Improved Algorithms and Data Structures for

Solving Graph Problems in External Memory *

Vijay Kumar
Eric J. Schwabe

Department of EECS
Northwestern University

Evanston, IL 60208

Phone: (847) 4672298
Fax: (847) 467-4144

Email: {vijay, schwabe}@eecs.nwu.edu

Keywords: Input/output efficiency, external-memory algorithms, graph algorithms, data

structures.

*This research was supported in part by the National Science Foundation under grant CCR-9309111. A
preliminary version of this work will appear in the Proceedings of the Eighth IEEE Symposium on Parallel
and Distributed Processing, October 1996.

Abstract

Recently, the study of I/O-efficient algorithms has moved beyond fundamental prob-
lems of sorting and permuting and into wider areas such as computational geometry
and graph algorithms. With this expansion has come a need for new algorithmic tech-
niques and data structures. In this paper, we present I/O-efficient analogues of well-
known data structures that we show to be useful for obtaining simpler and improved
algorithms for several graph problems. Our results include improved algorithms for
minimum spanning trees, breadth-first and depth-first search, and single-source short-
est paths. The descriptions of these algorithms are greatly simplified by their use of
well-defined 1/O-efficient data structures with good amortised performance bounds.
We expect that [/O-efficient data structures such as these will be a useful tool for the
design of 1/O-efficient algorithms.

1 Introduction

The design of 1/O-efficient algorithms has received increasingly greater attention in recent
years. This has been because of a disparity in the growth rates of CPU speeds and disk
transfer rates: improvements in CPU speeds have consistently outpaced the rate at which
the speed of communication between main and external memory has grown. According
to one recent estimate, advances in technology have yielded an annual growth of 40 to 60
percent in CPU speeds, while disk transfer rates have been increasing only at about 7 to 10
percent annually [1]. As it is, communication between internal and external memory has for
some time been a bottleneck in many large-scale computations. The increasing disparity in
CPU speeds and disk transfer rates implies that the significance of this bottleneck continues
to grow. This has made it difficult to take full advantage of the power of the CPU in many
large-scale computations. The bottleneck is all the more significant in parallel computing and
multiprocessing. Consequently, it has become important to design algorithms that minimise

the transfer of data between internal and external memory.

Problems that are too large to be solved in internal memory are encountered in many
areas, ranging from numerical computing to computational geometry. A lot of work has been
done in many of these areas to design 1/O-efficient algorithms. In graph algorithms, some
instances of such problems are large circuit layout problems and modeling of large phone,

communication or other networks.

In the area of graph algorithms, most of the effort has gone into devising 1/O-efficient
algorithms for individual problems. The common approach is to re-design the algorithm on
one hand and the arrangement of data on the other, to extract such I/O-efficiency as the
nature of the problem would allow. The design of data structures that facilitate the task
has only recently been widely taken up [2, 3]. We feel that the design of general-purpose
[/O-efficient data structures is very important. The 1/O efficiency of a range of algorithms
could be improved simply by replacing the data structures employed by their 1/O-efficient
versions, if such versions were to be available. Algorithms that use such general-purpose

data structures are also likely to be simpler to describe.

1.1 Model of Computation

The computational model that we employ was introduced by Aggarwal and Vitter [4]. It
consists of a single processor with a small local memory connected to a large external memory.

We use the following parameters:
N = the size of the problem in external memory,
M = the size of the internal memory, and
B = the number of items in one block of data.
An extension of the model [5] incorporates another parameter:

D = the number of disks in the memory system.
It is assumed that M < N and 1 < DB < M/2.

The basic I/O operation [5] consists of the reading of one block of data from each of
the D disks (or writing of one block of data to each) — a transfer of a total of DB items
between main memory and external memory. The address space of the external memory
is striped block-wise across the D disks: the rth block overall of the N/B blocks of data
is the (|r/D])th block on disk number » mod D. How many such basic I/O operations an

algorithm uses would be our measure of its performance.

We will work with the single-disk model (D = 1). The extendibility of our results to the

D-disk model is discussed in Section 1.3.

After Chiang et al. [6], we define the useful quantities scan(z) = 75 and sort(z) =
DE log% &. Up to constant factors, scan(z) is the number of I/Os needed to read x consec-
utive items stored on the D disks (the items being stored in the striped fashion described
above), and sort(x) is number of 1/Os required to sort x items stored consecutively on
the D disks, using a comparison-based algorithm [7, 8, 5]. In the single-disk model, these

expressions reduce to scan(z) = § and sort(z) = §logu %.
B

In addition, in the context of a graph problem, let V' denote the number of vertices in
the graph being considered and let F be the number of edges. A graph will be represented

as a sequence of V' adjacency lists, where each list consists of a fixed amount of information

2

about a vertex followed by a list of its incident edges. Assuming such a representation, we

have N = O(V + F).

1.2 Previous Results

The problem of designing 1/O-efficient algorithms was first taken up by Aggarwal and Vitter
[4], who gave several algorithms for basic problems such as sorting, permuting, and matrix
operations. Their results assumed a weaker computational model in which the external
memory consists of a single large disk containing all NV items, and the basic /O step can
transfer any k blocks of B items each between main memory and external memory. Optimal
sorting algorithms were obtained for the more general D-disk model by Vitter and Shriver
[5] (using a randomised algorithm), and by Nodine and Vitter [7] (using a deterministic
algorithm). Nodine and Vitter [8] also extended their sorting results to apply to a variety
of memory hierarchies. However, until recently, research in I/O-efficient algorithms centered

on the fundamental problems of sorting, permuting, and the like.

Goodrich et al. [9] were the first to develop external-memory techniques that applied to
a class of algorithms — algorithms for computational geometric problems. A lot of effort
has since gone into the design of I/O-efficient computational geometry algorithms [9, 10].
Later, Chiang et al. [6] focused on the design of external-memory graph algorithms, produc-
ing algorithms for a number of problems including list ranking, expression tree evaluation,

PRAM simulation, 3-colouring of cycles, and depth-first search.

In most of this work, the data structures used by the algorithms were motivated by the
particular problems that were being considered. Arge [2] improved several of the results
in these earlier papers by introducing the I/O-efficient buffer tree: the first 1/O-efficient
data structure to incorporate an amortised analysis for batched operations. It led to simple
algorithms for sorting and some graph problems and to the generalisation of some of the
results of Chiang et al.[6]. Arge also designed a similar data structure called the segment tree
which he used to develop external-memory algorithms for many problems in computational

geometry [10].

1.3 Our Results

We strive to develop new general-purpose 1/O-efficient data structures, and illustrate further
how they can assist in the design of I/O-efficient algorithms. The primary motivation here
is to solve problems on large graphs, but we expect that our I/O-efficient versions will find

applications in other areas and be useful in the design of a variety of 1/O-efficient algorithms.

The two data structures we present are [/O-efficient versions of a heap and a tournament
tree. We present an external-memory generalisation of a binary heap that can achieve amor-
tised performance of O(% log% %) [/Os per operation (insert, delete, or deletemin) over a
sequence of operations on a heap containing at most NV elements. This data structure resem-
bles Arge’s buffer-tree [2] in its use of a buffering technique for batched maintenance of the
data structure, and yields the same performance bounds. Arge’s buffer-tree is an external-
memory generalisation of a balanced search tree, just as our data structure is derived from
the binary heap data structure. We avoid performing complicated tree-balancing operations
to achieve some simplicity of description for our data structure. Our I/O-efficient heap
immediately yields a heapsort with optimal I/O performance, illustrating how I/O-efficient

data structures can simplify the task of describing algorithms.

Our I/O-efficient tournament tree requires O(4 log, %) [/Os per operation (delete, deletemin,
or update) amortised over a sequence of operations on a tournament tree of NV elements. In
addition to general deletions and deletemins, the tournament tree also supports an update
operation that, given an element and a new key value, changes the element’s key value if

and only if the current key value is greater than the new one.
These data structures, together with some new algorithmic techniques, lead to algorithms

with improved [/O performance for several fundamental graph problems. Our results include:

e New algorithms for finding minimum spanning trees with nearly-optimal 1/O perfor-
mance — O(log B-sort(F)+log V-scan(E)) 1/Os; previously the best known algorithm
for this problem [6] required O(min{sort(V?), log 17 - sort(£)}).

o New algorithms for breadth-first search and single-source shortest paths that require

O(V + £log, £) 1/0s.
e A new algorithm for depth-first search that requires O(V log, V + % log, %) [/Os.

4

e A generalised deterministic algorithm for list ranking that requires O(sort(N)) I/Os.

Throughout the paper, we will work in the single-disk external-memory model — that is,
for the case when D = 1. All of our proofs generalise in a straightforward way to external
memories consisting of more than one disk if the number of disks is no more than O((%)~)
for some a < 1, using a technique known as striping. Striping treats the D disks as a single
disk with a block size of DB, and the basic I/O operation is the reading or writing of one of
these larger blocks of data. We believe that the results are extendible to the more general

case too, but we have not proved this.

The paper is organised as follows. In Section 2, we present our 1/O-efficient data struc-
tures and establish amortised bounds on their performance. Section 3 contains several im-
proved algorithms for graph problems that use our I/O-efficient data structures. Finally, in

Section 4 we discuss our conclusions and mention some open problems.

2 Data Structures for External-Memory Algorithms

In this section, we present the 1/O-efficient versions of two common data structures.

2.1 An I/O-Efficient Heap
2.1.1 Description of the Data Structure

A priority queue is a data structure encountered very frequently in algorithms of all kinds.
It is used to maintain a set S of elements, where each element has a number associated with

it, called the key of that element. The following operations can be performed:

1. insert(S,z): inserts element x into S.
2. minimum(S): Returns the element with the smallest key among all the elements of 5.

3. deletemin(S): Returns the element in S with the smallest key and removes it from 5.

One of the most common implementations of a priority queue is a data structure called
heap. A heap is a complete binary tree of elements with a certain number of its rightmost

leaves removed. The key of any non-leaf element is smaller than the key of either of its

children.

Numerous variants of the basic heap design are encountered in various algorithms, but
they are not I/O-efficient and not conducive to use in external-memory algorithms. We
present an [/O-efficient data structure called the [/O-efficient heap, the design of which is
described below.

An I/O-efficient heap is a tree with the following properties:

Fach node contains a [ist of elements in sorted order. The number of elements in the

list is between v M B/2 and 2/ M B.

Each non-leaf node has /M /B children.

Each node has an unordered buffer that can contain up to M elements.

Any element contained in a node’s list is smaller than any element contained in its

buffer or in any of its descendant nodes.

The only exception to these rules could be a heap with just one node, or the nodes at

the level above the leaves, which may not always have /M /B children.

The cardinality of a node in the heap is the number of elements contained in the sub-heap

rooted at it.

2.1.2 Maintenance of the data structure

To achieve /0 efficiency, we develop a scheme of lazy updates for this data structure. It is
to make lazy updates possible that we allow a node to hold a variable number of elements.
The objective is to perform maintenance on this data structure in a batched fashion. To
allow inserted elements to move down the heap in a batched fashion we provide for a buffer

at every node with capacity M. For a node v, elements that are to be sent down to the

descendants of v are accumulated in its buffer. When the buffer becomes full, its contents
are transferred to the children of v. These features allow us to avoid having to undertake
expensive [/O to update a node and its children every time an element is to move up from
or down to it. Such updates can now be batched together to significantly reduce the 1/0O

cost per update.

In addition to insert and deletemin described above, the operation delete(S,z), which re-
moves a specified element @ from the heap 5, is supported. The 1/O-efficient implementation

of these operations is described below.

e insert: the insert operation adds a new element to the root node. If the element is
small enough to be held in the root’s list it is inserted there. This happens when the
element to be inserted is smaller than the largest element in the root’s list. Otherwise,
it is added to the root’s buffer and is expected to trickle down to some node where its
presence does not violate the heap order. When thus moving down from a node v, an
element goes to the root node of the sub-heap that has the smallest cardinality among
all the sub-heaps rooted at children of v. This helps preserve the height balance of the

tree structure.

o deletemin: the deletemin operation removes and returns the smallest element contained

in the root node.

o delete: the delete operation creates a duplicate of the element to be deleted and inserts
it in the heap. Whenever two copies of the same element encounter each other in the
heap, they are annihilated. That is to say, the two copies can not exist in the same
node’s list. Annihilation is assured because to be returned by deletemin, one of the two
copies must become the smallest element in the heap. But in that case it would have
reached the root’s list, as would the other copy because it has the same key. This will
lead to annihilation. Although this implementation of delete implies that only distinct
elements can be kept in the heap, this restriction can be circumvented if desired by
adding another field to the elements that can be used to make elements distinct even
when they have the same key value. This extra field can be used as a secondary key in
comparisons so that duplicate elements inserted by the delete operation are not kept

apart by other elements which have the same key.

In order to implement the heap operations, the following primitives are used:

o cmptylist: called when a node’s list contains more than 2/ M B elements. It moves

excess elements to the buffer.

o fillup: called to replenish a node whose list contains less than VM B/2 elements. It

moves elements up from the node’s children into the node’s list.

o cmptybuffer: called when a buffer overflows. Moves the contents of the buffer down to

the child nodes.

2.1.3 Implementation of the primitives

The primitives are implemented as follows:

emptylist is straightforward: it takes all except the smallest VM B elements in the list
and puts them in the node’s buffer.

emptybuffer is used to empty a node’s buffer by distributing its contents among its child
nodes. If the buffer contains = elements, up to =/v/M B of the node’s children are potential
recipients of the buffer’s contents. The distribution is done as follows: A set of recipients
is maintained. Initially, the set of recipients contains the child node with the smallest
cardinality. At any stage in the process, all the elements in the set of recipients have equal
cardinality. A step in the distribution process consists of setting aside B elements from the
buffer being emptied for each of the recipients, whose cardinality is then assumed to have
increased by B. If the cardinality of the nodes in the set of recipients becomes equal to
the cardinality of any non-recipient child node, that node is added to the set of recipients
if doing so does not make the number of recipients more than z/v/MB. In the end, the
elements set aside for a particular recipient are actually given to it. The recipient’s list is
read into memory, and if there are any elements among its share that belong inside the list
in sorted order, they are added to the list, while the rest are output to its buffer. If either

the list or the buffer overflows, it is in turn emptied.

In case of a leaf, emptybuffer creates child nodes and gives v M B elements to each. If
a node has fewer than /M /B children, emptybuffer first creates enough children to raise

8

the number of children to \/M/B, and then distributes the remaining contents of the buffer

among the children as described above.

In fillup, first we empty the node’s buffer, and then extract enough elements from the
child nodes to raise the number of elements in the list to /M B. Treating the children’s lists
as a collection of lists we have to merge, we obtain a merged list of the required size and
append it to the list to be refilled. As efficient merging schemes are known (see for instance

[4]), we omit the details.

2.1.4 The I/O Complexity of Heap Operations

Although the heap can be unbalanced by deletions, insertions serve to balance it, as new
elements are added to the smaller sub-heaps. So when the heap grows bigger than it has

ever been upto that point, it is a balanced heap. It is easy to see that
Lemma 1 The height of a heap that never contains more than N elements is O(logm %)
B

Proof: Follows from the fact that log% \/% is O(log%).]

Let [denote the height of such a heap, with the root at level [and the leaves at level 0.

Our objective is to obtain an amortised bound on the total number of 1/Os in terms of

the number of heap operations performed. The lower bound of Q(% log% %) on sorting [4]
together with the bound on heap height implies that a cost of O(l/B) per heap operation

would be optimal.

The primitives emptybuffer, emptylist, and fillup perform all the 1/O operations, each
one moving a collection of elements one level down or up the heap. These functions are
[/O-efficient — that is, when they move @ elements up or down one level, they use 2/ B 1/Os
to do so. We will account for the I/O cost of these primitives by charging the various heap

operations.

When some elements are moved from a node’s list to its buffer, we will ignore the I/0O

cost. This cost is no more than that of later moving those elements out of the buffer, which

is the next operation to be performed on these elements. If we can bound the latter cost, the
same bound will apply to the former. As there is no movement of elements from a buffer to
the corresponding list, we are effectively considering all movement of elements to be between

two adjacent levels in the heap.

In the following, we derive amortised cost bounds for the various heap operations. First

we take up deletemin.
Lemma 2 The amortised cost of a deletemin is O(l/B) 1/Os.

Proof: Let every deletemin ‘pay’ the amount {/B in dollars to the root node. As the root
must lose —V]\24B elements before a fillup is needed, it will have amassed %\/% dollars by the
time a fillup takes place.

Let us inductively show (using induction on distance from the root) that when a node at
level ¢ needs a fillup, it has %\/g dollars to pay for it. It is true of the root, as we saw. Let
it be true of a node at level 1 + 1. Thus when a node at level 1 + 1 needs a fillup, it possesses
H'Tl\/g dollars. The 1/O complexity of extracting %\/W elements from the children is
%\/%, if the operation is to take 1/B 1/Os per element moved. Let us use %\/g dollars to
pay for that. The remaining %\/% dollars will be used as follows: if & elements have been
extracted from a child, let % dollars be paid to that child. As %\/W elements have been
extracted in all, this will cost %\/g dollars.

Now a node at level : must lose %\/ M B elements to its parent in order to need a fillup, and

for that the parent will have paid it %\ / % dollars, which completes the induction. Therefore
the number of dollars paid by deletemin is enough to cover the resulting 1/O cost. Thus the

amortised cost of a deletemin is O(l/B). n

Now let us look at inserts. A delete is analogous to an insert (it is performed by inserting

a duplicate of the element to be deleted), and will not be treated separately.
Lemma 3 The amortised cost of an insert or a delete is O(4) 1/Os.

Proof: Let every insert pay % roubles to the root. We will use these roubles to pay for

all the emptybuffer operations (remember that we have decided to ignore the cost of all the

10

emptylist operations). We will inductively show that when a node needs its buffer emptied,

it has enough roubles to pay for it.

Let the root buffer contain x elements when it needs to be emptied. At least x insertions
have been made since the last emptybuffer. So the root has acquired %” roubles through these
insertions. We will inductively show that a node at level ¢ has amassed % roubles since the

last emptybuffer, if its buffer now contains = elements.

Assume it to be true of nodes at level 1 + 1. So when such a node with x elements in its

buffer needs an emptybuffer operation, it has at least U"’—;E roubles.

The emptybuffer operation requires O(g) I/Os. Let & roubles be used to pay for that.

Spend the remaining & roubles as follows: If a child node receives j elements during the
process, let it be paid % roubles.

So if an element at level has y elements its buffer, it has since its last emptybuffer received
at least y elements from its parent, which means it has received %’ roubles as well. This
completes the induction. As the number of roubles spent by the inserts is sufficient to cover

the I/O cost, the amortised 1/O cost of inserts is O(é) per operation.]

We have shown that we can pay for all the [/Os using the credits that we obtained by
charging the insert [and delete] and deletemin operations % per operation. That means the
amortised cost of each of these operations is O(é) [/Os. Using the bound on I, the number

of levels, we obtain the following theorem:

Theorem 1 On an 1/O-efficient heap with at most N elements, a sequence of k operations

(insert, delete, and deletemin) requires at most O(% log% %) 1/0Os.]

These performance bounds for the I/O-efficient heap lead immediately to an optimal
heap sorting algorithm for N elements, which consists of just /N insertions followed by N

deletemins:

Corollary 1 On an 1/O-efficient heap, Heapsort sorts N elements using O(sort(N)) 1/0s.

(Arge [2] achieved the same bound for sorting with a different data structure.)

11

2.2 An I/O-Efficient Tournament Tree

Next we describe a data structure called the tournament tree, which is similar to the heap

in some ways, but holds additional information.

The tournament tree is a useful data structure. It offers some advantages over a heap as
there is a natural mapping of the numbers 1,..., N to the N items in a tournament tree,
and this mapping is implicit in the way a tournament tree is organised. The additional

information is often useful.

Imagine a knock-out tournament to be played among N = 2* players. It would involve
k rounds and 2- N — 1 matches. In round i, 2¥=* matches would be played, each resulting in
the elimination of the player that loses. The tournament can be represented using a binary
tree, where each leaf represents one player, and each internal node holds the winner of a
match played between its two child nodes. The root contains the winner of the tournament.
The resulting data structure is called the tournament tree. The completed chart of the
Wimbledon draw (with the winner of each match filled in), for instance, is a tournament tree
with 128 leaves. Tournament trees are useful in many comparison-based problems, where the
elements are the ‘players’, and contests represent comparisons. For example, a tournament

tree can be used to implement a priority queue.

An [/O-efficient version of the tournament tree is presented below. The I/O-efficient
version differs from the basic tournament tree described above in the following respects:
just as in the 1/O-efficient heap, each node contains a number of elements, and has an
associated buffer; and each element is contained in just one node. Later, we will demonstrate
applications to the single-source shortest paths problem and breadth-first and depth-first

search that illustrate the usefulness of this data structure.

2.2.1 Description of the Data Structure

The I/O-efficient tournament tree houses N elements, each of which is a pair of the form
(x,y). The & values, ranging from 1 to N, identify the elements. The structure is organised
according to comparisons on the y values of the elements. The y value of an element will

also be known as its key; all elements initially have a key value of infinity. More formally:

12

An I/O-efficient tournament tree is a binary tree with the following properties:

o [t is a complete binary tree, except for the fact that some k rightmost leaves may be

missing.

o It has NV/M leaves, where N is the number of elements in the tree. Fach element is a
pair of values, called the 1D and the key of the element, respectively. Each element has
a unique 1D, and the IDs range from 1 to N. The element with ID z will be referred
to as element . Out of two elements, the one with the smaller key will be referred to

as the smaller element.

e There is a mapping of element IDs to leaves. Elements with IDs in the range (i—1)M+1
to ¢M map to the i*" leaf. An element is either contained in the leaf that it maps to,

or in some ancestor thereof.

e A node may contain between M/2 and M elements. If a node v contains z elements,
they are the smallest x out of all the elements that map to leaves that are descendants

of v.

e Each non-leaf node has an associated buffer of size M.

The structure supports the following three operations:

o deletemin returns the element with the smallest key in the tree and removes it from

the tree.

o delete(x) changes the key value of element x to infinity, and removes (x, y) from internal

nodes on the path from the root to x’s leaf, where y is the old key value of z.

e update(x,y) changes the key value of element x to y if and only if y is smaller than

the key value of .

The tree is balanced and consists of log, % levels. Every node at any level except the
lowest has two children. The x value of any element in the left child is smaller than that of

any element in the right child.

13

2.2.2 Maintenance of the data structure

Initially, all elements have a key value of infinity. When an operation is performed, a delete
or update signal is generated and inserted in the root. When a signal is inserted in a node, it
may affect some element held in that node. The key of that element may have to be changed,
and the signal may have to be propagated down to the appropriate child node. This is done
in the following (lazy) way.

A delete or an update signal propagates down till it meets the targeted element in some
node. In case of a delete, the element is removed, the signal is converted into an update
signal with a key value of infinity and it continues to propagate down from that node. In
the case of an update, if the new value is larger than the old value, the signal is discarded.
If the new value is smaller than the old value, it replaces the old value. The signal does not
propagate any further down from the node containing the targeted element. If an update
signal with a key value of infinity reaches a leaf and the targeted element is not present in

the leaf, it is inserted in the leaf with a key value of infinity.

When a signal is inserted into the root (which is held in internal memory), the appropriate
changes are made to elements held in the root and the signal is added to the root buffer.
When a buffer contains M signals we empty it as follows: The signals in the buffer are
distributed between the two child nodes, each signal being sent to that child node which is
to contain the element targeted by that signal. Then we apply to each child node its share
of the signals. For this, the child nodes have to be read into memory one after the other.
The signals that have to propagate further down the tree are then added to the respective
child nodes’ buffers. It is easy to see that

Observation 1 An empty operation requires O(%) 1/0Os.]

When the number of undeleted elements in a node is reduced to %, we have to replenish
that node. The following routine is called when the number of elements in a node is reduced

to less than %:

fillup(v) restores the strength of node v to M elements. It examines the child nodes of v

to find the M elements with the smallest key values contained therein. Before this can be

14

done, however, the child nodes must be updated with all the signals in the parent’s buffer.
For this purpose, the buffer of v is first emptied. If during the fillup all the elements from a
child node are used up, that node is filled up before the parent can be filled up. At the end
we check if either child node is depleted to a strength of less than % elements: if so, that

node is in turn filled up. Not counting the cost of recursive calls to fill up child nodes,

Observation 2 The cost of a fillup operation is O(%) 1/0Os.]

2.2.3 The I/O Complexity of Tournament Tree Operations

To begin with, since a tournament tree with N elements is a balanced binary tree with O(%)

leaves, we have
Observation 3 The height of a tournament tree containing N elements is O(log, %)]

It may be noted that log, 2% is O(log,).

We note that the data structure contains elements and signals. We also make the following

observations:

Observation 4 Elements only move upwards in the tree, while signals only move down-
wards. All such movement is along the path between the root and the leaf to which the

targeted element is mapped. []

Observation 5 All the 1/O done in the empty and fillup operations either moves signals

down or moves elements up the tree. []

Observation 6 An operation on the tournament tree generates no more than O(1) signals.

Recall that both fillup and empty cost O(%) [/Os each. We will now establish bounds
on the amortised 1/0O cost of tournament tree operations and in the process account for the

[/O cost of calls to fillup and empty.

15

Lemma 4 A sequence of tournament tree operations containing k deletions on a tournament

tree containing N elements requires O(% -log, %) 1/Os for calls to fillup.

Proof: A fillup operation is required as a result of depletion of a node. It is evident that
this depletion is caused solely by deletions. Note that a deletion can potentially cause up to
h nodes (one at each level in the tree) to lose an element each (either directly or when the
node’s parent needs to be filled up), where h is the height of the tree. So when a deletion
causes a node to lose an element, allow that node to charge a cost of O(%) to that deletion.
So overall a deletion can be charged up to O(%). As a node must lose % elements to require
a fllup, 1t will have accumulated O(%) credits by charging delete operations, which can then

be used to pay for the O(%) cost of the fillup.
As the height % is known to be O(log, %), the lemma follows.]

What about the total cost of all the empty operations? These operations move signals

down the tree. We will charge this cost to the various operations.

Lemma 5 The calls to the subroutine empty made by a sequence of k tournament tree

operations require no more than O(% -log, %) 1/0 steps.

Proof: A call to empty can be made either when a buffer is full, or when a node requires a
fillup. In the latter case, the O(%) cost of empty is included in the O(%) overall cost of a
fillup. The O(%) cost in the former case can be looked upon as a cost of O(%) I/Os for each
signal moved one level down. Let us charge this cost to the tournament tree operation that
generated the signal. Obviously, each operation can be charged at most once by each of the

h levels, so the cost charged to each operation is no more than O(%) [/Os.]
The lemmas above directly yield

Theorem 2 On an [/O-¢fficient tournament tree with N elements, a sequence of k opera-

tions (delete, deletemin, and update) requires at most O(% log, %) 1/0Os.]

The ability of the 1/O-efficient tournament tree to perform updates to the key values of
entries without knowing their current values will be used in Section 3 to help design new
[/O-efficient algorithms for breadth-first and depth-first search and single-source shortest
paths.

16

3 Improved Algorithms for Graph Problems

Conventional graph algorithms often do not lend themselves to adaptation for the external-
memory setting. Graph edges can be looked upon as ‘connections’ between ‘items’ that are
not necessarily proximate. Following an edge to a neighbouring vertex therefore means
using an 1/O step with the objective of accessing a single item, an operation that is not 1/0O-
efficient. One way to derive I/O-efficient algorithms is to construct them using two kinds of
building blocks: 1/O-efficient data structures, and techniques like sorting, list ranking and

merging for which I/O-efficient algorithms are available.

In this section we present improved 1/O-efficient algorithms for several basic graph prob-

lems that use the data structures presented in Section 2.

3.1 Improved Minimum Spanning Tree Algorithms

There are well-known O(V log V)-time algorithms for the minimum spanning tree problem.
Those techniques, however, are not suitable for external-memory computation. An algorithm
is presented here that uses O(log B - sort(F)+logV - scan(F)) 1/Os to compute a minimum

spanning tree.

Initially, the size of an adjacency list is the number of edges in it. When two adjacency
lists are merged, the size of the resulting list is the sum of the sizes of the two lists. An
adjacency list is smallif its size is less than B, and large otherwise. A vertex is a large-degree

vertex if its adjacency list is large. Otherwise it is a small-degree vertex.

First we present an algorithm for a restricted case in which there are no small-degree
vertices in the graph. The skeleton of the algorithm is familiar [11]: it consists of a number
of phases, and in every phase it uses the smallest-weight-edge on every vertex to form a set
of connected components. Vertices in a component are then grouped into pairs for merging.
The edges that are shrunk are designated MST edges, the adjacency lists of component
vertices are merged to obtain the adjacency list of the new vertex, and internal edges are

removed from the combined adjacency list.

As we shall see, the number of pairs of vertices that are shrunk into single vertices in a

phase is a constant fraction of the number of vertices in that phase. Therefore, each phase

17

reduces the number of vertices in the graph by a constant factor. This implies that the
number of phases in the algorithm is O(log V'). We shall also see that each phase requires
no more than O(scan(F)) 1/0s.

3.1.1 An Algorithm for Large-Degree Graphs

The undirected graph G = (V, E) is represented as a list of adjacency lists. At any inter-
mediate stage in the algorithm, we have a graph G’, each vertex of which corresponds to a
component of (¢ shrunk into a single vertex. Our representation of the graph is a sequence
of the adjacency lists of the vertices of G'. At the head of each adjacency list is the smallest-
weight edge incident on the vertex. Then follows the list of vertices of G which have merged
to form this vertex. This is followed by the rest of the edges, ordered by the vertex number
of the vertex at the other end of the edge.

The algorithm consists of a number of phases. In one phase, each adjacency list undergoes

no more than one merge, and a constant fraction of the lists undergo a merge.

Description of a phase: The process involves a scan of the list of lists to produce a new list
of lists. When the scan encounters a new adjacency list (for some vertex s not involved in
a merge so far in this phase), we try to merge it with another list. Let the smallest-weight
edge point to vertex u. u may have become part of some vertex v through merging and
renaming. One lookup is needed to know v. If the adjacency list of v has not been involved
in a merge in this phase, merge the two lists and put the result in the new list of lists being
produced. The new vertex gets the smaller of the two vertex numbers. The smallest-weight

edge, which led us to v, is removed and included in a set of tree edges.

In case the vertex v has already been merged with some vertex in this phase, we will
try to merge s with another vertex that desires to merge with v, so that over a number of
phases, v and all the vertices whose smallest-weight edges point to v are merged together.
If another such vertex ¢ has already been encountered, it will be ‘found waiting on v’, and
can be discovered by a single lookup of v. If such a vertex ¢ is indeed found, we merge ¢ and
s, remove t from the ‘waiting’, and delete the heavier of the smallest-weight edges for s and
t and include it among the tree edges. This is justified because the smallest-weight edge on

any vertex has to be in a minimum spanning tree. The lighter of the two smallest-weight

18

edges is the smallest-weight edge on the vertex resulting from the merge and will ensure that
the resulting vertex merges with v in some future phase. This means that for any smallest
weight edge (x,y), the vertices # and y are ultimately going to be merged, and the edge

included in the spanning tree.
If no vertex is waiting on v, we simply make s wait on v.

The graph thus produced by merging vertices may contain multiple edges between ver-
tices. Merging two vertices with more than one edge between them gives rise to internal
edges. While merging the adjacency lists for some u and v, we do the following simple book-
keeping to make sure all internal edges are thrown away. Fach of the two adjacency lists
being merged contains a list of vertices and a list of edges. We take the list of edges from
u and the list of vertices that constitute v, and scan them simultaneously. Those edges of u
whose destinations are among the vertices which have been merged to form v are going to
become internal edges after u and v are merged. These edges are removed from the graph.
As the edge-list of u and the vertex-list of v are both sorted by vertex number, one simul-
taneous scan over the two lists is sufficient to remove all such edges. Similarly, we remove

edges of v that will become internal edges as a result of this merge.

To analyze the algorithm’s performance, we simply bound the number of 1/Os used per
phase and the number of phases required by the algorithm, and the desired bound on the

algorithm follows.

Lemma 6 The large-degree MST algorithm involves no more than log V' phases.

Proof: This is because at the end of a phase, each vertex has either been involved in a
merge or is waiting on another vertex, and no more than one vertex can be waiting at any

particular vertex. It follows that each phase reduces the number of vertices by at least a

third.]

Lemma 7 The number of 1/Os involved in a phase is no more than O(scan(FE)).

Proof: It is clear from the description of a phase that we require no more than two scans

of any adjacency list, plus a constant number of block reads/writes per vertex. As every

19

adjacency list is of length at least B, V = O(%). So the total number of 1/0s involved in
these reads/writes is bounded from above by O(scan(F)). n

It follows that

Theorem 3 The large-degree MST algorithm requires at most O(log V' - scan(F)) I/Os. =

3.1.2 An Algorithm for the General Case

Now we present an algorithm that does not require that all adjacency lists be large. Small
adjacency lists are a problem, because it is more difficult to process them in an 1/O-efficient
way. The previous algorithm pairs vertices together and merges their adjacency lists. If at
least one of the adjacency lists is large, the process of merging them needs no more than
O(l/B) 1/Os, where [is the size of the resulting list. However, if both the lists are small,
we require at least O(1) I/Os for the merging, even though [/ B may be much smaller than
1. So we no longer have the O(scan(F)) upper bound for a phase. The following algorithm
remedies the situation by converting the process of merging small lists into that of carrying

out O(1) sorts on them.

The algorithm, like the previous one, consists of a sequence of phases. In each phase, we
group vertices together and shrink each group into a single vertex, in the process reducing
the number of vertices in the graph by at least a factor of two. For grouping the vertices, we
take the smallest-weight edge incident on each vertex, and consider the subgraph induced
by this set of edges. Every vertex is then grouped with one or two of its neighbours in this
induced graph, using a process that employs O(V') heap operations and brings neighbouring

vertices together in the list of adjacency lists.

Once we have grouped the vertices thus, we have to merge each group into a single vertex.
Each group that includes at least one vertex with a large adjacency list is merged as before.
The remaining adjacency lists are then marked with the vertices they must merge with, and

by sorting the collection of lists, we bring ‘partners’ together and merge them.

We assume that small-degree vertices have smaller vertex numbers than large-degree

vertices. Their adjacency lists will therefore occur before large adjacency lists in our list of

20

lists. This can be initially achieved by renumbering the vertices and reordering the list of
adjacency lists. This requires O(1) sorts on the set of edges, costing O(sort(E)) 1/Os. Our
algorithm then maintains this property throughout.

3.1.3 Description of a phase

First of all, we do a scan of the list of adjacency lists to get the smallest-weight edge for every

vertex. Using these edges, we use the following scheme to pair up the vertices for merging:

First consider all the edges going from higher-numbered vertices to lower-numbered ver-
tices. For every edge (i,7), create a pair (7,7) and insert the pairs in a heap, treating j as
the primary and ¢ as the secondary key (that is, (i1, 71) < (42, j2) if and only if either iy < iy
or iy =iy and j; < j2). We also insert a pair (0,v) for every vertex v. Now, using deletemin
successively, we obtain the vertices pointing to the smallest numbered vertex u (and also
the vertex w itself if the entry (0,u) has not already been deleted). We construct pairs out
of these vertices. If an odd number of vertices are involved, the pairing process leaves one
unpaired vertex, which is left waiting on u. Whenever a vertex v is paired up, we delete the
entry (0,v) from the heap. This ensures that v is not paired up with some w for which there

is an entry (w,v) in the heap.

The pairing step is then repeated using edges directed from lower-numbered vertices to
higher-numbered vertices. But we make sure that the entry (0,v) is not inserted in the heap

for any vertex v that has already been paired up in the previous step.

Each of these two pairing steps may leave one vertex waiting on a vertex w. If in the end
there are two vertices waiting on u, they are paired together. If there is one vertex waiting

on u, it is added to the pair that contains u, to form a triple.

At this point, all our vertices are grouped in groups of size two and three, and all the
vertices in a group belong to the same connected component in the subgraph induced by
the collection of the smallest-weight edges of all the nodes. Instead of shrinking the whole
connected component all at once and extracting all the smallest-weight edges, we shrink
each group into one vertex. So over a number of phases, the whole connected component
will shrink into one vertex. If more than one of the vertices within a group have their

smallest-weight edges pointing outside the group, we retain only the one with the smallest

21

weight, and remove the rest from the resulting graph and add them to the MST. The removal
is justified since the smallest-weight edge on any vertex is always included in a minimum
spanning tree, while the edge that is left behind will ensure that the resulting vertex is later

merged into the rest of the connected component.

Now that we have determined which vertices are to be merged together, all that remains
is the actual task of merging. The pairs (or triples) that contain at least one large-degree
vertex are merged as in the restricted-case algorithm above, and the resulting vertex is
named after the smallest-numbered large-degree constituent vertex. To merge pairs (or
triples) containing small-degree vertices only, we give every adjacency list a destination,
that is the vertex number of the vertex to be formed as a result of the merge. Then all the
small adjacency lists are sorted together by destination. This ensures that the adjacency lists
that merge together are placed one after the other. Then the merging can be accomplished in
one scan. Finally, the small adjacency lists are sorted by size, and the small-degree vertices
renumbered to ensure that any vertices whose adjacency lists become large as a result of
the last merge are placed after the small-degree vertices. This completes one phase of our
algorithm. Once again, O(log V') phases are required by the algorithm, since a phase reduces

the number of vertices by a fraction.

3.1.4 1I/0 complexity of the algorithm

As noted before, the initial reordering takes O(sort(FE)) 1/Os.
Below, we break up the I/O cost of the algorithm into a sum of many terms and derive

an upper bound for each.

Lemma 8 FErcluding merges that involve small-degree vertices only, the merging of adja-

cency lists requires O(log V' - scan(E)) 1/Os over all the phases of the algorithm.

Proof: As in the last algorithm, we require O(scan(E)) 1/Os per phase, and there are no
more than O(log V') phases.]

Lemma 9 Extraction of smallest-weight edges from vertices and the process of pairing ver-

tices requires a total of O(sort(V') +log V-scan(E)) 1/Os over all the phases of the algorithm.

22

Proof: Let us consider a phase in which the residual graph (the graph resulting from the
action of the algorithm so far) G’ has V' vertices and F’ edges. Consider the process of
extracting the smallest-weight edges from all the vertices and using them to pair vertices up.
Extracting the edges requires just a scan of the list of adjacency lists, which costs scan(E') =
O(scan(F)) 1/0s. Over all phases, this part of the cost adds up to (logV - scan(FE)) 1/Os.
Then, we need O(V"’) heap operations, and (let us say) a constant number of scans and sorts
on O(V') items to order and and combine the results of the two pairing steps and so forth.
The I/O cost of all this is O(VF/ log% %’) As V' goes down by at least a constant fraction in
every phase, this term adds up to just O(% log% %) = O(sort(V)) over the whole algorithm.

As noted above, the merging process requires O(scan(FE)) 1/Os as before, except for the
extra work done on the smaller adjacency lists; that is, in merging them and in renaming

and reordering their vertices. Let us now bound the cost of this work.

Lemma 10 Merging, renaming and reordering small-degree vertices requires a total of O(log B-

sort(F)) 1/Os over the entire algorithm.

Proof: Let E! be the total number of edges in all small adjacency lists in this phase. The ex-
tra [/O done in dealing with the small adjacency lists is O(sort(F.)), as it involves a constant

number of sorts on the small lists. Let each edge thus sorted be charged O(% log% %)

What does this cost add up to over the entire algorithm? Let us for the moment ignore
adjacency lists with one or two edges at this point: they can separately be taken care of
easily. An edge is charged no more than once on this count in any particular phase. After 1
phases, the size of every list is at least 2'. Thus, an edge can only be charged O(log B) times
in this fashion before it becomes a part of an adjacency list of size B or more, after which
it is never involved in any sorting. The total cost charged to all the edges in this fashion is
therefore no more than O(log B - £ log% £) = O(log B - sort(E)) over the entire algorithm.

As the three lemmas above account for all the /O cost of the algorithm, we have

Theorem 4 The general-case MST algorithm requires at most O(log B - sort(F) + log V' -
scan(E)) 1/O0s. n

23

This I/O performance is better than that of the best previously-known algorithm, due
to Chiang et al. [6], except when the graph is extremely dense (E = O(V?)).

Finally, we note that our algorithm will also suffice to find minimum spanning forests
in graphs that are not connected, and thus immediately leads to an algorithm to compute

connected components with the same bound on 1/0Os.

3.2 A Generalised Deterministic List-Ranking Algorithm

In the following, an edge is a forward edge if it points from a higher-numbered vertex to a

lower-numbered one, and a backward edge otherwise.

Chiang et al. [6] suggested a method to deterministically rank an N-vertex linked list
using O(sort(N)) 1/Os, by splicing out entire chains of forward or backward edges, but it
requires that M /B be sufficiently large for the algorithm to work. We present an alternate
algorithm using an [/O-efficient heap that removes this restriction on B. Another way to

remove this restriction is suggested by Arge [2].

First, we show that given a set of lists constructed out of N vertices in which all the edges
are forward edges, we can in O(sort(/N)) I/Os rank all the lists. This can be done as follows:
insert each edge (7,7) into a heap, with ¢ as the key. Extract the first edge (u,v) from the
heap; u must be the head of a list, so give it rank 1, and insert a special element (v, —2)
into the heap. Thereafter, each time we remove an edge (v,w) from the heap, if it is not
immediately preceded by an edge of the form (v, —r), we give it rank 1 and insert (w, —2)
into the heap; if it is preceded by an edge (v, —r), we give it rank r and insert (w, —(r + 1))
into the heap. (The head of the list can also be encoded into the element and passed along,
for splicing purposes.) Clearly, this ranking procedure will take O(sort(NN)) I/O steps, since

there are O(N) heap operations involved, and the heap size is no more than O(N).

Now let us describe a technique to splice out vertices from a list. First, remove all edges
going from higher-numbered to lower-numbered vertices (back edges) from the list. Now,
using the method described above, rank the collection of lists thus obtained. This ranks all
the vertices relative to the first vertices of their respective lists. Now, splice out all vertices
except the first and last of every list by constructing a bridge edge from the first vertex to

the last one. Similarly, remove all the forward edges, rank the set of lists that consists of all

24

the back edges, and splice out all the internal vertices. Clearly, all this can be done in O(1)

sorts and scans.

Will the above remove at least a constant fraction of all vertices? It may not. Consider
a list in which there are no consecutive forward or back edges. The above procedure will
remove no vertices at all. The next step takes care of this. Let p(v) and s(v) denote the
predecessor and successor respectively of a vertex v. Construct a tuple (v, p(v),s(v)) for
every v and insert in a heap with v as the key. Now we will extract these tuples in order. If
v < p(v) and v < s(v), then (p(v),v) is a back edge while (v, s(v)) is a forward edge. We

will splice out all such v, and construct a bridge edge from p(v) to s(v).

The last step described above splices out the head of every maximal list of forward edges.
It is easy to see that this, together with the rank-and-splice process before it, splices out at
least half the vertices. Now we can recursively rank the smaller list, and from that obtain the
ranks of the spliced-out vertices. The non-recursive part of the algorithm just requires O(1)
sorts and scans, which cost O(sort(N’)) I/Os where N’ is the number of vertices left. The
overall I/O complexity of the algorithm is the sum of a series of such O(sort(N')) terms, one
for each recursive call. As the N’ is N to begin with and is reduced by a constant fraction

every time, the sum telescopes to just O(sort(N)) = O(% . log% %)

Theorem 5 List ranking can be done deterministically using O(sort(N)) 1/Os.]

(Arge [2] reports the same bound, using a different data structure.)

3.3 An Algorithm for Single-Source Shortest Paths

Using our tournament tree, we can obtain an I/O-efficient version of Dijkstra’s algorithm for
the single-source shortest paths problem. The tournament tree replaces the priority queue
in the original algorithm. Initially we let our V' vertices be initialised to infinite distance
except for the source which is at distance zero. Using the distance as the key, we construct a
tournament tree of these V' elements. For the next V' steps, we do a deletemin on the tree,
read the adjacency list of the vertex obtained, and for every edge e = (u,v) in the adjacency

list (except when v is the vertex that precedes u on the shortest path from the source to u:

25

the identity of that vertex v can be stored in the tournament tree entry for u) we issue a
tournament tree update which tries to update the key of vertex v to # 4+ w(e), where x is the
distance of vertex u from the source and w(e) the weight of edge e. Recall that an update
does not affect the present tournament tree entry if the present value is smaller than the
new value. It is easy to see that this takes O(V + %log2 %) [/Os: O(V + %) to read all the

adjacency lists, and O(% log, %) for all the tournament tree operations.

This algorithm differs from Dijkstra’s in one respect. We update the tournament tree
entry for each neighbour v of u except for its shortest-path predecessor. If we were to follow
Dijkstra exactly, we would do this only for those neighbours which aren’t yet included in the
shortest-path tree being constructed. But we have no 1/O-efficient way of knowing whether
a vertex has already been included in the shortest path tree. This departure causes the
following problem. Let d(v) denote the length of the shortest path from the source to a
vertex v. Let uw and z be two neighbors and let (v, z) be the last edge on the shortest path
from the source to z. Further, assume that d(u) < d(v) < d(z). When deletemin returns
d(z) from the tournament tree, the algorithm will update the key of u to d(z) + w(z,u),
which is not correct, as d(u) has already been determined, and the tournament tree entry
for u has been deleted. We do not want to visit v again, so we must do a delete(u) to undo
the update just performed. The problem is to identify the vertices u for which this is to be

done.

An auxiliary heap is employed to keep track of such vertices. When a vertex z is returned
by a deletemin on the tournament tree, we not only update the tournament tree key of every
neighbor y of @ to k = d(x) + w(x,y), but also insert a pair («, k) into the heap, using k as
the heap key. As the algorithm proceeds, we keep track of the smallest element in both the
heap and the tournament tree. If the element deleted from the tournament tree is smaller,
we execute the basic step described above, and then remove the next smallest element from
the tournament tree. Otherwise we use the smallest element from the heap, which is a pair
(x,k) in the following fashion: the tournament tree entry for the vertex x is deleted. The

next smallest item from the heap is now extracted.

Because d(u) < d(z) < d(u)+w(u,z) < d(z)+w(z,u), this is the sequence of events: first
d(u) is computed, the tournament tree entry for u deleted, and (u, d(u) + w(u, z)) inserted
in the heap. At some time after this the spurious tournament tree update for vertex u (with

key d(z) + w(z,u)) is introduced. But as d(u) + w(u,z) < d(z) + w(z,u), the heap entry

26

(u,d(u) 4+ w(u, z)) is taken out (and consequently a delete(u) is executed on the tournament

tree) before the spurious entry can be returned by deletemin.

The O(F) added heap operations require an additional O(%log %) [/Os. Our result

S

follows immediately.
Theorem 6 Single-source shortest paths can be found using O(V + %log2 %) 1/0Os.]

We believe that this is the best known upper bound on I/Os for this problem.

3.4 An Algorithm for Breadth-First Search

Our breadth-first search algorithm is similar to the algorithm for single-source shortest paths

just discussed.

We start with a tournament tree containing the V' vertices and their key values, which
are as follows: the root is initialised to zero, the rest to infinity. We keep a counter initialised
to 0. The basic step of the algorithm is as follows: the vertex v with the smallest key is
extracted from the tournament tree. Let vy, v,, -+, v; be vertices in the adjacency list of v,
excluding the parent of v in the BFS tree. Their keys are updated to k,k+1,k+2,--- k41

respectively, where k is the value of the counter. The counter is changed to k + (.

The scheme follows the familiar BF'S algorithm except in one way. Although we should
only visit the unvisited neighbours of v, we visit all of its neighbours, as we are making no
distinction between neighbours that have already been visited and the ones that haven’t.
This is because we can not efficiently find out if a particular vertex has already been visited.
The problem is similar to the one we encountered in our algorithm to find single-source
shortest paths. Again, an auxiliary heap corrects for spurious updates of vertices that have

already been visited and deleted.

Let key(v) denote the key of the vertex v when it is extracted by deletemin. Let p(v) be
the parent of v in the BFS tree. If two vertices in the graph have an edge between them, and
neither is the BF'S parent of the other, then they are either at the same level or at adjacent

levels in the BFS tree. Let v and v be two such vertices, such that key(u) is smaller than

27

key(v). Evidently, key(p(v)) < key(u). The key of vertex v is set to key(v) by p(v), and
on encountering u, we attempt an update (which fails) of the key of v. Later, when v is
extracted, we try to update the key of u. But by now, u has already been extracted and
its place in the BFS order determined. The current key value of w is, therefore, infinity.

Updating it will cause u to be visited again, which is incorrect.

To take care of this problem, we use an auxiliary heap to keep information that will tell
us that u precedes v in the BFS order, so v should not update the key of w. This is done
as follows. When the entry (u, key(u)) is extracted from the tournament tree, we attempt
to update the keys of the neighbours of u, including v. Let us say that we sought to update
the key of v to some value x. We keep track of these attempted updates by inserting an
entry (u,x) into the heap, which tells us that u attempted an update with key value . Heap

entries are pairs of values, and the second value is used as the heap key.

The modified basic step of the algorithm is: we keep extracting the smallest entries in
both the heap and tournament tree. So when the smallest entry (of the form (v, key(v))) is
extracted from the tournament tree, we proceed, as already described, to include v in the
BFS tree and to attempt to update the keys of all its neighbours. But if the smallest entry
(of the type (u, x)) comes from the heap, we conclude that the vertex u attempted to update
the key of some v to the value x, and the update failed. Two things then become obvious:
one, the entry for v has already been extracted from the tournament tree and has caused an
‘undesirable’ update of u; and two, that this undesirable update is of some key value larger
than x. So we promptly proceed to issue the signal delete(u) to the tournament tree. The

effect of the undesirable update of u is thus undone before it can cause us to visit u again.

With this correction, our algorithm visits vertices in the same order as the usual BFS
algorithm. The resulting algorithm performs a total of O(F) tree and heap operations, in
addition to reading each adjacency list once. This yields the following bound:

Theorem 7 Breadth-first search can be performed using O(V + % log, %) 1/0Os.]

As in the case of the single-source shortest paths problem, we believe that this is the best

known upper bound on I/Os for this problem.

28

3.5 An Algorithm for Depth-First Search

The basic difference between depth-first search and breadth-first search is the criterion for
the selection of the next vertex to be visited. As in the case of BFS, we will use a tournament
tree to store all the vertices that are candidates for future visits, but we will use a different
criterion for comparison among candidates. There is an element in the tournament tree for
each vertex v of the input graph G. In the tournament tree entry for a vertex v, the key field
will contain a timestamp that records when the parent of v in the DFS tree was visited, and
the index of v in its parent’s adjacency list. In comparing two candidate vertices, the one
with a later timestamp will be chosen. In case of equality, the one having the smaller index
in the adjacency list of the (common) parent will be selected. Upon visiting a new vertex,

the tournament tree entries for all its neighbours will be updated.

As in the case of BFS and single-source shortest path problems, the problem is avoiding
updating the tournament tree entries for vertices that have already been visited. In an
undirected DFS tree, any neighbour of v that has been visited before v must be an ancestor
of v in the tree. Our objective, then, is to avoid updating tournament tree entries for the
ancestors of the node being visited, so as not to visit them again. To do this, we keep track
of the DFS ancestors of every node. The I/0O cost of storing the ancestors of each vertex can

be high. So we store the lists of DFS ancestors in a simple data structure described below.

The data structure used is essentially a balanced binary tree. The V' leaves correspond
to the vertices of (G. Each leaf is to contain the list of DFS ancestors of the corresponding
vertex. The internal nodes are buffers, each of size B. To add vertex u to the ancestor list of
vertex v, we add the pair (v, u) to the root buffer. When a buffer becomes full its contents
are divided appropriately between its two children. The list of ancestors of a vertex v can
be obtained by reading all the buffers from the corresponding leaf to the root, extracting all
entries of type (v, u) for some u that may be found in the buffers and combining them with

the contents of the list contained in the leaf.

Now that we have a way of obtaining the list of all DFS ancestors of a vertex, we are
able to implement the basic step of our DFS algorithm correctly: from the tournament tree,
select the next vertex to be visited, read its adjacency list, and for all its neighbours that
are not its ancestors, update their tournament tree entries. This entails sorting the list of

ancestors and the list of neighbours and removing all common entries from the latter.

29

3.5.1 I/0 Complexity of the Algorithm

There are no more than £ + V tournament tree operations. The additions to the lists of

ancestors require O(%) [/Os for each edge in ¢, and the extraction of information from
that data structure requires O(log, V 4 {(v)/B) 1/Os for a vertex v of ¢ that has [(v) DFS

ancestors. Sorting of adjacency lists and ancestor lists requires O(sort(E)) 1/Os overall. So

the overall I/O complexity is O(V log, V + £ log, £).

Chiang et al. [6] present a DFS algorithm that requires O((1 + V/M)scan(F)+ V') 1/Os.

Our algorithm outperforms that algorithm on all except very sparse graphs.

4 Conclusions and Open Questions

We have presented two 1/O-efficient data structures — the 1/O-efficient heap and tourna-
ment tree — and demonstrated how their use can simplify the design of I/O-efficient graph
algorithms. Both of these data structures support all their basic operations: the heap with
an amortised cost of O(%log% %) [/Os per operation, and the tournament tree with an

amortised cost of O(% log, %) [/Os per operation on a data structure of at most N items.

The 1/O-efficient heap led immediately to simple descriptions of optimal algorithms for
sorting and list-ranking, while the update operation available in the I/O-efficient tournament
tree proved useful in the design of algorithms for breadth-first and depth-first search and
single-source shortest paths. We also obtained an algorithm for finding minimum spanning
trees with improved /O efficiency on all but the densest graphs. As is the goal of data
structures, the 1/O-efficient heap and tournament tree both simplified the descriptions of

external-memory graph algorithms and led to improved efficiency.

Our results can easily be extended to the D-disk model when D = O((%)a) for some
a < 1. In this case, the asymptotic constant increases by a factor of ﬁ, which is a fairly
small constant as long as « is not too close to 1. We believe they are extendible to the more

general case, but we do not at the moment have such an extension.

There are many other open questions, including;:

30

e Can minimum spanning trees be found in as few as O(sort(F)) 1/Os? How about in

O(sort(V')), which was shown to be a lower bound by Chiang et al. [6]?

e Can depth-first search be performed as efficiently as breadth-first search — that is,
with only an additive V' rather than a V'log, V7

e Can the additive V (or Vlog, V) terms be removed from the running times of the

algorithms for breadth-first and depth-first search and single-source shortest paths?

e Can a tournament tree be designed with an (optimal) amortized 1/O complexity of

O(% log% %) I/Os per operation, instead of O(% log, %) [/Os per operation?

o In what other areas can these data structures lead to improved algorithms? What

other data structures would it be helpful to transfer to an external-memory setting?

References

[1] Ruemuler, C. and Wilkes, J.: An Introduction to Disk Drive Modelling. IEEE Computer
27(3), pp. 17-28, 1994.

[2] Arge, L.: The Buffer Tree: A new technique for optimal I/O-algorithms. In Proc. Fourth
Workshop on Algorithms and Data Struc., pp. 334-345, 1995.

[3] Callahan, P., Goodrich, M.T. and Ramaiyer, K.: Topology B-Trees and Their Applica-
tions. In Proc. Fourth Workshop on Algorithms and Data Struc., pp. 381-392, 1995.

[4] Aggarwal, A. and Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9): 1116:1127, 1988.

[5] Vitter, J.S. and Shriver, E.A.M.: Algorithms for parallel memory I: two level memories.
Algorithmica, 12(2), 1994.

[6] Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E. and Vitter,
J.S.: External memory graph algorithms. In Proc. 6th ACM-SIAM Symp. on Discrete
Algorithms, pp. 139-149, 1995.

[7] Nodine, M.H. and and Vitter, J.S.: Large-scale sorting in parallel memories. Proc. 3rd
Annual ACM Symp. on Parallel Algorithms and Architectures, pp. 29-39, 1991.

31

3]

[10]

[11]

Nodine, M.H. and and Vitter, J.5.: Deterministic distribution sort in shared and dis-
tributed memory multiprocessors. In Proc. 5th ACM Symp. on Parallel Algorithms and
Architectures, pp. 120-129, 1993.

Goodrich, M.T., Tsay, J.-J., Vengroff, D.E. and Vitter, J.S.: External-memory compu-
tational geometry. In Proc. 34th Annual IEEFE Symp. on Foundations of Comp. Sci.:
714-723, 1993.

Arge, L., Vengroff, D.E. and Vitter, J.S.: External Memory Algorithms for Processing
Line Segments in Geographic Information Systems. In Proc. Third Annual European

Symp. Alg., pp. 295-310, 1995.

Johnson, D.B. and Metaxas, P.: A Parallel Algorithm for Computing Minimum Span-
ning Trees. In Proc. jth ACM Symp. on Parallel Algorithms and Architectures, pp.
363-372, 1992.

32

