
Technical Report No. 2005-499

Scheduling Algorithms for Real-Time Systems∗

Arezou Mohammadi and Selim G. Akl

School of Computing
Queen’s University
Kingston, Ontario
Canada K7L 3N6

E-mail:{arezou, akl}@cs.queensu.ca

July 15, 2005

Abstract

The problem of real-time scheduling spans a broad spectrum of algorithms from sim-
ple uniprocessor to highly sophisticated multiprocessor scheduling algorithms. In this
paper, we study the characteristics and constraints of real-time tasks whichshould be
scheduled to be executed. Analysis methods and the concept of optimality criteria, which
leads to design appropriate scheduling algorithms, will also be addressed.Then, we study
real-time scheduling algorithms for uniprocessor systems, which can be divided into two
major classes: off-line and on-line. On-line algorithms are partitioned into either static
or dynamic-priority based algorithms. We discuss both preemptive and non-preemptive
static-priority based algorithms. For dynamic-priority based algorithms, we study the
two subsets; namely, planning based and best effort scheduling algorithms. Some of the
uniprocessor scheduling algorithms are illustrated by examples in the Appendix. Multi-
processor scheduling algorithms is another class of real-time scheduling algorithms which
is discussed in the paper as well. We also describe techniques to deal with aperiodic and
sporadic tasks, precedence constraints, and priority inversion.

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada.

1 Real-Time Systems

1.1 Introduction

In the physical world, the purpose of a real-time system is tohave a physical effect within a
chosen time-frame. Typically, a real-time system consistsof a controlling system (computer)
and a controlled system (environment). The controlling system interacts with its environment
based on information available about the environment. On a real-time computer, which controls
a device or process, sensors will provide readings at periodic intervals and the computer must
respond by sending signals to actuators. There may be unexpected or irregular events and
these must also receive a response. In all cases, there will be a time bound within which the
response should be delivered. The ability of the computer tomeet these demands depends on its
capacity to perform the necessary computations in the giventime. If a number of events occur
close together, the computer will need to schedule the computations so that each response is
provided within the required time bounds. It may be that, even so, the system is unable to
meet all the possible unexpected demands. In this case we saythat the system lacks sufficient
resources; a system with unlimited resources and capable ofprocessing at infinite speed could
satisfy any such timing constraint. Failure to meet the timing constraint for a response can have
different consequences; there may be no effect at all, or theeffects may be minor or correctable,
or the results may be catastrophic. Each task occurring in a real-time system has some timing
properties. These timing properties should be considered when scheduling tasks on a real-time
system. The timing properties of a given task refer to the following items [30, 33, 59, 21]:

• Release time(or ready time): Time at which the task is ready for processing.

• Deadline: Time by which execution of the task should be completed, after the task is
released.

• Minimum delay: Minimum amount of time that must elapse before the execution of the
task is started, after the task is released.

• Maximum delay: Maximum permitted amount of time that elapses before the execution
of the task is started, after the task is released.

• Worst case execution time: Maximum time taken to complete the task, after the task is
released. The worst case execution time is also referred to as theworst case response
time.

• Run time: Time taken without interruption to complete the task, after the task is released.

• Weight(or priority): Relative urgency of the task.

2

Real-time systems span a broad spectrum of complexity from very simple micro-controllers
to highly sophisticated, complex and distributed systems.Some examples of real-time systems
include process control systems, flight control systems, flexible manufacturing applications,
robotics, intelligent highway systems, and high speed and multimedia communication systems
[30, 33, 59, 26, 12, 5, 21, 47].

The objective of a computer controller might be to command the robots to move parts from
machines to conveyors in some required fashion without colliding with other objects. If the
computer controlling a robot does not command it to stop or turn in time, the robot might
collide with another object on the factory floor.

A real-time system will usually have to meet many demands within a limited time. The
importance of the demands may vary with their nature (e.g. a safety-related demand may be
more important than a simple data-logging demand) or with the time available for a response.
So the allocation of the system resources needs to be plannedso that all demands are met by the
time of their respective deadlines. This is usually done using a scheduler which implements a
scheduling policy that determines how the resources of the system are allocated to the program.
Scheduling policies can be analyzed mathematically so the precision of the formal specification
and program development stages can be complemented by a mathematical timing analysis of
the program properties [30, 59, 12].

With large and variable processing loads, it may be necessary to have more than one pro-
cessor in the system. If tasks have dependencies, calculating task completion times on a multi-
processor system is inherently more difficult than on a single-processor system.

The nature of the application may require distributed computing, with nodes connected by
communication lines. The problem of finding completion times is then even more difficult, as
communication between tasks can now take varying times [59].

1.2 Real-Time Systems

In this section we present a formal definition of real-time systems. As we mentioned in Section
1.1, real-time systems are defined as those systems in which the correctness of the system
depends not only on the logical result of computation, but also on the time at which the results
are produced. If the timing constraints of the system are notmet, system failure is said to
have occurred. Hence, it is essential that the timing constraints of the system are guaranteed to
be met. Guaranteeing timing behavior requires that the system bepredictable. Predictability
means that when a task is activated it should be possible to determine its completion time with
certainty. It is also desirable that the system attain a highdegree of utilization while satisfying
the timing constraints of the system [59, 33, 30, 12, 5].

It is imperative that the state of the environment, as received by the controlling system, be
consistent with the actual state of the environment. Otherwise, the effects of the controlling

3

systems’ activities may be disastrous. Therefore, periodic monitoring of the environment as
well as timely processing of the sensed information is necessary [59, 30].

A real-time application is normally composed of multiple tasks with different levels of crit-
icality. Although missing deadlines is not desirable in a real-time system,soft real-time tasks
could miss some deadlines and the system could still work correctly. However, missing some
deadlines for soft real-time tasks will lead to paying penalties. On the other hand,hard real-
time taskscannot miss any deadline, otherwise, undesirable or fatal results will be produced in
the system. There exists another group of real-time tasks, namelyfirm real-time tasks, which
are such that the sooner they finish their computations before their deadlines, the more rewards
they gain [30, 59, 33].

We can formally define a real-time system as follows.
Consider a system consisting of a set of tasks,T = {τ1, τ2, ..., τn}, where the worst case

execution time of each taskτi ∈ T is Ci. The system is said to be real-time if there exists at
least one taskτi ∈ T , which falls into one of the following categories:

(1) Taskτi is ahard real-time task. That is, the execution of the taskτi should be completed
by a given deadlineDi; i.e.,Ci ≤ Di.

(2) Taskτi is asoft real-time task. That is, the later the taskτi finishes its computation after
a given deadlineDi, the more penalty it pays. A penalty functionP (τi) is defined for the
task. IfCi ≤ Di, the penalty functionP (τi) is zero. OtherwiseP (τi) > 0. The value of
P (τi) is an increasing function ofCi − Di.

(3) Taskτi is afirm real-time task. That is, the earlier the taskτi finishes its computation
before a given deadlineDi, the more rewards it gains. A reward functionR(τi) is defined
for the task. IfCi ≥ Di, the reward functionR(τi) is zero. OtherwiseR(τi) > 0. The
value ofR(τi) is an increasing function ofDi − Ci.

The set of real-time tasksT = {τ1, τ2, ..., τn} can be a combination of hard, firm, and soft
real-time tasks.

Let TS be the set of all soft real-time tasks inT ; i.e.,TS = {τS,1, τS,2, ..., τS,l} with τS,i ∈ T .
The penalty function of the system is denoted byP (T), where

P (T) =
l∑

i=1

P (τS,i)

Let TF be the set of all firm real-time tasks inT ; i.e., TF = {τF,1, τF,2, ..., τF,k} with
τF,i ∈ T . The reward function of the system is denoted byR(T), where

R(T) =
k∑

i=1

R(τF,i)

4

1.3 Problems That Seem Real-Time but Are Not

Sometimes the concept of real-time is misunderstood. The following cases are given to clarify
this [69, 70].

• One will occasionally see references to “real-time” systems when what is meant is “on-
line”, or “an interactive system with better response time than what we used to have”.
This is not always correct. For instance, a system interacting with a human and waiting
for a person’s response is not real-time. This is because thesystem is interacting with a
human who can tolerate hundreds of milliseconds of delays without a problem. In other
words, since no deadline is given for any task, it is not a real-time system.

A real-life example is standing in a line waiting for the checkout in a grocery store. If
the line can grow longer and longer without bound, the checkout process is not real-
time. But, if the length of the line is bounded, customers should be served and output
as rapidly, on average, as they arrive into the line. The grocer must lose business or pay
a penalty if the line grows longer than the determined bound.In this case the system is
real-time. The deadline of checkout process depends on the maximum length given for
the line and the average serving time for each costumer.

• In digital signal processing (DSP), if a process requires 2.01 seconds to analyze or pro-
cess 2.00 seconds of sound, it is not real-time. If it takes 1.99 seconds, it is (or can be
made into) a real-time DSP process.

• One will also see references to real-time systems when what is meant is just “fast”. It
might be worth pointing out that “real-time” is not necessarily synonymous with “fast”.
For example consider a robot that has to pick up something from a conveyor belt. The
object is moving, and the robot has a small window of time to pick it up. If the robot is
late, the object won’t be there anymore, and thus the job willhave been done incorrectly,
even though the robot went to the right place. If the robot is too early there, the object
won’t be there yet, and the robot may block it.

1.4 Real-Time Scheduling

For a given set of jobs, the general scheduling problem asks for an order according to which
the jobs are to be executed such that various constraints aresatisfied. Typically, a job is charac-
terized by its execution time, ready time, deadline, and resource requirements. The execution
of a job may or may not be interrupted (preemptive or non-preemptive scheduling). Over the
set of jobs, there is a precedence relation which constrainsthe order of execution. Specially,
the execution of a job cannot begin until the execution of allits predecessors (according to

5

the precedence relation) is completed. The system on which the jobs are to be executed is
characterized by the amounts of resources available [22, 59, 30, 32, 27, 12].

The following goals should be considered in scheduling a real-time system: [30, 32, 27].

• Meeting the timing constraints of the system

• Preventing simultaneous access to shared resources and devices

• Attaining a high degree of utilization while satisfying thetiming constraints of the sys-
tem; however this is not a primary driver.

• Reducing the cost of context switches caused by preemption

• Reducing the communication cost in real-time distributed systems; we should find the
optimal way to decompose the real-time application into smaller portions in order to have
the minimum communication cost between mutual portions (each portion is assigned to
a computer).

In addition, the following items are desired in advanced real-time systems:

• Considering a combination of hard, firm, and soft real-time activities, which implies the
possibility of applying dynamic scheduling policies that respect the optimality criteria.

• Task scheduling for a real-time system whose behavior is dynamically adaptive, recon-
figurable, reflexive and intelligent.

• Covering reliability, security, and safety.

Basically, the scheduling problem is to determine a schedule for the execution of the jobs
so that they are all completed before the overall deadline [22, 59, 30, 32, 27, 12].

Given a real-time system, the appropriate scheduling approach should be designed based
on the properties of the system and the tasks occurring in it.These properties are as follows
[22, 59, 30, 32]:

• Soft/Hard/Firm real-time tasks

The real-time tasks are classified as hard, soft and firm real-time tasks. This is described
in Section 1.2.

• Periodic/Aperiodic/Sporadic tasks

Periodic tasks are real-time tasks which are activated (released) regularly at fixed rates
(periods). Normally, periodic tasks have constraints which indicates that instances of
them must execute once per periodP .

6

Aperiodic tasks are real-time tasks which are activated irregularly at some unknown and
possibly unbounded rate. The time constraint is usually a deadlineD.

Sporadic tasks are real-time tasks which are activated irregularly with some known
bounded rate. The bounded rate is characterized by a minimuminter-arrival period, that
is, a minimum interval of time between two successive activations. The time constraints
is usually a deadlineD.

An aperiodic task has a deadline by which it must start or finish, or it may have a con-
straint on both start and finish times. In the case of a periodic task, a period means once
per periodP or exactlyP units apart. A majority of sensory processing is periodic inna-
ture. For example, a radar that tracks flights produces data at a fixed rate [32, 29, 27, 12].

• Preemptive/Non-preemptive tasks

In some real-time scheduling algorithms, a task can be preempted if another task of
higher priority becomes ready. In contrast, the execution of a non-preemptive task should
be completed without interruption, once it is started [32, 30, 27, 12].

• Multiprocessor/Single processor systems

The number of the available processors is one of the main factors in deciding how to
schedule a real-time system. In multiprocessor real-time systems, the scheduling algo-
rithms should prevent simultaneous access to shared resources and devices. Additionally,
the best strategy to reduce the communication cost should beprovided [32, 27].

• Fixed/Dynamic priority tasks

In priority driven scheduling, a priority is assigned to each task. Assigning the priorities
can be done statically or dynamically while the system is running [22, 59, 30, 32, 12].

• Flexible/Static systems

For scheduling a real-time system, we need to have enough information, such as deadline,
minimum delay, maximum delay, run-time, and worst case execution time of each task.
A majority of systems assume that much of this information isavailable a priori and,
hence, are based on static design. However, some of the real-time systems are designed
to be dynamic and flexible [22, 59, 30, 32, 12].

• Independent/Dependent tasks

Given a real-time system, a task that is going to start execution may require to receive
the information provided by another task of the system. Therefore, execution of a task
should be started after finishing the execution of the other task. This is the concept of de-
pendency. The dependent tasks use shared memory or communicate data to transfer the

7

information generated by one task and required by the other one. While we decide about
scheduling of a real-time system containing some dependenttasks, we should consider
the order of the starting and finishing time of the tasks [22, 59, 30, 32].

1.5 Overview

This paper is organized as follows.
Section 2 contains a description of the process of modeling real-time problems, defining

their optimality criteria, and providing the appropriate scheduling algorithms.We also study
the two most popular algorithms that optimally schedule uniprocessor real-time systems.

In Section 3, the real-time scheduling algorithms are classified. We study off-line/on-
line scheduling algorithms for uniprocessor/multiprocessor preemptive/non-preemptive fixed-
priority/dynamic-priority systems. We also present some algorithms as examples for the classes
of the algorithms.

In Section 4, we discuss some techniques to deal with precedence conditions, priority in-
version, aperiodic and sporadic tasks while scheduling real-time systems.

Finally, Section 5 contains conclusions and some suggestions of open problems for future
research.

In the Appendix, some of the real-time scheduling algorithms are illustrated using exam-
ples.

2 Methods and Analysis

2.1 Motivation

One concern in the analysis and development of strategies for task scheduling is the question
of predictability of the system’s behavior. The concept of predictability was defined in Section
1.2. If there is no sufficient knowledge to predict the system’s behavior, especially if deadlines
have to be met, the only way to solve the problem is to assume upper bounds on the process-
ing times. If all deadlines are met with respect to these upper bounds, no deadlines will be
exceeded for the real task processing times. This approach is often used in a broad class of
computer control systems working in real-time environments, where a certain set of control
programs must be processed before taking the next sample from the same sensing device. In
the following sections, we study some of the methods and techniques that are used to model
real-time problems, define their optimality criteria, and provide the appropriate scheduling al-
gorithms [30, 32].

8

2.2 Scheduling Models and Problem Complexity

The scheduling problems considered in this paper are characterized by a set oftasksT =

{τ1, τ2, ..., τn} and a set ofprocessors (machines)π = {π1, π2, ..., πm} on which the tasks
are to be processed. Besides processors, tasks may require certain additionalresourcesR =

{R1, R2, ..., Rk} during their execution. Scheduling, generally speaking, means the assignment
of processors fromπ and resources fromR to tasks fromT in order to complete all tasks under
certain imposed constraints. In classical scheduling theory it is also assumed that each task is
to be processed by at most one processor at a time and each processor is capable of processing
at most one task at a time [27].

We begin with an analysis of processors,π = {π1, π2, ..., πm}. There are three differ-
ent types of multiprocessor systems:identical processors, uniform processorsandunrelated
processors. They are discussed in Section 3.2.

By an additional resourcewe understand a “facility”, besides processors, for which the
tasks compete.

Let us now consider the assumptions associated with the tasksetT . In general, a task
τi ∈ T is characterized by the following data.

• Release timeRj; if the ready times are the same for all tasks fromT , thenRj = 0 is
assumed for allj.

• Completion timeCj

• DeadlineDj; usually, penalty functions are defined in accordance with deadlines.

• Priority ωj

• Precedence constraintsamong tasks.τi ≺ τj means that the processing ofτi must
be completed beforeτj can be started. In other words, setT is partially ordered by a
precedence relation≺. The tasks in setT are calleddependentif the order of execution
of at least two tasks inT is restricted by their relation. Otherwise, the tasks are called
independent.

The following parameters can be calculated for each taskτj, j = 1, 2, ..., n processed in a
given schedule:

• Flow timeFj = Cj − Rj being the sum of waiting and processing times

• LatenessLj = Cj − Dj

• TardinessKj = max{Cj − Dj, 0}

9

Next, some definitions concerningschedulesandoptimality criteriaare discussed.
A schedule is an assignment of processors from setπ (and possibly resources from setR)

to tasks from setT in time such that the following conditions are satisfied:

• At every moment each processor is assigned to at most one taskand each task is pro-
cessed by at most one processor.

• The timing constraints of tasks in setT are considered.

• If tasksτi andτj, i, j = 1, 2, ..., n are in relationτi ≺ τj, the processing ofτj is not
started beforeτi has been completed.

• A schedule is calledpreemptiveif each task may be preempted at any time and restarted
later at no cost, perhaps on another processor. If preemption is not allowed we will call
the schedulenon-preemptive.

• Resources constraints are satisfied.

Depending on the type of application we are confronted with,differentperformance mea-
suresor optimality criteriaare used to evaluate schedules. Among the most common measures
in scheduling theory areschedule length (makespan)Cmax = max{Cj}, andmean flow time
F = 1

n

∑n
j=1 Fj or mean weighted flow timeFw = (

∑n
j=1 Fjwj)/(

∑n
j=1 wj). Minimizing

scheduling length is important from the viewpoint of the owner of a set of processors or ma-
chines, since it leads to both, the maximization of the processor utilization within makespan
Cmax, and the minimization of the maximum in-process time of the schedule set of tasks. The
mean flow timecriterion is important from the user’s viewpoint since its minimization yields
a minimization of the mean response time and the mean in-process time of the scheduled task
set.

In real-time applications, performance measures are used that take lateness or tardiness of
tasks into account. Examples are themaximum latenessLmax = max{Li}, the number of
tardy tasksY =

∑n
j=1 Yj, whereYj = 1, if Cj > Dj, and0 otherwise, or theweighted number

of tardy tasksYw =
∑n

j=1 wjYj, the mean tardinessK = 1
n

∑n
j=1 Kj or themean weighted

tardinessKw = (
∑n

j=1 wjKj)/(
∑n

j=1 wj). These criteria involving deadlines are of great im-
portance in many applications. These criteria are also of significance in computer control
systems working in a real-time environment since their minimization leads to the construction
of schedules with no late task whenever such schedules existor if a task is not finished on time,
the yet unprocessed part of it contributes to the schedule value that has to be minimized.

A schedule for which the value of a particular performance measureγ is at its minimum
will be calledoptimal, and the corresponding value ofγ will be denoted byγ∗.

Now we define ascheduling problemas a set of parameters as described above, together
with an optimally criterion.

10

The criteria mentioned above are basic in the sense that theyrequire specific approaches
to the construction of schedules. A scheduling algorithm isan algorithm which constructs a
schedule for a given problem.

Scheduling problems belong to the broad class ofcombinatorial search problems. Com-
binatorial search is among the hardest of common computational problems: the solution time
can grow exponentially with the size of the problem [67, 32, 27]. We are given a set ofn
variables each of which can be assignedb possible values. The problem is to find an assign-
ment for each variable that together satisfy some specified constraints. Fundamentally, the
combinatorial search problem consists of finding those combinations of a discrete set of items
that satisfy specified requirements. The number of possiblecombinations to consider grows
very rapidly (e.g., exponentially or factorially) with thenumber of items, leading to potentially
lengthy solution times and severely limiting the feasible size of such problems. Because of
the exponentially large number of possibilities it appears(though no one knows for sure) that
the time required to solve such problems must grow exponentially, in the worst case. These
problems form the well-studied class of NP-hard problems [27].

In general, we are interested in optimization algorithms, but because of the inherent com-
plexity of many problems of that type, also approximation orheuristic algorithms are applied.
It is rather obvious that very often the time available for solving particular scheduling problems
is seriously limited so that only low order polynomial-timealgorithms can be applied [27].

2.3 A Simple Model

Let us consider a simple real-time system containing a periodic hard real-time task which
should be processed on one processor [30]. The task does not require any extra resource. The
priority of the task is fixed.

We define a simple real-time program as follows: ProgramH receives an event from a
sensor everyP units of time (i.e. theinter-arrival timeisP). A task is defined as the processing
of an event. In the worst case the task requiresC units of computation time. The execution
of the task should be completed byD time units after the task starts. IfD < C, the deadline
cannot be met. IfP < D, the program must still process each event in a time> P if no events
are to be lost. Thus the deadline is effectively bounded byP and we need to handle only those
cases whereC ≤ D ≤ P [59, 30, 32].

Now consider a program which receives events fromtwo sensors. Inputs from Sensor 1
come everyP1 time units and each needsC1 time units for computation; events from Sensor
2 come everyP2 time units and each needsC2 time units. Assume the deadlines are the same
as the periods, i.e.P1 time units for Sensor 1 andP2 time units for Sensor 2. Under what
conditions will these deadlines be met?

More generally, if a program receives events fromn such devices, how can it be determined

11

if the deadline for each device will be satisfied?
Before we begin to analyze this problem, we first express our assumptions as follows. We

assume that the real-time program consists of a number ofindependent tasksthat do not share
data or communicate with each other. Also, we assume that each task is periodically invoked
by the occurrence of a particular event [30, 32]. The system has one processor; the system
periodically receives events from the external environment and these are not buffered. Each
event is an invocation for a particular task. Note that events may be periodically produced
by the environment or the system may have a timer that periodically creates the events. The
processor is idle when it is not executing a task.

Let the tasks of programH be τ1, τ2, τ3, ..., τn. Let the inter-arrival timer, orperiod, for
invocation to taskτi bePi and the computation time for such invocation beCi.

2.3.1 Scheduling for the Simple Model

One way to schedule the program is to analyze its tasksstaticallyand determine their timing
properties. These times can be used to create afixed schedulingtable according to which
tasks will be dispatched for execution at run-time [22, 59, 30, 32, 27, 12]. Thus, the order of
execution of tasks is fixed and it is assumed that their execution times are also fixed.

Typically, if tasksτ1, τ2, ..., τn have periodsP1, P2, P3, ..., Pn, the table must cover schedul-
ing for length of time equal to theleast common multipleof the periods, i.e.lcm{P1, P2, ..., Pn},
as that is the time in which each task will have an integral number of invocations. If any of the
Pi are co-primes, this length of time can be extremely large so where possible it is advisable
to choose values ofPi that are small multiples of a common value. We define ahyper-period
as the period equal to the least common multiple of the periodsP1, P2, ..., Pn of then periodic
tasks.

Static scheduling has the significant advantage that the order of execution of tasks is deter-
minedoff-line (before the execution of the program), so the run-time scheduling overheads can
be very small. But it has some major disadvantages. This is discussed in Section 3.1.

In scheduling terms, apriority is usually a positive integer representing the urgency or
importance assigned to an activity. By convention, the urgency is in inverse order to the nu-
meric value of the priority, and priority 1 is the highest level of priority. We shall assume here
that a task has a single, fixed priority. We can consider the following two simple scheduling
disciplines:

Non-preemptive priority based execution:When the processor is idle, the ready task with
the highest priority is chosen for execution; once chosen, atask is run to completion.

Preemptive priority based execution:When the processor is idle, the ready task with the
highest priority is chosen for execution; at any time, execution of a task can be preempted if a
task of higher priority becomes ready. Thus, at all times theprocessor is either idle or executing
the ready task with the highest priority.

12

t

3

t

2

t

1

Overrun here

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 1: Priorities without preemption

Priority Period Computation time
τ1 1 7 2
τ2 2 16 4
τ3 3 31 7

Table 1: The priorities, repetition periods and computation times of the tasksτ1, τ2 andτ3 for
Example 2.1

Example 2.1 ([32]): Consider a program with 3 tasksτ1, τ2 andτ3, that have the priorities,
repetition periods and computation times defined in Table 1.Let the deadlineDi for each task
τi bePi. Assume that the tasks are scheduled according to priorities, with no pre-emption, as
shown in Figure 1. The arrows in the figure represent the invocation times of the tasks.

If all three tasks have invocations attime = 0, taskτ1 will be chosen for execution as it
has the highest priority. When it has completed it execution,taskτ2 will be executed until its
completion attime = 6.

At that time, only taskτ3 is ready for execution and it will execute fromtime = 6 to
time = 13, even though an invocation comes for taskτ1 at time = 7. So there is just one unit
of time for taskτ1 to complete its computation requirement of two units and itsnew invocation
will arrive before processing of the previous invocation iscomplete.

In some cases, the priorities allotted to tasks can be used tosolve such problems; in this
case, there is no allocation of priorities to tasks under which taskτ1 will meet its deadline.
If we keep drawing the timing diagram represented in Figure 1, we can observe that between
time = 15 andtime = 31 (at which the next invocation for taskτ3 will arrive) the processor is
not always busy and taskτ3 does not need to complete its execution untiltime = 31. If there
were some way of making the processor available to tasksτ1 andτ2 when needed and then

13

returning it to taskτ3, they could all meet their deadlines.

t

3

t

2

t

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2: Priorities with preemption

This can be done using priorities with preemption: execution of taskτ3 will then be pre-
empted attime = 7, allowing taskτ1 to complete its execution attime = 9 (Figure 2). Process
τ3 is preempted once more by taskτ1 at time = 14 and this is followed by the next execution
of taskτ2 from time = 16 to time = 20 before taskτ3 completes the rest of its execution at
time = 21.

2.4 Methods of Analysis

Timing diagrams provide a good way to visualize and even to calculate the timing properties
of simple programs. But they have obvious limits, not least of which is that a very long time
might be required to reach the point that a deadline is missed. Checking the feasibility of a
uniprocessor periodic real-time scheduling algorithm, weneed to keep drawing some timing
diagrams for a duration that is equal to the least common multiple of the periods [30, 27].

A better method of analysis would be to derive conditions to be satisfied by the timing
properties of a program for it to meet its deadlines. Let animplementationconsist of a hardware
platform and the scheduler under which the program is executed. An implementation is called
feasibleif every execution of the program will meet all its deadlines. We should look for the
conditions that arenecessaryto ensure that an implementation is feasible. The aim is to find
necessary conditions that are alsosufficient, so that if they are satisfied, an implementation is
guaranteed to be feasible [22, 59, 30, 32, 27].

It is shown in [30, 32] how we can examine the conditions that are necessary so that we
make sure that the scheduling is feasible. We should find the condition to ensure that the total
computation time needed for the task, and for all those of higher priority, is smaller than the
period of each task. If we assume thatPi/Pj, 1 ≤ j ≤ i − 1, represents an integer division,

14

then we can say that there arePi/Pj invocations for taskPj in the timePi and each invocation
will need a computation time ofCj. However, ifPi is not exactly divisible byPj, then either
⌈Pi/Pj⌉ is an overestimate of the number of invocations or⌊Pi/Pj⌋ is an underestimate. We
avoid the approximation resulting from integer division byconsidering an intervalMi which is
the least common multipleof all periods up toPi:

Mi = lcm({P1, P2, ..., Pi})

Therefore, as shown in [30, 32], we can conclude that the necessary condition to make sure
that the scheduling is feasible is:

i∑

j=1

(Cj ×
Mi/Pj

Mj

) ≤ 1 (1)

SinceMi is exactly divisible by allPj, j < i, the number of invocations at any levelj

within Mi is exactlyMi/Mj.
Equation (1) is theLoad Relationand must be satisfied by any feasible implementation.

However, this conditionaveragesthe computational requirements over eachlcm period.
Example 2.2 ([32]): Consider a program with two tasksτ1 andτ2 that have the priorities,

repetition periods and computation times defined as follows. Let the deadlineDi for each task
τi be equal toPi.

Priority Period Computation time
τ1 1 12 5
τ2 2 4 2

Since the computation time of taskτ1 exceeds the period of taskτ2, the implementation is
infeasible, though it does satisfy condition (1).

Actually, condition (1) fails to take account of an important requirement of any feasible
implementation. Not only theaverageload must be smaller than 1 over the intervalMi, but the
load must at all times be sufficiently small for the deadlinesto be met. More precisely, if at any
time t there areu time units left for the next deadline at priority leveli, the total computation
requirement at timet for level i and all higher levels must be smaller thanu. But while on the
one hand it is necessary that at every instant there is sufficient computation time remaining for
all deadlines to be met, it is important to remember that oncea deadline at leveli has been met
there is no further need to make provision for computation atthat level up to the end of the
current period.

Based on the properties of the real-time system, the parameters of the system, and the al-
gorithm applied for scheduling, we can determine the sufficient condition of the feasibility test
of the scheduling algorithm. The sufficient condition is obtained by calculating the utiliza-
tion bounds associated with scheduling algorithm. For the systems containing more than one

15

processor, we not only should decide about the appropriate scheduling algorithm, but we also
have to specify theallocation algorithmwhich assigns the tasks to the available processors. For
multiprocessor real-time systems, calculating the utilization bounds associated with(schedul-
ing algorithm, allocation algorithm)pairs leads us to achieving the sufficient conditions of the
feasibility test, analogous to those known for uniprocessors. This approach has several inter-
esting features: it allows us to carry out fast schedulability tests and to qualify the influence of
certain parameters, such as the number of processors, on scheduling. For some algorithms, this
bound considers not only the number of processors, but also the number of the tasks and their
sizes [22, 6, 23, 30, 32].

Let us study the above concepts on theRate-Monotonicalgorithm (RM) andEarliest Dead-
line First algorithm (EDF) [32, 22, 59, 30]. Both the RM and EDF algorithms areoptimalreal-
time scheduling algorithms. An optimal real-time scheduling algorithm is one which may fail
to meet a deadline only if no other scheduling algorithm can meet the deadline. The following
assumptions are made for both the RM and EDF algorithms.

(a) No task has any nonpreemptable section and the cost of preemption is negligible.

(b) Only processing requirements are significant; memory, I/O, and other resource require-
ments are negligible.

(c) All tasks are independent; there are no precedence constraints.

2.5 RM Scheduling

The RM scheduling algorithm is one of the most widely studiedand used in practice [22, 59,
30, 32, 27]. It is a uniprocessor static-priority preemptive scheme. For the RM scheduling
algorithm, in addition to assumptions (a) to (c), we assume that all tasks are periodic and the
priority of task τi is higher than the priority of taskτj, wherei < j. The RM scheduling
algorithm is an example of priority driven algorithms with static priority assignment in the
sense that the priorities of all instances are known even before their arrival. The priorities of
all instances of each task are the same. They are determined only by the period of the task.
A periodic task consists of an infinite sequence of instanceswith periodic ready times, where
the deadline of a request could be less than, greater than, orequal to the ready time of the
succeeding instance. Furthermore, the execution times of all the instances of a task are the
same. A periodic taskτi is characterized by three parametersPi, the period of the instance,
Ci, the execution time, andDi, the deadline of the tasks. The utilization factor of a set ofn

periodic tasks is defined by
∑n

i=1 Ci/Pi, whereP1, P2, ..., Pn are the periods andC1, C2, ..., Cn

are the execution times of then tasks. If
∑n

i=1 Ci/Pi ≤ n(21/n − 1), wheren is the number of
tasks to be scheduled, then the RM algorithm will schedule all the tasks to meet their respective

16

deadlines. Note that this is a sufficient, but not a necessary, condition. That is, there may be
task sets with a utilization greater thann(21/n − 1) that are schedulable by the RM algorithm.

A given set of tasks is said to be RM-schedulable if the RM algorithm produces a schedule
that meets all the deadlines. The sufficient and necessary conditions for feasibility of RM
scheduling is studied in [32] as follows.

Given a set ofn periodic tasksτ1, τ2, ..., τn, whose periods and execution times areP1, P2,

..., Pn andC1, C2, ..., Cn, respectively, we suppose taskτi completes executing att. We con-
sider the following notation:

Wi(t) =
i∑

j=1

Cj⌈
t

Pj

⌉ = t − idle time

Li(t) =
Wi(t)

t

L = min
0≤t≤Pi

Li(t)

Taskτi can be feasibly scheduled using RMif and only if Li(t) ≤ 1. In this caseτ1, τ2, ..., τi−1

are also feasibly scheduled.
Thus far, we have only considered periodic tasks. As defined in Section 1.4, sporadic tasks

are released irregularly, often in response to some event inthe operating environment. While
sporadic tasks do not have periods associated with them, there must be some maximum rate at
which they can be released. That is, we must have some minimuminterarrival time between
the release time of successive iterations of sporadic tasks. Otherwise, there is no limit to the
amount of workload that sporadic tasks can add to the system and it will be impossible to
guarantee that deadlines are met. The different approachesto deal with aperiodic and sporadic
tasks are outlined in Section 4.1 and Section 4.2.

One drawback of the RM algorithm is that task priorities are defined by their periods.
Sometimes, we must change the task priorities to ensure thatall critical tasks get completed.
Suppose that we are given a set of tasks containing two tasksτi andτj, wherePi < Pj, but
τj is a critical task andτi is a noncritical task. We check the feasibility of the RM scheduling
algorithm for the tasksτ1, τ2, ..., τn. Suppose that if we take the worst-case execution times of
the tasks, we cannot guarantee the schedulability of the tasks. However, in the average case,
they are all RM-schedulable. The problem is how to arrange matters so that all the critical tasks
meet their deadlines under the RM algorithm even in the worstcase, while the noncritical tasks,
such asτi, meet their deadlines in many other cases. The solution is either of the following two
methods.

• We lengthen the period of the noncritical task, i.e.τi, by a factor ofk. The original
task should also be replaced byk tasks, each phased by the appropriate amount. The

17

parameterk should be chosen such that we obtainP ′
i > Pj (see [32, Example 3.10] for

an example).

• We reduce the period of the critical task, i.e.τj, by a factor ofk. Then we should replace
the original task by one whose (both worst case and average case) execution time is also
reduced by a factor ofk. The parameterk should be chosen such that we obtainPi > P ′

j

(see [32, Example 3.10] for an example).

So far, we have assumed that the relative deadline of a task isequal to its period. If we
relax this assumption, the RM algorithm is no longer an optimum static-priority scheduling
algorithm. WhenDi ≤ Pi, at most one initiation of the same task can be alive at any one
time. However, whenDi > Pi, it is possible for multiple initiations of the same task to be
alive simultaneously. For the latter case, we have to check anumber of initiations to obtain the
worst-case response time. Therefore, checking for RM-schedulability for the caseDi > Pi is
much harder than for the caseDi ≤ Pi. Suppose we have a task set for which there exists a
γ such thatDi = γPi, for each taskτi. In [32], the necessary and sufficient condition for the
tasks of the set to be RM-schedulable is given.

The RM algorithm takesO((N + α)2) time in the worst case, whereN is the total number
of the requests in each hyper-period ofn periodic tasks in the system andα is the number of
aperiodic tasks.

Two examples scheduled by RM algorithm are presented in the Appendix.

2.6 EDF Scheduling

The EDF scheduling algorithm is a priority driven algorithmin which higher priority is as-
signed to the request that has earlier deadline, and a higherpriority request always preempts a
lower priority one [60, 22, 59, 30, 32, 27]. This scheduling algorithm is an example of priority
driven algorithms withdynamic priorityassignment in the sense that the priority of a request
is assigned as the request arrives. EDF is also called thedeadline-monotonicscheduling algo-
rithm. Suppose each time a new ready task arrives, it is inserted into a queue of ready tasks,
sorted by their deadlines. If sorted lists are used, the EDF algorithm takesO((N + α)2) time in
the worst case, whereN is the total number of the requests in each hyper-period ofn periodic
tasks in the system andα is the number of aperiodic tasks.

For the EDF algorithm, we make all the assumptions we made forthe RM algorithm, except
that the tasks do not have to be periodic.

EDF is an optimal uniprocessor scheduling algorithm. That is, if EDF cannot feasibly
schedule a task set on a uniprocessor, there is no other scheduling algorithm that can. This can
be proved by using atime slice swappingtechniques. Using this technique, we can show that
any valid schedule for any task set can be transformed into a valid EDF schedule.

18

If all tasks are periodic and have relative deadlines equal to their periods, they can be
feasibly scheduled by EDFif and only if

∑n
i=1 Ci/Pi ≤ 1. There is no simple schedulability

test corresponding to the case where the relative deadlinesdo not all equal the periods; in such
a case, we actually have to develop a schedule using the EDF algorithm to see if all deadlines
are met over a given interval of time. The following is the schedulability test for EDF under
this case.

DefineU =
∑n

i=1 Ci/Pi, Dmax = max1≤i≤n{Di} andP = lcm(P1, ..., Pn), wherelcm

stands for least common multiple. Considerh(t) to be the sum of the execution times of all
tasks whose absolute deadlines are smaller thant. A task set ofn tasks isnot EDF-feasibleif
and only if

• U < 1 or

• there existst < min{P + Dmax,
U

1−U
max
1≤i≤n

{Pi − Di}} such thath(t) > t

Very little is known about algorithms that produce an optimal solution. This is due to either
of the following reasons.

• Some real-time scheduling problems are NP-complete. Therefore, we cannot say whether
there is any polynomial time algorithm for the problems. Forthis group, we should
search for heuristic algorithms. Given a heuristic algorithm, we should investigate for
the sufficient conditions for feasible scheduling. The sufficient conditions are used to
determine whether a given task set can be scheduled feasiblyby the algorithm upon the
available processors. Many researches have also focused onsearching for heuristic al-
gorithms whose results are compared to the optimal results.In fact, for problems in this
class the optimal solution cannot be obtained in polynomialtime. Approximation algo-
rithms are polynomial time heuristic algorithms whose performance is compared with
the optimal performance.

• As for the second group of real-time scheduling problems, there exists polynomial al-
gorithms which provide feasible schedule of any task set which satisfy some specific
conditions. For example any set of periodic tasks which satisfy

∑n
i=1 Ci/Pi ≤ 1 is guar-

anteed to be feasibly scheduled using EDF. Recall that an optimal scheduling algorithm
is one which may fail to meet a deadline only if no other scheduling algorithm can meet
the deadline. Therefore, a feasible scheduling algorithm is optimal if there is no other
feasible algorithm with looser conditions. In order to prove optimality of a scheduling al-
gorithm, the feasibility conditions of the algorithm must be known. For example there is
no dynamic-priority scheduling algorithm that can successfully schedule a set of periodic
tasks where

∑n
i=1 Ci/Pi > 1. Therefore, EDF is an optimal algorithm.

19

The optimal algorithm for a real-time scheduling problem isnot unique. For instance, in
addition to EDF algorithm, there is another optimal dynamic-priority scheduling algo-
rithm, which is the least laxity first (LLF) algorithm. The laxity of a process is defined
as the deadline minus remaining computation time. In other words, the laxity of a job is
the maximal amount of time that the job can wait and still meetits deadline. The algo-
rithm gives the highest priority to the active job with the smallest laxity. Then the job
with the highest priority is executed. While a process is executing, it can be preempted
by another whose laxity has decreased to below that of the running process. A problem
arises with this scheme when two processes have similar laxities. One process will run
for a short while and then get preempted by the other and vice versa. Thus, many con-
text switches occur in the lifetime of the processes. The least laxity first algorithm is
an optimal scheduling algorithm for systems with periodic real-time tasks [26, 68, 43].
If each time a new ready task arrives, it is inserted into a queue of ready tasks, sorted
by their laxities. In this case, the worst case time complexity of the LLF algorithm is
O((N + α)2), whereN is the total number of the requests in each hyper-period ofn

periodic tasks in the system andα is the number of aperiodic tasks.

The EDF and LLF algorithms are illustrated using examples inthe Appendix.

Although many people have worked on feasibility analysis ofpolynomial algorithms, still
further investigation is required. Verification of optimality of scheduling algorithms is another
subject that should be studied further.

3 Scheduling Algorithms of Real-Time Systems

The goals for real-time scheduling are completing tasks within specific time constraints and
preventing from simultaneous access to shared resources and devices [22, 30, 32, 27]. Although
system resource utilization is of interest, it is not a primary driver. In fact, predictability and
temporal correctness are the principal concerns. The algorithms used, or proposed for use, in
real-time scheduling vary from relatively simple to extremely complex.

The topic of real-time scheduling algorithms can be studiedfor either uniprocessor or mul-
tiprocessor systems. We first study uniprocessor real-timescheduling algorithms.

3.1 Uniprocessor Scheduling Algorithms

The set of uniprocessor real-time scheduling algorithms isdivided into two major subsets,
namelyoff-line schedulingalgorithms andon-line schedulingalgorithms.

Off-line algorithms (Pre-run-time scheduling)generate scheduling information prior to
system execution [22, 59, 30, 32, 27, 60]. The scheduling information is then utilized by the

20

system during runtime. The EDF algorithm and the off-line algorithm provided in [20] are
examples of off-line scheduling algorithms.

In systems using off-line scheduling, there is generally, if not always, a required ordering of
the execution of processes. This can be accommodated by using precedence relations that are
enforced during off-line scheduling. Preventing simultaneous access to shared resources and
devices is another function that a priority based preemptive off-line algorithm must enforce.
This can be accomplished by defining which portion of a process cannot be preempted by
another task and then defining exclusion constraints and enforcing them during the off-line
algorithm. In Section 4.4, we study the methods that addressthis problem.

Another goal that may be desired for off-line schedules is reducing the cost of context
switches caused by preemption. This can be done by choosing algorithms that do not result in
a large number of preemptions, such as the EDF algorithm. It is also desirable to increase the
chances that a feasible schedule can be found. If the input tothe chosen off-line scheduling
algorithm is exactly the input to the real-time system and not an approximation, then the math-
ematical off-line algorithms are more likely to find a feasible schedule. In a predictable envi-
ronment, these algorithms can guarantee system performance. Off-line algorithms are good for
applications where all characteristics are known a priori and change very infrequently. A fairly
complete characterization of all processes involved, suchas execution times, deadlines, and
ready times are required for off-line scheduling. The off-line algorithms need large amount of
off-line processing time to produce the final schedule and due to this they are quite inflexible.
Any change to the system processes requires starting the scheduling problem over from the
beginning. In addition, these algorithms cannot handle an environment that is not completely
predictable. Although a strict off-line scheduler has no provision for handling aperiodic tasks,
it is possible to translate an aperiodic process into a periodic one, thus allowing aperiodic pro-
cesses to be scheduled using off-line scheduling. A major advantage of off-line scheduling is
significant reduction in run-time resources, including processing time, for scheduling. How-
ever, since it is inflexible, any change requires re-computing the entire schedule [22, 30, 32, 27].

The real advantage of off-line scheduling is that in a predictable environment it can guar-
antee system performance.

On-line algorithms generate scheduling information while the system is running [22, 30,
32, 27]. The on-line schedulers do not assume any knowledge of process characteristics which
have not arrived yet. These algorithms require a large amount of run-time processing time.
However, if different modes or some form of error handling isdesired, multiple off-line sched-
ules can be computed, one for each alternate situation. At run-time, a small on-line scheduler
can choose the proper one.

One of the severe problems that can occur with priority basedpreemptive on-line algorithms
is priority inversion [22, 32, 65]. This occurs when a lower priority task is using aresource
which is required by a higher priority task and this causes blocking the higher priority task by

21

the lower priority one. Methods of coping with this problem are discussed in Section 4.4.
The major advantage of on-line scheduling is that there is norequirement to know tasks

characteristics in advance and they tend to be flexible and easily adaptable to environment
changes. However, the basic assumption that the system has no knowledge of process charac-
teristics for tasks that have not yet arrived, severely restricts the potential for the system to meet
timing and resource sharing requirements. If the schedulerdoes not have such knowledge, it is
impossible to guarantee that system timing constraints will be met. Despite the disadvantages
of on-line scheduling, this method is used for scheduling ofmany real-time systems because it
does work reasonably well under most circumstances and it isflexible.

On-line scheduling algorithms can be divided intoStatic-priority basedalgorithms and
Dynamic-priority basedalgorithms, which are discussed as follows.

• Static-priority based algorithms

Static-priority based algorithms are relatively simple toimplement but lack flexibility.
They are arguably the most common in practice and have a fairly complete theory. They
work well with fixed periodic tasks but do not handle aperiodic tasks particularly well,
although there are some methods to adapt the algorithms so that they can also effectively
handle aperiodic tasks. Static priority-based schedulingalgorithms have two disadvan-
tages, which have received a significant amount of study. Their low processor utilization
and poor handling of aperiodic and soft-deadline tasks haveprompted researchers to
search for ways to combat these deficiencies [22].

On-line Static-priority based algorithms may be eitherpreemptiveor non-preemptive
[35, 22, 32, 65, 3, 11, 10]. For example, the Rate-monotonic algorithm and theRate-
monotonic deferred server(DS) scheduling algorithm are in the class of Preemptive
Static-priority based algorithms [22, 32]. The DS algorithm has a time complexity in
O((N + α)2), whereα is the number of active aperiodic requests andN is the total
number of the requests in each hyper-period ofn periodic tasks in the system.

Many real-time systems have the characteristic in which theorder of task execution is
known a priori and each task must complete before another task can start. These systems
can be scheduled non-preemptively. This scheduling technique, which is called non-
preemptive static-priority based algorithms, avoids the overhead associated with multiple
context switches per task. This property improves processor utilization. Additionally,
tasks are guaranteed of meeting execution deadlines [22, 30, 32, 27].

The two following non-preemptive algorithms attempt to provide high processor utiliza-
tion while preserving task deadline guarantees and system schedulability.

– Parametric dispatching algorithm ([25, 22]):This algorithm uses a calendar of
functions, which maintains for each taskτi two functions,Mini andMaxi, de-

22

scribing the upper and lower bounds on allowable start timesfor the task. During
an off-line component, the timing constraints between tasks are analyzed to gen-
erate the calendar of functions. Then, during system execution, these bounds are
passed to dispatcher which then determines when within the window to start ex-
ecution of the task. This decision can be based on whether there are other non-
real-time tasks waiting to execute. The worst case time complexities of the off-
line and on-line components of the Parametric dispatching algorithm areO(n) and
O((N + κ)2 log(N + κ)), respectively, wheren is the number of periodic tasks,
N is the total number of the requests of real-time task in each hyper-period ofn
periodic tasks in the system, andκ is the number of the requests of non-real-time
tasks.

– Predictive algorithm ([52, 22]):This algorithm depends upon known a priori task
execution and arrival times. When it is time to schedule a taskfor execution, the
scheduler not only looks at the first task in the ready queue, but also looks at the
deadlines for tasks that are predicted to arrive prior to thefirst task’s completion.
If a later task is expected to arrive with an earlier deadlinethan the current task,
the scheduler may insert CPU idle time and wait for the pendingarrival if this will
produce a better schedule. In particular, the insertion of idle time may keep the
pending task from missing its deadline. The Predictive algorithm takesO(n2) time
in the worst case, wheren is the number of tasks.

These algorithms both have drawbacks when applied to real-world systems. Both algo-
rithms require significant a priori knowledge of the system tasks, both execution times
and ordering. Therefore, they are quite rigid and inflexible.

• Dynamic-priority based algorithms

Dynamic-priority based algorithms require a large amount of on-line resources. How-
ever, this allows them to be extremely flexible. Many dynamic-priority based algorithms
also contain an off-line component. This reduces the amountof on-line resources re-
quired while still retaining the flexibility of a dynamic algorithm. There are two subsets
of dynamic algorithms:planning basedandbest effort. They attempt to provide better
response to aperiodic tasks or soft tasks while still meeting the timing constraints of the
hard periodic tasks. This is often accomplished by utilization of spare processor capacity
to service soft and aperiodic tasks [22, 32, 27, 26].

Planning Based Algorithmsguarantee that if a task is accepted for execution, the task
and all previous tasks accepted by the algorithm will meet their time constraints [22, 32].

The planning based algorithms attempt to improve the response and performance of a
system to aperiodic and soft real-time tasks while continuing to guarantee meeting the

23

deadlines of the hard real-time tasks. The traditional way of handling aperiodic and
soft real-time tasks in a system that contained periodic tasks with hard deadlines is to
allow the aperiodic or soft real-time tasks to run in the background. By this method, the
aperiodic or soft real-time tasks get served only when the processor has nothing else to
do. The result of this method is unpredictable and normally rather poor response to these
tasks. The other approach used was to model aperiodic tasks as periodic tasks with a
period equal to the minimum time between their arrivals and then schedule them using
the same algorithm as for the real periodic tasks. This tended to be extremely wasteful of
CPU cycles because the minimum period between arrivals is usually significantly smaller
than the average. Many researchers have tried to counter these problems by proposing
a variety of approaches that utilize spare processor time ina more structured form than
simple background processing [51, 55]. Some of these algorithms attempt to identify and
capture spare processor capacity and use it to execute aperiodic and soft real-time tasks.
Other utilize a more dynamic scheduling method in which aperiodic tasks are executed
instead of a higher priority periodic task, when the system can confirm that doing so will
not jeopardize the timely completion of the periodic tasks [41, 57, 61].

The general model for these types of algorithms is a system where all periodic tasks have
hard deadlines equal to the end of their period, their periodis constant, and their worsts
case execution times are constant. All aperiodic tasks are assumed to have no deadlines
and their arrival or ready times are unknown.

Planning based algorithms tend to be quite flexible in servicing aperiodic tasks while still
maintaining the completion guarantees for hard-deadline tasks. Most of the algorithms
also provide a form of guarantee for aperiodic tasks. They reject a task for execution
if they cannot guarantee its on-time completion. Most of theplanning based algorithms
can provide higher processor utilization than static priority-based algorithm while still
guaranteeing on-time completion of accepted tasks.

The Earliest Deadline First scheduling [37, 60, 32] is one ofthe first planning based
algorithms proposed. It provides the basis for many of the algorithms currently being
studied and used. The LLF algorithm is another planning based algorithm.

The Dynamic Priority Exchange Server, Dynamic Sporadic Server, Total Bandwidth
Server, Earliest Deadline Late Server, and Improved Priority Exchange Server are ex-
amples of planning based algorithms, which work under EDF scheduling. They are
discussed in Section 4.2.

Best Effort Algorithms seek to provide the best benefit to the application tasks in over-
load conditions. The Best Effort scheduling algorithms seek to provide the best benefit
to the application tasks. The best benefit that can be accruedby an application task is
based on application-specified benefit functions such as theenergy consumption func-

24

tion [62, 48]. More precisely, the objective of the algorithms is to maximize theaccrued
benefit ratio, which is defined as the ratio of total accrued benefit to the sum of all task
benefits [36, 22, 32].

There exist many best effort real-time scheduling algorithms. Two of the most prominent
of them are the Dependent Activity Scheduling Algorithm (DASA) [16] and the Lockes
Best Effort Scheduling Algorithm (LBESA) [38]. DASA and LBESA are equivalent to
the Earliest Deadline First (EDF) algorithm during underloaded conditions [16], where
EDF is optimal and guarantees that all deadlines are always satisfied. In the event of an
overload situation, DASA and LBESA seek to maximize the aggregate task benefit.

The DASA algorithm makes scheduling decisions using the concept of benefit densities.
The benefit density of a task is the benefit accrued per unit time by the execution of the
task. The objective of DASA is to compute a schedule that willmaximize the aggregate
task benefit. The aggregate task benefit is the cumulative sumof the benefit accrued by
the execution of the tasks. Thus, since task benefit functions are step-benefit functions, a
schedule that satisfies all deadlines of all tasks will yieldthe maximum aggregate benefit.

LBESA [38] is another best effort real-time scheduling algorithm. It is similar to DASA
in that both algorithms schedule tasks using the notion of benefit densities and are equiv-
alent to EDF during underload situations. However, the algorithms differ in the way
they reject tasks during overload situations. In [16], it isshown that DASA is generally
better than LBESA in terms of aggregate accrued task benefit.While DASA examines
tasks in the ready queue in decreasing order of their benefit densities for determining fea-
sibility, LBESA examines tasks in the increasing order of task deadlines. Like DASA,
LBESA also inserts each task into a tentative schedule at itsdeadline-position and checks
the feasibility of the schedule. Tasks are maintained in increasing deadline-order in the
tentative schedule. If the insertion of a task into the tentative schedule results in an infea-
sible schedule, then, unlike DASA, LBESA removes the least benefit density task from
the tentative schedule. LBESA continuously removes the least benefit density task from
the tentative schedule until the tentative schedule becomes feasible. Once all tasks in the
ready queue have been examined and a feasible tentative schedule is thus constructed,
LBESA selects the earliest deadline task from the tentativeschedule.

Both the DASA and LBESA algorithms takeO((N + α)2) time in the worst case, where
N is the total number of the requests in each hyper-period ofn periodic tasks in the
system andα is the number of aperiodic tasks.

25

3.2 Multiprocessor Scheduling Algorithms

The scheduling of real-time systems has been much studied, particularly upon uniprocessor
platforms, that is, upon machines in which there is exactly one shared processor available, and
all the jobs in the system are required to execute on this single shared processor. In multi-
processor platforms there are several processors available upon which these jobs may execute.
The Pfari scheduling is one of the few known optimal methods for scheduling tasks on multi-
processor systems [7]. However, the optimal assignment of tasks to processors is, in almost all
practical cases, an NP-hard problem [24, 44, 35]. Therefore, we must make do with heuristics.
The heuristics cannot guarantee that an allocation will be found that permits all tasks to be
feasibly scheduled. All that we can hope is to allocate the tasks, check their feasibility, and, if
the allocation is not feasible, modify the allocation to tryto render its schedule feasible. So far,
many heuristic multiprocessor scheduling algorithms havebeen provided (see, for example,
[7, 46, 42, 2, 4, 23, 6, 63, 34, 28, 19, 1, 32]).

When checking an allocation for feasibility, we must accountfor communication costs. For
example, suppose that taskτ2 cannot start before receiving the output of taskτ1. If both tasks
are allocated to the same processor, then the communicationcost is zero. If they are allocated
to separate processors, the communication cost is positiveand must be taken into account while
checking for feasibility.

The following assumptions may be made to design a multiprocessor scheduling algorithm:

• Job preemption is permitted

That is, a job executing on a processor may be preempted priorto completing execu-
tion, and its execution may be resumed later. We may assume that there is no penalty
associated with such preemption.

• Job migration is permitted

That is, a job that has been preempted on a particular processor may resume execution
on a different processor. Once again, we may assume that there is no penalty associated
with such migration.

• Job parallelism is forbidden

That is, each job may execute on at most one processor at any given instant in time.

Real-time scheduling theorists have extensively studied uniprocessor real-time schedul-
ing algorithms. Recently, steps have been taken towards obtaining a better understanding of
multiprocessors real-time scheduling. Scheduling theorists distinguish between at least three
different kinds of multiprocessor machines:

26

• Identical parallel machines

These are multiprocessors in which all the processors are identical, in the sense that they
have the same computing power.

• Uniform parallel machines

By contrast, each processor in a uniform parallel machine ischaracterized by its own
computing capacity, with the interpretation that a job thatexecutes on a processor of
computing capacitys for t time units completess × t units of execution. Actually,
identical parallel machines are a special case of uniform parallel machines, in which the
computing capacities of all processors are equal.

• Unrelated parallel machines

In unrelated parallel machines, there is an execution rateri,j associated with each job-
processor ordered pair(Ji, πj), with the interpretation that jobJi completes(ri,j × t)

units of execution by executing on processorπj for t time units.

Multiprocessor scheduling techniques fall into two general category:

• Global Scheduling Algorithms

Global scheduling algorithms store the tasks that have arrived but not finished their ex-
ecution in one queue which is shared among all processors. Suppose there existm pro-
cessors. At every moment them highest priority tasks of the queue are selected for
execution on them processors using preemption and migration if necessary [23, 32].

The focused addressing and bidding algorithmis an example of global scheduling algo-
rithms [32]. The main idea of the algorithm is as follows. Each processor maintains a
status table that indicates which tasks it has already committed to run. In addition, each
processor maintains a table of the surplus computational capacity at every other proces-
sor in the system. The time axis is divided into windows, which are intervals of fixed
duration, and each processor regularly sends to its colleagues the fraction of the next
window that is currently free.

On the other hand, an overloaded processor checks its surplus information and selects a
processor that seems to be most likely to be able to successfully execute that task by its
deadline. It ships the tasks out to that processor, which is called selected task. However,
the surplus information may have been out of date and it is possible that the selected pro-
cessor will not have the free time to execute the task. In order to avoid this problem, and
in parallel with sending out the task to the selected processor, the originating processor
asks other lightly loaded processors how quickly they can successfully process the task.

27

The replies are sent to the selected processor. If the selected processor is unable to
process the task successfully, it can review the replies to see which other processor is
most likely to be able to do so, and transfers the task to that processor.

• Partitioning Scheduling Algorithms

Partitioning scheduling algorithms partition the set of tasks such that all tasks in a parti-
tion are assigned to the same processor. Tasks are not allowed to migrate, hence the mul-
tiprocessor scheduling problem is transformed to many uniprocessor scheduling prob-
lems [23, 32].

Thenext fit algorithm for RM schedulingis a multiprocessor scheduling algorithm that
works based on the partitioning strategy [32]. In this algorithm, we define a set of classes
of the tasks. The tasks, which are in the same class, are guaranteed to satisfy the RM-
schedulability on one processor. We allocate tasks one by one to the appropriate proces-
sor class until all the tasks have been assigned. Then, with this assignment, we run the
RM scheduling algorithm on each processor.

Global strategies have several disadvantages versus partitioning strategies. Partitioning
usually has a low scheduling overhead compared to global scheduling, because tasks do not
need to migrate across processors. Furthermore, partitioning strategies reduce a multipro-
cessor scheduling problem to a set of uniprocessor ones and then well-known uniprocessor
scheduling algorithms can be applied to each processor. However, partitioning has two nega-
tive consequences. First, finding an optimal assignment of tasks to processors is a bin-packing
problem, which is an NP-complete problem. Thus, tasks are usually partitioned using non-
optimal heuristics. Second, as shown in [13], task systems exist that are schedulable if and
only if tasks are not partitioned. Still, partitioning approaches are widely used by system de-
signers. In addition to the above approaches, we can apply hybrid partitioning/global strategies.
For instance, each job can be assigned to a single processor,while a task is allowed to migrate.

4 Constraints of Real-Time Systems

Many industrial applications with real-time demands are composed of tasks of various types
and constraints. Arrival patterns and importance, for example, determine whether tasks are
periodic, aperiodic, or sporadic, and soft, firm, or hard. The controlling real-time system has
to provide for a combined set of such task types. The same holds for the various constraints on
tasks. In addition to basic temporal constraints, such as periods, start-times, deadlines, and syn-
chronization demands such as precedence, or mutual exclusion, a system has to fulfill complex
application demands which cannot be expressed directly with basic constraints. An example for
complex demands is a control application that may require constraints on individual instances,

28

rather than periods. The set of types and constraints of tasks determines the scheduling algo-
rithm during system design. Adding constraints, however, increases scheduling overhead or
requires the development of new appropriate scheduling algorithms. Consequently, a designer
given an application composed of mixed tasks and constraints has to choose which constraints
to focus on in the selection of a scheduling algorithm; others have to be accommodated as well
as possible.

4.1 Scheduling of Sporadic Tasks

Sporadic Tasks are released irregularly, often in responseto some event in the operating envi-
ronment. While sporadic tasks do not have periods associatedwith them, there must be some
maximum rate at which they can be released. That is, we must have some minimum interval
time between the release of successive iterations of sporadic tasks. Some approaches to deal
with sporadic tasks are outlined as follows [32].

• The first method is to simply consider sporadic tasks as periodic tasks with a period equal
to their minimum interarrival time.

• The other approach is to define a fictitious periodic task of highest priority and of some
chosen fictitious execution period. During the time that this task is scheduled to run on
the processor, the processor is available to run any sporadic tasks that may be awaiting
service. Outside this time, the processor attends to the periodic tasks. This method is the
simplest approach for the problem.

• TheDeferred Serveris another approach, which wastes less bandwidth. Here, whenever
the processor is scheduled to run sporadic tasks and finds no such tasks awaiting service,
it starts executing the periodic tasks in order of priority.However, if a sporadic task
arrives, it preempts the periodic task and can occupy a totaltime up to the time allotted
for sporadic tasks.

4.2 Scheduling of Aperiodic Tasks

Real-time scheduling algorithms that deal with a combination of mixed sets of periodic real-
time tasks and aperiodic tasks have been studied extensively [55, 66, 60, 53, 54]. The objective
is to reduce the average response time of aperiodic requestswithout compromising the dead-
lines of the periodic tasks. Several approaches for servicing aperiodic requests are discussed
as follows.

A Background Serverexecutes at low priority, and makes use of any extra CPU cycles,
without any guarantee that it ever executes. Background Server for aperiodic requests executes
whenever the processor is idle (i.e. not executing any periodic tasks and no periodic tasks are

29

pending). If the load of the periodic task set is high, then utilization left for background service
is low, and background service opportunities are relatively infrequent.

ThePolling Serverexecutes as a high-priority periodic task, and every cycle checks if an
event needs to be processed. If not, it goes to sleep until itsnext cycle and its reserved execution
time for that cycle is lost, even if an aperiodic event arrives only a short time after. This results
in poor aperiodic response time. Polling consists of creating a periodic task for servicing
aperiodic requests. At regular intervals, the polling taskis started and services any pending
aperiodic requests. However, if no aperiodic requests are pending, the polling task suspends
itself until its next period and the time originally allocated for aperiodic service is not preserved
for aperiodic execution but is instead used by periodic tasks. Note that if an aperiodic request
occurs just after the polling task has suspended, then the aperiodic request must wait until the
beginning of the next polling task period or until background processing resumes before being
serviced. Even though polling tasks and background processing can provide time for servicing
aperiodic requests, they have the drawback that the averagewait and response times for these
algorithms can be long, especially for background processing.

The purpose of thePriority ExchangeandDeferrable Serversis to improve the aperiodic
response time by preserving execution time until required.Taking advantage of the fact that,
typically, there is no benefit in early completion of the periodic tasks, the Deferrable Server
algorithm assigns higher priority to aperiodic tasks up until the point where the periodic tasks
would start to miss their deadlines. Guaranteed alert-class aperiodic service and greatly re-
duced response times for soft deadline aperiodic tasks are important features of the Deferrable
Server algorithm, and both are obtained with the hard deadlines of the periodic tasks still being
guaranteed.

The Priority Exchange server allows for better CPU utilization, but is much more complex
to implement than the Deferrable Server.

The Priority Exchange technique adds to the task set an aperiodic server that services the
aperiodic requests as they arrive. The aperiodic server hasthe highest priority and executes
when an aperiodic task arrives. When there are no aperiodic tasks to service, the server ex-
changes its priority with the task of next highest priority to allow it to execute.

TheSporadic Serveris based on the Deferrable Server; but provides with less complexity
the same schedulable utilization as the Priority Exchange server. Similarly to other servers,
this method is characterized by a periodPS and a capacityCS, which is preserved for possible
aperiodic requests. Unlike other server algorithms, however, the capacity is not replenished at
its full value at the beginning of each server period, but only when it has been consumed. The
times at which the replenishments occur are chosen according to a replenishment rule, which
allows the system to achieve full processor utilization. The Sporadic Server has a fixed priority
chosen according to the Rate Monotonic algorithm, that is, according to its periodPS. The
Sporadic Server algorithm improves response times for soft-deadline aperiodic tasks and can

30

guarantee hard deadlines for both periodic and aperiodic tasks.
The above aperiodic servers are designed to operate in conjunction with the Rate Mono-

tonic algorithm [66, 60]. We discuss some other servers thatcan operate in conjunction with
deadline-based scheduling algorithms, such as Earliest Deadline First, as follows.

The Dynamic Priority Exchangeserver is an aperiodic service technique, which can be
viewed as an extension to the Priority Exchange server, adapted to work with deadline-based
scheduling algorithms. The main idea of the algorithm is to let the server trade its run-time
with the run-time of lower priority tasks in case there are noaperiodic requests pending. In this
way, the server run-time is only exchanged with periodic tasks, but never wasted unless there
are idle times. It is simply preserved, even if at a lower priority, and it can be later reclaimed
when aperiodic requests enter the system [60, 55, 56].

TheDynamic Sporadic Serveris another aperiodic service strategy, which extends the Spo-
radic Server to work under dynamic EDF scheduler. The main difference between the classical
Sporadic Server and its dynamic version consists in the way the priority is assigned to the
server. Dynamic Sporadic Server has a dynamic priority assigned through a suitable deadline.
The methods of deadline assignment and capacity replenishment are described in [60, 55, 56].

Looking at the characteristics of Sporadic Server, we can realize that when the server has
a long period, the execution of the aperiodic requests can bedelayed significantly, and this is
regardless of the aperiodic execution times. There are two possible approaches to reduce the
aperiodic response times. The first is to use a Sporadic Server with a shorter period. This
solution, however, increases the run-time overhead of the algorithm because, to keep the server
utilization constant, the capacity has to be reduced proportionally, but this causes more fre-
quent replenishment and increases the number of context switches with periodic tasks [60]. A
second approach is to assign a possible earlier deadline to each aperiodic request. The assign-
ment must be done in such a way that the overall processor utilization of the aperiodic load
never exceeds a specified maximum valueUS. This is the main idea behind another aperiodic
service mechanism, which is theTotal Bandwidth Server[55, 56]. The Total Bandwidth Server
is able to provide good aperiodic responsiveness with extreme simplicity. However, a better
performance can still be achieved through more complex algorithms. This is possible because,
when the requests arrive, the active periodic instances mayhave enough slack time to be safely
preempted. Using the available slack of periodic tasks for advancing the execution of aperiodic
requests is the basic principle adopted by theEarliest Deadline Late Server[55, 56, 60]. The
basic idea behind the Earliest Deadline Late Server is to postpone the execution of periodic
tasks as long as possible and use the idle times of periodic schedule to execute aperiodic re-
quests sooner. It is proved that the Earliest Deadline Late Server is optimal, that is, the response
times of aperiodic requests under this algorithm are the best achievable [60].

Although optimal, the Earliest Deadline Late Server has toomuch overhead to be con-
sidered practical. However, its main idea can be usefully adopted to develop a less complex

31

algorithm which still maintains a nearly optimal behavior.The expensive computation of the
idle times can be avoided by using the mechanism of priority exchange. With this mechanism
the system can easily keep track of the time advanced to periodic tasks and possibly reclaim
it at the right priority level. The idle time of the Earliest Deadline Late algorithm can be pre-
computed off-line and the server can use them to schedule aperiodic requests, when there are
any, or to advance the execution of periodic tasks. In the latter case, the pre-computed idle time
can be saved as aperiodic capacity. When an aperiodic requestarrives, the scheduler gives the
highest priority to the aperiodic request if all of the periodic tasks can wait while still meeting
their deadlines. The idea described above is used by the algorithm calledImproved Priority
Exchange[55, 56, 60]. There are two main advantages to this approach.First, a far more effi-
cient replenishment policy is achieved for the server. Second, the resulting server is no longer
periodic and it can always run at the highest priority in the system.

In this section, we introduced a set of most popular algorithms that provide good response
time to aperiodic tasks in real-time systems. The algorithms differ in their performance and
implementation complexity.

4.3 Precedence and Exclusion Conditions

Suppose we have a set of tasksτ = {τ1, τ2, ..., τn}. For each taskτi we are given the worst-case
execution timeCi, the deadlineDi, and the release timeRi. We sayτi precedesτj if τi is in
the precedence set ofτj, that is,τj needs the output ofτi and we cannot start executingτj until
τi has finished executing. Taskτi excludesτj if τi is not allowed to preemptτj. The sentence
“τi preemptsτj” is true if wheneverτi is ready to run andτj is currently running,τj is always
preempted byτi. Some relations between a given pair of distinct tasks are inconsistent with
some other relations. For example, we cannot have both “τi precedesτj” and “τj precedesτi”.
Also, τi cannot precedeτj whenτj preemptsτi. There are a few more examples of inconsistent
relations.

Having a set of real-time tasks with some precedence and exclusion conditions, we should
provide a scheduling algorithm such that not only all deadlines can be met, but also precedence
and exclusion conditions can be handled successfully. Thisscheduling problem is an NP-
complete problem [32]. Some heuristic algorithms have beenprovided for the problem in
[32, 49, 39, 31, 17, 58].

Generally, the input of any scheduling problem with precedence constraints consists of a set
of real-time tasks and a precedence graph, where a deadline,a release time and an execution
time is specified for each task. Sometimes the release time ofa job may be later than that
of its successors, or its deadline may be earlier than that specified for its predecessors. This
condition makes no sense. Therefore, we should derive an effective release time or effective
deadline consistent with all precedence constraints, and schedule using that [45]. We apply the

32

following method in order to achieve an effective release time:

• If a job has no predecessors, its effective release time is its release time.

• If it has predecessors, its effective release time is the maximum of its release time and
the effective release times of its predecessors.

An effective deadline can be found as follows.

• If a job has no successors, its effective deadline is its deadline.

• It if has successors, its effective deadline is the minimum of its deadline and the effective
deadline of its successors.

On the other hand, an exclusion relation between a given pairof tasks can be reduced to a
combination of preemption and precedence relation [32].

4.4 Priority Inversion

In a preemptive priority based real-time system, sometimestasks may need to access resources
that cannot be shared. For example, a task may be writing to a block in memory. Until this is
completed, no other task can access that block, either for reading or for writing. The method
of ensuring exclusive access is to guard the critical sections with binary semaphores. When a
task seeks to enter a critical section, it checks if the corresponding semaphore is locked. If it is,
the task is stopped and cannot proceed further until that semaphore is unlocked. If it is not, the
task locks the semaphore and enters the critical section. When a task exits the critical section,
it unlocks the corresponding semaphore [32, 50, 22].

The following example represents an undesired behavior of the above method. Consider
tasksτ1, τ2, andτ3, listed in descending order of priority, which share a processor. There exists
a critical sectionS that is used by bothτ1 andτ3. It is possible forτ1 to issue a request for
the critical sectionS when it is locked byτ3. Meanwhileτ2 may preemptτ3. This means that
τ2 which is of lower priority thanτ1, is able to delayτ1 indirectly. When a lower priority task
locks a critical section shared with the higher priority task, thepriority inheritance protocolis
used to prevent a medium priority task from preempting the lower priority task. Consider two
tasksτi andτj, whereτi ≻ τj, which need a critical sectionS. Taskτj inherits the priority of
τi as long as it blocksτi. Whenτj exits the critical section that caused the block, it revertsto
the priority it had when it entered that section.

Although the Priority Inheritance Protocol prevents unbounded blocking of a higher priority
task by a lower priority task, it does not guarantee that mutual deadlocks will not occur. It also
suffers from the possibility ofchained blocking, which happens because a high priority task is

33

likely to be blocked whenever it wants to enter a critical section. If the task has several critical
sections, it can be blocked for a considerable amount of time[22].

The Priority Ceiling Protocol is another protocol that can be used to prevent a medium
priority task from preempting the lower priority task [32, 60, 15, 14, 37, 50]. Also, under this
protocol, deadlocks cannot occur and a task can be blocked atmost once by a lower priority
task. In this protocol, when a task tries to hold a resource, the resource is made available
only if the resource is free, and only if the priority of the task is greater than or equal to the
current highest priority ceiling in the system. Such a rule can cause early blockings in the
sense that a task can be blocked even if the resource it wants to access is free. This access
rule guarantees that any possible future task is blocked at most once by the lower priority task,
which is currently holding a resource, and for a duration of at mostB, whereB is defined as
the greatest execution time of any critical section used by the lower priority task [32, 60].

ThePriority Ceiling Emulation, which is a combination of the two previous methods, has
been introduced to avoid chained blocking and mutual deadlocks. With this method, the pri-
ority of a low priority task is raised high enough to prevent it being preempted by a medium
priority task. To accomplish this, the highest priority of any task that will lock a resource is
kept as an attribute of that resource. Whenever a task is granted access to that resource, its
priority is temporarily raised to the maximum priority associated with the resource. When the
task has finished with the resource, the task is returned to its original priority.

5 Conclusions and Open Problems

5.1 Summary and Conclusions

A real time system is a system that must satisfy explicit bounded response-time constraints,
otherwise risk severe consequences including failure. Failure happens when a system cannot
satisfy one or more of the requirements laid out in the formalsystem specification.

For a given set of tasks the general scheduling problem asks for an order according to which
the tasks are to be executed such that various constraints are satisfied. For a given set of real-
time tasks, we are asked to devise a feasible allocation/schedule. The release time, the deadline
and the execution time of the tasks are some of the parametersthat should be considered for
scheduling. The deadline may be hard, soft or firm. Other issues to be considered are as fol-
lows. Sometimes, a resource must be exclusively held by a task. Tasks may have precedence
constraints. A task may be periodic, aperiodic, or sporadic. The schedule may be preemptive
or non-preemptive. Less critical tasks must be allowed to bepreempted by higher critical ones
when it is necessary to meet deadlines. For the real-time systems in which tasks arrive exten-
sively we have to use more than one processor to guarantee that tasks are feasibly scheduled.
Therefore, the number of available processors is another parameter to consider. The available

34

processors may be identical, uniform or unrelated.

Uniprocessor Multiprocessor

Partitioning Global

Hybrid

On-line

Dynamic-priority

Off-line

Static-priority

Real-time scheduling

Preemptive Non-preemptive Planning based Best effort

Figure 3: Real-time scheduling algorithms

In this paper, the concept of real-time systems and the characteristics of real-time tasks
are described. Also, the concept of utilization bound and optimality criteria, which leads to
design appropriate scheduling algorithms, are addressed.The techniques to handle aperiodic
and periodic tasks, precedence constraints, and priority inversion are explained. Scheduling
of real-time systems is categorized and a description for each class of algorithms is provided.
Also, some algorithms are presented to clarify the different classes of algorithms. For real-
time multiprocessor systems, we discuss the main strategies, namely partitioning and global
strategies, to allocate/schedule the real-time tasks uponthe processors. The different classes
of the real-time scheduling algorithms studied in this paper are summarized in Figure 3. The
techniques studied in Chapter 4 can be adopted to many algorithms in various classes of real-
time scheduling algorithms. Some of the uniprocessor real-time scheduling algorithms are
illustrated using examples in the Appendix.

35

Scheduling algorithms for real-time systems have been studied extensively. This paper
does not cover all the existing real-time scheduling algorithms. We have not discussed subjects
such as fault-tolerant real-time scheduling algorithms and scheduling of reward functions [32].
Also, we have not mentioned time complexity issues and many major theorems about the
feasibility and optimality conditions of the real-time scheduling algorithms. There exist many
approximation algorithms for real-time systems (see, for example, [64, 8, 9, 18, 40]) that we
did not have an opportunity to discuss in this paper. We triedto present the main ideas and
classes of real-time scheduling. This paper is organized such that a computer scientist who is
not familiar with real-time scheduling, can obtain enough knowledge about this area to be able
to analyze and categorize any real-time scheduling problem.

5.2 Open Problems

As we mentioned earlier, there are two main strategies to deal with multiprocessor schedul-
ing problems: partitioning strategy and global strategy, each of which has its advantages and
disadvantages. Real-time scheduling problems for multiprocessor systems have mostly been
studied for simple system models. Little work has been done on more complex systems. In this
section, we provide a list of multiprocessor real-time scheduling problems that require further
research. For each problem, scheduling algorithms are to bedeveloped that may fall into either
of the above strategies. In addition, designing a suitable hybrid partitioning/global scheduling
algorithm, one can take advantage of both methods. Providing suitable hybrid scheduling algo-
rithms that yield the best solutions for each of the following problems is one of the interesting
areas of research.

A list of open problems for multiprocessor real-time scheduling is as follows.
Consider a set of hard, soft, and firm real-time tasks,T = {τ1, τ2, ..., τn}, where the worst

case execution time of each taskτi ∈ T is Ci.

(1) If the real-time tasks are hard, periodic, preemptive and have fixed priorities, then find
the minimum number of the processors required to guarantee that all deadlines are met.
Some heuristic algorithms have already been proposed, however we believe better algo-
rithms with improved performance can be developed.

(2) Suppose in a system consisting ofm identical processors, real-time tasks are preemptive
and have fixed priorities. Hard real-time tasks are periodic. Communication cost is
negligible. Find a schedule that minimizes mean response time while guaranteeing that
all deadlines are met.

(3) Suppose there existm identical processors, real-time tasks are preemptive and have fixed
priorities, a penalty functionP (τi) is assigned to each soft real-time task, and a reward

36

functionR(τi) is determined for each firm real-time task. Communication cost is negli-
gible. Find a schedule that guarantees all deadlines are metand P (T)

R(T)
is minimized.

(4) Consider the conditions of problem (3), except that communication cost is non-trivial.
Give a schedule that minimize the communication cost. Minimizing the number of mi-
grations is one way to reduce the communication cost.

(5) Suppose there existm identical processors, real-time tasks are aperiodic, preemptive,
and have fixed priorities. Communication cost is negligible.Find a schedule that not
only guarantees that all deadlines are met, but also minimizes mean response time. Find
the utilization bound of the algorithm.

(6) Consider the conditions of problem (5), except that tasksare non-preemptive. Find a
schedule that not only guarantees that all deadlines are met, but also minimizes mean
response time. Find the utilization bound of the algorithm.

(7) Solve all of the previous problems, i.e, problems (1)-(6), when the tasks are dynamic
priority tasks.

(8) Solve all of the previous problems, i.e, problems (1)-(7), when the processors are uni-
form.

We may apply either of the following approaches to solve eachof the above problems:

• The vast majority of the optimization allocating/scheduling problems on real-time sys-
tems with more than two processors are NP-hard. In those cases where the problems
listed above are NP-hard, one of the following approaches could be used.

(a) Since the problem is NP-hard, one should strive to obtaina polynomial-time guaranteed-
approximation algorithm. Indeed, for some scheduling problems, a heuristic algo-
rithm may be found that runs in polynomial time in the size of the problem and
delivers an approximate solution whose ratio to the optimalsolution is guaranteed
to be no larger than a given constant or a certain function of the size of the problem.
However, for most NP-hard problems guaranteeing such an approximate solution
is itself an NP-complete problem. In this case, the amount ofimprovement of the
heuristic algorithm with respect to the existing algorithms should be measured via
simulation.

A challenging problem in real-time systems theory is calculating the utilization
bounds associated with each allocation/schedule algorithm. The obtained utiliza-
tion bound allows not only to test the schedulability of any given task set for the

37

scheduling algorithm, but also it allows to quantify the effect of certain parame-
ters such as the number of the processors, the size of the tasks, and the number of
preemptions on schedulability. Calculation of utilizationbounds of multiprocessor
scheduling for real-time systems is one of the major research directions that should
be further investigated.

(b) If we reduce the scheduling problem into a known NP-complete problemA, such as
bin-packing or discrete knapsack problem, the existing approximation algorithms
for problemA can be applied to the scheduling problem.

• Consider each of the aforementioned problems. The second possibility is developing a
polynomial time algorithm that provides an optimal feasible schedule for the problem.
The optimality of the algorithm should be proved. We must prove that the algorithm
may fail to meet a deadline only if no other scheduling algorithm can meet the deadline.
In order to prove optimality, we need to have the utilizationbounds associated with
the algorithm. The utilization bounds enable an admission controller to decide whether
an incoming task can meet its deadline based on utilization-related metrics. In fact,
the utilization bounds express the sufficient conditions required for feasibility of the
algorithm.

38

References

[1] B. Andersson and J. Jonsson,“The Utilization Bounds of Partitioned and Pfair Static-
Priority Scheduling on Multiprocessors are 50 percent,”15th Euromicro Conference on
Real-Time Systems (ECRTS’03), Porto, Portugal, July 02-04,2003.

[2] J. Anderson and A. Srinivasan,“Early release fair scheduling,”In Proceedings of the
EuroMicro Conference on Real-Time Systems, IEEE Computer Society Press, pp. 35-43,
Stockholm, Sweden, June 2000.

[3] N. Audsley, A. Burns, M. Richardson, K. W. Tindell, and A.J. Wellings,“Applying
new scheduling theory to static priority preemptive scheduling,” Software Engineering
Journal, pp. 284-292, 1983.

[4] H. Aydin, P. Mejia-Alvarez, R. Melhem, and D. Mosse,“Optimal reward-based schedul-
ing of periodic real-time tasks,”In Proceedings of the Real-Time Systems Symposium,
IEEE Computer Society Press, Phoenix, AZ, December, 1999.

[5] J. W. de Bakker, C. Huizing, W. P. de Roever and G. Rozenberg, “Real-Time: Thory
in Practice,” Preceedings of REX Workshop, Mook, The Netherlands, Springer-Verlag
company, June 3-7, 1991.

[6] J. M. Bans, A. Arenas, and J. Labarta,“Efficient Scheme to Allocate Soft-Aperiodic Tasks
in Multiprocessor Hard Real-Time Systems,”PDPTA 2002, pp. 809-815.

[7] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel,“Proportionate progress: A notion of
fairness in resource allocation,”Algorithmica , Volume 15, Number 6, pp. 600-625, June,
1996.

[8] P. Berman and B. DasGupta,“Improvements in Throughput Maximization for Real-Time
Scheduling,”Department of Computer Science, Yale University, New Haven,CT 06511,
January 31, 2000.

[9] S. A. Brandt, “Performance Analysis of Dynamic Soft Real-Time Systems,”The 20th
IEEE International Performance, Computing, and Communications Conference (IPCCC
2001), April, 2001.

[10] A. Burns, “Preemptive priority based scheduling: An appropriate engineering ap-
proach,” Technical Report, YCS-93-214, Department of Computer Science, university
of York, UK, 1993.

[11] A. Burns,“Scheduling hard real-time systems: A review,”Software Engineering Journal,
Number 5, May, 1991.

39

[12] G. C. Buttazzo,“Hard Real-Time Computing Systems: predictable schedulingalgorithms
and applications,”Springer company, 2005.

[13] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah,“A Catego-
rization of Real-time Multiprocessor Scheduling Problemsand Algorithms,”Handbook
of Scheduling: Algorithms, Models, and Performance Analysis, Edited by J. Y. Leung,
Published by CRC Press, Boca Raton, FL, USA, 2004.

[14] M. Chen and K. Lin,“A Priority Ceiling Protocol for Multiple-Instance Resources,” Proc.
of the Real-Time Systems Symposium, 1991.

[15] M. Chen and K. Lin,“Dynamic Priority Ceiling: A Concurrency Control Protocol for
Real-Time Systems,”Real-Time Systems Journal 2, 1990.

[16] R. K. Clark, “Scheduling Dependent Real-Time Activities,”PhD dissertation, Carnegie
Mellon Univ., 1990.

[17] L. Cucu, R. Kocik and Y. Sorel,“Real-time scheduling for systems with precedence,
periodicity and latency constraints,”RTS Embedded Systems 2002, Paris, 26-28 March,
2002.

[18] B. Dasgupta and M. A. Palis,“Online Real-Time Preemptive Scheduling of Jobs with
Deadlines on Multiple Machines,”Journal of Scheduling, Volume 4, Number 6, pp. 297-
312, November, 2001.

[19] D. A. El-Kebbe,“Real-Time Hybrid Task Scheduling Upon Multiprocessor Production
Stages,”International Parallel and Distributed Processing Symposium (IPDPS’03), Nice,
France, 22-26 April, 2003.

[20] G. Fohler, T. Lennvall, and G. Buttazzo,“Improved Handling of Soft Aperiodic Tasks in
Offline Scheduled Real-Time Systems using Total Bandwidth Server,” In Proceedings of
the 8th IEEE International Conference on Emerging Technologies and Factory Automa-
tion, Nice, France, October, 2001.

[21] W. Fornaciari, P. di Milano,“Real Time Operating Systems Scheduling Lecturer,”
www.elet elet.polimi polimi.it/ fornacia it/ fornacia.

[22] K. Frazer,“Real-time Operating System Scheduling Algorithms,”, 1997.

[23] S. Funk, J. Goossens, and S. Baruah,“On-line Scheduling on Uniform Multiprocessors,”
, 22nd IEEE Real-Time Systems Symposium (RTSS’01), pp. 183-192, London, England,
December, 2001.

40

[24] M. Garey, D. Johnson,“Complexity Results for Multiprocessor Scheduling under Re-
source Constraints,”SICOMP, Volume 4, Number 4, pp. 397-411, 1975.

[25] R. Gerber, S. Hong and M. Saksena, ,“GuaranteeingReal-Time Requirements with
Resource-Based Calibrationof Periodic Processes,”IEEE Transactions on Software En-
gineering, Volume 21, Number 7, July, 1995.

[26] J. Goossens and P. Richard,“Overview of real-time scheduling problems,”Euro Work-
shop on Project Management and Scheduling, 2004.

[27] W. A. Halang and A. D. Stoyenko,“Real Time Computing,”NATO ASI Series, Series F:
Computer and Systems Sciences, Volume 127, Springer-Verlagcompany, 1994.

[28] P. Holman and J. H. Anderson,“Using Supertasks to Improve Processor Utilization in
Multiprocessor Real-Time Systems,”15th Euromicro Conference on Real-Time Systems
(ECRTS’03), Porto, Portugal, 2-4 July, 2003.

[29] D. Isovic and G. Fohler,“Efficient Scheduling of Sporadic, Aperiodic and Periodic
Tasks with Complex Constraints,”In Proceedings of the 21st IEEE RTSS, Florida, USA,
November, 2000.

[30] M. Joseph,“Real-time Systems: Specification, Verification and Analysis,” Prentice Hall,
1996.

[31] S. Kodase, S. Wang, Z. Gu and K. G. Shin,“ Improving Scalability of Task Allocation
and Scheduling in Large Distributed Real-Time Systems Using Shared Buffers,”The 9th
IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 181-188,
2003.

[32] C. M. Krishna and K. G. Shin,“Real-Time Systems,”MIT Press and McGraw-Hill Com-
pany, 1997.

[33] P. A. Laplante,“Real-time Systems Design and Analysis, An Engineer Handbook,” IEEE
Computer Society, IEEE Press, 1993.

[34] S. Lauzac and R. Melhem,“An Improved Rate-Monotonic Admission Control and Its
Applications,” IEEE Transactions on Computers, Volume 52, Number 3, pp. 337-350,
March, 2003.

[35] J. Y.-T. Leung and J. Whitehead,“On the complexity of fixed priority scheduling of peri-
odic real-time tasks,”Performance Evaluation, Volume 2, pp. 237-250, 1982.

[36] P. Li and B. Ravindran,“Fast, Best-Effort Real-Time Scheduling Algorithms,”IEEE
Transactions on Computers, Volume 53, Number 9, pp. 1159-1175, September, 2004.

41

[37] C. L. Liu and J. W. Layland,“Scheduling Algorithms for Multiprogramming in Hard
Real-Time Environment,”Journal of the ACM , Volume 20, Number 1, pp. 46-61, 1973.

[38] C. D. Locke,“Best-Effort Decision Making for Real-Time Scheduling,”PhD dissertation,
Carnegie Mellon University, 1986.

[39] J. Luo and N. K. Jha,“Power-conscious Joint Scheduling of Periodic Task Graphs and
Aperiodic Tasks in Distributed Real-time Embedded Systems,” Proceedings of ICCAD,
pp. 357364, November, 2000.

[40] G. Manimaran and C. S. Ram Murthy,“An Efficient Dynamic Scheduling Algorithm for
Multiprocessor Real-Time Systems,”IEEE Transaction Parallel and Distributed Systems,
Volume 9, Number 3, pp. 312-319, March, 1998.

[41] F. W. Miller, “the Performance of a Mixed Priority Real-Time Scheduling Algorithm,”
Operating System Review, Volume 26, Number 4, pp. 5-13, October, 1992.

[42] M. Moir and S. Ramamurthy,“Pfair scheduling of fixed and migrating tasks on multi-
ple resources,”In Proceedings of the Real-Time Systems Symposium, IEEE Computer
Society Press, Phoenix, AZ, December, 1999.

[43] A. K. Mok, “Fundamental Design Problems of Distributed Systems for the Hard Real-
Time Environment,”Technical Report, Massachusetts Institute of Technology,June, 1983.

[44] A. K. Mok, “Fundamental Design Problems of Distributed Systems for the Hard Real-
Time Environment,”Ph.D. thesis. Department of Electronic Engineering and Computer
Sciences, Mass. Inst. Technol., Cambridge MA, May, 1983.

[45] C. Perkins,“Course Notes: Overview of Real-Time Scheduling, Real-Timeand Embedded
Systems (M) Lecture 3,”University of Glasgow, Department of Computing Science 2004-
2005 Academic Year.

[46] C. A. Phillips, C. Stein, E. Torng, and J. Wein,“Optimal time-critical scheduling via
resource augmentation,”In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pp. 140-149, El Paso, Texas, 4-6 May, 1997.

[47] S. Schneider,“Concurrent and Real-time systems, The CSP Approach,”John Wiley and
Sons LTD, 2000.

[48] G. Quan, L. Niu, J. P. Davis,“Power Aware Scheduling for Real-Time Systems with (m;
k)-Guarantee,”CNDS, 2004.

42

[49] , K. Sandstrm and C. Norstrm,“ Managing Complex Temporal Requirements in Real-
Time Control Systems,”The 9th IEEE Conference on Engineering of Computer-Based
Systems, pp. 81-84, Sweden, 2002.

[50] L. Sha, R. Rajkumar and J. P. Lehoczky,“Priority Inheritance Protocol; an Approach to
Real-Time Synchronization,”IEEE Transactions on Computers, Volume 39, Number 9,
1990.

[51] K. G. Shin and Y. Chang,“A Reservation-Based Algorithm for scheduling Both Periodic
and Aperiodic Real-Time Tasks,”IEEE Transactions on Computers, Volume 44, Number
12, pp. 1405-1419, December, 1995.

[52] H. Singh,“Scheduling Techniques for real-time applications consisting of periodic task
sets,” In Proceedings of the IEEE Workshop on Real-Time Applications, pp. 12-15 , 21-
22 July, 1994.

[53] B. Sprunt,“Aperiodic Task Scheduling for Real-Time Systems,”Ph.D. Thesis, Department
of Electrical and Computer Engineering Carnegie Mellon University, August, 1990.

[54] B. Sprunt, J. Lehoczky, and L. Sha,“Exploiting Unused Periodic Time For Aperiodic
Service Using the Extended Priority Exchange Algorithm,”In Proceedings of the 9th
Real-Time Systems Symposium, pp. 251-258. IEEE, Huntsville, AL, December, 1988.

[55] M. Spuri and G. C. Buttazzo,“Efficient Aperiodic Service under Earliest Deadline
Scheduling,”In Proceedings IEEE Real-Time Systems Symposium, pp. 2-11,San Juan,
Puerto Rice, 7-9 December, 1994.

[56] M. Spuri and G. Buttazzo,“Scheduling Aperiodic Tasks in Dynamic Priority Systems,”
The Journal of Real-Time Systems.

[57] M. Spuri, G. Buttazzo, nd F. Sensini,“Robust Aperiodic Scheduling under Dynamic Pri-
ority Systems,”In Proceedings IEEE Real-Time Systems Symposium, pp. 210-219, Pisa,
Italy, 5-9 December, 1995.

[58] M. Spuri and J. A. Stankovic,“How to Integrate Precedence Constraints and Shared Re-
sources in Real-Time Scheduling,”IEEE Transactions on Computers, Volume 43, Number
12, pp. 1407-1412, December, 1994.

[59] J. A. Stankovic and K. Ramamritham, ,“Tutorial Hard Real-Time Systems,”IEEE Com-
puter Society Press, 1988.

43

[60] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo, “Deadline Schedul-
ing for Real-Time Systems, EDF and related algorithms,”Kluwer Academia Publishers,
1998.

[61] T. Tia, J. W. Liu, and M. Shankar,“Algorithms and Optimality of Scheduling Soft Aperi-
odic Request in Fixed Priority Preemptive Systems,”The Journal of Real-Time Systems,
Volume 10, Number 1, pp. 23-43, January, 1996.

[62] J. Wang, B. Ravindran, and T. Martin,“A Power-Aware, Best-Effort Real-Time Task
Scheduling Algorithm,”IEEE Workshop on Software Technologies for Future Embed-
ded Systems p. 21.

[63] Z. Xiangbin and T. Shiliang,“An improved dynamic scheduling algorithm for multipro-
cessor real-time systems,”PDCAT’2003. In Proceedings of the Fourth International Con-
ference on Publication, pp. 710- 714, 27-29 August, 2003.

[64] M. Xiong, K.-Y. Lam and B. Liang,“Quality of Service Gaurantee for Temporal Consis-
tency of Real-Time Objects,”The 24th IEEE Real-time System Symposium (RTSS2003),
Cancun, Mexico, December, 2003.

[65] http://www.netrino.com/Publications/Glossary/PriorityInversion.html

[66] http://www.ee.umd.edu/serts/bib/thesis/dstewart2.pdf

[67] http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume4/hogg96a-html/node2.html

[68] http://www.cs.pitt.edu/ melhem/courses/3530/L1.pdf

[69] http://www.omimo.be/encyc/publications/faq/rtfaq.htm

[70] http://c2.com./cgi/wiki?RealTime

44

Appendix: Examples

In this chapter we present the timing diagrams of the schedules provided by some real-time
scheduling algorithms, namely the earliest deadline first (EDF), the rate-monotonic (RM), and
the least laxity first (LLF) algorithms, on two given sets of tasks.

Period Computation time First invocation time Deadline
τ1 2 0.5 0 2
τ2 6 2 1 6
τ3 10 1.8 3 10

Table 2: The repetition periods, computation times, and deadlines of the tasksτ1, τ2 andτ3 for
Example A.1

1!
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 4: The timing diagram of taskτ1 defined in Table 2, before scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2!

Figure 5: The timing diagram of taskτ2 defined in Table 2, before scheduling

Example A.1: Consider a system consisting of three tasksτ1, τ2 and τ3, that have the
repetition periods, computation times, the first invocation times and deadlines defined in Table
2. The deadlineDi of each taskτi is Pi and tasks are preemptive. Figures 4, 5 and 6 present
the timing diagram of each taskτ1, τ2 andτ3, respectively, before scheduling.

• Earliest deadline first algorithm

45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3!

Figure 6: The timing diagram of taskτ3 defined in Table 2, before scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2!
1!

3!

Figure 7: The timing diagram of the schedule provided by any of the earliest deadline first, rate
monotonic, least laxity first algorithms on the tasks set defined in Table 2

Figure 7 presents a portion of the timing diagram of the schedule provided by the EDF
algorithm on the tasks set defined in Table 2. Between time interval 0 and 17 we observe
that no deadline is missed.

• Rate monotonic algorithm

As shown in Figure 7, if we schedule the tasks set by the RM algorithm, no deadline is
missed between time interval 0 and 17.

• Least laxity first algorithm

Similar to the previous two scheduling algorithms, the least laxity first algorithm pro-
vides a schedule such that all deadlines are met between timeinterval 0 and 17 (see
Figure 7).

For Example A.1, the timing diagrams of the schedules provided by the earliest deadline
first, rate monotonic, and least laxity first algorithms happen to be the same, as indicated in
Figure 7.

46

Period Computation time First invocation time Deadline
τ1 2 0.5 0 2
τ2 6 4 1 6
τ3 3 1.8 3 10

Table 3: The repetition periods, computation times and deadlines of the tasksτ1, τ2 andτ3 for
Example A.2

1!
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 8: The timing diagram of taskτ1 defined in Table 3, before scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2!

Figure 9: The timing diagram of taskτ2 defined in Table 3, before scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
3!

Figure 10: The timing diagram of taskτ3 defined in Table 3, before scheduling

Example A.2: Consider a system consisting of three tasksτ1, τ2 and τ3, that have the
repetition periods, computation times, first invocation times and deadlines defined in Table
3. The tasks are preemptive. The timing diagrams in Figures 8, 9 and 10 present the timing
diagram of each taskτ1, τ2 andτ3, respectively, before scheduling.

47

• Earliest deadline first algorithm

As presented in Figure 11, the uniprocessor real-time system consisting of the tasks
set defined in Table 3 is not EDF-schedulable, because while the execution of the first
invocation of the taskτ2 is not finished yet, the new invocation of the task arrives. In
other words, an overrun condition happens.

Overrun

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2!
1!

3!

Figure 11: The timing diagram of the schedule provided by theearliest deadline algorithm on
the tasks set defined in Table 3

• Rate monotonic algorithm

As shown in Figure 12, the uniprocessor real-time system consisting of the tasks set
defined in Table 3 is not RM-schedulable. The reason is that the deadline of the first
invocation of the taskτ3 is missed. The execution of the first invocation is required to be
finished by time 6, but the schedule could not make it.

• Least laxity first algorithm

Figure 13 presents a portion of the timing diagram of the schedule provided by the least
laxity first algorithm on the tasks set defined in Table 3. As shown in the figure, the
deadline of the third invocation of the taskτ1 can not be met. we conclude that the
uniprocessor real-time system consisting of the tasks set defined in Table 3 is not LLF-
schedulable.

48

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Missing deadline2!
1!

3!

Figure 12: The timing diagram of the schedule provided by therate monotonic algorithm on
the tasks set defined in Table 3

Missing deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2!
1!

3!

Figure 13: The timing diagram of the schedule provided by theleast laxity first algorithm on
the tasks set defined in Table 3

49

