
Recurrent Networks: Learning Algorithms ∗

Kenji Doya
ATR Human Information Science Laboratories; CREST, JST

2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan
Phone: +81-774-95-1251

Fax:+81-774-95-1259
E-mail: doya@atr.co.jp

February 21, 2002

RUNNING HEAD: Recurrent Networks

Correspondence:

Kenji Doya

ATR Human Information Science Laboratories

2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan

Phone: +81-774-95-1251

Fax:+81-774-95-1259

E-mail: doya@atr.co.jp

∗Michael Arbib ed. Handbook of Brain Theory and Neural Networks, 2nd edition, MIT Press.

1



Kenji Doya, Recurrent Networks 2

INTRODUCTION

The backpropagation algorithm for feed-forward networks (Figure 1a) has been successfully

applied to a wide range of problems from neuroscience to consumer electronics (see BACK-

PROPAGATION and APPLICATIONS OF NEURAL NETWORKS). However, what can

be implemented by a feed-forward network is just a static mapping of the input vectors. It is

needless to say that our brain is not a stateless input-output system but a high dimensional

nonlinear dynamical system. In order to model dynamical functions of the brain, or to design

a machine that performs as well as a brain does, it is essential to utilize a system that is

capable of storing internal states and implementing complex dynamics.

This is why learning algorithms for recurrent neural networks (Figure 1b), which have

feedback connections and time delays, have been studied with enthusiasm. In a recurrent

network, the state of the system can be encoded in the activity pattern of the units and a

wide variety of dynamical behaviors can be programmed by the connection weights.

A popular sub-class of recurrent networks is those with symmetric connection weights. In

this case, the network dynamics is guaranteed to converge to a minimum of “energy” func-

tion (see ENERGY FUNCTIONS FOR NEURAL NETWORKS and COMPUTING WITH

ATTRACTORS). Typical examples are associative memory networks (see ASSOCIATIVE

NETWORKS), optimization networks (see NEURAL OPTIMIZATION), and winner-take-

all networks (see WINNER-TAKE-ALL MECHANISMS).

However, steady state solutions are only a limited portion of the capabilities of recurrent

networks. A recurrent network can serve as a sequence recognition system (see LANGUAGE

PROCESSING) or as a sequential pattern generator (see MOTOR PATTERN GENERA-

TION and SEQUENCE LEARNING). More generally, it is capable of transforming an input

sequence into some other output sequence (see TEMPORAL PATTERN PROCESSING).

It can be uses as as a non-linear filter (see ADAPTIVE SIGNAL PROCESSING), a non-

linear controller (see ADAPTIVE CONTROL: NEURAL NETWORK APPLICATIONS),

or a finite state machine (see LANGUAGE PROCESSING and Giles et al. 1992).



Kenji Doya, Recurrent Networks 3

This article reviews the learning algorithms for training recurrent networks. There are

three major frameworks of learning: supervised learning based on the output error signal,

reinforcement learning based on the scalar reward signal, and unsupervised learning based

on the statistical feature of the input signal. Our main focus will be on supervised learning

algorithms for recurrent networks. We will also give a brief overview of reinforcement and

unsupervised learning algorithm.

SUPERVISED LEARNING ALGORITHMS

The problem set-up of supervised learning in recurrent networks is similar to the case of

feed-forward networks; a network is given a desired output for an input. An error function

is defined and its gradient with respect to the weights are derived. However, the major

difference is that the input and output are not static vectors but time sequences.

For example, in a recurrent network shown in Figure 1b, units 1 and 2 are output units,

3, 4, and 5 are hidden units, and 6 and 7 are input units. A small change of a connection

weight, say w43 (shown as black dot) affects the output units, say unit 1, not only through the

direct connection from unit 4 to 1 (thick black line), but also through indirect connections,

through units 2, 3, and 5 (thick gray lines), and through infinitely many multi-step paths

with multiple delays. It makes exact calculation of output error gradient rather complex.

One simple strategy is to neglect all the indirect paths. In this case, although the network

state evolves according to the recurrent network as in Figure 1b, a simple back-propagation

algorithm is applied by regarding it as a feed-forward network as in Figure 1a. Such coarse

approximation methods turned out to be effective in a series of work on language acquisition

using simple recurrent networks that has recurrent connection between hidden units (see

LANGUAGE PROCESSING).

There are two basic ways to calculate the exact gradient of the output with respect to

the weights: the forward methods and backward methods. The forward method estimates

the effects of small change in a weight on the network state trajectory in a form of linear



Kenji Doya, Recurrent Networks 4

dynamic equation system. This can be calculated concurrently with the network dynamic,

thus useful for on-line learning. One drawback is the amount of computation for updating a

set of dynamic equations for each weights.

The backward method estimates the causes for the output error backward in time. In

discrete time case, it is realized by ‘unrolling’ the multi-step evolution of the network state

as a multi-layer feed-forward network, as in Figure 1c, and applying the standard back-

propagation algorithm (Rumelhart et al., 1986). In continuous-time case, it is done by

running a set of ‘adjoint system’ backward in time. Although it requires asynchronous op-

eration, the evolution and storage of the state trajectory first and error gradient calculation

afterwards, the amount of computation is much less than in the forward methods (see Pearl-

mutter, 1995 for a comprehensive review). In the following sections, we will formulate these

algorithms for both discrete-time and continuous-time models and then discuss technical

problems in using them.

DISCRETE-TIME MODEL

First, we start with a discrete-time recurrent network with n units and m inputs. We denote

the state of the i-th unit by yi and the connection weights from j-th to i-th units by wij .

Both external inputs uj and recurrent inputs yj are represented as zj for convenience.

yi(t + 1) = f


n+m∑

j=1

wijzj(t)


 (i = 1, ..., n). (1)

zj(t) =

{
yj(t) j ≤ n
uj−n j > n

,

The output nonlinearity f( ) is usually a squashing function such as f(x) = 1/(1 + e−x)

and f(x) = tanhx, whose derivatives are conveniently given by f ′(x) = f(x)(1 − f(x)) and

f ′(x) = 1− f(x)2, respectively. We can introduce a bias parameter by assuming that one of

the inputs uj is constant.

The goal of learning is to set the parameters wij so that the output trajectory (y1(t), ..., yn(t))

follows a desired trajectory (d1(t), ..., dn(t)) (t = 1, ..., T ) with a given initial state (y1(0), ..., yn(0))



Kenji Doya, Recurrent Networks 5

and an input sequence (u1(t), ..., um(t)) (t = 0, ..., T − 1). We define the error function

E =
T∑

t=1

n∑
i=1

µi(t)
1

2
(yi(t) − di(t))

2 (2)

and perform gradient descent on E with respect to the weights wij . The masking function

µi(t) specifies which components of the trajectory are to be supervised at what time. In a

typical case, µi(t) ≡ 1 for output units and µi(t) ≡ 0 for hidden units. When only the end

point of the trajectory is specified, µi(T ) = 1 and µi(t) = 0 for t < T .

Real-Time Recurrent Learning

The effect of weight change on the network dynamics can be seen by simply differentiating

the network dynamics equation (1) by a weight wkl (Williams and Zipser, 1989).

∂yi(t + 1)

∂wkl

= f ′(xi(t))


 n∑

j=1

wij
∂yj(t)

∂wkl

+ δikzl(t)


 , (i = 1, ..., n), (3)

where xi(t) =
∑n+m

j=1 wijzj(t) is the net input to the unit and δik is Kronecker’s delta (δik = 1

if i = k and otherwise 0). The term δikzl(t) represents an explicit effect of the weight wkl

onto the unit k and the term
∑n

j=1 wij
∂yj(t)

∂wkl
represents an implicit effect onto all the units

due to network dynamics.

The equation (3) for each unit i = 1, ..., n constitutes an n-dimensional linear dynamical

system (with time-varying coefficients), where ( ∂y1

∂wkl
, ..., ∂yn

∂wkl
) is taken as a dynamical variable.

Since the initial state yi(0) of the network is independent of the connection weights, the

appropriate initial condition for (3) is

∂yi(0)

∂wkl
= 0 (i = 1, ..., n).

Thus we can compute ∂yi(t)
∂wkl

forward in time by iterating (3) simultaneously with the network

dynamics (1). From this solution, we can calculate the error gradient as follows.

∂E

∂wkl
=

T∑
t=1

n∑
i=1

µi(t)(yi(t) − di(t))
∂yi(t)

∂wkl
. (4)



Kenji Doya, Recurrent Networks 6

A standard batch gradient descent algorithm is to accumulate the error gradient by (4) and

update each weight wkl by

wkl := wkl − ε
∂E

∂wkl
, (5)

where ε > 0 is a learning rate parameter.

An alternative update scheme is the gradient descent of current output error
∑

i=1
1
2
µi(t)(yi(t)−

di(t))
2 at each time step, namely

wkl(t + 1) = wkl(t) − ε
n∑

i=1

µi(t)(yi(t) − di(t))
∂yi(t)

∂wkl
. (6)

Note that we assumed that wkl is a constant, not a dynamical variable, in deriving (3), so

we have to keep the learning rate ε small enough. However, this on-line update scheme was

shown to be effective in a number of temporal learning tasks (Williams and Zipser, 1989)

and often called “Real-Time Recurrent Learning”.

A drawback of this error gradient calculation forward in time is that we have to solve

an n-dimensional system (3) for each of the weights wkl (i = 1, ..., n; t = 1, ...T ). It requires

O(n3) memories and O(n4) computations.

Back-Propagation Through Time

Another learning algorithm for discrete-time model can be derived by “unfolding” a recurrent

network into a multi-layer network (Rumelhart et al., 1986). In this scheme, T -step iteration

of a recurrent network is regarded as one sweep of operation in a T -layered feed-forward

network with identical connection weights wij between successive layers. The error gradient

can be derived in a same way as in the standard back-propagation, except that the output

errors are not only given in the last layer but added in each layer.

∂E

∂yi(t)
=

n∑
j=1

∂E

∂yj(t + 1)
f ′(xj(t))wji + µi(t)(yi(t) − di(t)) (i = 1, ..., n). (7)

Since the error E is independent of the state at t > T , the boundary condition for (7) is

given at the final time step as

∂E

∂yi(T + 1)
= 0, (i = 1, ..., n).



Kenji Doya, Recurrent Networks 7

Thus, the learning equation (7) can be iterated backward in time from t = T to 1.

From the solution ∂E
∂yi

, the error gradients are given by

∂E

∂wij
=

T∑
t=1

∂E

∂yi(t)
f ′(xi(t − 1))zj(t − 1). (8)

and the weights are updated in a batch using (5).

The advantage of this algorithm is that we have to solve only one n-dimensional system

(7) for adjusting all the weights. Therefore only O(n2) computations are required. However,

since the learning equation (7) has to be solved backward in time, we cannot update the

weights on-line and have to store the history of the network state yi(t) (i = 1, ..., n; t =

1, ...T ), which requires O(nT ) memories.

CONTINUOUS-TIME MODEL

A continuous-time model is a natural choice for modeling systems that are governed by

differential equations. Time constants of continuous-time models are convenient parameter

for setting local memory spans for individual units. They can also be adjusted by learning

as mentioned below.

Slightly different versions of continuous-time models have been studied. Here, we focus

on the following model (Pearlmutter, 1989),

τiẏi(t) = −yi(t) + f


n+m∑

j=1

wijzj(t)


 , (i = 1, ..., n), (9)

zj(t) =

{
yj(t) j ≤ n
uj−n j > n

.

However, similar derivations apply to other models as well (Doya and Yoshizawa, 1989).

We define an error integral

E =
∫ T

0

n∑
i=1

µi(t)
1

2
(yi(t) − di(t))

2dt (10)

and derive a gradient descent algorithm for minimizing E for a desired trajectory (d1(t), ..., dn(t))

(0 ≤ t ≤ T ) with a given initial state (y1(0), ..., yn(0)) and an input sequence (u1(t), ..., um(t)).



Kenji Doya, Recurrent Networks 8

Variation Method

The effect of a change in a weight wkl on the state yi(t) can be estimated by differentiating

the network dynamics equation (9) as follows.

τi
d

dt

(
∂yi

∂wkl

)
= − ∂yi

∂wkl
+ f ′(xi(t))


 n∑

j=1

wij
∂yj

∂wkl
+ δikzl(t)


 , (i = 1, ..., n). (11)

This forms an n-dimensional linear differential equation system with the state variable

( ∂y1

∂wkl
, ..., ∂yn

∂wkl
) and is called a variation system of the network dynamics (9). The initial

condition for this system is given by

∂yi(0)

∂wkl

= 0 (i = 1, ..., n),

because the initial state of the network is independent of the weights. We can numerically

integrate (11) forward in time concurrently with the network dynamics (9).

From the solution ∂yi(t)
∂wkl

(0 ≤ t ≤ T ), the error gradient is given by

∂E

∂wij
=
∫ T

0

n∑
i=1

µi(t)(yi(t) − di(t))
∂yi(t)

∂wkl
dt. (12)

We can use either the batch update scheme (5) at the end of a sequence, or the on-line update

scheme

ẇkl = −ε
n∑

i=1

µi(t)(yi(t) − di(t))
∂yi(t)

∂wkl
(13)

with sufficiently small learning rate ε > 0.

The error gradient for a time constant τk is given by the following variation equation.

τi
d

dt

(
∂yi

∂τk

)
= −∂yi

∂τk

+ f ′(xi(t))


 n∑

j=1

wij
∂yj

∂τk

− δikẏk(t)


 , (i = 1, ..., n). (14)

Adjoint Method

The backward algorithm for a continuous-time model can be derived in several ways, for ex-

ample, by finite difference approximation (Pearlmutter, 1989). Here we derive the algorithm

as an “adjoint” system of the forward learning equation (11).



Kenji Doya, Recurrent Networks 9

A pair of n-dimensional linear systems

ṗ = A(t)p + b(t) and q̇ = −A∗(t)q − c(t)

are called “adjoint” to each other, where A∗ denotes the transpose of matrix A. A useful

property of adjoint systems is that their solutions satisfy the following “Green’s equality.”

∫ T

0
q(t) · b(t)dt −

∫ T

0
c(t) · p(t)dt = q(T ) · p(T ) − q(0) · p(0).

We can actually compose an adjoint system of the variation equation (11)

q̇i =
qi(t)

τi
−

n∑
j=1

f ′(xj(t))

τj
wjiqj(t) − µi(t)(yi(t) − di(t)), (15)

where we put pi = ∂yi

∂wkl
, Aij(t) = f ′(xi(t))

τi
wij − δij

τi
, bi(t) = f ′(xi(t))

τi
δikyl(t), and ci(t) =

µi(t)(yi(t) − di(t)). With the boundary conditions pi(0) = ∂yi(0)
∂wkl

= 0 and qi(T ) = 0, the

Green’s equality becomes

∫ T

0

n∑
i=1

qi(t)
f ′(xi(t))

τi
δikyl(t)dt =

∫ T

0

n∑
i=1

µi(t)(yi(t) − di(t))
∂yi

∂wkl
dt. (16)

Note that the right hand side is identical to the error gradient (12). Thus, we have an

alternative form of the error gradient

∂E

∂wkl
=
∫ T

0
qk(t)

f ′(xk(t))

τk
zl(t)dt. (17)

Similarly, the error gradient for a time constant is given by

∂E

∂τk
=
∫ T

0
qk(t)

f ′(xk(t))

τk
(−ẏk(t))dt. (18)

As in the discrete-time case, we first run the network dynamics (9) forward in time and

then run the adjoint system (15) backward in time with the terminal condition qi(T ) = 0.

The weights are updated in batch by (5).



Kenji Doya, Recurrent Networks 10

TECHNICAL REMARKS

Forward or Backward

The forward algorithms require O(n4) computations. Therefore it is not suitable for a fully

connected network with tens or hundreds of units. However, for a small sized network or a

network with only local connections, on-line weight update can be an advantage.

In order to allow on-line weight update with the efficiency of the backward algorithm, a

truncated version of back-propagation through time algorithm has been proposed (Schmid-

huber, 1992)

Teacher Forcing

So called “teacher forcing” technique has been shown to be helpful, especially in training a

network into an autonomous dynamical system (Doya and Yoshizawa, 1989, Williams and

Zipser, 1989). In this scheme, the desired output di(t) is used to drive the network dynamics

in place of the feedback of its actual output yi(t).

The reasons for the need of teacher forcing are:

• The state of the network is assigned to desired one of the many attractor domains.

• In learning oscillatory patterns, unless the phase of the network output is synchronized

to the teacher signal, there will be an apparently large error (Doya and Yoshizawa,

1989).

• It will avoid a local minimum solution of static output at the mean value of the dynamic

teacher signal (Williams and Zipser, 1989).

• The linearized equation for an limit cycle trajectory is not asymptotically stable if the

system is running autonomously (Doya, 1992).

One problem with this technique is that the trajectory learned with teacher forcing may

not be stable when the network is run autonomously after learning. Several heuristics have



Kenji Doya, Recurrent Networks 11

been proposed for enhancing the stability of the non-forced trajectory.

Noisy forcing: add some noise to the forcing input.

Partial forcing: use a mixed input zi(t) = yi(t) + α(di(t) − yi(t)) with 0 < α < 1 and

decrease the forcing rate α with the progress of learning.

Part-time forcing: turn on forcing to synchronize the network to the teacher and then

turn off forcing to train the autonomous trajectory.

Bifurcation Boundaries

In many learning tasks, the goal is not only to replicate particular sample trajectories but

to reconstruct some “attractors” in the state space, such as fixed points, limit cycles, and

chaotic attractors.

For example, when a network is trained as a finite state machine, it must have distinct

attractors in order to represent discrete states. For another example, when a network is

trained as a periodic oscillator, it must have a limit cycle attractor. When we gradually

change network parameters, we expect that the shape and location of attractors change

continuously. However, that is not always true. At some points in the parameter space,

attractors can emerge, disappear, or change their stability. Such a phenomenon is known

as “bifurcation” in nonlinear systems theory (see DYNAMICS AND BIFURCATION IN

NEURAL NETS and CANONICAL NEURAL MODELS).

With some kinds of bifurcation, e.g. saddle-node bifurcation, the state of the network

changes drastically. Even if the equilibrium or the trajectory persists, the linearized equations

that are used for gradient computation can lose asymptotic stability. Accordingly, when the

network goes through a bifurcation point, the solution of the learning equation can grow

rapidly and gradient descent algorithm can be unstable (Doya, 1992).

Although this might sound a rare, pathetic situation, bifurcation is actually an inevitable

step in many learning tasks (Doya, 1992). If the connection weights wij are initialized with



Kenji Doya, Recurrent Networks 12

small random values, the network dynamics has a single global attractor point. In order

to have multiple attractor domains or a limit cycle, the network must go through some

bifurcation boundary. Conversely, until the network goes through an appropriate bifurcation,

even a simple memory task can be very difficult due to exponential decay of the error gradient.

Incremental Training

It has been reported that gradual increase of the complexity of training examples is critical for

successfully training a network as a finite state machine (see LANGUAGE ACQUISITION).

A possible reason for this is that a network can acquire memory mechanisms only gradually,

by going through bifurcation boundaries. If we impose examples that require many internal

states with long time delay from the beginning, we might simply screw up the network. This

problem of “developmental” capability of recurrent networks needs further examinations.

DISCUSSION

A fully-connected recurrent neural network can potentially be a very powerful system for

temporal information processing. Based on the universal approximation theorem for three

layered networks (UNIVERSAL APPROXIMATORS and KOLMOGOROV’S THEOREM),

it has been shown that a recurrent network can, with enough units, approximate any dy-

namical system (Funahashi and Nakamura, 1993). It has also been shown that a recurrent

neural network, with its analog valued computation, can have super-Turing computational

power (see NEURAL AUTOMATA AND COMPUTATIONAL COMPLEXITY). However,

these theories do not guarantee that such a network can be readily achieved by error gradient

descent learning.

As mentioned above, the error gradient can decay or expand exponentially in time, which

makes gradient descent more difficult than in the case of feed-forward networks. Convergence

of learning depends critically on the choice of network topology, initial weights, and the

choice of training samples. These are part of the reasons why networks with specialized



Kenji Doya, Recurrent Networks 13

architectures have been crafted for specific problems, for example, networks with tapped

delay-lines or local recurrent loops (see ADAPTIVE SIGNAL PROCESSING; ADAPTIVE

CONTROL: NEURAL NETWORK APPLICATIONS).

Nevertheless, in the studies of grammar learning (see LANGUAGE PROCESSING),

successful cases were reported in which recurrent neural networks could learn context-free

and context-sensitive languages (Rodriguez, 2001). In these examples, fractal structures in

the network state space were utilized to approximate multiple ”counters,” which are necessary

for processing complex grammatical structures like palindromes. Interesting findings in such

studies were that recurrent networks can generalize in terms of the length of the strings.

Bayesian approaches are recently applied to learning of dynamics in recurrent networks

(see BAYESIAN METHODS AND NEURAL NETWORKS, BAYESIAN NETWORKS, and

GRAPHICAL MODELS). It has been pointed out that a recurrent network can be trained

by the method of extended Kalman filtering, which has a similar properties with the RTRL

algorithm with teacher forcing (Williams, 1992). EM methods for estimating the states of

the hidden units and the weight parameters have been formulated (Ghahramani and Hinton,

2000). This seems to be a theoretically more sound way of nonlinear dynamical system

estimation. However, since EM is essentially a local optimization process, whether this new

wave of modeling methods can escape from the issue of bifurcation remains to be seen. Many

recent approaches to temporal sequence processing are reviewed in (Sun, 2001), and other

articles in the same book.

Biologically Inspired Learning Methods

It has been suggested that the network architectures of the cerebellum, the basal ganglia,

and the cerebral cortex are specialized for different frameworks of learning, namely, the

cerebellum for supervised learning, the basal ganglia for reinforcement learning, and cerebral

cortex for unsupervised learning (Doya, 1999). The circuits of the cerebellum (Figure 2a)

and the basal ganglia (Figure 2b) have roughly feed-forward structures. While the learning



Kenji Doya, Recurrent Networks 14

in the cerebellum is characterized by the specific error signals carried by the climbing fibers

to the Purkinje cells, the learning of the basal ganglia is characterized by the reward signal

broadcasted by the dopaminergic input to the striatum (see CEREBELLUM AND MOTOR

CONTRO and BASAL GANGLIA). They both form long recurrent loops starting from and

ending in the cerebral cortex. The circuit of the cerebral cortex is characterized by the

massive recurrent connections, within and between functional columns, and between cortical

areas (Figure 2c). Learning in the cerebral cortex is characterized by Hebbian learning (see

CORTICAL HEBBIAN MODULES). Since the cerebral cortex embodies the most successful

application of recurrent networks, both within the cortex and in the cortico-cerebellar and

cortico-basal ganglia recurrent loops, it is natural to try to draw insights from the cortical

network architecture.

The combination of recurrent excitation and lateral inhibition can implement a winner-

take-all mechanism (see WINNER-TAKE-ALL NETWORKS). In combination with Heb-

bian plasticity and certain regulatory mechanisms, self-organization of feature defectors can

be achieved (see SELF-ORGANIZATION AND THE BRAIN, COMPETITIVE LEARN-

ING, NEURONAL REGULATION AND HEBBIAN LEARNING). This basic framework

is shared by recent studies of receptive field formation and independent component anal-

ysis, which combine bottom-up Hebbian plasticity with lateral or top-down anti-Hebbian

plasticity (see PATTERN FORMATION AND NEURAL MAPS, INDEPENDENT COM-

PONENT ANALYSIS, and UNSUPERVISED LEARNING WITH GLOBAL OBJECTIVE

FUNCTIONS).

The BOLTZMANN MACHINES (q.v.), with its wake and sleep modes, is another basic

model of cortical processing. Its extension to layered recurrent networks, the Helmholtz

machine, is capable of extracting the hidden structure of the sensory data and reproduc-

ing the data by top-down processing (see HELMHOLTZ MACHINES AND SLEEP-WAKE

LEARNING).

One of the main open issues in REINFORCEMENT LEARNING (q.v.) is how to learn



Kenji Doya, Recurrent Networks 15

a good behavior when the environmental states are not perfectly observable (see IDENTI-

FICATION AND CONTROL). In such a case, the agent should store a certain ‘belief state’

and update it according to the model of the environment. Actions are chosen according

to the predicted future reward based on the belief state. Such complex operations could

be implemented in the cortico-cerebellar and cortico-basal ganglia loops, with the cerebral

cortex representing the belief state, the cerebellum implementing the internal model of the

environment, and the basal ganglia prediction the future reward. Better understanding of

the cortico-cerebellar-basal ganglia system may give some clue for designing an adaptive

agent under uncertainty.

REFERENCES

Doya, K., 1992, Bifurcations in the learning of recurrent neural networks, Proceedings of 1992

IEEE International Symposium on Circuits and Systems, New York:IEEE, vol. 6, pp. 2777–

2780.

Doya, K. and Yoshizawa, S., 1989, Adaptive neural oscillator using continuous-time back-

propagation learning, Neural Networks, 2:375–386.

Doya, K., 1999, What are the computations in the cerebellum, the basal ganglia, and the

cerebral cortex, Neural Networks, 12, 961–974.

Elman, J. L., 1990, Finding structure in time, Cognitive Science, 14:179–211.

Funahashi, K., and Nakamura, Y., 1993, Approximation of dynamical systems by continuous

time recurrent neural networks, Neural Networks, 6:801-806.

Ghahramani, Z. and Hinton, G. E., 2000, Variational learning for switching state-space

models, Neural Computation, 12:831–864.

Pearlmutter, B. A., 1989, Learning state space trajectories in recurrent neural networks,



Kenji Doya, Recurrent Networks 16

Neural Computation, 1:263–269.

*Pearlmutter, B. A., 1995, Gradient calculations for dynamic recurrent neural networks: A

survey, IEEE Transactions on Neural Networks, 6:1212–1228.

Rodriguez, P., 2001, Simple recurrent networks learn context-free and context-sensitive lan-

guages by counting, Neural Computation, 13:2093–2118.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986, Learning representations by

back-propagating errors, Nature, 323:533–536.

Schmidhuber, J., 1992, A fixed size storage O(n3) time complexity learning algorithm for

fully recurrent continually running networks, Neural Computation, 4:243–248.

*Sun, R., 2001, Introduction to sequence learning, in Sequence Learning: Paradigms,

Algorithms, and Applications, (R. Sun and C. L. Giles, Eds.), New York:Springer-Verlag,

pp. 1–10

Williams R. J. and Zipser D., 1989, A learning algorithm for continually running fully re-

current neural networks, Neural Computation, 1:270–280.

Williams, R. J., 1992, Training recurrent networks using the extended Kalman filter,

Proceedings of International Joint Conference on Neural Networks, Baltimore, MD, pp. 241-

250.



Kenji Doya, Recurrent Networks 17

FIGURE CAPTIONS

Figure 1

Examples of a feed-forward network (a) and a recurrent network (b), where units 1 and 2

are output units, 3, 4, and 5 are hidden units, and 6 and 7 are input units. The multi-step

operation of a recurrent network (b) can be unrolled as a multi-layer feed-forward network

(c).

Figure 2

Network architectures of the cerebellum (a), the basal ganglia (b) and the cerebral cortex

(c). See BASAL GANGLIA (q.v.) for abbreviations.



Kenji Doya, Recurrent Networks 18

1

2

3

4

5

6

7

1

2

3

4

5

6

7

a b

c

1

2

3

5

6

7

4

Figure 1

cerebral cortex

striatum

GPe/STN

GPi/SNr

thalamus

cerebral cortex

pons

granule cells

Purkinje cells

deep nucleus

thalamus

a

b

c

Figure 2


