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Abstract. Publication of moving objects’ everyday life trajectories may cause
serious personal privacy leakage. Existing trajectory privacy-preserving methods
try to anonymize k whole trajectories together, which may result in complicated
algorithms and extra information loss. We observe that, background information
are more relevant to where the moving objects really visit rather than where they
just pass by. In this paper, we propose an approach called You Can Walk Alone
(YCWA) to protect trajectory privacy through generalization of stay points on
trajectories. By protecting stay points, sensitive information is protected, while
the probability of whole trajectories’ exposure is reduced. Moreover, the infor-
mation loss caused by the privacy-preserving process is reduced. To the best of
our knowledge, this is the first research that protects trajectory privacy through
protecting significant stays or similar concepts. At last, we conduct a set of com-
parative experimental study on real-world dataset, the results show advantages of
our approach.

Keywords: Privacy-preserving, Trajectory data publication, Stay points
extraction.

1 Introduction

Recent years, positioning techniques and location-aware devices have made numerous
locations and traces of moving objects (MOBs) collected and published. Mining and an-
alyzing trajectories is beneficial to multiple novel applications. For example, analyzing
trajectories of passengers in an area can help people to make commercial decisions, such
as where to build a restaurant; while, analyzing trajectories of vehicles in a city may help
government to optimize traffic management systems. Although publishing trajectories
is beneficial to mobility-related decision making processes, it still causes serious threats
to personal privacy: spatio-temporal information contained in trajectories may reveal
individuals personal information, such as, living habits, health conditions, social cus-
toms, work and home addresses, etc. When we say trajectory privacy-preserving, we
mean to protect both whole trajectories not to be re-identified and the frequent/sensitive
location samples not to be exposed. To address these problems, trajectory k-anonymity
is proposed to anonymize k trajectories together in a broader similar time span [1,2,3].
But we argue that, it is not necessary to involve all location samples into privacy
strategy.
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Fig. 1. An example of trajectory k-anonymity

Most of the trajectory k-anonymity methods try to anonymize k whole trajectories to-
gether, which may lead to serious information loss. Examples of trajectory k-anonymity
are shown in Fig.1, where k=3. Without loss of generality, number of trajectories nt in
each sub figure is set to 2, 3, 4. They stand for nt is less than k, exactly equals to
k and larger than k respectively. We take (k,δ )-anonymity [2] as an example. When
nt=2 in Fig.1(a), trajectory 3-anonymity cannot be achieved, both trajectories should be
deleted for privacy-preserving purpose. Note that, the deletion happens for all nt < k.
In Fig.1(b), nt = 3. For a given radius δ , trajectory 3-anonymity can be achieved by
trajectory clustering and space translation. Thus, original trajectories T1, T2 and T3 (rep-
resented by the solid lines) are translated to T ′1, T ′2 and T ′3 (represented by the dotted
lines) respectively, then each location sample is generalized in T ∗ (represented as the
cylinder in gray). Besides generalization, space translation also causes information loss.
For example, given a query Find me trajectories in area A, it returns nothing if executes
on T ∗. While in fact, T1 is in A, thus the query result is totally lost. If trajectory (k,
δ )-anonymity tries to avoid space translation, anonymity region should be expanded,
which may also cause information loss. In Fig.1(c), T4 is added. However, the radius
of the 4 trajectories is too large to be anonymized together, T4 should be deleted. Then
T1, T2 and T3 are anonymized in T ∗, the same as in Fig.1(b). Compared with original
trajectories, deletion, space translation and generalization are adopted to achieve tra-
jectory k-anonymity, while each of them may lead to information loss. Thus, the total
information loss of trajectory k-anonymity is high.

Instead of treating location samples equally in trajectory k-anonymity, our key ob-
servation is that real trajectories are not randomly sampled spatio-temporal points, they
have semantics, such as stay points. We therefore propose to protect trajectory privacy
through protecting stay points, which may avoid serious information loss as well as pro-
viding high privacy guarantee. This idea is feasible for two main reasons: firstly, most
background information is relevant to stay points (e.g., check-ins at semantic places or
credit card transactions at shopping malls). Thus, protecting stay points may reduce
the probability of whole trajectory exposure; secondly, protection of stay points can
prevent leakage of sensitive information on trajectories, since stay points contain more
sensitive information than ordinary location samples (e.g., if a MOB visits or stays at a
hospital, adversaries may infer the person has a health problem; while the adversary
may infer nothing if the MOB just passes through in front of a hospital). Moreover,
trajectory k-anonymity highly depends on distributions of MOBs. If the distribution is
too sparse to satisfy k-anonymity, trajectories may be deleted for privacy-preserving
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purpose (as shown in Fig.1); while if the distribution is too dense, locations or trajec-
tories may be exposed. This is because people always gather in semantic places, if we
anonymize k MOBs at a semantic place, their locations are exposed. Our proposal can
avoid this by generalizing stay points into zones, each zone contains at least l semantic
places. Thus, adversaries cannot distinguish MOBs′ exact locations.

In this paper, we study the problem of protecting trajectory privacy in a data publi-
cation perspective. The key challenges of our proposal are how to extract stay points
efficiently on people’s trajectories and how to generate zones with minimized size and
diversified contents. The contributions of this paper are as follows:

– We propose to depersonalize significant stay points on trajectories instead of current
whole trajectory anonymization.

– We then implement this notion in our proposed method You Can Walk Alone
(YCWA) through splitting trajectories into {move, stay} sequences, and general-
izing each stay point into a territory based on a generated split map.

– Two approaches are proposed to generate the split map. One of which is grid-based
approach; the other one is clustering-based approach. The latter takes both spatial
distance and semantic similarities into consideration.

– We experimentally evaluate the proposed approach on a real-world dataset. Experi-
ment results show that information loss caused by YCWA exhibits lower than 20%,
which obviously dominates trajectory k-anonymity method.

The rest of the paper is organized as follows. Section 2 summarizes related work. Sec-
tion 3 formally defines concepts that we study in this paper. In section 4, we present our
proposed approach. Section 5 analyzes the privacy guarantee and data utility. Experi-
ment results are shown in section 6. Finally, section 7 concludes the paper.

2 Related Work

Trajectory privacy-preserving is a new research area that has received lots of concerns
recent years. Several approaches have been proposed to tackle the problem in a data
publication perspective in an off-line manner, while some have been proposed in the
context of location-based services in an online manner.

We first introduce privacy-preserving techniques in trajectory data publication. In
[2], Abul et al. propose a concept called (k, δ )-anonymity due to the imprecision of GPS
devices, where δ represents the possible location imprecision. Then an approach called
Never Walk Alone (NWA) is proposed to achieve (k, δ )-anonymity through trajectory
clustering and space translation. In [3], Yarovoy et al. observe the fact that there does not
exist a fixed set of QID attributes for all the moving objects, and the anonymity groups
may not be disjoint. A notion of attack graph-based k-anonymity is proposed. Yarovoy
et al. propose two algorithms called Extreme Union and Symmetric Anonymization to
generate anonymity groups which satisfy the novel k-anonymity. In [1], Nergiz et al.
argue that since the trajectories are published for research purpose, it is useful to pub-
lish atomic trajectories rather than anonymized regions. So the authors design a method
to publish atomic trajectories in an anonymization-reconstruction manner: first, enforce
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k-anonymity by clustering trajectories together based on log cost distance, then recon-
struct trajectories by randomly selecting location samples from anonymized regions.
Privacy strategies in [4] is based on the assumption that different adversaries may have
different parts of MOBs’ trajectories, while the data publisher knows what the attack-
ers own. Then a suppression-based method is proposed to suppress trajectory segments
which may reduce the probability of disclosing whole trajectories. In [6], the authors
propose a new trajectory privacy-preserving method which is implemented through spa-
tial generalization and k-anonymity.

Recently, several approaches have been proposed to protect MOBs’ trajectory pri-
vacy in an online manner. In [10], a suppression-based method is proposed to protect
users’ online trajectory privacy. In this paper, areas are classified as either sensitive or
insensitive based on the proportion of visitors and the whole population of that area.
Location updates are suppressed when users enter a sensitive area. In [13], Toby et al.
propose to anonymize historical trajectories with users’ current trajectories. This pro-
posal helps to reduce the area size of the cloaking region. In [5] Gyozo et al. propose
a notion of trajectory privacy-preserving data collection, then implement it based on a
server-client architecture. Each client’s trajectory is split, exchanged and anonymized
by the server before collected by the service provider.

The main difference between these works and our proposal is that they do not account
for any difference of location samples, while in fact, stay points are more important
and more sensitive than ordinary location samples. As far as we have investigated, we
are the first to propose protecting trajectory privacy through protecting significant stay
points. Another important concern in this paper is the diversity of sensitive attributes. If
the places contained in a zone are almost the same type, the visitors’ personal privacy
may be exposed. e.g., if someone visits a zone that only contains a certain type of sensi-
tive locations, such as clubs, even the stay point is generalized to an area, adversaries
may still discover he has visited a club no matter which one it is. We solve this prob-
lem by using a mixed distance in the clustering algorithm to enforce diversified places
into a zone.

3 Problem Statements

Trajectories of moving objects are collected and stored in moving object databases
(MOD). For a moving object Oi, its trajectory T is a set of discrete locations at sam-
pling time, represented as: T = {qi, (x1, y1, t1), (x2, y2, t2), . . . (xn, yn, tn)}, where qi is
the identifier of the trajectory; (xi, yi) represents MOB’s position at sampling time ti,
(xi, yi, ti) is a location sample on trajectories. Raw trajectories consist of GPS record,
which is defined in [8]. In the next, we give some definitions in our study.

Definition 1 (Location). A location L is a two-tuple <x, y>, which represents the
latitude and longitude of the location.

Each GPS record corresponds to a location at sampling time. Location samples are ba-
sically in two categories: pass-by points and stay points. Pass-by points are locations
where MOBs just go through with a non-zero speed, while stay points stand for loca-
tions where the MOB stays over a certain time interval.
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Definition 2 (Stay point). A stay point Lsp is a four tuple <sID, x, y, Δ t>, where sID
is the identifier of the stay point; <x, y> is the coordinate of the stay point, Δ t is the
duration of the stay.

Each time a user stays at somewhere over a time interval, we can obtain a corresponding
stay point. Stay points of a real-world place may have different coordinates. Suppose a
person visits a shopping mall from the front gate, while another person visits the same
mall from the back door. Although they visit the same shopping mall, the stay points
we extract are different. On the other hand, the imprecision of GPS devices may also
result in different stay points for a real-world place. In order to obtain the real-world
places where the MOBs visit, we define the notion of place.

Definition 3 (Place). A place P is a set of stay points, it is represented as <pID, loc,
add, sem>, where pID and loc represent the identifier and the centroid coordinate of P
respectively, add represents the address of P, while sem represents the semantic char-
acteristics of P, which consists of three parameters <−→v , Δ tavg, tenter>, they represent
the visitors, average visit duration and average enter time respectively.

Places we define here correspond to real-world places, such as shopping malls, clubs,
restaurants, etc. Each place is available for all MOBs to visit or stay.

Definition 4 (Zone). A zone Z is an area consists of at least l places, it is represented
as <zID, bl, ur, pn>, where zID is the identifier of the zone, bl and ur represent the co-
ordinate of the bottom-left corner and the upper-right corner respectively, pn represents
the number of places included by the zone.

Location Place

Stay point
Zone

Fig. 2. Locations, stay points, places and zones

An example of these definitions can be seen in Fig.2, where solid back points are lo-
cations, hollow points represent stay points. Squares, circulares and triangles are real-
world places, different shapes stands for different types of places. The shaded rectangle
is a zone which contains three places. Zones are derived from places, places are derived
from stay points. Thus, a zone is a generalized version of users’ stay points.

4 Proposed Solutions

4.1 Solutions Overview

We assume adversaries have access to all published trajectories and the public back-
ground information. They know the distribution of real-world places on the map, but
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they do not know the movement parameters of MOBs. Before our method, we assume
the traces are already anonymized by replacing the true identifier with a random and
unique pseudonym. Our goal in this paper is to anonymize original trajectory database
D to a published version D∗, in which stay points cannot be exposed in a probability
larger than 1/l. The procedure of YCWA is as follows (also shown in Fig.3):

– Split map generation. First, we extract stay points from raw trajectories, then re-
construct semantic places using a reverse geocoder [9]. After that, we construct
zones containing l places through a grid-based and a clustering-based method re-
spectively.

– Trajectory anonymization. We divide trajectories into {move, stay} sequences, where
stay points are replaced by corresponding zones. Pass-by points are either deleted
or un-processed, depending on wether it locates inside a zone or not. At last, D is
transformed to D∗ in this step.

– Information loss measure. We measure information loss of D∗ in this step. Since D∗
is always published for analysis purpose, the utility of D∗ should be kept high. Here
we adopt an information loss measure in [3], which is represented as the reduction
of the probability with which people can accurately determine the position of a
MOB.

Trajectory 
database D

Trajectory 
anonymization

Stay point 
extraction

Place 
generation

Zone 
construction

Map Generation

Input Output
Published 

database D* 

Information 
loss measure

Location 
Data

Data Anonymization

Fig. 3. Procedure of YCWA

4.2 Stay Points Extraction

We adopt stay points extraction strategies in [7] with improvements. Stay points are in
two basic categories: stop and wondering. Accordingly, stay points occur in the follow-
ing two situations. One of which is when a person equipped with a GPS logger gets into
a building, the GPS logger loses signals and stops logging. Or, if a GPS-enabled car
driver stops his car, the GPS device is turned off. The other one is when a GPS carrier
is wondering around an outside sign, the GPS device is still logging and the velocity is
not zero. In this case, the sign should also be regarded as a stay point [7].

For the first situation, we adopt a duration-based strategy. A parameter δ t is intro-
duced in order to avoid mistaking occasional stays for stay points, such as waiting for
traffic lights. If a MOB stays at a location exceeding the time threshold δ t, the location
is regarded as a stay point. That is to say, given a trajectory T={(L1, t1), (L2, t2), · · · ,
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(Ln, tn)}, if |ti+1-ti| > thtime, Li is regarded as a stay point, and the duration of this stay
Δ t is set to |ti+1-ti|. After that, all the stay points are put into Dstays. Thus, starts, ends
and long stays are regarded as stay points.

For the second situation, we adopt a density-based strategy. Given a distance thresh-
old thdist and a time threshold thtime, if distance(Li+1,Li) < thdist and | ti+1-ti | > thtime,
the MBR consists of Li and Li+1 is called a dense area Adense. Generally speaking, Adense

can be regarded as an outdoor stay point. However, a more complicated problem arises.
When a GPS-enabled car meets traffic jams, the congestion area may be mistaken as an
outdoor stay point. We solve this problem by recognizing whether the dense area Adense

is a road segment or not, since traffic jams always happen on road, while most outdoor
signs are not. We put all the dense areas (represented by their geographic centers) as
stay point candidates into Dsc and take Dsc into the next procedure.

4.3 Places Reconstruction

We recall Google Maps API to reverse-geocode coordinate of each stay point and stay
point candidate. Places we reconstruct are put into Dplaces, which is initialized to empty.
For each stay point Li in Dstays, compare its reverse-geocoded address Li.add with each
place′s address in Dplaces. If Li.add equals to Pi.add, merge Li with Pi. Visitors −→v ,
average visit duration Δ tavg and average enter time of the place tenter of Pi are updated.
While if Li.add does not equal to any addresses of existing places in Dplaces, set Li as
a new place in Dplaces. For each stay point candidate Adense in Dsc, we reverse-geocode
it at first. If the obtained address is a road segment, Adense is probably caused by traffic
jams, it should be deleted from Dsc. If the Adense.add is not a road segment, Adense is
regarded as an outdoor stay point, subsequent processing follows the same procedure
as Li. At last, we merge Dsc into Dstay and return Dplace.

Real-world places are in different types, such as apartments, shopping malls, clubs,
and office buildings,etc. In privacy-preserving literature, the most ideal situation is to
enforce diversified places into a zone, but it is too hard to tag each place with a type.
Therefore, we adopt a notion of similarity between places called place similarity [8]
to solve this problem. We define similarity of places according to three parameters:
visitors, average visit duration and the average enter time. Since places of different
types usually exhibit different features. e.g., office buildings may have an average enter
time during 8.AM and 10.AM, average visit duration ranging from 7 to 9 hours, while
a night club may be significantly different. The three parameters can be used to capture
these features and measure the similarities between places, as shown in equation (1).

Definition 5 (Place similarity). Given two places < Pi, loc, add, sem> and < Pj, loc,
add, sem>, where sem is represented as < −→v , Δ tavg, tenter >. Place similarity can be
computed by:

sim(Pi,Pj) =
−→vi ·−→v j

| −→vi || −→v j | +
min(Δ tavgi,Δ tavg j)

max(Δ tavgi,Δ tavg j)
+

min(tenteri, tenter j)

max(tenteri, tenter j)
(1)
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The vector space model is used to compute the similarity between two visitor lists.
The similarity of average visit duration is computed as the smaller one divided by the
larger one, the same is done for average enter time. Sim(Pi,Pj) is computed by linear
combination of the three scores. The higher the sim(Pi, Pj) value, more similar they are.

4.4 Zones Construction

In this section, we turn places into zones in order to generate a split map. Two different
approaches are proposed, one is grid-based approach, called GridPartition; the other
one is clustering-based approach called DiverseClus.

GridPartition. In GridPartition, the whole 2D Euclidean space is uniformly divided
into square cells. Each cell is called a grid. Obviously, places are located in different
grids, and the number of places in each grid is different. Gi.num denotes number of
places contained by Gi. For a user specified privacy level l, not every grid contains
enough places to be a zone. We design an enlarging strategy to enforce at least l places
into a zone, as shown in Algorithm 1. Each grid Gi is scanned in a spatial order. If
Gi.num >l, Gi is tagged as a zone, and put Gi into Dzones (line 3-6). If 0 < Gi.num < l,
we try to merge it with its neighbors. For any grid or zone G′ near Gi, if 0< G′.num < l,
it is regarded as G′is grid neighbor, and then put it into NGBg; while G′is zone neighbors
are put it into NGBz (line 7-8). An example can be seen in Fig.4(a), where l is set to 5.
When Gi.num < l, Gi enlarges itself by merging with its grid neighbors in NGBg (line
10-12). If NGBg = Φ , Gi enlarges itself by merging with its zone neighbors in NGBz

(line 13-15). After merging, Gi.num, Gi.ur and Gi.bl should be updated, and Gi is put
into Dzones. Fig.4(b) shows the resulted two zones using the enlarging strategy.

NGBz

cl
cb

cr

NGBg

(a)

Z1

Z2

(b)

Fig. 4. GridPartition

GridPartition guarantees each zone contains more than l places, but it doesn’t take
places’ semantic meanings into consideration. If a zone contains l places of the same
type, it may also lead to privacy leakage, as we have previously mentioned. DiverseClus
is proposed to address this problem.

DivserseClus. Given two places Pi and Pj, based on the spatial distance and place sim-
ilarity, we introduce a mixed distance measure defined in equation (2).

Distmix(Pi,Pj) =
Dist(Pi,Pj)

sim(Pi,Pj)+α
(2)
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Algorithm 1: GridPartition (Dplaces, l)

Input : Dplaces, minimum place numbers in each zone l
Output: Dzones

Dzones← Φ ;1

Divide the space into grids;2

for each grid Gi do3

if Gi.num > l then4

Dzones← Gi;5

continue;6

NGBg← Gi’s grid neighbors;7

NGBz← Gi’s zone neighbors;8

while Gi.num < l do9

if NGBg �Φ then10

randomly select a grid gi in NGBg;11

merge gi into Gi;12

else13

randomly select a zone zi in NGBz;14

merge zi into Gi;15

update Gi.num, Gi.ur and Gi.bl;16

Dzones← Gi;17

return Dzones;18

Here Dist(Pi, Pj) is a non-zero Euclidean distance, since Pi and Pj are represented by
their geographic center, zero value never happens if they are two different places. The
primary targets of DiverseClus is to cluster l places into zones with minimized area size,
as well as diversified contents. We therefore measure the diversity of places by the dis-
similarity of two places, represented as 1

sim(P1,P2)+α . The larger the value, more diverse
they are, and they are more likely to be clustered together. α is used to avoid divide-
by-zero error and smooth the penalty when the place similarity are very small. In our
experiments, α is set as the standard deviation of place similarities, this strategy con-
siders the majority differences of place similarities, and works well in our experiments.
The details of the algorithm are represented in Algorithm 2.

At a very general level, the procedure of DiverseClus follows a similar structure of k-
mediods [12]. The algorithm begins with a cluster center Pcen, which is the centroid place
of Dplaces. Then, each cluster center is chosen as the farthest from the last one (except
the first one, the farthest is measured by mixed distance, line 3-5). Places that near Pcen

are clustered into Clus. SPcen which represents clustering score of using Pcen as center is
introduced to measure qualities of clusters. SPcen is computed by the sum of distances
of each place to Pcen in the cluster (line 6-8). In order to get an optimized result, the
clusters should be adjusted by replacing Pcen with another place. Each place Pi in Clus
is selected to replace Pcen, the clustering score SPi is computed using Pi as the clustering
center (line 9-11). If SPcen < SPi , replace Pcen with Pi, until no replacement happens (line
12-14). The clusters are represented by their minimum bounding rectangles (MBRs). At
last, Clus.num, Clus.bl and Clus.ur are updated and Clus is put into Dzones.



360 Z. Huo et al.

Algorithm 2: DiverseClus (Dplaces, l)

Input : Dplaces, minimum place numbers required l
Output: Dzones

Pcen← the centroid place of Dplaces;1

Dzones← Φ ;2

while Ncen ≤ � |Dplace|/l� do3

Pcen← the farthest of the last one;4

Ncen++;5

for each Pcen do6

Clus← Pcen∪ l-1 nearest neighbors of Pcen;7

SPcen ← ∑ j
Dist(Pcen,Pj)

sim(Pcen,Pj)+α ;8

for each Pi in Clus do9

select Pi to replace Pcen;10

SPi ← ∑ j
Dist(Pi,Pj)

sim(Pi,Pj)+α ;11

if SPi < SPcen then12

replace Pi with Pcen;13

until no changes;14

update Clus.num, Clus.ur, Clus.bl;15

Dzones←Clus;16

return Dzones;17

The clusters generated by DiverseClus should be post-processed, since some of the
clusters may overlap spatially. This is because two places are dissimilar in semantic
meanings while the spatial distance between them is far. We adjust the clusters using
the following strategy. For each cluster Clus derived from DiverseClus, check if it spa-
tially overlaps with other clusters. If so, merge the overlapped clusters until no overlap
exists. After the merging, we need to check the place number Clus.num in each cluster.
If l < Clus.num < 2l, Clus is a qualified cluster, and it should be put into Dzones. If
Clus.num > 2l, split Clus into two non-overlapped clusters spatially, each cluster con-
tains at least l places. After the adjustment, each cluster’s MBR is regarded as a zone,
a split map consists of zones is generated. It may be argued that, the adjustment may
eliminate the effects of the place similarity, this is undesirable because most clusters are
not overlapping or the overlapping region is relatively small, since the nearby places are
very likely to be in different types, this can also be proved in our experiments.

4.5 Trajectory Anonymization

Trajectories are then split and anonymized based on the split map. The original
trajectory database D is set as input, each location sample is scanned, stay points are
replaced by the corresponding zones. For each pass-by point, the published version
is kept as the original one, unless the pass-by point is covered by a zone. Cover is
a spatial relationship between a zone and a pass-by point of the same trajectory, as
defined in definition 6. If a pass-by point Lj is covered by a zone, Lj is suppressed for
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privacy-preserving purpose, since publication of location samples approaching to a zone
may cause exposure of a stay point.

Definition 6 (Cover). Given two location samples (Li, ti) and (L j, t j) on T, Li is a stay
point, its corresponding zone is Zi, while L j is a pass-by point. If L j locates inside Zi,
then Lj is covered by Zi.

5 Privacy and Utility Analysis

In this section we discuss the privacy guarantees and data utilities. We formally show
that by applying our methods, the published database D∗ will not expose any user’s stay
points during their travels. Privacy guarantee is always measured by re-identification
probability which means the probability of adversaries to identify a stay point or a
trajectory from the published database D∗.

Theorem 1. Given a trajectory database D={T1, T2, . . .Tn} and its published version
D∗={T∗1, T∗2, . . .T∗n} generated by YCWA, the average stay points re-identification
probability is bounded by 1/l.

Proof. In the attack model, we assume adversaries have access to all the published
trajectories and public knowledge. Adversaries do know the distribution of the places on
the map, but they do not know the movement parameters of MOBs. Given a published
version D∗, each stay point in D∗ is generalized to an area which contains at least l
diverse stay-able places. The re-identification probability depends on the number of
places in a zone, which is bounded by 1/l. 
�
To capture the information loss, we adopt the reduction in the probability with which
people can accurately determine the position of an object in [3]. Given a published
database D∗ of D, the average information loss is defined in equation (3).

ILavg =
∑n

i=1 ∑n
j=1(1− 1/area(zone(Oi, t j)))+∑h

d=1 Ld

n×m
(3)

ILavg represents the average shrinks of the identify probability of a location in D∗.
Where area(zone(Oi, t j)) represents the area size of the corresponding zone of Oi at time
t j when Oi stays. The probability of adversaries can accurately determine the location
where the MOB stays shrinks from 1 to 1/area(zone(Oi, t j)). If a location Ld is deleted,
it is totally indistinguishable, so the information loss turns to be 1. n×m represents the
total location samples in D. Obviously, ILavg ranges from 0 to 1.

6 Experiments

In this section we report the empirical evaluation we have conducted in order to assess
the performance of our methods, in terms of data utility and the efficiency.
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6.1 Experimental Setup

We run our experiments on a real-world dataset. Thanks to the Geolife project [11],
we get the published real trajectories of volunteers. The dataset contains more than
8000 trajectories of 155 users ranging from May 2007 to May 2010 mainly in Beijing.
More than 23 million GPS records are contained. The dataset is represented as BEI-
JING henceforth. The experiments are run on an Intel Core 2 Quad 2.66HZ, windows
7 machine equipped with 4GB main memory.

Since we use the same dataset as in [7] to extract stay points, we adopt the same
parameter values. Specifically, the duration threshold δt and thtime are set to 20 minutes,
while the distance threshold thdist is set to 200m. This results in 75,593 stay points
(shown in Fig.5(b)) extracted from the BEIJING databaset (shown in Fig.5(a)). We
may avoid bothering the readers with such details, as I believe we can simply clean the
dataset first by removing all non-Beijing location points. It can be seen that, location
samples distribute all over the city of Beijing, more than 95% of them concentrate
within the Fifth Ring Road.

(a) (b) (c)

(d) (e)

Fig. 5. Data distribution on the map. In (a) we report data distribution in BEIJING, in (b) stay
points distribution, in (c) distribution of places, in (d) 50 clusters obtained purely on spatial dis-
tance, in (e) 50 clusters on mixed distance.

After extracting stay points in BEIJING, we recall Google Maps API to reverse each
stay point to a real-world address. Thanks to Google Maps API, the returned results
contain exact addresses and post codes, which make the place generation available and
reasonable. After this procedure, 6902 semantic places are found. Fig.5(c) shows the
distribution of semantic places in Beijing.

Both GridPartition and DiverseClus are used to generate the split map. In GridPar-
tition, we divide the whole city of Beijing into grid cells of size 0.008◦ × 0.008◦ each,
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which results 62,408 grid cells. We then implement the enlarging strategies on these
grids. In DiverseClus, the parameter α is set as the standard deviation of place sim-
ilarities, as we have previously mentioned. The clustering results on spatial distance
and mixed distance (without post-processing) are sampled in Fig.5(d) and 5(e), respec-
tively. In both figures, 50 clusters are randomly selected to show the results. Places in the
same cluster are painted in the same color. It can be seen that, clusters obtained based
on mixed distance do overlap in Euclidean space representation before post-processing.
Inclusion of place similarities do pose impacts on clustering results, post-processing is
necessary in this situation. Based on the clustering results of places, the zones and the
whole split map can be generated with various l values, i.e., the privacy levels. In the
following experiments, we set l = 2, 4, 6 ,8, 10, and 12.

6.2 Measure of Data Utility

We then run a set of experiments on BEIJING to make a comparison on data qual-
ity between our approach and (k,δ )-anonymity [2]. (k,δ )-anonymity only works over
trajectories with the same time span, a pre-processing step that partitions trajectories
into equivalent classes is needed. Then a greedy clustering method is used to cluster
trajectories together. At last, trajectories in each cluster are transformed into a (k,δ )-
anonymity set, where δ is given as the radius of the anonymity set. The information
loss we measure is computed by equation (3), where the area size is measured in square
meters1. For (k, δ )-anonymity, the value of δ is set according to [2], ranges from 1000
to 4000, step by 1000. The evaluations shown in our figures are average values on δ . In
information loss evaluation of (k, δ )-anonymity, we only account for the generalization
and the deletion part, while the information loss caused by space translation can be seen
in range query distortion measure.
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Fig. 6. Data utility measure of DiverseClus. In(a), we report information loss of the three algo-
rithms, in (b) the average zone size, in (c) the number of removed location samples.

Comparison of all the three algorithms are shown in Fig.6(a). DiverseClus leads
to less information loss than GridPartition since it adopts a clustering strategy, which

1 The area size should be normalized by dividing 100, this is because the imprecision of GPS
devices ranges from 5 to 15 meters, that is to say if a MOB locates in an approximately 100m2

area, the location of the MOB can be identified.
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makes the zone size smaller than GridPartition. Information loss of both DiverseClus
and GridPartition are less than 20%, which obviously dominate (k,δ )-anonymity. The
information loss caused by our proposal is mainly caused by generalization of stay
points and deletion of covered pass-by points. We therefore measure the average zone
size and number of deleted location samples in Fig.6(b) and Fig.6(c). Obviously, Di-
verseClus performs better than GridPartition on both metrics. Since smaller zone size
may cover fewer pass-by points, thus, making the removed location samples reduced.
In all three figures, performance decreases as privacy level grows. We do not measure
anonymized region of (k, δ )-anonymity, since for a given δ , the anonymized region is
fixed to π( δ

2 )
2.

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Privacy level

P
S

I D
is

to
rt

io
n

 

 

(k,δ)−anonymity
GridPartition
DiverseClus

(a)

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Privacy level

D
A

I D
is

to
rt

io
n

 

 

(k,δ)−anonymity
GridPartition
DiverseClus

(b)

2 4 6 8 10 12
0

100

200

300

400

Privacy level
R

un
 T

im
e 

(s
)

 

 

(k,δ)−anonymity
GridPartition
DiverseClus

(c)

Fig. 7. Performance evaluation of 3 algorithms, in (a) we report PSI query distortion comparison,
in (b) the comparison of DAI distortion, in (c) run time comparison of 3 algorithms

We then measure the actual distortion of range query results on the published dataset
D∗ from the original dataset D. In particular, given a spatial region R and a time duration
[ts, te], we consider two range queries the same as [2]: Possibily Sometimes Inside and
De f initely Always Inside, represented as PSI and DAI for short respectively. Range
query distortion is measured by Distorrq =

min(Q(D),Q(D∗))
max(Q(D),Q(D∗)) . Where Q(D) represents the

number of query results on D, Q(D∗) stands for the number of query results on D∗. We
measure query distortion for various l values. We randomly choose circular region R
having radius between 500 and 5000, and randomly choose time interval ranging from
2 hours to 8 hours. The parameter settings we use are according to [2]. At last, 1000
queries are generated, each of them have 1000 runs. We run these queries on trajec-
tory database anonymized by our approaches and (k, δ )-anonymity. The average query
distortion is shown in Fig.7(a) and Fig.7(b). Both GridPartition and DiverseClus have
a range query distortion under 20%, while for (k,δ )-anonymity, the query distortion is
larger, almost up to 60%, since it adopts space translation, some location samples are
translated to totally different ones, making the query results lost.

6.3 Measure of Efficiency

The running times evaluation of the three algorithms are shown in Fig.7(c). Running
time of GridPartition is the longest of the three, since the partition into grids procedure
is costly. In both GridPartition and DiverseClus, we exclude the time consumption of
stay points extraction and place reconstruction, because Google Maps API contains
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restrictions, it is only allowed to reverse one coordinate every 2 seconds. The procedure
of stay points extraction and places generation cost about 2951 minutes, but the data set
of places can be used on various l values for both methods.

7 Conclusions

Collection and publication of people’s everyday trajectories pose serious threats on peo-
ple’s personal privacy. In this paper, we propose to protect trajectory privacy through
protecting significant stays on their trajectories, which can avoid unnecessary anonymiza-
tion of pass-by location samples. Although sometimes the privacy guarantee of YCWA
is not better than trajectory k-anonymity, in some applications, YCWA works well and
the information loss is much lower.

In the future, we plan to reinforce our approach for multiple attack models as well
as improve the space similarity measure. In YCWA, we assume adversaries do not know
the moving speed of a MOB. But if they know the moving speed, such as, by knowing
the maximal moving speed of a MOB, adversaries may infer the reachability to a zone,
thus, the re-identification probability may increase. In another aspect, we plan to extend
our approach to an online scenario, which means to dynamically maintain the split
map when a new comer enters an area, thus, it can protect people’s real-time trajectory
privacy efficiently.
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