
Improved Algorithms and Data Structures forSolving Graph Problems in External Memory �Vijay KumarEric J. SchwabeDepartment of EECSNorthwestern UniversityEvanston, IL 60208Phone: (847) 467{2298Fax: (847) 467-4144Email: fvijay, schwabeg@eecs.nwu.eduKeywords: Input/output e�ciency, external-memory algorithms, graph algorithms, datastructures.
�This research was supported in part by the National Science Foundation under grant CCR{9309111. Apreliminary version of this work will appear in the Proceedings of the Eighth IEEE Symposium on Paralleland Distributed Processing, October 1996.

AbstractRecently, the study of I/O-e�cient algorithms has moved beyond fundamental prob-lems of sorting and permuting and into wider areas such as computational geometryand graph algorithms. With this expansion has come a need for new algorithmic tech-niques and data structures. In this paper, we present I/O-e�cient analogues of well-known data structures that we show to be useful for obtaining simpler and improvedalgorithms for several graph problems. Our results include improved algorithms forminimum spanning trees, breadth-�rst and depth-�rst search, and single-source short-est paths. The descriptions of these algorithms are greatly simpli�ed by their use ofwell-de�ned I/O-e�cient data structures with good amortised performance bounds.We expect that I/O-e�cient data structures such as these will be a useful tool for thedesign of I/O-e�cient algorithms.

1 IntroductionThe design of I/O-e�cient algorithms has received increasingly greater attention in recentyears. This has been because of a disparity in the growth rates of CPU speeds and disktransfer rates: improvements in CPU speeds have consistently outpaced the rate at whichthe speed of communication between main and external memory has grown. Accordingto one recent estimate, advances in technology have yielded an annual growth of 40 to 60percent in CPU speeds, while disk transfer rates have been increasing only at about 7 to 10percent annually [1]. As it is, communication between internal and external memory has forsome time been a bottleneck in many large-scale computations. The increasing disparity inCPU speeds and disk transfer rates implies that the signi�cance of this bottleneck continuesto grow. This has made it di�cult to take full advantage of the power of the CPU in manylarge-scale computations. The bottleneck is all the more signi�cant in parallel computing andmultiprocessing. Consequently, it has become important to design algorithms that minimisethe transfer of data between internal and external memory.Problems that are too large to be solved in internal memory are encountered in manyareas, ranging from numerical computing to computational geometry. A lot of work has beendone in many of these areas to design I/O-e�cient algorithms. In graph algorithms, someinstances of such problems are large circuit layout problems and modeling of large phone,communication or other networks.In the area of graph algorithms, most of the e�ort has gone into devising I/O-e�cientalgorithms for individual problems. The common approach is to re-design the algorithm onone hand and the arrangement of data on the other, to extract such I/O-e�ciency as thenature of the problem would allow. The design of data structures that facilitate the taskhas only recently been widely taken up [2, 3]. We feel that the design of general-purposeI/O-e�cient data structures is very important. The I/O e�ciency of a range of algorithmscould be improved simply by replacing the data structures employed by their I/O-e�cientversions, if such versions were to be available. Algorithms that use such general-purposedata structures are also likely to be simpler to describe.1

1.1 Model of ComputationThe computational model that we employ was introduced by Aggarwal and Vitter [4]. Itconsists of a single processor with a small local memory connected to a large external memory.We use the following parameters:N = the size of the problem in external memory,M = the size of the internal memory, andB = the number of items in one block of data.An extension of the model [5] incorporates another parameter:D = the number of disks in the memory system.It is assumed that M < N and 1� DB < M=2.The basic I/O operation [5] consists of the reading of one block of data from each ofthe D disks (or writing of one block of data to each) | a transfer of a total of DB itemsbetween main memory and external memory. The address space of the external memoryis striped block-wise across the D disks: the rth block overall of the N=B blocks of datais the (br=Dc)th block on disk number r mod D. How many such basic I/O operations analgorithm uses would be our measure of its performance.We will work with the single-disk model (D = 1). The extendibility of our results to theD-disk model is discussed in Section 1.3.After Chiang et al. [6], we de�ne the useful quantities scan(x) = xDB and sort(x) =xDB logMB xB . Up to constant factors, scan(x) is the number of I/Os needed to read x consec-utive items stored on the D disks (the items being stored in the striped fashion describedabove), and sort(x) is number of I/Os required to sort x items stored consecutively onthe D disks, using a comparison-based algorithm [7, 8, 5]. In the single-disk model, theseexpressions reduce to scan(x) = xB and sort(x) = xB logMB xB .In addition, in the context of a graph problem, let V denote the number of vertices inthe graph being considered and let E be the number of edges. A graph will be representedas a sequence of V adjacency lists, where each list consists of a �xed amount of information2

about a vertex followed by a list of its incident edges. Assuming such a representation, wehave N = �(V + E).1.2 Previous ResultsThe problem of designing I/O-e�cient algorithms was �rst taken up by Aggarwal and Vitter[4], who gave several algorithms for basic problems such as sorting, permuting, and matrixoperations. Their results assumed a weaker computational model in which the externalmemory consists of a single large disk containing all N items, and the basic I/O step cantransfer any k blocks of B items each between main memory and external memory. Optimalsorting algorithms were obtained for the more general D-disk model by Vitter and Shriver[5] (using a randomised algorithm), and by Nodine and Vitter [7] (using a deterministicalgorithm). Nodine and Vitter [8] also extended their sorting results to apply to a varietyof memory hierarchies. However, until recently, research in I/O-e�cient algorithms centeredon the fundamental problems of sorting, permuting, and the like.Goodrich et al. [9] were the �rst to develop external-memory techniques that applied toa class of algorithms | algorithms for computational geometric problems. A lot of e�orthas since gone into the design of I/O-e�cient computational geometry algorithms [9, 10].Later, Chiang et al. [6] focused on the design of external-memory graph algorithms, produc-ing algorithms for a number of problems including list ranking, expression tree evaluation,PRAM simulation, 3-colouring of cycles, and depth-�rst search.In most of this work, the data structures used by the algorithms were motivated by theparticular problems that were being considered. Arge [2] improved several of the resultsin these earlier papers by introducing the I/O-e�cient bu�er tree: the �rst I/O-e�cientdata structure to incorporate an amortised analysis for batched operations. It led to simplealgorithms for sorting and some graph problems and to the generalisation of some of theresults of Chiang et al.[6]. Arge also designed a similar data structure called the segment treewhich he used to develop external-memory algorithms for many problems in computationalgeometry [10]. 3

1.3 Our ResultsWe strive to develop new general-purpose I/O-e�cient data structures, and illustrate furtherhow they can assist in the design of I/O-e�cient algorithms. The primary motivation hereis to solve problems on large graphs, but we expect that our I/O-e�cient versions will �ndapplications in other areas and be useful in the design of a variety of I/O-e�cient algorithms.The two data structures we present are I/O-e�cient versions of a heap and a tournamenttree. We present an external-memory generalisation of a binary heap that can achieve amor-tised performance of O(1B logMB NB) I/Os per operation (insert, delete, or deletemin) over asequence of operations on a heap containing at most N elements. This data structure resem-bles Arge's bu�er-tree [2] in its use of a bu�ering technique for batched maintenance of thedata structure, and yields the same performance bounds. Arge's bu�er-tree is an external-memory generalisation of a balanced search tree, just as our data structure is derived fromthe binary heap data structure. We avoid performing complicated tree-balancing operationsto achieve some simplicity of description for our data structure. Our I/O-e�cient heapimmediately yields a heapsort with optimal I/O performance, illustrating how I/O-e�cientdata structures can simplify the task of describing algorithms.Our I/O-e�cient tournament tree requiresO(1B log2 NB) I/Os per operation (delete, deletemin,or update) amortised over a sequence of operations on a tournament tree of N elements. Inaddition to general deletions and deletemins, the tournament tree also supports an updateoperation that, given an element and a new key value, changes the element's key value ifand only if the current key value is greater than the new one.These data structures, together with some new algorithmic techniques, lead to algorithmswith improved I/O performance for several fundamental graph problems. Our results include:� New algorithms for �nding minimum spanning trees with nearly-optimal I/O perfor-mance| O(logB �sort(E)+log V �scan(E)) I/Os; previously the best known algorithmfor this problem [6] required O(minfsort(V 2); log VM � sort(E)g).� New algorithms for breadth-�rst search and single-source shortest paths that requireO(V + EB log2 EB) I/Os.� A new algorithm for depth-�rst search that requires O(V log2 V + EB log2 EB) I/Os.4

� A generalised deterministic algorithm for list ranking that requires O(sort(N)) I/Os.Throughout the paper, we will work in the single-disk external-memory model | that is,for the case when D = 1. All of our proofs generalise in a straightforward way to externalmemories consisting of more than one disk if the number of disks is no more than O((MB)�)for some � < 1, using a technique known as striping. Striping treats the D disks as a singledisk with a block size of DB, and the basic I/O operation is the reading or writing of one ofthese larger blocks of data. We believe that the results are extendible to the more generalcase too, but we have not proved this.The paper is organised as follows. In Section 2, we present our I/O-e�cient data struc-tures and establish amortised bounds on their performance. Section 3 contains several im-proved algorithms for graph problems that use our I/O-e�cient data structures. Finally, inSection 4 we discuss our conclusions and mention some open problems.2 Data Structures for External-Memory AlgorithmsIn this section, we present the I/O-e�cient versions of two common data structures.2.1 An I/O-E�cient Heap2.1.1 Description of the Data StructureA priority queue is a data structure encountered very frequently in algorithms of all kinds.It is used to maintain a set S of elements, where each element has a number associated withit, called the key of that element. The following operations can be performed:1. insert(S,x): inserts element x into S.2. minimum(S): Returns the element with the smallest key among all the elements of S.3. deletemin(S): Returns the element in S with the smallest key and removes it from S.5

One of the most common implementations of a priority queue is a data structure calledheap. A heap is a complete binary tree of elements with a certain number of its rightmostleaves removed. The key of any non-leaf element is smaller than the key of either of itschildren.Numerous variants of the basic heap design are encountered in various algorithms, butthey are not I/O-e�cient and not conducive to use in external-memory algorithms. Wepresent an I/O-e�cient data structure called the I/O-e�cient heap, the design of which isdescribed below.An I/O-e�cient heap is a tree with the following properties:� Each node contains a list of elements in sorted order. The number of elements in thelist is between pMB=2 and 2pMB.� Each non-leaf node has qM=B children.� Each node has an unordered bu�er that can contain up to M elements.� Any element contained in a node's list is smaller than any element contained in itsbu�er or in any of its descendant nodes.The only exception to these rules could be a heap with just one node, or the nodes atthe level above the leaves, which may not always have qM=B children.The cardinality of a node in the heap is the number of elements contained in the sub-heaprooted at it.2.1.2 Maintenance of the data structureTo achieve I/O e�ciency, we develop a scheme of lazy updates for this data structure. It isto make lazy updates possible that we allow a node to hold a variable number of elements.The objective is to perform maintenance on this data structure in a batched fashion. Toallow inserted elements to move down the heap in a batched fashion we provide for a bu�erat every node with capacity M . For a node v, elements that are to be sent down to the6

descendants of v are accumulated in its bu�er. When the bu�er becomes full, its contentsare transferred to the children of v. These features allow us to avoid having to undertakeexpensive I/O to update a node and its children every time an element is to move up fromor down to it. Such updates can now be batched together to signi�cantly reduce the I/Ocost per update.In addition to insert and deletemin described above, the operation delete(S,x), which re-moves a speci�ed element x from the heap S, is supported. The I/O-e�cient implementationof these operations is described below.� insert: the insert operation adds a new element to the root node. If the element issmall enough to be held in the root's list it is inserted there. This happens when theelement to be inserted is smaller than the largest element in the root's list. Otherwise,it is added to the root's bu�er and is expected to trickle down to some node where itspresence does not violate the heap order. When thus moving down from a node v, anelement goes to the root node of the sub-heap that has the smallest cardinality amongall the sub-heaps rooted at children of v. This helps preserve the height balance of thetree structure.� deletemin: the deletemin operation removes and returns the smallest element containedin the root node.� delete: the delete operation creates a duplicate of the element to be deleted and insertsit in the heap. Whenever two copies of the same element encounter each other in theheap, they are annihilated. That is to say, the two copies can not exist in the samenode's list. Annihilation is assured because to be returned by deletemin, one of the twocopies must become the smallest element in the heap. But in that case it would havereached the root's list, as would the other copy because it has the same key. This willlead to annihilation. Although this implementation of delete implies that only distinctelements can be kept in the heap, this restriction can be circumvented if desired byadding another �eld to the elements that can be used to make elements distinct evenwhen they have the same key value. This extra �eld can be used as a secondary key incomparisons so that duplicate elements inserted by the delete operation are not keptapart by other elements which have the same key.7

In order to implement the heap operations, the following primitives are used:� emptylist: called when a node's list contains more than 2pMB elements. It movesexcess elements to the bu�er.� �llup: called to replenish a node whose list contains less than pMB=2 elements. Itmoves elements up from the node's children into the node's list.� emptybu�er: called when a bu�er over
ows. Moves the contents of the bu�er down tothe child nodes.2.1.3 Implementation of the primitivesThe primitives are implemented as follows:emptylist is straightforward: it takes all except the smallest pMB elements in the listand puts them in the node's bu�er.emptybu�er is used to empty a node's bu�er by distributing its contents among its childnodes. If the bu�er contains x elements, up to x=pMB of the node's children are potentialrecipients of the bu�er's contents. The distribution is done as follows: A set of recipientsis maintained. Initially, the set of recipients contains the child node with the smallestcardinality. At any stage in the process, all the elements in the set of recipients have equalcardinality. A step in the distribution process consists of setting aside B elements from thebu�er being emptied for each of the recipients, whose cardinality is then assumed to haveincreased by B. If the cardinality of the nodes in the set of recipients becomes equal tothe cardinality of any non-recipient child node, that node is added to the set of recipientsif doing so does not make the number of recipients more than x=pMB. In the end, theelements set aside for a particular recipient are actually given to it. The recipient's list isread into memory, and if there are any elements among its share that belong inside the listin sorted order, they are added to the list, while the rest are output to its bu�er. If eitherthe list or the bu�er over
ows, it is in turn emptied.In case of a leaf, emptybu�er creates child nodes and gives pMB elements to each. Ifa node has fewer than qM=B children, emptybu�er �rst creates enough children to raise8

the number of children to qM=B, and then distributes the remaining contents of the bu�eramong the children as described above.In �llup, �rst we empty the node's bu�er, and then extract enough elements from thechild nodes to raise the number of elements in the list to pMB. Treating the children's listsas a collection of lists we have to merge, we obtain a merged list of the required size andappend it to the list to be re�lled. As e�cient merging schemes are known (see for instance[4]), we omit the details.2.1.4 The I/O Complexity of Heap OperationsAlthough the heap can be unbalanced by deletions, insertions serve to balance it, as newelements are added to the smaller sub-heaps. So when the heap grows bigger than it hasever been upto that point, it is a balanced heap. It is easy to see thatLemma 1 The height of a heap that never contains more than N elements is O(logMB NB).Proof : Follows from the fact that logMB NpMB is O(logMB NB).Let l denote the height of such a heap, with the root at level l and the leaves at level 0.Our objective is to obtain an amortised bound on the total number of I/Os in terms ofthe number of heap operations performed. The lower bound of
(NB logMB NB) on sorting [4]together with the bound on heap height implies that a cost of O(l=B) per heap operationwould be optimal.The primitives emptybu�er, emptylist, and �llup perform all the I/O operations, eachone moving a collection of elements one level down or up the heap. These functions areI/O-e�cient | that is, when they move x elements up or down one level, they use x=B I/Osto do so. We will account for the I/O cost of these primitives by charging the various heapoperations.When some elements are moved from a node's list to its bu�er, we will ignore the I/Ocost. This cost is no more than that of later moving those elements out of the bu�er, which9

is the next operation to be performed on these elements. If we can bound the latter cost, thesame bound will apply to the former. As there is no movement of elements from a bu�er tothe corresponding list, we are e�ectively considering all movement of elements to be betweentwo adjacent levels in the heap.In the following, we derive amortised cost bounds for the various heap operations. Firstwe take up deletemin.Lemma 2 The amortised cost of a deletemin is O(l=B) I/Os.Proof : Let every deletemin `pay' the amount l=B in dollars to the root node. As the rootmust lose pMB2 elements before a �llup is needed, it will have amassed l2qMB dollars by thetime a �llup takes place.Let us inductively show (using induction on distance from the root) that when a node atlevel i needs a �llup, it has i2qMB dollars to pay for it. It is true of the root, as we saw. Letit be true of a node at level i+1. Thus when a node at level i+1 needs a �llup, it possessesi+12 qMB dollars. The I/O complexity of extracting 12pMB elements from the children is12qMB , if the operation is to take 1=B I/Os per element moved. Let us use 12qMB dollars topay for that. The remaining i2qMB dollars will be used as follows: if x elements have beenextracted from a child, let xiB dollars be paid to that child. As 12pMB elements have beenextracted in all, this will cost i2qMB dollars.Now a node at level imust lose 12pMB elements to its parent in order to need a �llup, andfor that the parent will have paid it i2qMB dollars, which completes the induction. Thereforethe number of dollars paid by deletemin is enough to cover the resulting I/O cost. Thus theamortised cost of a deletemin is O(l=B).Now let us look at inserts. A delete is analogous to an insert (it is performed by insertinga duplicate of the element to be deleted), and will not be treated separately.Lemma 3 The amortised cost of an insert or a delete is O(lB) I/Os.Proof : Let every insert pay lB roubles to the root. We will use these roubles to pay forall the emptybu�er operations (remember that we have decided to ignore the cost of all the10

emptylist operations). We will inductively show that when a node needs its bu�er emptied,it has enough roubles to pay for it.Let the root bu�er contain x elements when it needs to be emptied. At least x insertionshave been made since the last emptybu�er. So the root has acquired lxB roubles through theseinsertions. We will inductively show that a node at level i has amassed ixB roubles since thelast emptybu�er, if its bu�er now contains x elements.Assume it to be true of nodes at level i+ 1. So when such a node with x elements in itsbu�er needs an emptybu�er operation, it has at least (i+1)xB roubles.The emptybu�er operation requires O(xB) I/Os. Let xB roubles be used to pay for that.Spend the remaining ixB roubles as follows: If a child node receives j elements during theprocess, let it be paid ijB roubles.So if an element at level has y elements its bu�er, it has since its last emptybu�er receivedat least y elements from its parent, which means it has received iyB roubles as well. Thiscompletes the induction. As the number of roubles spent by the inserts is su�cient to coverthe I/O cost, the amortised I/O cost of inserts is O(lB) per operation.We have shown that we can pay for all the I/Os using the credits that we obtained bycharging the insert [and delete] and deletemin operations lB per operation. That means theamortised cost of each of these operations is O(lB) I/Os. Using the bound on l, the numberof levels, we obtain the following theorem:Theorem 1 On an I/O-e�cient heap with at most N elements, a sequence of k operations(insert, delete, and deletemin) requires at most O(kB logMB NB) I/Os.These performance bounds for the I/O-e�cient heap lead immediately to an optimalheap sorting algorithm for N elements, which consists of just N insertions followed by Ndeletemins:Corollary 1 On an I/O-e�cient heap, Heapsort sorts N elements using O(sort(N)) I/Os.(Arge [2] achieved the same bound for sorting with a di�erent data structure.)11

2.2 An I/O-E�cient Tournament TreeNext we describe a data structure called the tournament tree, which is similar to the heapin some ways, but holds additional information.The tournament tree is a useful data structure. It o�ers some advantages over a heap asthere is a natural mapping of the numbers 1; : : : ; N to the N items in a tournament tree,and this mapping is implicit in the way a tournament tree is organised. The additionalinformation is often useful.Imagine a knock-out tournament to be played among N = 2k players. It would involvek rounds and 2 �N � 1 matches. In round i, 2k�i matches would be played, each resulting inthe elimination of the player that loses. The tournament can be represented using a binarytree, where each leaf represents one player, and each internal node holds the winner of amatch played between its two child nodes. The root contains the winner of the tournament.The resulting data structure is called the tournament tree. The completed chart of theWimbledon draw (with the winner of each match �lled in), for instance, is a tournament treewith 128 leaves. Tournament trees are useful in many comparison-based problems, where theelements are the `players', and contests represent comparisons. For example, a tournamenttree can be used to implement a priority queue.An I/O-e�cient version of the tournament tree is presented below. The I/O-e�cientversion di�ers from the basic tournament tree described above in the following respects:just as in the I/O-e�cient heap, each node contains a number of elements, and has anassociated bu�er; and each element is contained in just one node. Later, we will demonstrateapplications to the single-source shortest paths problem and breadth-�rst and depth-�rstsearch that illustrate the usefulness of this data structure.2.2.1 Description of the Data StructureThe I/O-e�cient tournament tree houses N elements, each of which is a pair of the form(x; y). The x values, ranging from 1 to N , identify the elements. The structure is organisedaccording to comparisons on the y values of the elements. The y value of an element willalso be known as its key; all elements initially have a key value of in�nity. More formally:12

An I/O-e�cient tournament tree is a binary tree with the following properties:� It is a complete binary tree, except for the fact that some k rightmost leaves may bemissing.� It has N=M leaves, where N is the number of elements in the tree. Each element is apair of values, called the ID and the key of the element, respectively. Each element hasa unique ID, and the IDs range from 1 to N . The element with ID x will be referredto as element x. Out of two elements, the one with the smaller key will be referred toas the smaller element.� There is a mapping of element IDs to leaves. Elements with IDs in the range (i�1)M+1to iM map to the ith leaf. An element is either contained in the leaf that it maps to,or in some ancestor thereof.� A node may contain between M=2 and M elements. If a node v contains x elements,they are the smallest x out of all the elements that map to leaves that are descendantsof v.� Each non-leaf node has an associated bu�er of size M .The structure supports the following three operations:� deletemin returns the element with the smallest key in the tree and removes it fromthe tree.� delete(x) changes the key value of element x to in�nity, and removes (x; y) from internalnodes on the path from the root to x's leaf, where y is the old key value of x.� update(x; y) changes the key value of element x to y if and only if y is smaller thanthe key value of x.The tree is balanced and consists of log2 NM levels. Every node at any level except thelowest has two children. The x value of any element in the left child is smaller than that ofany element in the right child. 13

2.2.2 Maintenance of the data structureInitially, all elements have a key value of in�nity. When an operation is performed, a deleteor update signal is generated and inserted in the root. When a signal is inserted in a node, itmay a�ect some element held in that node. The key of that element may have to be changed,and the signal may have to be propagated down to the appropriate child node. This is donein the following (lazy) way.A delete or an update signal propagates down till it meets the targeted element in somenode. In case of a delete, the element is removed, the signal is converted into an updatesignal with a key value of in�nity and it continues to propagate down from that node. Inthe case of an update, if the new value is larger than the old value, the signal is discarded.If the new value is smaller than the old value, it replaces the old value. The signal does notpropagate any further down from the node containing the targeted element. If an updatesignal with a key value of in�nity reaches a leaf and the targeted element is not present inthe leaf, it is inserted in the leaf with a key value of in�nity.When a signal is inserted into the root (which is held in internal memory), the appropriatechanges are made to elements held in the root and the signal is added to the root bu�er.When a bu�er contains M signals we empty it as follows: The signals in the bu�er aredistributed between the two child nodes, each signal being sent to that child node which isto contain the element targeted by that signal. Then we apply to each child node its shareof the signals. For this, the child nodes have to be read into memory one after the other.The signals that have to propagate further down the tree are then added to the respectivechild nodes' bu�ers. It is easy to see thatObservation 1 An empty operation requires O(MB) I/Os.When the number of undeleted elements in a node is reduced to M2 , we have to replenishthat node. The following routine is called when the number of elements in a node is reducedto less than M2 :�llup(v) restores the strength of node v to M elements. It examines the child nodes of vto �nd the M elements with the smallest key values contained therein. Before this can be14

done, however, the child nodes must be updated with all the signals in the parent's bu�er.For this purpose, the bu�er of v is �rst emptied. If during the �llup all the elements from achild node are used up, that node is �lled up before the parent can be �lled up. At the endwe check if either child node is depleted to a strength of less than M2 elements: if so, thatnode is in turn �lled up. Not counting the cost of recursive calls to �ll up child nodes,Observation 2 The cost of a �llup operation is O(MB) I/Os.2.2.3 The I/O Complexity of Tournament Tree OperationsTo begin with, since a tournament tree with N elements is a balanced binary tree with O(NM)leaves, we haveObservation 3 The height of a tournament tree containing N elements is O(log2 NM).It may be noted that log2 NM is O(log2 NB).We note that the data structure contains elements and signals. We also make the followingobservations:Observation 4 Elements only move upwards in the tree, while signals only move down-wards. All such movement is along the path between the root and the leaf to which thetargeted element is mapped.Observation 5 All the I/O done in the empty and �llup operations either moves signalsdown or moves elements up the tree.Observation 6 An operation on the tournament tree generates no more than O(1) signals.Recall that both �llup and empty cost O(MB) I/Os each. We will now establish boundson the amortised I/O cost of tournament tree operations and in the process account for theI/O cost of calls to �llup and empty. 15

Lemma 4 A sequence of tournament tree operations containing k deletions on a tournamenttree containing N elements requires O(kB � log2 NB) I/Os for calls to �llup.Proof : A fillup operation is required as a result of depletion of a node. It is evident thatthis depletion is caused solely by deletions. Note that a deletion can potentially cause up toh nodes (one at each level in the tree) to lose an element each (either directly or when thenode's parent needs to be �lled up), where h is the height of the tree. So when a deletioncauses a node to lose an element, allow that node to charge a cost of O(1B) to that deletion.So overall a deletion can be charged up to O(hB). As a node must lose M2 elements to requirea �llup, it will have accumulatedO(MB) credits by charging delete operations, which can thenbe used to pay for the O(MB) cost of the �llup.As the height h is known to be O(log2 NB), the lemma follows.What about the total cost of all the empty operations? These operations move signalsdown the tree. We will charge this cost to the various operations.Lemma 5 The calls to the subroutine empty made by a sequence of k tournament treeoperations require no more than O(kB � log2 NB) I/O steps.Proof : A call to empty can be made either when a bu�er is full, or when a node requires a�llup. In the latter case, the O(MB) cost of empty is included in the O(MB) overall cost of a�llup. The O(MB) cost in the former case can be looked upon as a cost of O(1B) I/Os for eachsignal moved one level down. Let us charge this cost to the tournament tree operation thatgenerated the signal. Obviously, each operation can be charged at most once by each of theh levels, so the cost charged to each operation is no more than O(hB) I/Os.The lemmas above directly yieldTheorem 2 On an I/O-e�cient tournament tree with N elements, a sequence of k opera-tions (delete, deletemin, and update) requires at most O(kB log2 NB) I/Os.The ability of the I/O-e�cient tournament tree to perform updates to the key values ofentries without knowing their current values will be used in Section 3 to help design newI/O-e�cient algorithms for breadth-�rst and depth-�rst search and single-source shortestpaths. 16

3 Improved Algorithms for Graph ProblemsConventional graph algorithms often do not lend themselves to adaptation for the external-memory setting. Graph edges can be looked upon as `connections' between `items' that arenot necessarily proximate. Following an edge to a neighbouring vertex therefore meansusing an I/O step with the objective of accessing a single item, an operation that is not I/O-e�cient. One way to derive I/O-e�cient algorithms is to construct them using two kinds ofbuilding blocks: I/O-e�cient data structures, and techniques like sorting, list ranking andmerging for which I/O-e�cient algorithms are available.In this section we present improved I/O-e�cient algorithms for several basic graph prob-lems that use the data structures presented in Section 2.3.1 Improved Minimum Spanning Tree AlgorithmsThere are well-known O(V log V)-time algorithms for the minimum spanning tree problem.Those techniques, however, are not suitable for external-memory computation. An algorithmis presented here that uses O(logB � sort(E)+ log V � scan(E)) I/Os to compute a minimumspanning tree.Initially, the size of an adjacency list is the number of edges in it. When two adjacencylists are merged, the size of the resulting list is the sum of the sizes of the two lists. Anadjacency list is small if its size is less than B, and large otherwise. A vertex is a large-degreevertex if its adjacency list is large. Otherwise it is a small-degree vertex.First we present an algorithm for a restricted case in which there are no small-degreevertices in the graph. The skeleton of the algorithm is familiar [11]: it consists of a numberof phases, and in every phase it uses the smallest-weight-edge on every vertex to form a setof connected components. Vertices in a component are then grouped into pairs for merging.The edges that are shrunk are designated MST edges, the adjacency lists of componentvertices are merged to obtain the adjacency list of the new vertex, and internal edges areremoved from the combined adjacency list.As we shall see, the number of pairs of vertices that are shrunk into single vertices in aphase is a constant fraction of the number of vertices in that phase. Therefore, each phase17

reduces the number of vertices in the graph by a constant factor. This implies that thenumber of phases in the algorithm is O(log V). We shall also see that each phase requiresno more than O(scan(E)) I/Os.3.1.1 An Algorithm for Large-Degree GraphsThe undirected graph G = (V;E) is represented as a list of adjacency lists. At any inter-mediate stage in the algorithm, we have a graph G0, each vertex of which corresponds to acomponent of G shrunk into a single vertex. Our representation of the graph is a sequenceof the adjacency lists of the vertices of G0. At the head of each adjacency list is the smallest-weight edge incident on the vertex. Then follows the list of vertices of G which have mergedto form this vertex. This is followed by the rest of the edges, ordered by the vertex numberof the vertex at the other end of the edge.The algorithm consists of a number of phases. In one phase, each adjacency list undergoesno more than one merge, and a constant fraction of the lists undergo a merge.Description of a phase: The process involves a scan of the list of lists to produce a new listof lists. When the scan encounters a new adjacency list (for some vertex s not involved ina merge so far in this phase), we try to merge it with another list. Let the smallest-weightedge point to vertex u. u may have become part of some vertex v through merging andrenaming. One lookup is needed to know v. If the adjacency list of v has not been involvedin a merge in this phase, merge the two lists and put the result in the new list of lists beingproduced. The new vertex gets the smaller of the two vertex numbers. The smallest-weightedge, which led us to v, is removed and included in a set of tree edges.In case the vertex v has already been merged with some vertex in this phase, we willtry to merge s with another vertex that desires to merge with v, so that over a number ofphases, v and all the vertices whose smallest-weight edges point to v are merged together.If another such vertex t has already been encountered, it will be `found waiting on v', andcan be discovered by a single lookup of v. If such a vertex t is indeed found, we merge t ands, remove t from the `waiting', and delete the heavier of the smallest-weight edges for s andt and include it among the tree edges. This is justi�ed because the smallest-weight edge onany vertex has to be in a minimum spanning tree. The lighter of the two smallest-weight18

edges is the smallest-weight edge on the vertex resulting from the merge and will ensure thatthe resulting vertex merges with v in some future phase. This means that for any smallestweight edge (x; y), the vertices x and y are ultimately going to be merged, and the edgeincluded in the spanning tree.If no vertex is waiting on v, we simply make s wait on v.The graph thus produced by merging vertices may contain multiple edges between ver-tices. Merging two vertices with more than one edge between them gives rise to internaledges. While merging the adjacency lists for some u and v, we do the following simple book-keeping to make sure all internal edges are thrown away. Each of the two adjacency listsbeing merged contains a list of vertices and a list of edges. We take the list of edges fromu and the list of vertices that constitute v, and scan them simultaneously. Those edges of uwhose destinations are among the vertices which have been merged to form v are going tobecome internal edges after u and v are merged. These edges are removed from the graph.As the edge-list of u and the vertex-list of v are both sorted by vertex number, one simul-taneous scan over the two lists is su�cient to remove all such edges. Similarly, we removeedges of v that will become internal edges as a result of this merge.To analyze the algorithm's performance, we simply bound the number of I/Os used perphase and the number of phases required by the algorithm, and the desired bound on thealgorithm follows.Lemma 6 The large-degree MST algorithm involves no more than log V phases.Proof : This is because at the end of a phase, each vertex has either been involved in amerge or is waiting on another vertex, and no more than one vertex can be waiting at anyparticular vertex. It follows that each phase reduces the number of vertices by at least athird.Lemma 7 The number of I/Os involved in a phase is no more than O(scan(E)).Proof : It is clear from the description of a phase that we require no more than two scansof any adjacency list, plus a constant number of block reads/writes per vertex. As every19

adjacency list is of length at least B, V = O(EB). So the total number of I/Os involved inthese reads/writes is bounded from above by O(scan(E)).It follows thatTheorem 3 The large-degree MST algorithm requires at most O(log V � scan(E)) I/Os.3.1.2 An Algorithm for the General CaseNow we present an algorithm that does not require that all adjacency lists be large. Smalladjacency lists are a problem, because it is more di�cult to process them in an I/O-e�cientway. The previous algorithm pairs vertices together and merges their adjacency lists. If atleast one of the adjacency lists is large, the process of merging them needs no more thanO(l=B) I/Os, where l is the size of the resulting list. However, if both the lists are small,we require at least O(1) I/Os for the merging, even though l=B may be much smaller than1. So we no longer have the O(scan(E)) upper bound for a phase. The following algorithmremedies the situation by converting the process of merging small lists into that of carryingout O(1) sorts on them.The algorithm, like the previous one, consists of a sequence of phases. In each phase, wegroup vertices together and shrink each group into a single vertex, in the process reducingthe number of vertices in the graph by at least a factor of two. For grouping the vertices, wetake the smallest-weight edge incident on each vertex, and consider the subgraph inducedby this set of edges. Every vertex is then grouped with one or two of its neighbours in thisinduced graph, using a process that employs O(V) heap operations and brings neighbouringvertices together in the list of adjacency lists.Once we have grouped the vertices thus, we have to merge each group into a single vertex.Each group that includes at least one vertex with a large adjacency list is merged as before.The remaining adjacency lists are then marked with the vertices they must merge with, andby sorting the collection of lists, we bring `partners' together and merge them.We assume that small-degree vertices have smaller vertex numbers than large-degreevertices. Their adjacency lists will therefore occur before large adjacency lists in our list of20

lists. This can be initially achieved by renumbering the vertices and reordering the list ofadjacency lists. This requires O(1) sorts on the set of edges, costing O(sort(E)) I/Os. Ouralgorithm then maintains this property throughout.3.1.3 Description of a phaseFirst of all, we do a scan of the list of adjacency lists to get the smallest-weight edge for everyvertex. Using these edges, we use the following scheme to pair up the vertices for merging:First consider all the edges going from higher-numbered vertices to lower-numbered ver-tices. For every edge (i; j), create a pair (i; j) and insert the pairs in a heap, treating j asthe primary and i as the secondary key (that is, (i1; j1) < (i2; j2) if and only if either i1 < i2or i1 = i2 and j1 < j2). We also insert a pair (0; v) for every vertex v. Now, using deleteminsuccessively, we obtain the vertices pointing to the smallest numbered vertex u (and alsothe vertex u itself if the entry (0; u) has not already been deleted). We construct pairs outof these vertices. If an odd number of vertices are involved, the pairing process leaves oneunpaired vertex, which is left waiting on u. Whenever a vertex v is paired up, we delete theentry (0; v) from the heap. This ensures that v is not paired up with some w for which thereis an entry (w; v) in the heap.The pairing step is then repeated using edges directed from lower-numbered vertices tohigher-numbered vertices. But we make sure that the entry (0; v) is not inserted in the heapfor any vertex v that has already been paired up in the previous step.Each of these two pairing steps may leave one vertex waiting on a vertex u. If in the endthere are two vertices waiting on u, they are paired together. If there is one vertex waitingon u, it is added to the pair that contains u, to form a triple.At this point, all our vertices are grouped in groups of size two and three, and all thevertices in a group belong to the same connected component in the subgraph induced bythe collection of the smallest-weight edges of all the nodes. Instead of shrinking the wholeconnected component all at once and extracting all the smallest-weight edges, we shrinkeach group into one vertex. So over a number of phases, the whole connected componentwill shrink into one vertex. If more than one of the vertices within a group have theirsmallest-weight edges pointing outside the group, we retain only the one with the smallest21

weight, and remove the rest from the resulting graph and add them to the MST. The removalis justi�ed since the smallest-weight edge on any vertex is always included in a minimumspanning tree, while the edge that is left behind will ensure that the resulting vertex is latermerged into the rest of the connected component.Now that we have determined which vertices are to be merged together, all that remainsis the actual task of merging. The pairs (or triples) that contain at least one large-degreevertex are merged as in the restricted-case algorithm above, and the resulting vertex isnamed after the smallest-numbered large-degree constituent vertex. To merge pairs (ortriples) containing small-degree vertices only, we give every adjacency list a destination,that is the vertex number of the vertex to be formed as a result of the merge. Then all thesmall adjacency lists are sorted together by destination. This ensures that the adjacency liststhat merge together are placed one after the other. Then the merging can be accomplished inone scan. Finally, the small adjacency lists are sorted by size, and the small-degree verticesrenumbered to ensure that any vertices whose adjacency lists become large as a result ofthe last merge are placed after the small-degree vertices. This completes one phase of ouralgorithm. Once again, O(log V) phases are required by the algorithm, since a phase reducesthe number of vertices by a fraction.3.1.4 I/O complexity of the algorithmAs noted before, the initial reordering takes O(sort(E)) I/Os.Below, we break up the I/O cost of the algorithm into a sum of many terms and derivean upper bound for each.Lemma 8 Excluding merges that involve small-degree vertices only, the merging of adja-cency lists requires O(log V � scan(E)) I/Os over all the phases of the algorithm.Proof : As in the last algorithm, we require O(scan(E)) I/Os per phase, and there are nomore than O(log V) phases.Lemma 9 Extraction of smallest-weight edges from vertices and the process of pairing ver-tices requires a total of O(sort(V) + log V �scan(E)) I/Os over all the phases of the algorithm.22

Proof : Let us consider a phase in which the residual graph (the graph resulting from theaction of the algorithm so far) G0 has V 0 vertices and E 0 edges. Consider the process ofextracting the smallest-weight edges from all the vertices and using them to pair vertices up.Extracting the edges requires just a scan of the list of adjacency lists, which costs scan(E 0) =O(scan(E)) I/Os. Over all phases, this part of the cost adds up to (log V � scan(E)) I/Os.Then, we need O(V 0) heap operations, and (let us say) a constant number of scans and sortson O(V 0) items to order and and combine the results of the two pairing steps and so forth.The I/O cost of all this is O(V 0B logMB V 0B). As V 0 goes down by at least a constant fraction inevery phase, this term adds up to just O(VB logMB VB) = O(sort(V)) over the whole algorithm.As noted above, the merging process requires O(scan(E)) I/Os as before, except for theextra work done on the smaller adjacency lists; that is, in merging them and in renamingand reordering their vertices. Let us now bound the cost of this work.Lemma 10 Merging, renaming and reordering small-degree vertices requires a total of O(logB�sort(E)) I/Os over the entire algorithm.Proof : Let E 0s be the total number of edges in all small adjacency lists in this phase. The ex-tra I/O done in dealing with the small adjacency lists is O(sort(E 0s)), as it involves a constantnumber of sorts on the small lists. Let each edge thus sorted be charged O(1B logMB VB).What does this cost add up to over the entire algorithm? Let us for the moment ignoreadjacency lists with one or two edges at this point: they can separately be taken care ofeasily. An edge is charged no more than once on this count in any particular phase. After iphases, the size of every list is at least 2i. Thus, an edge can only be charged O(logB) timesin this fashion before it becomes a part of an adjacency list of size B or more, after whichit is never involved in any sorting. The total cost charged to all the edges in this fashion istherefore no more than O(logB � EB logMB EB) = O(logB � sort(E)) over the entire algorithm.As the three lemmas above account for all the I/O cost of the algorithm, we haveTheorem 4 The general-case MST algorithm requires at most O(logB � sort(E) + log V �scan(E)) I/Os. 23

This I/O performance is better than that of the best previously-known algorithm, dueto Chiang et al. [6], except when the graph is extremely dense (E = �(V 2)).Finally, we note that our algorithm will also su�ce to �nd minimum spanning forestsin graphs that are not connected, and thus immediately leads to an algorithm to computeconnected components with the same bound on I/Os.3.2 A Generalised Deterministic List-Ranking AlgorithmIn the following, an edge is a forward edge if it points from a higher-numbered vertex to alower-numbered one, and a backward edge otherwise.Chiang et al. [6] suggested a method to deterministically rank an N -vertex linked listusing O(sort(N)) I/Os, by splicing out entire chains of forward or backward edges, but itrequires that M=B be su�ciently large for the algorithm to work. We present an alternatealgorithm using an I/O-e�cient heap that removes this restriction on B. Another way toremove this restriction is suggested by Arge [2].First, we show that given a set of lists constructed out of N vertices in which all the edgesare forward edges, we can in O(sort(N)) I/Os rank all the lists. This can be done as follows:insert each edge (i; j) into a heap, with i as the key. Extract the �rst edge (u; v) from theheap; u must be the head of a list, so give it rank 1, and insert a special element (v;�2)into the heap. Thereafter, each time we remove an edge (v;w) from the heap, if it is notimmediately preceded by an edge of the form (v;�r), we give it rank 1 and insert (w;�2)into the heap; if it is preceded by an edge (v;�r), we give it rank r and insert (w;�(r+ 1))into the heap. (The head of the list can also be encoded into the element and passed along,for splicing purposes.) Clearly, this ranking procedure will take O(sort(N)) I/O steps, sincethere are O(N) heap operations involved, and the heap size is no more than O(N).Now let us describe a technique to splice out vertices from a list. First, remove all edgesgoing from higher-numbered to lower-numbered vertices (back edges) from the list. Now,using the method described above, rank the collection of lists thus obtained. This ranks allthe vertices relative to the �rst vertices of their respective lists. Now, splice out all verticesexcept the �rst and last of every list by constructing a bridge edge from the �rst vertex tothe last one. Similarly, remove all the forward edges, rank the set of lists that consists of all24

the back edges, and splice out all the internal vertices. Clearly, all this can be done in O(1)sorts and scans.Will the above remove at least a constant fraction of all vertices? It may not. Considera list in which there are no consecutive forward or back edges. The above procedure willremove no vertices at all. The next step takes care of this. Let p(v) and s(v) denote thepredecessor and successor respectively of a vertex v. Construct a tuple (v; p(v); s(v)) forevery v and insert in a heap with v as the key. Now we will extract these tuples in order. Ifv < p(v) and v < s(v), then (p(v); v) is a back edge while (v; s(v)) is a forward edge. Wewill splice out all such v, and construct a bridge edge from p(v) to s(v).The last step described above splices out the head of every maximal list of forward edges.It is easy to see that this, together with the rank-and-splice process before it, splices out atleast half the vertices. Now we can recursively rank the smaller list, and from that obtain theranks of the spliced-out vertices. The non-recursive part of the algorithm just requires O(1)sorts and scans, which cost O(sort(N 0)) I/Os where N 0 is the number of vertices left. Theoverall I/O complexity of the algorithm is the sum of a series of such O(sort(N 0)) terms, onefor each recursive call. As the N 0 is N to begin with and is reduced by a constant fractionevery time, the sum telescopes to just O(sort(N)) = O(NB � logMB NB).Theorem 5 List ranking can be done deterministically using O(sort(N)) I/Os.(Arge [2] reports the same bound, using a di�erent data structure.)3.3 An Algorithm for Single-Source Shortest PathsUsing our tournament tree, we can obtain an I/O-e�cient version of Dijkstra's algorithm forthe single-source shortest paths problem. The tournament tree replaces the priority queuein the original algorithm. Initially we let our V vertices be initialised to in�nite distanceexcept for the source which is at distance zero. Using the distance as the key, we construct atournament tree of these V elements. For the next V steps, we do a deletemin on the tree,read the adjacency list of the vertex obtained, and for every edge e = (u; v) in the adjacencylist (except when v is the vertex that precedes u on the shortest path from the source to u:25

the identity of that vertex v can be stored in the tournament tree entry for u) we issue atournament tree update which tries to update the key of vertex v to x+w(e), where x is thedistance of vertex u from the source and w(e) the weight of edge e. Recall that an updatedoes not a�ect the present tournament tree entry if the present value is smaller than thenew value. It is easy to see that this takes O(V + EB log2 EB) I/Os: O(V + EB) to read all theadjacency lists, and O(EB log2 EB) for all the tournament tree operations.This algorithm di�ers from Dijkstra's in one respect. We update the tournament treeentry for each neighbour v of u except for its shortest-path predecessor. If we were to followDijkstra exactly, we would do this only for those neighbours which aren't yet included in theshortest-path tree being constructed. But we have no I/O-e�cient way of knowing whethera vertex has already been included in the shortest path tree. This departure causes thefollowing problem. Let d(v) denote the length of the shortest path from the source to avertex v. Let u and z be two neighbors and let (v; z) be the last edge on the shortest pathfrom the source to z. Further, assume that d(u) < d(v) < d(z). When deletemin returnsd(z) from the tournament tree, the algorithm will update the key of u to d(z) + w(z; u),which is not correct, as d(u) has already been determined, and the tournament tree entryfor u has been deleted. We do not want to visit u again, so we must do a delete(u) to undothe update just performed. The problem is to identify the vertices u for which this is to bedone.An auxiliary heap is employed to keep track of such vertices. When a vertex x is returnedby a deletemin on the tournament tree, we not only update the tournament tree key of everyneighbor y of x to k = d(x) + w(x; y), but also insert a pair (x; k) into the heap, using k asthe heap key. As the algorithm proceeds, we keep track of the smallest element in both theheap and the tournament tree. If the element deleted from the tournament tree is smaller,we execute the basic step described above, and then remove the next smallest element fromthe tournament tree. Otherwise we use the smallest element from the heap, which is a pair(x; k) in the following fashion: the tournament tree entry for the vertex x is deleted. Thenext smallest item from the heap is now extracted.Because d(u) < d(z) � d(u)+w(u; z) < d(z)+w(z; u), this is the sequence of events: �rstd(u) is computed, the tournament tree entry for u deleted, and (u; d(u) + w(u; z)) insertedin the heap. At some time after this the spurious tournament tree update for vertex u (withkey d(z) + w(z; u)) is introduced. But as d(u) + w(u; z) < d(z) + w(z; u), the heap entry26

(u; d(u)+w(u; z)) is taken out (and consequently a delete(u) is executed on the tournamenttree) before the spurious entry can be returned by deletemin.The O(E) added heap operations require an additional O(EB logMB EB) I/Os. Our resultfollows immediately.Theorem 6 Single-source shortest paths can be found using O(V + EB log2 EB) I/Os.We believe that this is the best known upper bound on I/Os for this problem.3.4 An Algorithm for Breadth-First SearchOur breadth-�rst search algorithm is similar to the algorithm for single-source shortest pathsjust discussed.We start with a tournament tree containing the V vertices and their key values, whichare as follows: the root is initialised to zero, the rest to in�nity. We keep a counter initialisedto 0. The basic step of the algorithm is as follows: the vertex v with the smallest key isextracted from the tournament tree. Let v1; v2; � � � ; vl be vertices in the adjacency list of v,excluding the parent of v in the BFS tree. Their keys are updated to k; k+1; k+2; � � � ; k+ lrespectively, where k is the value of the counter. The counter is changed to k + l.The scheme follows the familiar BFS algorithm except in one way. Although we shouldonly visit the unvisited neighbours of v, we visit all of its neighbours, as we are making nodistinction between neighbours that have already been visited and the ones that haven't.This is because we can not e�ciently �nd out if a particular vertex has already been visited.The problem is similar to the one we encountered in our algorithm to �nd single-sourceshortest paths. Again, an auxiliary heap corrects for spurious updates of vertices that havealready been visited and deleted.Let key(v) denote the key of the vertex v when it is extracted by deletemin. Let p(v) bethe parent of v in the BFS tree. If two vertices in the graph have an edge between them, andneither is the BFS parent of the other, then they are either at the same level or at adjacentlevels in the BFS tree. Let u and v be two such vertices, such that key(u) is smaller than27

key(v). Evidently, key(p(v)) < key(u). The key of vertex v is set to key(v) by p(v), andon encountering u, we attempt an update (which fails) of the key of v. Later, when v isextracted, we try to update the key of u. But by now, u has already been extracted andits place in the BFS order determined. The current key value of u is, therefore, in�nity.Updating it will cause u to be visited again, which is incorrect.To take care of this problem, we use an auxiliary heap to keep information that will tellus that u precedes v in the BFS order, so v should not update the key of u. This is doneas follows. When the entry (u; key(u)) is extracted from the tournament tree, we attemptto update the keys of the neighbours of u, including v. Let us say that we sought to updatethe key of v to some value x. We keep track of these attempted updates by inserting anentry (u; x) into the heap, which tells us that u attempted an update with key value x. Heapentries are pairs of values, and the second value is used as the heap key.The modi�ed basic step of the algorithm is: we keep extracting the smallest entries inboth the heap and tournament tree. So when the smallest entry (of the form (v; key(v))) isextracted from the tournament tree, we proceed, as already described, to include v in theBFS tree and to attempt to update the keys of all its neighbours. But if the smallest entry(of the type (u; x)) comes from the heap, we conclude that the vertex u attempted to updatethe key of some v to the value x, and the update failed. Two things then become obvious:one, the entry for v has already been extracted from the tournament tree and has caused an`undesirable' update of u; and two, that this undesirable update is of some key value largerthan x. So we promptly proceed to issue the signal delete(u) to the tournament tree. Thee�ect of the undesirable update of u is thus undone before it can cause us to visit u again.With this correction, our algorithm visits vertices in the same order as the usual BFSalgorithm. The resulting algorithm performs a total of O(E) tree and heap operations, inaddition to reading each adjacency list once. This yields the following bound:Theorem 7 Breadth-�rst search can be performed using O(V + EB log2 EB) I/Os.As in the case of the single-source shortest paths problem, we believe that this is the bestknown upper bound on I/Os for this problem.28

3.5 An Algorithm for Depth-First SearchThe basic di�erence between depth-�rst search and breadth-�rst search is the criterion forthe selection of the next vertex to be visited. As in the case of BFS, we will use a tournamenttree to store all the vertices that are candidates for future visits, but we will use a di�erentcriterion for comparison among candidates. There is an element in the tournament tree foreach vertex v of the input graph G. In the tournament tree entry for a vertex v, the key �eldwill contain a timestamp that records when the parent of v in the DFS tree was visited, andthe index of v in its parent's adjacency list. In comparing two candidate vertices, the onewith a later timestamp will be chosen. In case of equality, the one having the smaller indexin the adjacency list of the (common) parent will be selected. Upon visiting a new vertex,the tournament tree entries for all its neighbours will be updated.As in the case of BFS and single-source shortest path problems, the problem is avoidingupdating the tournament tree entries for vertices that have already been visited. In anundirected DFS tree, any neighbour of v that has been visited before v must be an ancestorof v in the tree. Our objective, then, is to avoid updating tournament tree entries for theancestors of the node being visited, so as not to visit them again. To do this, we keep trackof the DFS ancestors of every node. The I/O cost of storing the ancestors of each vertex canbe high. So we store the lists of DFS ancestors in a simple data structure described below.The data structure used is essentially a balanced binary tree. The V leaves correspondto the vertices of G. Each leaf is to contain the list of DFS ancestors of the correspondingvertex. The internal nodes are bu�ers, each of size B. To add vertex u to the ancestor list ofvertex v, we add the pair (v; u) to the root bu�er. When a bu�er becomes full its contentsare divided appropriately between its two children. The list of ancestors of a vertex v canbe obtained by reading all the bu�ers from the corresponding leaf to the root, extracting allentries of type (v; u) for some u that may be found in the bu�ers and combining them withthe contents of the list contained in the leaf.Now that we have a way of obtaining the list of all DFS ancestors of a vertex, we areable to implement the basic step of our DFS algorithm correctly: from the tournament tree,select the next vertex to be visited, read its adjacency list, and for all its neighbours thatare not its ancestors, update their tournament tree entries. This entails sorting the list ofancestors and the list of neighbours and removing all common entries from the latter.29

3.5.1 I/O Complexity of the AlgorithmThere are no more than E + V tournament tree operations. The additions to the lists ofancestors require O(log2 VB) I/Os for each edge in G, and the extraction of information fromthat data structure requires O(log2 V + l(v)=B) I/Os for a vertex v of G that has l(v) DFSancestors. Sorting of adjacency lists and ancestor lists requires O(sort(E)) I/Os overall. Sothe overall I/O complexity is O(V log2 V + EB log2 EB).Chiang et al. [6] present a DFS algorithm that requires O((1+V=M)scan(E)+V) I/Os.Our algorithm outperforms that algorithm on all except very sparse graphs.4 Conclusions and Open QuestionsWe have presented two I/O-e�cient data structures | the I/O-e�cient heap and tourna-ment tree | and demonstrated how their use can simplify the design of I/O-e�cient graphalgorithms. Both of these data structures support all their basic operations: the heap withan amortised cost of O(1B logMB NB) I/Os per operation, and the tournament tree with anamortised cost of O(1B log2 NB) I/Os per operation on a data structure of at most N items.The I/O-e�cient heap led immediately to simple descriptions of optimal algorithms forsorting and list-ranking, while the update operation available in the I/O-e�cient tournamenttree proved useful in the design of algorithms for breadth-�rst and depth-�rst search andsingle-source shortest paths. We also obtained an algorithm for �nding minimum spanningtrees with improved I/O e�ciency on all but the densest graphs. As is the goal of datastructures, the I/O-e�cient heap and tournament tree both simpli�ed the descriptions ofexternal-memory graph algorithms and led to improved e�ciency.Our results can easily be extended to the D-disk model when D = O((MB)�) for some� < 1. In this case, the asymptotic constant increases by a factor of 11��, which is a fairlysmall constant as long as � is not too close to 1. We believe they are extendible to the moregeneral case, but we do not at the moment have such an extension.There are many other open questions, including:30

� Can minimum spanning trees be found in as few as O(sort(E)) I/Os? How about inO(sort(V)), which was shown to be a lower bound by Chiang et al. [6]?� Can depth-�rst search be performed as e�ciently as breadth-�rst search | that is,with only an additive V rather than a V log2 V ?� Can the additive V (or V log2 V) terms be removed from the running times of thealgorithms for breadth-�rst and depth-�rst search and single-source shortest paths?� Can a tournament tree be designed with an (optimal) amortized I/O complexity ofO(1B logMB NB) I/Os per operation, instead of O(1B log2 NB) I/Os per operation?� In what other areas can these data structures lead to improved algorithms? Whatother data structures would it be helpful to transfer to an external-memory setting?References[1] Ruemuler, C. and Wilkes, J.: An Introduction to Disk Drive Modelling. IEEE Computer27(3), pp. 17-28, 1994.[2] Arge, L.: The Bu�er Tree: A new technique for optimal I/O-algorithms. In Proc. FourthWorkshop on Algorithms and Data Struc., pp. 334-345, 1995.[3] Callahan, P., Goodrich, M.T. and Ramaiyer, K.: Topology B-Trees and Their Applica-tions. In Proc. Fourth Workshop on Algorithms and Data Struc., pp. 381-392, 1995.[4] Aggarwal, A. and Vitter, J.S.: The input/output complexity of sorting and relatedproblems. Communications of the ACM, 31(9): 1116:1127, 1988.[5] Vitter, J.S. and Shriver, E.A.M.: Algorithms for parallel memory I: two level memories.Algorithmica, 12(2), 1994.[6] Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengro�, D.E. and Vitter,J.S.: External memory graph algorithms. In Proc. 6th ACM-SIAM Symp. on DiscreteAlgorithms, pp. 139-149, 1995.[7] Nodine, M.H. and and Vitter, J.S.: Large-scale sorting in parallel memories. Proc. 3rdAnnual ACM Symp. on Parallel Algorithms and Architectures, pp. 29{39, 1991.31

[8] Nodine, M.H. and and Vitter, J.S.: Deterministic distribution sort in shared and dis-tributed memory multiprocessors. In Proc. 5th ACM Symp. on Parallel Algorithms andArchitectures, pp. 120-129, 1993.[9] Goodrich, M.T., Tsay, J.-J., Vengro�, D.E. and Vitter, J.S.: External-memory compu-tational geometry. In Proc. 34th Annual IEEE Symp. on Foundations of Comp. Sci.:714-723, 1993.[10] Arge, L., Vengro�, D.E. and Vitter, J.S.: External Memory Algorithms for ProcessingLine Segments in Geographic Information Systems. In Proc. Third Annual EuropeanSymp. Alg., pp. 295-310, 1995.[11] Johnson, D.B. and Metaxas, P.: A Parallel Algorithm for Computing Minimum Span-ning Trees. In Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, pp.363-372, 1992.

32

