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Abstract— Preserving individual privacy when publishing data
is a problem that is receiving increasing attention. According to
the k-anonymity principle, each release of data must be such
that each individual is indistinguishable from at least k−1 other
individuals. In this paper we study the problem of anonymity
preserving data publishing in moving objects databases. We
propose a novel concept of k-anonymity based on co-localization
that exploits the inherent uncertainty of the moving object’s
whereabouts. Due to sampling and positioning systems (e.g., GPS)
imprecision, the trajectory of a moving object is no longer a
polyline in a three-dimensional space, instead it is a cylindrical
volume, where its radius δ represents the possible location
imprecision: we know that the trajectory of the moving object is
within this cylinder, but we do not know exactly where. If another
object moves within the same cylinder they are indistinguishable
from each other. This leads to the definition of (k, δ)-anonymity
for moving objects databases.

We first characterize the (k, δ)-anonymity problem and discuss
techniques to solve it. Then we focus on the most promising
technique by the point of view of information preservation,
namely space translation. We develop a suitable measure of the
information distortion introduced by space translation, and we
prove that the problem of achieving (k, δ)-anonymity by space
translation with minimum distortion is NP-hard. Faced with the
hardness of our problem we propose a greedy algorithm based on
clustering and enhanced with ad hoc pre-processing and outlier
removal techniques. The resulting method, named NWA (N ever
Walk Alone), is empirically evaluated in terms of data quality
and efficiency.

Data quality is assessed both by means of objective measures of
information distortion, and by comparing the results of the same
spatio-temporal range queries executed on the original database
and on the (k, δ)-anonymized one. Experimental results show
that for a wide range of values of δ and k, the relative error
introduced is kept low, confirming that NWA produces high
quality (k, δ)-anonymized data.

I. INTRODUCTION

With today’s pervasiveness of mobile phones and other

location-aware devices, the amount of traces left by moving

objects and daily collected by service providers is continuously

increasing. The wealth of space-time trajectories left by these

personal devices and their human companions is expected to

enable novel classes of applications, for instance in traffic

and sustainable mobility management, where the discovery of

behavioral patterns is the key step. Clearly, in these applica-

tions privacy is a concern, since location data enables intrusive

inferences, which may reveal habits, social customs, religious

and sexual preferences of individuals, and can be used for

unauthorized advertisement and user profiling.

As an example, consider a traffic control application that

collects vehicle movements. In a naı̈ve tentative of preserving

anonymity, the car identifiers are not disclosed but instead

replaced with pseudonyms. However, as shown in [1] such

operation is insufficient to guarantee anonymity, since location

represents a property that in some cases can lead to the identifi-

cation of the individual. For example, if one is known to follow

almost every morning the same route, it is very likely that the

starting point is the home of the individual and the ending

point is the working place. Joining this information with some

telephone directories we can easily link the trajectory to its

owner.

In this paper we study the problem of anonymity preserving

data publishing in moving objects databases. In particular,

we extend the classical concept of k-anonymity [2] to deal

with this particular form of data, and to exploit its inherent

uncertainty [3], [4], [5]. In fact the energy in a mobile device

is very limited, so it is impossible for a mobile object to

continuously send out its location information. To reduce

the energy consumption, many methods [6] are developed

for predicting an expected location of a mobile object at

a given time t, using some predictive model, e.g., Kalman

Filter, linear model, etc. If the actual location of the mobile

object differs more than a uncertainty threshold δ from the

predicted location, then the mobile object reports the new

location, otherwise it does not. The uncertainty threshold

δ, that is a parameter in our framework, has a real-world

technological counterpart defined by an agreement between

the server and the mobile device. For sake of presentation, in

the following we assume a common δ, although our framework

can easily handle different δs for different users, as discussed

in Section VII.



II. RELATED WORK AND OUR CONTRIBUTION

The traditional k-anonymity framework [2] focuses on rela-

tional tables: the basic assumptions are that each tuple in the

table corresponds uniquely to an individual, and that attributes

are divided in quasi-identifiers (i.e., attributes that can be

linked to external information to reidentify the individual

to whom the information refers), and sensitive attributes.

Although it has been shown that it presents some flaws and

limitations [7], and that finding an optimal k-anonymization is

NP-hard [8], the k-anonymity model is still practically relevant

and in recent years a large research effort has been devoted to

develop algorithms for k-anonymity (see [9], [10]).

Moving objects databases (MOD) [11] is another rather

young research area that has received a lot of interest in recent

years. Several different MOD problems have been tackled,

ranging from indexing [12], [13], [14], representing and query-

ing [15], [16], [17], updating and modelling imprecision and

communication costs [3], [18]. Existing work about anonymity

of spatio-temporal moving points has been mainly developed

in the context of location based services (LBS). In this context

a trusted server is usually in charge of handling users’ requests

and passing them to the service providers, and the general

goal is to provide the service on-the-fly without threatening

the anonymity of the user that is requiring the service.

The concept of location k-anonymity for LBS was first

introduced in [19] and later extended in [20] to deal with

different values of k for different requests. The underlying idea

is that a message sent from a user is k-anonymous when it

is indistinguishable from the spatial and temporal information

of at least k − 1 other messages sent from different users.

The proposed solution is based on a spatial subdivision in

areas, and on delaying the request as long as the number of

users in the specified area does not reach k. The work in [20]

instead of using the same k for all messages, allows each

message to specify an independent anonymity value and the

maximum spatial and temporal tolerance resolutions it can

tolerate based on its privacy requirements. The work described

in [21] proposes a privacy system that takes into account only

the spatial dimension: the area in which location anonymity is

evaluated is divided into several regions and position data is

delimited by the region. Anonymity is required in two different

ways: the first, called ubiquity, requires that a user visits at

least k regions; the second, called congestion, requires the

number of users in a region to be at least k. High ubiquity

guarantees the location anonymity of every user, while high

congestion guarantees location anonymity of local users in a

specified region. In [22] the concept of mix zones is introduced.

A mix zone is an area where the location based service

providers can not trace users’ movements. When a user enters

a mix zone, the service provider does not receive the real

identity of the user but a pseudonym that changes whenever the

user enters a new mix zone. In this way, the identities of users

are kept confused. A similar classification of areas, named

sensitivity map is introduced in [23]: it classifies locations as

either sensitive or insensitive, and describes three algorithms

that hide users’ positions in sensitive areas.

Contrary to the notions of mixed zones and sensitivity maps,

the approach introduced in [1] is geared on the concept of

location based quasi-identifier, i.e., a spatio-temporal pattern

that can uniquely identify one individual. How to exploit this

interesting concept in the case of data publishing is a serious,

challenging, open problem not addressed in [1] nor in other

work. In our framework we do not take in consideration the

possibility of having spatio-temporal quasi-identifiers, instead

we simply develop a technique to make k trajectories be indis-

tinguishable in their whole. Once understood how to introduce

quasi-identifiers in the context of publishing a database of

moving objects, it will be interesting to adapt our techniques

to deal with this case.

All the work described above is developed for location

based services. In this paper, instead, we face the problem by

the perspective of privacy aware data publishing, i.e., the same

context of classical k-anonymity. In our setting, we have a

static database of moving objects and we want to publish it (for

instance for analysis purpose) is such a way that the anonymity

of the individuals is preserved, but also the quality of the data

is kept high. On the contrary, in the LBS context the aim is

to provide the service without learning user’s exact position,

and the data can also be forgotten once that the service has

been provided. In other terms, in our context anonymity is

off-line and data-centric, while in the LBS context is a sort

of on-line service-centric anonymity. A solution to the first

problem is not, in general, a solution to the second (and

viceversa), and both problems are important. Consider, for

instance, the concept of mix zones previously described: it

is a solution for LBS since it still allows to provide the

service, but it is not for data publishing, since the quality of

the data is completely destroyed. While several works exist

about anonymity in LBS, to the best of our knowledge this

is the first paper addressing the problem of k-anonymity of

trajectories by a data publishing perspective. In this context,

our main contribution is the introduction of concept of (k, δ)-
anonymity, i.e., anonymity exploiting the inherent uncertainty

of the moving object’s whereabouts. In the next section we

provide the problem definition, while in Section IV we discuss

possible techniques to enforce (k, δ)-anonymity, arguing that

in our context the most challenging and the most promising

technique by the point of view of information preservation

is space translation. We develop a suitable measure of the

information distortion introduced by space translation, and

we prove that the problem of achieving (k, δ)-anonymity by

space translation with minimum distortion is NP-hard. Thus

we propose a two-steps greedy method: in the first step we

group trajectories in clusters having at least k elements; in the

second step we perform the minimum space translation needed

to achieve (k, δ)-anonymity.

Several previous works used k-member clustering for k-

anonymity [24], [25], [26]. Our proposal differs from these

results, not only because we work with trajectories of moving

objects instead of the usual relations, but also because we in-

troduce uncertainty in the model. While in previous proposals



Fig. 1. Uncertain trajectory: uncertainty area, trajectory volume and possible
motion curve.

what is released is the centroid of a cluster together with the

cardinality of the cluster, in our approach each trajectory is

released distinctly while the anonymity is guaranteed by the

position uncertainty. This leads to an important benefit of our

approach: the fact that the released data has been previously

anonymized is much less evident in our approach. It is worth

noting that publishing one unique representative per cluster,

for a number of times equal to the population of the cluster,

can be seen as a special instance (δ = 0, i.e., no uncertainty)

of our framework.

III. PROBLEM DEFINITION

Following [4] an uncertain trajectory is defined as a cylin-

drical volume of radius δ.

Definition 1 (Uncertain Trajectory[4]): A trajectory of a

moving object is a polyline in three-dimensional space

represented as a sequence of spatio-temporal points:

(x1, y1, t1), (x2, y2, t2) . . . (xn, yn, tn)(t1 < t2 < · · · < tn).
During the time segment [ti, ti+1] the object is assumed to

move along a straight line from (xi, yi) to (xi+1, yi+1) at a

constant speed. Given a trajectory τ between times t1 and

tn, and an uncertainty threshold δ, the pair 〈τ, δ〉 defines

an uncertain trajectory. For each point (x, y, t) along τ , its

uncertainty area is the horizontal disk (i.e., circle and its

interior) with radius δ and centered at (x, y, t), where (x, y)
is the expected location at time t ∈ [t1, tn]. The trajectory

volume of 〈τ, δ〉, denoted V ol(τ, δ) is the union of all such

disks for all t ∈ [t1, tn]. A possible motion curve of τ is

any continuous function fPMCτ : Time → R
2 defined on

the interval [t1, tn] such that for any t ∈ [t1, tn], the spatio-

temporal point (fPMCτ (t), t) is inside the uncertainty area at

time t: we also adopt the notation fPMCτ ⊂ V ol(τ, δ). ¤

Definition 1 is graphically represented in Figure 1. Intu-

itively, two trajectories are indistinguishable if they are defined

in the same time interval and they follow almost the same route

w.r.t. the uncertainty threshold.

Definition 2 (Co-localization): Two trajectories τ1, τ2 de-

fined in [t1, tn] are said to be co-localized w.r.t. δ, iff for

each point (x1, y1, t) in τ1 and (x2, y2, t) in τ2 with t ∈
[t1, tn], it holds that Dist((x1, y1), (x2, y2)) ≤ δ, where

Dist is the Euclidean distance: Dist((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2. We write Colocδ(τ1, τ2) omitting

the time interval [t1, tn]. ¤

Another way to express the co-localization of trajectories is to

say that each one is a possible motion curve of the other:

Coloc(τ1, τ2) ⇐⇒ τ1 ⊂ V ol(τ2, δ) ⇐⇒ τ2 ⊂ V ol(τ1, δ)

Given an anonymity threshold k, we can define an anonymity

set as a set of at least k trajectories that are co-localized.

Definition 3 (Anonymity Set of Trajectories): Given a po-

sition uncertainty threshold δ and an anonymity threshold k, a

set S of trajectories is a (k, δ)-anonymity set iff |S| ≥ k and

∀τi, τj ∈ S .Colocδ(τi, τj). ¤

The following properties further characterize an anonymity set

of trajectories.

Proposition 1: A set of trajectories S, with |S| ≥ k, is a

(k, δ)-anonymity set iff it exists a trajectory τc s. t. all the

trajectories in S are possible motion curves of τc within an

uncertainty radius of δ/2: i.e., ∀τ ∈ S . τ ⊂ V ol(τc, δ/2).
Given a (k, δ)-anonymity set S, the trajectory τc is obtained

by taking, for each t ∈ [t1, tn], the point (x, y) that is the

center of the minimum bounding circle of all the points at

time t of all trajectories in S. ¤

Therefore, an anonymity set of trajectories can be bounded by

a cylindrical volume of radius δ/2. In Figure 2, we graphically

represent this property.

Fig. 2. A (2, δ)-anonymity set formed by two co-localized trajectories, their
respective uncertainty volumes, and the central cylindrical volume of radius
δ/2 that contains both trajectories.

The problem introduced in this paper is that of (k, δ)-
anonymizing a database of trajectories of moving objects.

Problem 1 ((k, δ)-anonymity): Given a dataset of trajecto-

ries D, an uncertainty threshold δ and an anonymity threshold

k, the problem of (k, δ)-anonymity requires to transform D
in a dataset D′, such that for each trajectory τ ∈ D′ it exists

a (k, δ)-anonymity set S ⊆ D′, τ ∈ S; and the distortion

between D and D′ is minimized. ¤



In the following we assume that all the trajectories in the

dataset D have the same sampling time. Since in Definition 1

trajectories are defined on the continuous time (i.e., they are

assumed to move along a straight line and at a constant speed,

between two consecutive observations), this assumption does

not produce any loss of generality.

IV. TECHNIQUES FOR TRAJECTORY ANONYMITY

In the following we discuss various techniques that could

be used to enforce trajectory anonymity. We start discussing

the basic techniques used in the classical k-anonymity setting,

generalization and suppression [27], then we discuss the

condensation approach [28], and finally we introduce the

technique adopted in this paper, namely space translation.

According to Definition 2, two trajectories to be co-localized

must be defined over the same time interval. Although in

real-world data it is quite unusual to have two trajectories

starting and ending at the exact same time instants, in practice

this problem can be tackled by allowing small time gaps, or

by selecting coarser time samplings, or more in general, by

introducing small information loss that is however necessary

to achieve (k, δ)-anonymity. This issue will be addressed in

practice in Section V-A. In the rest of this section we study

techniques for enforcing (k, δ)-anonymity, always focusing

on a maximal subset of trajectories that have the same time

span, or, in other words, elaborating separately each single

equivalence class induced by the same time span relation.

Given a dataset of trajectories D and a time interval T , we

denote:

DT = {τ ∈ D|τ is defined exactly in T}.

A. Trajectory Suppression

Given a set of trajectories DT , enforcing (k, δ)-anonymity

only by means of trajectory suppression is feasible and easy:

it requires to remove all trajectories in DT that do not belong

to any anonymity set.

The main drawbacks of trajectory suppression is that it

changes the size of the database, and that if used alone this

technique usually introduces a too strong information loss.

However, when combined with some other techniques, it can

be very effective because, by removing few outliers, it can

often enhance the overall data quality. In Section V we will

embed outliers detection and suppression within our method

for (k, δ)-anonymization.

B. Trajectory Generalization

In the classical k-anonymity setting, generalization of at-

tributes that are quasi-identifiers, i.e., replacing real values

with less specific but consistent values [27], is the main

technique. Given the domain of an attribute there are various

ways to generalize its values. For instance, ZIP code “44705”
can be generalized to “4470 ∗ ” (i.e., [44700-44709]), or to

“447∗∗” (i.e., [44700-44799]), or even to “∗” corresponding

to maximum domain generalization.

In the case of trajectories, generalizing can be achieved by

coarsening space granularity, i.e., by substituting a point (x, y)

with an area (e.g., a rectangle), containing (x, y). However,

generalization-based anonymization techniques usually rely on

predefined generalization hierarchies, whose choice heavily

influences the quality and usefulness of anonymized data. In

the context of moving objects, many different generalization

hierarchies can be chosen, based on the underlying geography:

for instance on the road network, or on the city’s districts,

or city’s regions of interest. Which one is the best choice is

difficult to know, and a poor choice could result in a poor

quality of the anonymized data. Moreover, as discussed in [26],

generalization-based anonymization techniques can produce

high information loss due to unnecessary generalization. This

problem is partially solved by the hierarchy-free multidimen-

sional approach proposed in [10], that however has the main

limitation of introducing inconsistency in the domain.

But the main reason for not adopting generalization tech-

niques is that in our context we miss a concept of quasi-

identifiers and thus we face the curse of dimensionality [29]

as explained in the following. Under the same sampling time

assumption, a dataset DT can be easily seen as a table having

one attribute (column) xt and one attribute yt for each t ∈ T ,

and one row for each trajectory τ ∈ DT . Since in our context

we must assume every column of DT to be a quasi-identifier,

we can easily end up with an extremely large number of quasi-

identifiers, thus making very difficult to anonymize the data

without an unacceptably high amount of information loss. This

is confirmed by an experiment that we conducted using the

Mondrian algorithm [10] over a real-world small dataset of

trajectories (the TRUCKS dataset described in Section VI-A).

After a pre-processing to create equivalence classes DT of

reasonable size, and their flattening in relational tables, we

applied Mondrian: in the resulting anonymized dataset, almost

all (99.9%) points were maximally generalized, thus yielding

complete information loss. Another important advantage of our

approach over generalization-based techniques is that the final

anonymized dataset has the same spatial granularity for all the

trajectories as the original dataset.

C. Condensation

The condensation approach introduced in [28] is a

perturbation-like approach which aims at preserving the inter-

attribute correlations of data. It starts by partitioning the

original data into clusters of exactly k elements, then it

regenerates, for each group, a set of k fake elements that

approximately preserve the distribution and covariance of the

original group. The record regeneration algorithm tries to

preserve the eigenvector and eigenvalues of each group. The

general idea is that valid data mining models (in particular,

classification models) can be built from the reconstructed

data without significant loss of accuracy. Condensation has

been applied by the same authors also to sequences [30].

Developing condensation-like anonymization of trajectories

could be an interesting approach. However, our objective is

keep the data as close to the original as possible, exploiting the

inherent uncertainty of position data to reduce the amount of

distortion needed to anonymize data. Moreover condensation



is data mining (classification) oriented and its quality strongly

depends on the subsequent data mining analysis performed on

the perturbed data: i.e., the same anonymization does not work

well for all possible subsequent analyses, and it is not easy

to assume that the analysis to be performed is always known

in advance. When the objective is to enforce (k, δ)-anonymity

with minimum distortion (Problem 1) both generalization and

condensation seem not to be good options.

D. Space Translation for (k, δ)-anonymity

Enforcing (k, δ)-anonymity by means of space translation

involves moving some trajectory points from the original

location to another location. The objective is to obtain (k, δ)-
anonymity while keeping original and translated routes as sim-

ilar as possible. Since this is the objective, a metric measuring

the distortion is needed. The natural choice is the sum of point-

wise distances between the original and translated trajectories

as defined next. In the following, given (x, y, t) ∈ τ , we denote

the (x, y) position of τ at time t as τ [t], the x position of τ
at time t as τ [t](x), and similarly for y.

Definition 4 (Translation distortion): Let τ ′ ∈ D′
T be the

translated version of τ ∈ DT . The translation distortion cost

of τ ′ w.r.t. τ is TD(τ, τ ′) =
∑

t∈T Dist(τ [t], τ ′[t]). The total

distortion of anonymized dataset D′
T w.r.t. DT is defined as

TTD(DT ,D′
T ) =

∑

τ∈DT
TD(τ, τ ′). ¤

Problem 2 ((k, δ)-anonymity by space translation): Given

a dataset of trajectories DT all defined over the same time

interval T , an uncertainty threshold δ and an anonymity

threshold k, transform DT into D′
T such that:

• D′
T is the same set of trajectories DT , possibly containing

space translated points,

• D′
T is (k, δ)-anonymous, and

• total translation distortion TTD(D,D′) is minimized.

¤

Theorem 1: (k, δ)-anonymity by space translation problem

is NP-hard.

PROOF. can be found in our technical report [31]. ¤

Faced with the hardness of our problem, we propose a two-

stage greedy method for providing (k, δ)-anonymity: in the

first stage we find clusters of trajectories containing at least k
members, and in the second stage we apply space translation

to move all the trajectories of a cluster within an uncertainty

tube of radius δ/2, making the cluster become an anonymity

set according to Definition 3.

More in details, in the first step we produce Candidate

optimal clustering, i.e., clustering such that each cluster has a

population size between k and 2k − 1. In fact if the cluster

size is at least 2k, then it can be further divided into at

least two sub-clusters satisfying the k-member constraint, and

yielding less distortion as proven in [24]. Moreover, since

under the same time sampling and same time span assumptions

trajectories can be seen as vectors, the distance functions we

adopt is the usual Euclidean distance.

Once we have extracted a candidate optimal clustering, the

next issue is how to minimize the cost of space translation

needed to transform each cluster in an anonymity set of

trajectories. The next Lemma provides the minimum distortion

space translation for the case δ = 0.

Lemma 1 (Minimum Distortion Space Translation): For

any cluster pi of a given candidate optimal clustering

P = {p1, . . . , pn} of a dataset DT , and given δ = 0, the

minimum distortion is obtained when all points are moved

to the arithmetic mean of the cluster, denoted τc[t], for each

t ∈ T , i.e.:

τc[t](x) =
P

τ∈pi
τ [t](x)

|pi|
and τc[t](y) =

P
τ∈pi

τ [t](y)

|pi|
.

PROOF. can be found in our technical report [31]. ¤

From the lemma above it follows that for any given candidate

optimal clustering it is easy to find minimum cost space

translation for (k, δ)-anonymity, when δ = 0. However, when

δ > 0 there is no analytical expression minimizing the

distortion. In fact, according to Proposition 1, all points must

be moved within an uncertainty disk of radius δ/2, and points

that are already inside such disk have null translation cost

regardless of the distance to the disk center. So, even slight

changes in the position of the disk, can significatively change

the surface of distortion function. Thus, for the cases δ > 0,

our strategy for SpaceTranslation is as follows:

1) first obtain cluster center as for δ = 0 (Lemma 1) ;

2) then move points lying outside the disk onto the disk

perimeter, along the direction from the original location

to the disk center.

Algorithm 1 summarizes the generic two-stage method that

we propose. Given a dataset of trajectories D, the algorithm

applies to each equivalence class of same time span DT

existing in D.

Algorithm 1 Two-stage Method for (k, δ)-anonymity

Input: DT , k, δ
Output: D′

T

1: γ ← CandidateOptimalClustering(DT , k);
2: D′

T ← SpaceTranslation(γ, δ);
3: return D′

T ;

The method is generic since it allows different approaches

and heuristics in the first step. Thus, the most important

issue we face now, is how to find the best candidate optimal

clustering. Unfortunately, the number of all such clusterings

is exponential in the size of DT . So, we need to resort to

sub-optimal clustering schemes.

V. THE NWA ALGORITHM

In order to assess which clustering approach is most suitable

for our purposes, we have extended a large variety of well

known clustering schemes to make them handle trajectories

and the constraint that each cluster must have a population of

at least k and at most 2k − 1 elements. We have prototyped

and experimentally compared them. For lack of space we must

omit this part of our investigation. However the interested

reader can refer to our technical report [31]. The result of such



preliminary experimentation was that a Greedy Clustering

(GC) scheme represents the best trade-off between effective-

ness and efficiency, and thus it is chosen as the building block

for our method.

GC iteratively selects a pivot trajectory and makes a cluster

out of it and of its k − 1 unvisited nearest neighbors, starting

from a random pivot and choosing next ones as the farthest

unvisited trajectories w.r.t. previous pivots. Being simple and

extremely efficient, GC allows us to iteratively repeat it until

clusters satisfying some criteria of compactness are built.

Starting from this clustering scheme, and further enhancing

it with techniques aimed at improving its effectiveness and at

making it a working anonymization tool for real-world data

and applications, we obtain our NWA method summarized

in Algorithm 2.

NWA is developed along three main phases:

• Pre-processing: aimed at enforcing larger equivalence

classes of trajectories w.r.t. same time span;

• Clustering: based on GC method and enhanced with

techniques to keep low the radius of produced clusters,

at the price of suppressing some outlier trajectories;

• Space Translation: transforming each cluster found into

a (k, δ)-anonymity set.

Algorithm 2 NWA

Input: D, k, δ, π
Output: D′

1: initialize(Max Trash);
2: D′ ← ∅;

3: Dec ← NWApreproc(D, π);
4: for all DT ∈ Dec do

5: if |DT | ≥ k then

6: Trash quota(T ) ←
⌊

|DT |
|D| ∗ Max Trash

⌋

;

7: γ ← NWAclust(DT , k, T rash quota(T ));
8: D′ ← D′ ∪ SpaceTranslation(γ, δ);
9: return D′;

The input of the algorithm are a database of trajectories

D, an anonymity threshold k, an uncertainty threshold δ,

and the time granularity π used in the pre-processing step

to create equivalence classes of trajectories, as explained in

the next section. The output of the algorithm is a (k, δ)-
anonymized database D′. Moreover, NWA makes use of

an additional parameter, Max Trash, that is hidden to the

user and automatically estimated by the algorithm in line 1

(in our experiments it was set to 10% of the dataset size):

Max Trash bounds the maximum allowed trash, i.e., outlier

trajectories to be suppressed.

A. Pre-processing

The fist task of NWA is the partitioning of the input

database into equivalence classes w.r.t. time span, i.e. groups

containing all the trajectories that have the same starting time

and the same ending time. As mentioned in Section IV,

if performed on the raw input data this often produces a

Algorithm 3 NWApreproc

Input: D, π
Output: Dec

1: for all τ ∈ D do

2: Let [tb, te] be the time span of τ ;

3: i ← min{ t | t ≥ tb ∧ t mod π = 0};

4: j ← max{ t | t ≤ te ∧ t mod π = 0};

5: if i ≤ j then

6: τ ′ ← τ [i, j]; // Project τ over [i, j]
7: insert τ ′ in D[i,j];

8: Dec ←
⋃

{

D[i,j] | i mod π = 0 ∧ j mod π = 0
}

;

9: return Dec;

large number of very small equivalence classes, possibly

leading to very low quality (k, δ)-anonymization. In order to

overcome this problem, we developed a simple pre-processing

procedure, summarized in Algorithm 3, able to enforce larger

equivalence classes at the price of a small information loss.

The preprocessing is driven by an integer parameter π: only

one timestamp every π can be the starting or ending point of

a trajectory. For instance, if the original data was sampled at

a frequency of one minute, and π = 60, all trajectories are

pre-processed in such a way that they all start and end at full

hours. To do that, the first and the last suitable timestamps

occurring in each trajectory are detected (lines 3 and 4), and

then all the points of the trajectory that do not lay between

them are removed (line 6). Finally, after the transformation

trajectories are partitioned into equivalence classes w.r.t. their

new starting and ending points (line 8).

B. Clustering

At a very general level, the clustering procedure, named

NWA clust (Algorithm 4), follows the same structure of GC,

by selecting a sequence of pivot trajectories that play the role

of cluster centers, each one chosen as the farthest trajectory

from the previous pivot (excepted the first one, chosen as the

farthest trajectory from the dataset center, see lines 4 and 6);

forming a cluster of exactly k trajectories around each pivot

with its (k−1)-nearest neighbors (line 7); and, finally, assign-

ing each remaining object to its closest pivot (line 14). The

difference introduced in NWA clust is a constraint added to

the clusters to be formed, i.e., they must have radius not larger

than a threshold max radius, both when clusters are created

(lines 8–12) and when they are enlarged with the remaining

objects (lines 15–17). max radius is automatically initialized

by the algorithm in step 1 (in our experiments it was simply set

to 0.5% of the semi-diagonal of the spatial minimum bounding

box of the dataset). When a cluster cannot be created around a

new pivot, the latter is simply deactivated (line 12: Active is

the set of actual acceptable pivots) — i.e., it will not be used

as pivot but, in case, it can be used in the future as member of

some other cluster — and the process goes on with the next

pivot. When a remaining object cannot be added to any cluster

without violating max radius, it is simply trashed (line 17).

We notice that this process can lead to solutions with a too



large trash, in which case the whole procedure is restarted

from scratch relaxing the max radius constraint (line 18, in

our experiments implemented by multiplying max radius by

a factor 1.5), reiterating the operation till a clustering with

sufficiently small trash is obtained (line 19). At the end, the

set of clusters obtained is returned as output, thus implicitly

discarding the trashed trajectories.

Algorithm 4 NWAclust

Input: D, k, T rashmax

Output: γ
1: initialize(max radius);
2: repeat

3: Active ← D; Clustered ← ∅;

Pivots ← ∅; Trash ← ∅;

4: τp ← average trajectory of D;

5: while Active 6= ∅ do

6: τp ← arg maxτ∈Active Dist(τp, τ);
7: cτp

← {τp} ∪ {k − 1 nearest neighbors of τp

in D \ Clustered};

8: if maxτ∈cτp
Dist(τp, τ) ≤ max radius then

9: Active ← Active \ cτp
;

10: Clustered ← Clustered ∪ cτp
;

11: Pivots ← Pivots ∪ {τp};

12: else Active ← Active \ {τp};

13: for all τ ∈ D \ Clustered do

14: τp ← arg minτ ′∈Pivots Dist(τ ′, τ);
15: if Dist(τp, τ) ≤ max radius then

16: cτp
← cτp

∪ {τ};

17: else Trash ← Trash ∪ {τ};

18: increase(max radius);
19: until |Trash| ≤ Trashmax;

20: return {cτp
|τp ∈ Pivots};

From another viewpoint, we can see the whole process as

a constrained clustering task, where the maximum trash size

expresses a hard constraint, while the maximum cluster radius

is a soft constraint that can be relaxed as much as needed.

Indeed max radius handles trade-off between quality and

running time, since small values might lead to more compact

clusters, but possibly requiring more iterations to reach a

feasible value for max radius. If running time is not a crucial

issue, max radius becomes a non-critical parameter, and can

be initialized to a very small value.

VI. EXPERIMENTAL EVALUATION

In this section we report the empirical evaluation we have

conducted in order to assess the performance of our method,

in terms of the quality of the data maintained in the (k, δ)-
anonymization process, and in terms of efficiency. In partic-

ular, when measuring data quality, we are interested in the

differences holding between the original data D and its (k, δ)-
anonymized version, D′. For this purpose, we adopt both

objective measures of information distortion (Section VI-B),

and more usability-oriented measures, such as the difference in

the output of the same spatio-temporal range queries executed

on D and D′ (Section VI-C).

A. Experimental Data

We experimented on both a real-world trajectory dataset,

and a synthetic one. The first one, contains 273 trajectories

of real trucks movement data [32]. The second one has been

generated using Brinkhoff’s network-based synthetic generator

of moving objects [33]: it contains 100,000 trajectories and it

represents one day movement over the road-network of the

city of Oldenburg (Germany). The former dataset is referred

as TRUCKS, and the latter as OLDENBURG henceforth. In

Table I we report the characteristics of the two datasets and

the pre-processing performed on them. For each dataset D
we report: the half-diagonal of the minimum bounding box

(MBB radius(D)) of the spae in D, the number of trajec-

tories (|D|), the pre-processing step used (π), the resulting

number of equivalence classes w.r.t. same time span relation

(|Dec|), the maximum time span and maximum population

of an equivalence class. It should be noted that the TRUCKS

dataset is much sparser than OLDENBURG: it contains a much

smaller number of trajectories, moving in a larger space.

TABLE I

DATASETS USED IN THE EXPERIMENTS.

MBB Max time Max pop.

D radius(D) |D| π |Dec| DT ∈ Dec DT ∈ Dec

TRUCKS 65969.6 273 415 12 2085 103

OLDEN. 35779.3 100K 5 435 141 3499

B. Discernibility and Distortion

An interesting metric introduced in [9] is discernibility,

that measures the data quality of the anonymized dataset

based on the size of each anonymity set. Given a clustering

P = {p1, . . . , pn} of D, where pn represents the trash bin,

the discernibility metric is defined as:

DM(D) =

n−1
∑

i=1

|pi|
2 + |pn||D|

Intuitively, discernibility represents the fact that data qual-

ity shrinks as more data elements become indistinguishable.

Discernibility measures are reported in Figure 3(a) and (d).

It is worth noting that NWA does not produce solutions

exhibiting monotone discernibility w.r.t. k: this is due to the

strong influence of trash on discernibility.

Since discernibility only captures the clustering step of our

method, and not the space translation (hence it is independent

from δ), in the following we develop an ad hoc measure

of information distortion. Recall that information distortion

occurs in three different ways in NWA. First, in the pre-

processing step, some initial and final points of a trajectory

are possibly cut with the aim of building larger equivalence

classes of trajectories having the same time span. Second,

trajectories ending in the trash bin are completely removed and
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Fig. 3. Discernibility and distortion empirical evaluation.

will not appear in the released dataset D′. Third, trajectories

not ending in the trash bin are space-translated to achieve

(k, δ)-anonymity. Our aim is to develop a unique measure able

to capture these three different kinds of information distortion.

We note that: (i) the finer-grained data element at which

information distortion occurs is the point, and (ii) a point can

be either translated or suppressed. If we consider trajectories

as sets of points, and suppression as maximal translation,

we obtain a uniform measure capturing the three different

information distortions. For each trajectory τ ∈ D, let τ ′ be

its correspondent in the (k, δ)-anonymized dataset D′. Note

that τ ′ can possibly be an empty set of points, in the case the

trajectory τ ended in the trash bin. For each time t in which

τ is defined, we measure:

ID(τ [t], τ ′[t]) =

{

Dist(τ [t], τ ′[t]) if τ ′[t] is defined;
Ω otherwise.

where Ω is a constant value used to penalize removed points

and corresponding to the maximal point translation recorded

in the experiment. Given a trajectory τ , let T be the time

interval in which τ is defined. The total distortion produced

by τ in the (k, δ)-anonymization process is:

ID(τ, τ ′) =
∑

t∈T

ID(τ [t], τ ′[t])

For instance, given a τ defined in [t1, tn], if τ ends in

the trash, it produces an information distortion of Ω for

each timestamp: i.e., ID(τ, τ ′) = nΩ. Finally, the total

information distortion introduced by (k, δ)-anonymizing D is:

ID(D,D′) =
∑

τ∈D ID(τ, τ ′).
The results for the total information distortion are shown

in Figure 3(c) and (f), where we can see that, as expected,

small values of k and large values of δ yield a low distortion,

that increases quasi-monotonically as k grows and δ decreases.

Since our information distortion measure is based on the Ω
parameter, we plot the values obtained for maximal point

translation (used to set Ω) for δ = 200, in Figure 3(b) and

(e). Though there is not a strictly monotonic growth, the

maximal point translation quickly reaches high values and

remains relatively stable, meaning that removed points are

almost always paid a high cost.

C. Spatio-temporal Range Queries

Since the purpose of releasing data is usually to query or to

analyze it, the best way of measuring utility is to compare the

results between queries evaluated on the original dataset D and

its (k, δ)-anonymized version D′. In the following we report

such comparison adopting spatio-temporal range queries with

uncertainty, according to the model of [4], that is also at the

basis of our problem definition in Section III. Therefore, the

same uncertainty level δ at the basis of our framework, is both

used in the (k, δ)-anonymization process and in the querying

process for evaluation purposes.
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Fig. 4. (a) range query distortion for Q1, (b) range query distortion for Q2, (c) run times.

In [4] it is introduced a set of six (Boolean) predicates

that give a qualitative description of the relative position of

a moving object τ with respect to a region R, within a

given time interval [tb, te]. In particular we are interested in

the condition inside(R, τ). Since the location of the object

changes continuously, we may ask if such condition is satisfied

sometime or always within [tb, te]; moreover, due to the

uncertainty, the object may possibly satisfy the condition or

it may definitely do so, at a particular timestamp t ∈ [tb, te].
If there exists some possible motion curve fPMCτ (recall

Definition 1) which at the time t is inside the region R, there

is a possibility that the moving object will take fPMCτ as

its actual motion and will be inside R at t. However, the

moving object may have chosen another possible motion curve

as its actual motion. Similarly, if every possible motion curve

fPMCτ is inside the region R at the time t, then regardless of

which one describes the actual objects motion, the object is

guaranteed to be inside the region R at time t. Thus, we have

two domains of quantification, with two quantifiers in each.

In the following, we focus only on the two extreme cases,

namely Possibly Sometime Inside (P S I), corresponding

to a double ∃, and Definitely Always Inside (D A I),

corresponding to a double ∀. More formally:

Possibly Sometime Inside(τ, R, tb, te) ≡

≡ (∃fPMCτ )(∃t ∈ [tb, te])inside(R, fPMCτ (t), t)

Definitely Always Inside(τ, R, tb, te) ≡

≡ (∀fPMCτ )(∀t ∈ [tb, te])inside(R, fPMCτ (t), t)

In the experiments, we compare the results of the following

queries over D and its (k, δ)-anonymized version D′.
Query Q1:

SELECT COUNT(*)

FROM MOD

WHERE P_S_I(MOD.traj,R,t_b,t_e)

Query Q2:

SELECT COUNT(*)

FROM MOD

WHERE D_A_I(MOD.traj,R,t_b,t_e)

In Figure 4(a) we report the measure range query distortion,

i.e., |Q1(D) − Q1(D′)|/max(Q1(D),Q1(D′)) for various

values of k and δ, and averaged over 1000 different runs with

randomly chosen circular regions R having radius between

500 and 5000, and randomly chosen time interval [tb, te] with

duration ranging from 2 to 8 hours. The experimental results

show a very low distortion for a wide range of values of δ and

k (in most cases below 10%), raising only for high values of k
in combination with small values of δ. Similarly, in Figure 4(b)

the distortion for Q2 is reported. In this case we obtain higher

error (even if always below 60%), as the high selectivity of

Q2 makes it very sensitive to any data distortion, and thus it is

intrinsically harder for our method geared on space translation.

D. Efficiency

The algorithm was implemented in C, and all experiments

were performed on a Intel Xeon 2Ghz processor with 1Gb of

RAM over a Linux 2.6.14 platform. Run time measurements

are reported in Figure 4(c). The results confirm that our

prototype is very robust and efficient, as it is able to (k, δ)-
anonymize in few minutes a dataset containing 100k trajec-

tories (approx. 350Mb). Performances decrease as k grows,

while they are unaffected by δ.

Our software (source code and executables) can be down-

loaded from: www-kdd.isti.cnr.it/NWA/.

VII. CONCLUSIONS

In this paper we introduced the novel concept of (k, δ)-
anonymity for privacy preserving data publication from mov-

ing objects databases, that exploits the inherent uncertainty of

location in order to reduce the amount of distortion needed to

anonymize data. We deeply characterized the problem and we

developed a simple, yet effective and efficient, method. Al-

though experimental results show that our method introduces

reasonable distortion, there is still room for improvements.

The rigid pre-processing described in Section V-A could be

avoided by adopting a time-tolerant distance function, such

as EDR [34], for the clustering step. We are developing this

new method. Also more sophisticated techniques to handle

the trade-off between cluster radius and trash rate are under

investigations. In this paper we assumed a uniform uncertainty



level δ for all the moving points. In some applications this

could not be the case, and different moving objects could have

different uncertainty level δ. Our method can be straightfor-

wardly extended to deal with this situation by taking, for each

cluster, the minimum δ appearing in the cluster (but more

sophisticated techniques could be devised).

It has been recently recognized in [7] and in many other

works, that k-anonymity alone does not put us on the safe side,

because although one individual is hidden in a group (thanks

to equal values of the quasi-identifiers), if the group has not

enough diversity of the sensitive attributes then an attacker can

still associate one individual to sensitive information. How-

ever, in the context of moving object data the problem is very

challenging, because position is a peculiar kind of information

that could be considered to be sensitive and quasi-identifier at

the same time. Therefore, since anonymity requires similarity

on the quasi identifiers, and diversity requires dissimilarity

on the sensitive information, it seems that in the case of

moving object data they are two conflicting goals. In this

paper we did not consider any concept of quasi-identifier for

trajectories, and thus we did not tackle the diversity problem:

these are interesting and open research problems that deserve

deep investigation.
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