”, in Proceedings of the 2006 workshop on
Testing, analysis, and verification of web services and
applications, Portland, Maine, 2006.

[15] Y. Qian, Y. Xu, Z. Wang, G. Pu, H. Zhu and C. Cai, "Tool
support for BPEL verification in ActiveBPEL engine," in
Proceeding of 18th Australian Software Engineering
Conference(ASWEC),2007. Australian 2007, pp. 90-100.

[16] S. Thatte, “XLANG Web Service for Business Process
Design,” 2001. Available at:
http://xml.coverpages.org/XLANG-C-200106.html

[17] Web Services Flow Language (WSFL), Available at:
http://xml.coverpages.org/wsfl.html

[18] Workflow Management Coalition, “Workflow
Management Coalition Terminology & Glossary,”
available at: http://www.wfmc.org/standards/docs/
TC-1011_term_glossary_v3.pdf

[19] Workflow Management Coalition, “Workflow Process
Definition Interface—XML Process Definition Language,”
available at: http://xml.coverpages.org/XPDL20010522.pdf

[20] J. Yu, T. P. Manh, J. Han, Y. Jin, et al., "Pattern Based
Property Specification and Verification for Service
Composition," Web Information Systems-WISE 2006, vol.
4255/2006, 2006.

