Technical Report No. 2005-499
Scheduling Algorithms for Real-Time Systems

Arezou Mohammadi and Selim G. Akl

School of Computing
Queen’s University
Kingston, Ontario
Canada K7L 3N6
E-mail:{arezou, akl}@cs.queensu.ca

July 15, 2005

Abstract

The problem of real-time scheduling spans a broad spectrum of algoritomssfm-
ple uniprocessor to highly sophisticated multiprocessor scheduling algorithmghis
paper, we study the characteristics and constraints of real-time tasks wshucid be
scheduled to be executed. Analysis methods and the concept of optimalitiacritkeich
leads to design appropriate scheduling algorithms, will also be addrélsed, we study
real-time scheduling algorithms for uniprocessor systems, which can ldiinto two
major classes: off-line and on-line. On-line algorithms are partitioned intorestagic
or dynamic-priority based algorithms. We discuss both preemptive angremmptive
static-priority based algorithms. For dynamic-priority based algorithms, way sttue
two subsets; namely, planning based and best effort scheduling afgsrithome of the
uniprocessor scheduling algorithms are illustrated by examples in the Appdvidlti-
processor scheduling algorithms is another class of real-time schedulmglaigs which
is discussed in the paper as well. We also describe techniques to deal wiithdapand
sporadic tasks, precedence constraints, and priority inversion.

*This work was supported by the Natural Sciences and EngimgBResearch Council of Canada.

1 Real-Time Systems

1.1 Introduction

In the physical world, the purpose of a real-time system iBawee a physical effect within a
chosen time-frame. Typically, a real-time system con@i$ts controlling system (computer)
and a controlled system (environment). The controllingeysinteracts with its environment
based on information available about the environment. @abtrme computer, which controls
a device or process, sensors will provide readings at pieriatervals and the computer must
respond by sending signals to actuators. There may be uctexper irregular events and
these must also receive a response. In all cases, thereendlltime bound within which the
response should be delivered. The ability of the computerdet these demands depends on its
capacity to perform the necessary computations in the gives If a number of events occur
close together, the computer will need to schedule the ctatipas so that each response is
provided within the required time bounds. It may be that,nese, the system is unable to
meet all the possible unexpected demands. In this case wbaahe system lacks sufficient
resources; a system with unlimited resources and capalpl®oéssing at infinite speed could
satisfy any such timing constraint. Failure to meet therigrgonstraint for a response can have
different consequences; there may be no effect at all, cgffeets may be minor or correctable,
or the results may be catastrophic. Each task occurring @abtime system has some timing
properties. These timing properties should be considetezhvgcheduling tasks on a real-time
system. The timing properties of a given task refer to thievahg items [30, 33, 59, 21]:

¢ Release timéor ready timé@: Time at which the task is ready for processing.

e Deadline Time by which execution of the task should be completedrdfie task is
released.

e Minimum delay Minimum amount of time that must elapse before the exenutifcthe
task is started, after the task is released.

e Maximum delay Maximum permitted amount of time that elapses before tlee@ton
of the task is started, after the task is released.

e \Worst case execution tim&aximum time taken to complete the task, after the task is
released. The worst case execution time is also referred theavorst case response
time

¢ Run time Time taken without interruption to complete the task, iafe task is released.

e Weight(or priority): Relative urgency of the task.

Real-time systems span a broad spectrum of complexity frempsimple micro-controllers
to highly sophisticated, complex and distributed systegmne examples of real-time systems
include process control systems, flight control systemgijlile manufacturing applications,
robotics, intelligent highway systems, and high speed ankimedia communication systems
[30, 33,59, 26, 12, 5, 21, 47].

The objective of a computer controller might be to commarrtbots to move parts from
machines to conveyors in some required fashion withouiding with other objects. If the
computer controlling a robot does not command it to stop an o time, the robot might
collide with another object on the factory floor.

A real-time system will usually have to meet many demandiwia limited time. The
importance of the demands may vary with their nature (e.cafatgrelated demand may be
more important than a simple data-logging demand) or wighttitme available for a response.
So the allocation of the system resources needs to be plaortbdt all demands are met by the
time of their respective deadlines. This is usually donagisi scheduler which implements a
scheduling policy that determines how the resources ofytbies are allocated to the program.
Scheduling policies can be analyzed mathematically sori@gion of the formal specification
and program development stages can be complemented by ametbal timing analysis of
the program properties [30, 59, 12].

With large and variable processing loads, it may be necgs¢edrave more than one pro-
cessor in the system. If tasks have dependencies, calgutask completion times on a multi-
processor system is inherently more difficult than on a sifgbcessor system.

The nature of the application may require distributed cotmgyl with nodes connected by
communication lines. The problem of finding completion tiiethen even more difficult, as
communication between tasks can now take varying times [59]

1.2 Real-Time Systems

In this section we present a formal definition of real-timstsyns. As we mentioned in Section
1.1, real-time systems are defined as those systems in wiechadrrectness of the system
depends not only on the logical result of computation, bs ain the time at which the results
are produced. If the timing constraints of the system arenmet;, system failure is said to
have occurred. Hence, it is essential that the timing camgs of the system are guaranteed to
be met. Guaranteeing timing behavior requires that theesy$tepredictable Predictability
means that when a task is activated it should be possible¢omime its completion time with
certainty. Itis also desirable that the system attain a begree of utilization while satisfying
the timing constraints of the system [59, 33, 30, 12, 5].

It is imperative that the state of the environment, as reszeby the controlling system, be
consistent with the actual state of the environment. Otlserwthe effects of the controlling

systems’ activities may be disastrous. Therefore, pesioabnitoring of the environment as
well as timely processing of the sensed information is neagg59, 30].

A real-time application is normally composed of multipleka with different levels of crit-
icality. Although missing deadlines is not desirable in al#ttme systemsoft real-time tasks
could miss some deadlines and the system could still wontectly. However, missing some
deadlines for soft real-time tasks will lead to paying péeal On the other handhard real-
time taskscannot miss any deadline, otherwise, undesirable or fasailts will be produced in
the system. There exists another group of real-time tasksgelyfirm real-time taskswhich
are such that the sooner they finish their computations beffi@ir deadlines, the more rewards
they gain [30, 59, 33].

We can formally define a real-time system as follows.

Consider a system consisting of a set of tagksy {r, 7, ..., 7.}, where the worst case
execution time of each task € T'is C;. The system is said to be real-time if there exists at
least one task; € 7', which falls into one of the following categories:

(1) Taskr; is ahard real-time task. That is, the execution of the taslshould be completed
by a given deadlind;; i.e.,C; < D,.

(2) Taskr; is asoft real-time task. That is, the later the taskfinishes its computation after
a given deadliné;, the more penalty it pays. A penalty functiétir;) is defined for the
task. IfC; < D;, the penalty functior(r;) is zero. Otherwise”(r;) > 0. The value of
P(7;) is an increasing function af; — D;.

(3) Taskr; is afirm real-time task. That is, the earlier the taskfinishes its computation
before a given deadlinB;, the more rewards it gains. A reward functi@r;) is defined
for the task. IfC; > D;, the reward functior(7;) is zero. Otherwise?(r;) > 0. The
value of R(7;) is an increasing function ap; — C;.

The set of real-time tasks = {7y, 7, ..., 7, } can be a combination of hard, firm, and soft
real-time tasks.

Let Ts be the set of all soft real-time tasksihi.e.,Ts = {751,752, ..., Ts; } With 75; € T..
The penalty function of the system is denoted®y"), where

l

P(T) = Z P(7s;)

=1
Let T be the set of all firm real-time tasks ifi; i.e., Tp = {7r1, Tr2, ..., Trr} With
7r; € T. The reward function of the system is denoted/tff’), where
k

R(T) =>_ R(r;)

=1

4

1.3 Problems That Seem Real-Time but Are Not

Sometimes the concept of real-time is misunderstood. Thenfimg cases are given to clarify
this [69, 70].

e One will occasionally see references to “real-time” systemen what is meant is “on-
line”, or “an interactive system with better response tirhant what we used to have”.
This is not always correct. For instance, a system intargatith a human and waiting
for a person’s response is not real-time. This is becaussystem is interacting with a
human who can tolerate hundreds of milliseconds of delaytsowt a problem. In other
words, since no deadline is given for any task, it is not a-tiea¢ system.

A real-life example is standing in a line waiting for the ckeat in a grocery store. If
the line can grow longer and longer without bound, the chatkwoocess is not real-
time. But, if the length of the line is bounded, customersusthde served and output
as rapidly, on average, as they arrive into the line. Thegrawst lose business or pay
a penalty if the line grows longer than the determined boundhis case the system is
real-time. The deadline of checkout process depends on #éixemam length given for
the line and the average serving time for each costumer.

¢ In digital signal processing (DSP), if a process requir€d 2econds to analyze or pro-
cess 2.00 seconds of sound, it is not real-time. If it tak88 $econds, it is (or can be
made into) a real-time DSP process.

e One will also see references to real-time systems when ghaeant is just “fast”. It
might be worth pointing out that “real-time” is not necesiyasynonymous with “fast”.
For example consider a robot that has to pick up something ia@onveyor belt. The
object is moving, and the robot has a small window of time tk i up. If the robot is
late, the object won't be there anymore, and thus the jobhaie been done incorrectly,
even though the robot went to the right place. If the robobsearly there, the object
won'’t be there yet, and the robot may block it.

1.4 Real-Time Scheduling

For a given set of jobs, the general scheduling problem amkarf order according to which
the jobs are to be executed such that various constrainsatisfied. Typically, a job is charac-
terized by its execution time, ready time, deadline, andus=e requirements. The execution
of a job may or may not be interrupted (preemptive or non-mietere scheduling). Over the
set of jobs, there is a precedence relation which consttam®rder of execution. Specially,
the execution of a job cannot begin until the execution ofitalbredecessors (according to

the precedence relation) is completed. The system on whehobs are to be executed is
characterized by the amounts of resources available [2B3&32, 27, 12].
The following goals should be considered in scheduling ktreee system: [30, 32, 27].

e Meeting the timing constraints of the system
e Preventing simultaneous access to shared resources acdsiev

e Attaining a high degree of utilization while satisfying ttiming constraints of the sys-
tem; however this is not a primary driver.

¢ Reducing the cost of context switches caused by preemption

e Reducing the communication cost in real-time distributgstesms; we should find the
optimal way to decompose the real-time application intollmnportions in order to have
the minimum communication cost between mutual portionsH{g®rtion is assigned to
a computer).

In addition, the following items are desired in advanced-tigae systems:

e Considering a combination of hard, firm, and soft real-timgvéees, which implies the
possibility of applying dynamic scheduling policies thaspect the optimality criteria.

e Task scheduling for a real-time system whose behavior isuwhycally adaptive, recon-
figurable, reflexive and intelligent.

e Covering reliability, security, and safety.

Basically, the scheduling problem is to determine a scleettulthe execution of the jobs
so that they are all completed before the overall deadli@e39, 30, 32, 27, 12].

Given a real-time system, the appropriate scheduling ambrahould be designed based
on the properties of the system and the tasks occurring inhiese properties are as follows
[22, 59, 30, 32]:

o Soft/Hard/Firm real-time tasks

The real-time tasks are classified as hard, soft and firmtie<asks. This is described
in Section 1.2.

e Periodic/Aperiodic/Sporadic tasks

Periodic tasks are real-time tasks which are activateeédssd) regularly at fixed rates
(periods). Normally, periodic tasks have constraints Wwhitdicates that instances of
them must execute once per peribd

Aperiodic tasks are real-time tasks which are activatesyjutarly at some unknown and
possibly unbounded rate. The time constraint is usuallyaalliee D.

Sporadic tasks are real-time tasks which are activatedufagly with some known

bounded rate. The bounded rate is characterized by a minim@marrival period, that

is, @ minimum interval of time between two successive atitva. The time constraints
is usually a deadlin®.

An aperiodic task has a deadline by which it must start orHiingg it may have a con-
straint on both start and finish times. In the case of a peritadik, a period means once
per periodP or exactlyP units apart. A majority of sensory processing is periodinan
ture. For example, a radar that tracks flights produces daéixed rate [32, 29, 27, 12].

Preemptive/Non-preemptive tasks

In some real-time scheduling algorithms, a task can be ppesanif another task of
higher priority becomes ready. In contrast, the executiarmn-preemptive task should
be completed without interruption, once it is started [32, 37, 12].

Multiprocessor/Single processor systems

The number of the available processors is one of the maiorfaat deciding how to
schedule a real-time system. In multiprocessor real-tigstesns, the scheduling algo-
rithms should prevent simultaneous access to shared rEsoaind devices. Additionally,
the best strategy to reduce the communication cost shoybddveded [32, 27].

Fixed/Dynamic priority tasks

In priority driven scheduling, a priority is assigned to baask. Assigning the priorities
can be done statically or dynamically while the system isimig [22, 59, 30, 32, 12].

Flexible/Static systems

For scheduling a real-time system, we need to have enougimation, such as deadline,
minimum delay, maximum delay, run-time, and worst case @kac time of each task.
A majority of systems assume that much of this informatioavailable a priori and,
hence, are based on static design. However, some of thémeatystems are designed
to be dynamic and flexible [22, 59, 30, 32, 12].

| ndependent/Dependent tasks

Given a real-time system, a task that is going to start eiacubay require to receive
the information provided by another task of the system. &fuge, execution of a task
should be started after finishing the execution of the okt This is the concept of de-
pendency. The dependent tasks use shared memory or conateudata to transfer the

information generated by one task and required by the other/hile we decide about
scheduling of a real-time system containing some depertdsks, we should consider
the order of the starting and finishing time of the tasks [Z2,3, 32].

1.5 Overview

This paper is organized as follows.

Section 2 contains a description of the process of modebadrtime problems, defining
their optimality criteria, and providing the appropriateheduling algorithms.We also study
the two most popular algorithms that optimally schedulgtotessor real-time systems.

In Section 3, the real-time scheduling algorithms are diass We study off-line/on-
line scheduling algorithms for uniprocessor/multiprasm@spreemptive/non-preemptive fixed-
priority/dynamic-priority systems. We also present sofgedthms as examples for the classes
of the algorithms.

In Section 4, we discuss some techniques to deal with pracedsonditions, priority in-
version, aperiodic and sporadic tasks while schedulingtnee systems.

Finally, Section 5 contains conclusions and some suggestibopen problems for future
research.

In the Appendix, some of the real-time scheduling algorghare illustrated using exam-
ples.

2 Methods and Analysis

2.1 Motivation

One concern in the analysis and development of strategig¢agk scheduling is the question
of predictability of the system’s behavior. The concept kdictability was defined in Section
1.2. If there is no sufficient knowledge to predict the syssdmehavior, especially if deadlines
have to be met, the only way to solve the problem is to assurperdgunds on the process-
ing times. If all deadlines are met with respect to these uppends, no deadlines will be
exceeded for the real task processing times. This appr@acfian used in a broad class of
computer control systems working in real-time environnsgmthere a certain set of control
programs must be processed before taking the next sampiethe same sensing device. In
the following sections, we study some of the methods andhiqaks that are used to model
real-time problems, define their optimality criteria, amdyde the appropriate scheduling al-
gorithms [30, 32].

2.2 Scheduling Models and Problem Complexity

The scheduling problems considered in this paper are cteaized by a set ofasksT =
{m,72,...,7»} and a set oprocessors (machines) = {m,m,..., 7, } on which the tasks
are to be processed. Besides processors, tasks may requa @dditionaresourcesk =
{R1, Ry, ..., Ry} during their execution. Scheduling, generally speakingans the assignment
of processors fromr and resources fromk to tasks fronil” in order to complete all tasks under
certain imposed constraints. In classical schedulingrihiéas also assumed that each task is
to be processed by at most one processor at a time and ea@sgoocs capable of processing
at most one task at a time [27].

We begin with an analysis of processots,= {m,m,...,m»}. There are three differ-
ent types of multiprocessor systemidentical processorsuniform processorsndunrelated
processorsThey are discussed in Section 3.2.

By an additional resourcenve understand a “facility”, besides processors, for whioh t
tasks compete.

Let us now consider the assumptions associated with thesetsk. In general, a task
7; € T'is characterized by the following data.

o Release timé&?;; if the ready times are the same for all tasks frémthenR; = 0 is
assumed for alj.

e Completion timeC);
¢ DeadlineD;; usually, penalty functions are defined in accordance wegwdines.
o Priority w;

e Precedence constrainmong tasks.7; < 7; means that the processing gf must
be completed before; can be started. In other words, setis partially ordered by a
precedence relatior. The tasks in sel’ are calleddependenif the order of execution
of at least two tasks ifi" is restricted by their relation. Otherwise, the tasks ateeda
independent

The following parameters can be calculated for each task= 1,2, ..., n processed in a
given schedule:

e FlowtimeF; = C; — R; being the sum of waiting and processing times
e Latenesd; = C; — D;

e TardinessK; = maz{C; — D;,0}

Next, some definitions concernisghedulesndoptimality criteriaare discussed.
A schedule is an assignment of processors fromrg@ind possibly resources from s}
to tasks from sef’ in time such that the following conditions are satisfied:

e At every moment each processor is assigned to at most onetaskach task is pro-
cessed by at most one processor.

e The timing constraints of tasks in sBtare considered.

e If taskst; and;, 7,5 = 1,2,...,n are in relationr; < 7;, the processing of; is not
started before; has been completed.

e A schedule is callegreemptivef each task may be preempted at any time and restarted
later at no cost, perhaps on another processor. If preemistioot allowed we will call
the schedul@on-preemptive

e Resources constraints are satisfied.

Depending on the type of application we are confronted vdiffierent performance mea-
suresor optimality criteriaare used to evaluate schedules. Among the most common rasasur
in scheduling theory arschedule length (makespafi),,, = maz{C;}, andmean flow time
F = 1Y% | F; or mean weighted flow timé&, = (X7_, Fw;)/(X}_, w;). Minimizing
scheduling length is important from the viewpoint of the @vof a set of processors or ma-
chines, since it leads to both, the maximization of the pece utilization within makespan
Chnaz, @nd the minimization of the maximum in-process time of ttigeslule set of tasks. The
mean flow timeeriterion is important from the user’s viewpoint since itgnimization yields
a minimization of the mean response time and the mean irepsoitme of the scheduled task
set.

In real-time applications, performance measures are Usdddke lateness or tardiness of
tasks into account. Examples are theximum lateness,,,,., = maz{L;}, the number of
tardy tasksY” = >°7_, Y}, whereY; = 1, if C; > D;, and0 otherwise, or theveighted number
of tardy tasksY,, = Y7, w;Y;, themean tardinessi = 137, K; or themean weighted
tardinessk,, = (X7, w; K;)/(Xj-, w;). These criteria involving deadlines are of great im-
portance in many applications. These criteria are also gififitance in computer control
systems working in a real-time environment since their mination leads to the construction
of schedules with no late task whenever such schedulesogxist task is not finished on time,
the yet unprocessed part of it contributes to the schedlile hat has to be minimized.

A schedule for which the value of a particular performancesogey is at its minimum
will be calledoptimal and the corresponding value oiwill be denoted byy*.

Now we define ascheduling problenas a set of parameters as described above, together
with an optimally criterion.

10

The criteria mentioned above are basic in the sense thatréagyre specific approaches
to the construction of schedules. A scheduling algorithrmnsalgorithm which constructs a
schedule for a given problem.

Scheduling problems belong to the broad classarhbinatorial search problemsCom-
binatorial search is among the hardest of common computtfgroblems: the solution time
can grow exponentially with the size of the problem [67, 32]. 2We are given a set of
variables each of which can be assiggabssible values. The problem is to find an assign-
ment for each variable that together satisfy some speciiedteaints. Fundamentally, the
combinatorial search problem consists of finding those doaiions of a discrete set of items
that satisfy specified requirements. The number of possitaebinations to consider grows
very rapidly (e.g., exponentially or factorially) with tmeimber of items, leading to potentially
lengthy solution times and severely limiting the feasillee 0f such problems. Because of
the exponentially large number of possibilities it appdérmsugh no one knows for sure) that
the time required to solve such problems must grow expoalktin the worst case. These
problems form the well-studied class of NP-hard problenT§.[2

In general, we are interested in optimization algorithms,decause of the inherent com-
plexity of many problems of that type, also approximatiorheuristic algorithms are applied.
It is rather obvious that very often the time available fdvgay particular scheduling problems
is seriously limited so that only low order polynomial-tirakgorithms can be applied [27].

2.3 A Simple Model

Let us consider a simple real-time system containing a geribard real-time task which
should be processed on one processor [30]. The task doesquote any extra resource. The
priority of the task is fixed.

We define a simple real-time program as follows: Progrdmeceives an event from a
sensor every units of time (i.e. thenter-arrival timeis P). A task is defined as the processing
of an event. In the worst case the task requiresnits of computation time. The execution
of the task should be completed Bytime units after the task starts. I} < C, the deadline
cannot be met. I < D, the program must still process each event in a tsmg if no events
are to be lost. Thus the deadline is effectively bounde@®tand we need to handle only those
cases wheré' < D < P [59, 30, 32].

Now consider a program which receives events friovo sensors. Inputs from Sensor 1
come everyP; time units and each need§ time units for computation; events from Sensor
2 come everyP, time units and each need$ time units. Assume the deadlines are the same
as the periods, i.eP; time units for Sensor 1 angb, time units for Sensor 2. Under what
conditions will these deadlines be met?

More generally, if a program receives events frarsuch devices, how can it be determined

11

if the deadline for each device will be satisfied?

Before we begin to analyze this problem, we first express ssum@ptions as follows. We
assume that the real-time program consists of a numbedependent taskfat do not share
data or communicate with each other. Also, we assume thatteak is periodically invoked
by the occurrence of a particular event [30, 32]. The systasidne processor; the system
periodically receives events from the external environtraard these are not buffered. Each
event is an invocation for a particular task. Note that evenay be periodically produced
by the environment or the system may have a timer that pedigicreates the events. The
processor is idle when it is not executing a task.

Let the tasks of progran® be 1,7, 73, ..., 7,. Let the inter-arrival timer, operiod, for
invocation to task; be P, and the computation time for such invocationde

2.3.1 Scheduling for the Simple Model

One way to schedule the program is to analyze its taskiscally and determine their timing
properties. These times can be used to credigeal schedulingable according to which
tasks will be dispatched for execution at run-time [22, 39,3, 27, 12]. Thus, the order of
execution of tasks is fixed and it is assumed that their ei@ttitnes are also fixed.

Typically, if tasksry, 7, ..., 7,, have periods?, P, P, ..., P, the table must cover schedul-
ing for length of time equal to tHeast common multiplef the periods, i.elem{ Py, Ps, ..., P, },
as that is the time in which each task will have an integral Ip@inof invocations. If any of the
P; are co-primes, this length of time can be extremely large Bere possible it is advisable
to choose values aP; that are small multiples of a common value. We defirig/per-period
as the period equal to the least common multiple of the pstQdPs, ..., P, of then periodic
tasks.

Static scheduling has the significant advantage that ther ofdexecution of tasks is deter-
minedoff-line (before the execution of the program), so the run-time sglegloverheads can
be very small. But it has some major disadvantages. Thiswudsed in Section 3.1.

In scheduling terms, ariority is usually a positive integer representing the urgency or
importance assigned to an activity. By convention, the micgas in inverse order to the nu-
meric value of the priority, and priority 1 is the highestédwf priority. We shall assume here
that a task has a single, fixed priority. We can consider tHevitng two simple scheduling
disciplines:

Non-preemptive priority based executiohthen the processor is idle, the ready task with
the highest priority is chosen for execution; once choseaslais run to completion.

Preemptive priority based executiolVhen the processor is idle, the ready task with the
highest priority is chosen for execution; at any time, exiecuof a task can be preempted if a
task of higher priority becomes ready. Thus, at all timegttoeessor is either idle or executing
the ready task with the highest priority.

12

| Overrun here
I
1 1 | I |

]

[y
>
]

e - — - — —

T 1
| |
| |
1213

[S I ——
'S

Figure 1: Priorities without preemption

Priority Period Computation time

1 1 7 2
T 2 16 4
T3 3 31 7

Table 1: The priorities, repetition periods and computatimes of the tasks;, 7, and s for
Example 2.1

Example 2.1 ([32]): Consider a program with 3 tasks, 7, andrs, that have the priorities,
repetition periods and computation times defined in Tableet the deadline); for each task
7; be P;. Assume that the tasks are scheduled according to pr&ritigh no pre-emption, as
shown in Figure 1. The arrows in the figure represent the iatron times of the tasks.

If all three tasks have invocations @ine = 0, taskr; will be chosen for execution as it
has the highest priority. When it has completed it executiask will be executed until its
completion atime = 6.

At that time, only taskr; is ready for execution and it will execute fromime = 6 to
time = 13, even though an invocation comes for taglattime = 7. So there is just one unit
of time for taskr; to complete its computation requirement of two units andés invocation
will arrive before processing of the previous invocatiorasnplete.

In some cases, the priorities allotted to tasks can be ussdi¥e such problems; in this
case, there is no allocation of priorities to tasks underciwhaskr; will meet its deadline.
If we keep drawing the timing diagram represented in Figyred can observe that between
time = 15 andtime = 31 (at which the next invocation for task will arrive) the processor is
not always busy and task does not need to complete its execution utitibe = 31. If there
were some way of making the processor available to tasksd » when needed and then

13

returning it to taskrs, they could all meet their deadlines.

[B
[R
[R
|
.
[R
[R
I R

[N | |
[N | |
[N | |
[N | |
" t
[[| |
[1 L T T L N |
’_A_I_A_'									[_A_._._I		
T2 | | | N N L | | | | !
Y T T T T T T T T T T T T T
L L L N I e T
L T e T e e O (O TR T B
T T T e O O (O TR T
[R B |_| | ’_._._‘_._| | Y T
[R T B | [
T3 N R S T S — I : : —
e e
T T T T T e O S (O T T S
L T e o e e O (O T T R
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2: Priorities with preemption

This can be done using priorities with preemption: execubbtaskr; will then be pre-
empted atime = 7, allowing taskr; to complete its execution atme = 9 (Figure 2). Process
T3 IS preempted once more by taskattime = 14 and this is followed by the next execution
of taskm, from time = 16 to time = 20 before taskr; completes the rest of its execution at
time = 21.

2.4 Methods of Analysis

Timing diagrams provide a good way to visualize and even loutate the timing properties
of simple programs. But they have obvious limits, not ledstloich is that a very long time
might be required to reach the point that a deadline is miss§#tecking the feasibility of a
uniprocessor periodic real-time scheduling algorithm,veed to keep drawing some timing
diagrams for a duration that is equal to the least commonipheilof the periods [30, 27].

A better method of analysis would be to derive conditions @oshtisfied by the timing
properties of a program for it to meet its deadlines. Leimaplementatiorronsist of a hardware
platform and the scheduler under which the program is execu&n implementation is called
feasibleif every execution of the program will meet all its deadlin&ge should look for the
conditions that areecessaryo ensure that an implementation is feasible. The aim is t fin
necessary conditions that are adficien so that if they are satisfied, an implementation is
guaranteed to be feasible [22, 59, 30, 32, 27].

It is shown in [30, 32] how we can examine the conditions thiatreecessary so that we
make sure that the scheduling is feasible. We should finddhditton to ensure that the total
computation time needed for the task, and for all those dfdrigpriority, is smaller than the
period of each task. If we assume tHafP;, 1 < j < ¢ — 1, represents an integer division,

14

then we can say that there arg/ P; invocations for task?; in the time P, and each invocation
will need a computation time af’;. However, if P, is not exactly divisible by?;, then either
| P,/ P;] is an overestimate of the number of invocationg By/F; | is an underestimate. We
avoid the approximation resulting from integer divisiondonsidering an interval/; which is
theleast common multiplef all periods up taP;:

Mi = lcm({Pla P2a 7PZ})

Therefore, as shown in [30, 32], we can conclude that thessarg condition to make sure
that the scheduling is feasible is:

JZ;(OJ’ < ®

Since M; is exactly divisible by allP;, j < i, the number of invocations at any levgl
within A/; is exactlyM; /M;.

Equation (1) is thd.oad Relationand must be satisfied by any feasible implementation.
However, this conditiomverageghe computational requirements over eaeh period.

Example 2.2 ([32]): Consider a program with two tasks andr, that have the priorities,
repetition periods and computation times defined as folldves the deadlineD, for each task
7; be equal taP;.

Priority Period Computation time
T 1 12 5
To 2 4 2

Since the computation time of task exceeds the period of task, the implementation is
infeasible, though it does satisfy condition (1).

Actually, condition (1) fails to take account of an importaequirement of any feasible
implementation. Not only thaveragdoad must be smaller than 1 over the inter¥al, but the
load must at all times be sufficiently small for the deadlittelse met. More precisely, if at any
time ¢ there areu time units left for the next deadline at priority levielthe total computation
requirement at time for level i and all higher levels must be smaller thanBut while on the
one hand it is necessary that at every instant there is ®rfficomputation time remaining for
all deadlines to be met, it is important to remember that andeadline at levelhas been met
there is no further need to make provision for computatiothat level up to the end of the
current period.

Based on the properties of the real-time system, the paeamet the system, and the al-
gorithm applied for scheduling, we can determine the sefficcondition of the feasibility test
of the scheduling algorithm. The sufficient condition isabed by calculating the utiliza-
tion bounds associated with scheduling algorithm. For {fs#esns containing more than one

15

processor, we not only should decide about the appropridiedsiling algorithm, but we also
have to specify thallocation algorithmwhich assigns the tasks to the available processors. For
multiprocessor real-time systems, calculating the w@tilan bounds associated wigbchedul-

ing algorithm, allocation algorithmpairs leads us to achieving the sufficient conditions of the
feasibility test, analogous to those known for uniprocessdhis approach has several inter-
esting features: it allows us to carry out fast schedulghtiéists and to qualify the influence of
certain parameters, such as the number of processors, edudciy. For some algorithms, this
bound considers not only the number of processors, but hésaumber of the tasks and their
sizes [22, 6, 23, 30, 32].

Let us study the above concepts on Rate-Monotoni@lgorithm (RM) ancEarliest Dead-
line First algorithm (EDF) [32, 22, 59, 30]. Both the RM and EDF algamthareoptimalreal-
time scheduling algorithms. An optimal real-time schedglalgorithm is one which may fail
to meet a deadline only if no other scheduling algorithm caenthe deadline. The following
assumptions are made for both the RM and EDF algorithms.

(&) No task has any nonpreemptable section and the cost of pteemis negligible.

(b) Only processing requirements are significant; memory, & other resource require-
ments are negligible.

(c) Alltasks are independent; there are no precedence contstra

2.5 RM Scheduling

The RM scheduling algorithm is one of the most widely studied used in practice [22, 59,
30, 32, 27]. It is a uniprocessor static-priority preemetacheme. For the RM scheduling
algorithm, in addition to assumptiona)(to (c), we assume that all tasks are periodic and the
priority of task7; is higher than the priority of task;, where: < j. The RM scheduling
algorithm is an example of priority driven algorithms wittac priority assignment in the
sense that the priorities of all instances are known evearéeheir arrival. The priorities of
all instances of each task are the same. They are determimgdy the period of the task.
A periodic task consists of an infinite sequence of instamadsperiodic ready times, where
the deadline of a request could be less than, greater thaequal to the ready time of the
succeeding instance. Furthermore, the execution timed tieainstances of a task are the
same. A periodic task; is characterized by three parameté}s the period of the instance,
C;, the execution time, anf);, the deadline of the tasks. The utilization factor of a set of
periodic tasks is defined by , C;/P;, wherePy, P, ..., P, are the periods and, Cs, ..., C),
are the execution times of thetasks. If>", C;/P; < n(2Y/™ — 1), wheren is the number of
tasks to be scheduled, then the RM algorithm will scheduihaltasks to meet their respective

16

deadlines. Note that this is a sufficient, but not a necessandition. That is, there may be
task sets with a utilization greater thaf2'/" — 1) that are schedulable by the RM algorithm.

A given set of tasks is said to be RM-schedulable if the RM stligin produces a schedule
that meets all the deadlines. The sufficient and necessawyitams for feasibility of RM
scheduling is studied in [32] as follows.

Given a set of, periodic tasks, 7, ..., 7,, Whose periods and execution times &e P,
..., B, andCy, Cs, ..., C,, respectively, we suppose taskcompletes executing at We con-
sider the following notation:

i

Wi(t) = Z C; [%1 =t — idle time

Lty = Vi)
t
L= min L;(t)
0<t<P;

Taskr; can be feasibly scheduled using RMind only if L;(¢) < 1. In this caser, 7o, ..., 7,1
are also feasibly scheduled.

Thus far, we have only considered periodic tasks. As defin&erction 1.4, sporadic tasks
are released irregularly, often in response to some evetheioperating environment. While
sporadic tasks do not have periods associated with themne, thest be some maximum rate at
which they can be released. That is, we must have some minimignarrival time between
the release time of successive iterations of sporadic taSkserwise, there is no limit to the
amount of workload that sporadic tasks can add to the systemtawill be impossible to
guarantee that deadlines are met. The different approacluesl with aperiodic and sporadic
tasks are outlined in Section 4.1 and Section 4.2.

One drawback of the RM algorithm is that task priorities aefirted by their periods.
Sometimes, we must change the task priorities to ensurathattical tasks get completed.
Suppose that we are given a set of tasks containing two tasksd 7;, where P, < F;, but
7, is a critical task and; is a noncritical task. We check the feasibility of the RM siiéng
algorithm for the tasks;, 7, ..., 7,,. Suppose that if we take the worst-case execution times of
the tasks, we cannot guarantee the schedulability of thes.tddowever, in the average case,
they are all RM-schedulable. The problem is how to arranggarsso that all the critical tasks
meet their deadlines under the RM algorithm even in the waarseé, while the noncritical tasks,
such as;, meet their deadlines in many other cases. The solutiothisrenf the following two
methods.

e We lengthen the period of the noncritical task, i, by a factor ofk. The original
task should also be replaced bytasks, each phased by the appropriate amount. The

17

parametef should be chosen such that we obt&in> P, (see [32, Example 3.10] for
an example).

e We reduce the period of the critical task, i, by a factor oft. Then we should replace
the original task by one whose (both worst case and averagg eaecution time is also
reduced by a factor of. The parametek should be chosen such that we obt&in> P;
(see [32, Example 3.10] for an example).

So far, we have assumed that the relative deadline of a tasfuial to its period. If we
relax this assumption, the RM algorithm is no longer an optmstatic-priority scheduling
algorithm. WhenD,; < P,, at most one initiation of the same task can be alive at any one
time. However, wherD; > P,, it is possible for multiple initiations of the same task ® b
alive simultaneously. For the latter case, we have to chexlngber of initiations to obtain the
worst-case response time. Therefore, checking for RM-diability for the caseD; > P, is
much harder than for the cage < P,. Suppose we have a task set for which there exists a
~ such thatD,; = ~P,, for each task;. In [32], the necessary and sufficient condition for the
tasks of the set to be RM-schedulable is given.

The RM algorithm take®((V + «)*) time in the worst case, wheré is the total number
of the requests in each hyper-periodroperiodic tasks in the system andis the number of
aperiodic tasks.

Two examples scheduled by RM algorithm are presented in gpeAdix.

2.6 EDF Scheduling

The EDF scheduling algorithm is a priority driven algorithmwhich higher priority is as-
signed to the request that has earlier deadline, and a hagioeity request always preempts a
lower priority one [60, 22, 59, 30, 32, 27]. This schedulingagithm is an example of priority
driven algorithms withdynamic priorityassignment in the sense that the priority of a request
is assigned as the request arrives. EDF is also calledehdline-monotonischeduling algo-
rithm. Suppose each time a new ready task arrives, it istedento a queue of ready tasks,
sorted by their deadlines. If sorted lists are used, the BR®tithm takesD((N + «)?) time in

the worst case, wher® is the total number of the requests in each hyper-periodmériodic
tasks in the system andis the number of aperiodic tasks.

For the EDF algorithm, we make all the assumptions we madb&RM algorithm, except
that the tasks do not have to be periodic.

EDF is an optimal uniprocessor scheduling algorithm. Thkatfi EDF cannot feasibly
schedule a task set on a uniprocessor, there is no otherduoigedlgorithm that can. This can
be proved by using ime slice swappingechniques. Using this technique, we can show that
any valid schedule for any task set can be transformed intid EDF schedule.

18

If all tasks are periodic and have relative deadlines equaheir periods, they can be
feasibly scheduled by EDiFand only if > , C;/P, < 1. There is no simple schedulability
test corresponding to the case where the relative deadlimest all equal the periods; in such
a case, we actually have to develop a schedule using the EjoFtam to see if all deadlines
are met over a given interval of time. The following is the egtlability test for EDF under
this case.

DefineU = > | C;/P;, Dpar = maxi<i<,{D;} and P = lem(Py, ..., P,), wherelem
stands for least common multiple. Considegt) to be the sum of the execution times of all
tasks whose absolute deadlines are smaller th&ntask set ofn tasks isnot EDF-feasiblef
and only if

e U< 1lor

o there exists < min{P + Dynos, 155 1r£1a<X{Pi — D;}} such that(t) > t
Very little is known about algorithms that produce an optis@ution. This is due to either
of the following reasons.

e Some real-time scheduling problems are NP-complete. Ttvereve cannot say whether
there is any polynomial time algorithm for the problems. s group, we should
search for heuristic algorithms. Given a heuristic aldort we should investigate for
the sufficient conditions for feasible scheduling. The sidht conditions are used to
determine whether a given task set can be scheduled fedsilthe algorithm upon the
available processors. Many researches have also focusseaoching for heuristic al-
gorithms whose results are compared to the optimal redulfgct, for problems in this
class the optimal solution cannot be obtained in polynotima. Approximation algo-
rithms are polynomial time heuristic algorithms whose parfance is compared with
the optimal performance.

e As for the second group of real-time scheduling problemesréetexists polynomial al-
gorithms which provide feasible schedule of any task setlvisiatisfy some specific
conditions. For example any set of periodic tasks whictsgal , C;/P; < 1is guar-
anteed to be feasibly scheduled using EDF. Recall that amalpgscheduling algorithm
is one which may fail to meet a deadline only if no other schiagwalgorithm can meet
the deadline. Therefore, a feasible scheduling algorithmmptimal if there is no other
feasible algorithm with looser conditions. In order to peaptimality of a scheduling al-
gorithm, the feasibility conditions of the algorithm musgt known. For example there is
no dynamic-priority scheduling algorithm that can suctdisschedule a set of periodic
tasks wheré_" , C;/P, > 1. Therefore, EDF is an optimal algorithm.

19

The optimal algorithm for a real-time scheduling problemas unique. For instance, in
addition to EDF algorithm, there is another optimal dynajmiority scheduling algo-
rithm, which is the least laxity first (LLF) algorithm. Thexidy of a process is defined
as the deadline minus remaining computation time. In otredsg; the laxity of a job is
the maximal amount of time that the job can wait and still mesetleadline. The algo-
rithm gives the highest priority to the active job with theahast laxity. Then the job
with the highest priority is executed. While a process is axag, it can be preempted
by another whose laxity has decreased to below that of th@mgrprocess. A problem
arises with this scheme when two processes have simildrdaxiOne process will run
for a short while and then get preempted by the other and \8cgav Thus, many con-
text switches occur in the lifetime of the processes. Thetleity first algorithm is
an optimal scheduling algorithm for systems with periodialftime tasks [26, 68, 43].
If each time a new ready task arrives, it is inserted into auquef ready tasks, sorted
by their laxities. In this case, the worst case time compyeaf the LLF algorithm is
O((N + a)?), whereN is the total number of the requests in each hyper-period of
periodic tasks in the system ands the number of aperiodic tasks.

The EDF and LLF algorithms are illustrated using examplas@&Appendix.

Although many people have worked on feasibility analysipainomial algorithms, still
further investigation is required. Verification of optintglof scheduling algorithms is another
subject that should be studied further.

3 Scheduling Algorithms of Real-Time Systems

The goals for real-time scheduling are completing taskfiwispecific time constraints and
preventing from simultaneous access to shared resourdateaites [22, 30, 32, 27]. Although
system resource utilization is of interest, it is not a pmiyndriver. In fact, predictability and
temporal correctness are the principal concerns. The ithgas used, or proposed for use, in
real-time scheduling vary from relatively simple to extrgncomplex.

The topic of real-time scheduling algorithms can be stuéteeither uniprocessor or mul-
tiprocessor systems. We first study uniprocessor real-sicheduling algorithms.

3.1 Uniprocessor Scheduling Algorithms

The set of uniprocessor real-time scheduling algorithmdivgded into two major subsets,
namelyoff-line schedulinglgorithms andn-line schedulin@lgorithms.

Off-line algorithms (Pre-run-time scheduling) generate scheduling information prior to
system execution [22, 59, 30, 32, 27, 60]. The schedulingrinétion is then utilized by the

20

system during runtime. The EDF algorithm and the off-lingoaithm provided in [20] are
examples of off-line scheduling algorithms.

In systems using off-line scheduling, there is generdllypt always, a required ordering of
the execution of processes. This can be accommodated hy m&nedence relations that are
enforced during off-line scheduling. Preventing simu#tans access to shared resources and
devices is another function that a priority based preerspdif-line algorithm must enforce.
This can be accomplished by defining which portion of a pregasnot be preempted by
another task and then defining exclusion constraints anor@ng them during the off-line
algorithm. In Section 4.4, we study the methods that addresgroblem.

Another goal that may be desired for off-line schedules duoing the cost of context
switches caused by preemption. This can be done by choogjagtams that do not result in
a large number of preemptions, such as the EDF algorithrs.dlsio desirable to increase the
chances that a feasible schedule can be found. If the inpghietehosen off-line scheduling
algorithm is exactly the input to the real-time system andamoapproximation, then the math-
ematical off-line algorithms are more likely to find a fedsischedule. In a predictable envi-
ronment, these algorithms can guarantee system perfoen@it:line algorithms are good for
applications where all characteristics are known a priod ehange very infrequently. A fairly
complete characterization of all processes involved, saglxecution times, deadlines, and
ready times are required for off-line scheduling. The @ftlalgorithms need large amount of
off-line processing time to produce the final schedule areltduhis they are quite inflexible.
Any change to the system processes requires starting tleglglofg problem over from the
beginning. In addition, these algorithms cannot handlersir@nment that is not completely
predictable. Although a strict off-line scheduler has novsion for handling aperiodic tasks,
it is possible to translate an aperiodic process into a derione, thus allowing aperiodic pro-
cesses to be scheduled using off-line scheduling. A majeartdge of off-line scheduling is
significant reduction in run-time resources, includinggassing time, for scheduling. How-
ever, since itis inflexible, any change requires re-conmupifne entire schedule [22, 30, 32, 27].

The real advantage of off-line scheduling is that in a prediile environment it can guar-
antee system performance.

On-line algorithms generate scheduling information while the system is rupfiz2, 30,
32, 27]. The on-line schedulers do not assume any knowletg®oess characteristics which
have not arrived yet. These algorithms require a large amolrun-time processing time.
However, if different modes or some form of error handlingésired, multiple off-line sched-
ules can be computed, one for each alternate situation. rAtime, a small on-line scheduler
can choose the proper one.

One of the severe problems that can occur with priority basedmptive on-line algorithms
is priority inversion[22, 32, 65]. This occurs when a lower priority task is usingeaource
which is required by a higher priority task and this causegkihg the higher priority task by

21

the lower priority one. Methods of coping with this problene a@iscussed in Section 4.4.

The major advantage of on-line scheduling is that there isegairement to know tasks
characteristics in advance and they tend to be flexible asilyemdaptable to environment
changes. However, the basic assumption that the systenohamwledge of process charac-
teristics for tasks that have not yet arrived, severelyistthe potential for the system to meet
timing and resource sharing requirements. If the schedides not have such knowledge, it is
impossible to guarantee that system timing constraintsbeiinet. Despite the disadvantages
of on-line scheduling, this method is used for schedulingmahy real-time systems because it
does work reasonably well under most circumstances andléxible.

On-line scheduling algorithms can be divided irtatic-priority basedalgorithms and
Dynamic-priority basedlgorithms, which are discussed as follows.

e Static-priority based algorithms

Static-priority based algorithms are relatively simpleirgplement but lack flexibility.
They are arguably the most common in practice and have & tarhplete theory. They
work well with fixed periodic tasks but do not handle apertotdisks particularly well,
although there are some methods to adapt the algorithmssthty can also effectively
handle aperiodic tasks. Static priority-based schedwdiggrithms have two disadvan-
tages, which have received a significant amount of studyir Tdwe processor utilization
and poor handling of aperiodic and soft-deadline tasks moenpted researchers to
search for ways to combat these deficiencies [22].

On-line Static-priority based algorithms may be eitlpeeemptiveor non-preemptive
[35, 22, 32, 65, 3, 11, 10]. For example, the Rate-monotolgjorehm and theRate-
monotonic deferred servdDS) scheduling algorithm are in the class of Preemptive
Static-priority based algorithms [22, 32]. The DS algaritinas a time complexity in
O((N +a)?), wherea is the number of active aperiodic requests avds the total
number of the requests in each hyper-period gkriodic tasks in the system.

Many real-time systems have the characteristic in whichotioer of task execution is
known a priori and each task must complete before anothlectsstart. These systems
can be scheduled non-preemptively. This scheduling tecieniwhich is called non-
preemptive static-priority based algorithms, avoids therbead associated with multiple
context switches per task. This property improves proaegslization. Additionally,
tasks are guaranteed of meeting execution deadlines [2323Q7].

The two following non-preemptive algorithms attempt toypde high processor utiliza-
tion while preserving task deadline guarantees and systeedsilability.

— Parametric dispatching algorithm ([25, 22])This algorithm uses a calendar of
functions, which maintains for each tasktwo functions,Min; and Maz;, de-

22

scribing the upper and lower bounds on allowable start tifoethe task. During
an off-line component, the timing constraints betweendasie analyzed to gen-
erate the calendar of functions. Then, during system ed@guthese bounds are
passed to dispatcher which then determines when within thdow to start ex-
ecution of the task. This decision can be based on whethes Hre other non-
real-time tasks waiting to execute. The worst case time dexitges of the off-
line and on-line components of the Parametric dispatchiggrghm areO(n) and
O((N + k)*log(N + x)), respectively, where is the number of periodic tasks,
N is the total number of the requests of real-time task in eggehperiod ofn
periodic tasks in the system, ards the number of the requests of non-real-time
tasks.

— Predictive algorithm ([52, 22]):This algorithm depends upon known a priori task
execution and arrival times. When it is time to schedule a taskxecution, the
scheduler not only looks at the first task in the ready queuealso looks at the
deadlines for tasks that are predicted to arrive prior tofitse task’s completion.

If a later task is expected to arrive with an earlier deadtimen the current task,
the scheduler may insert CPU idle time and wait for the pendmigal if this will
produce a better schedule. In particular, the insertiordief time may keep the
pending task from missing its deadline. The Predictive @ilgm takesO (n?) time
in the worst case, whereis the number of tasks.

These algorithms both have drawbacks when applied to redtwsystems. Both algo-
rithms require significant a priori knowledge of the systexskis, both execution times
and ordering. Therefore, they are quite rigid and inflexible

Dynamic-priority based algorithms

Dynamic-priority based algorithms require a large amountreline resources. How-
ever, this allows them to be extremely flexible. Many dynapmiority based algorithms
also contain an off-line component. This reduces the amotioh-line resources re-
quired while still retaining the flexibility of a dynamic agthm. There are two subsets
of dynamic algorithmsplanning basedndbest effort They attempt to provide better
response to aperiodic tasks or soft tasks while still mgetne timing constraints of the
hard periodic tasks. This is often accomplished by utiiabf spare processor capacity
to service soft and aperiodic tasks [22, 32, 27, 26].

Planning Based Algorithmsguarantee that if a task is accepted for execution, the task
and all previous tasks accepted by the algorithm will meeit time constraints [22, 32].

The planning based algorithms attempt to improve the respamd performance of a
system to aperiodic and soft real-time tasks while contigud guarantee meeting the

23

deadlines of the hard real-time tasks. The traditional whihandling aperiodic and
soft real-time tasks in a system that contained periodikstagth hard deadlines is to
allow the aperiodic or soft real-time tasks to run in the lggokind. By this method, the
aperiodic or soft real-time tasks get served only when tleegssor has nothing else to
do. The result of this method is unpredictable and normalllger poor response to these
tasks. The other approach used was to model aperiodic tassradic tasks with a
period equal to the minimum time between their arrivals drehtschedule them using
the same algorithm as for the real periodic tasks. This @talbe extremely wasteful of
CPU cycles because the minimum period between arrivals @lysignificantly smaller
than the average. Many researchers have tried to countse ffreblems by proposing
a variety of approaches that utilize spare processor tingenrore structured form than
simple background processing [51, 55]. Some of these dltgos attempt to identify and
capture spare processor capacity and use it to execut@deaind soft real-time tasks.
Other utilize a more dynamic scheduling method in which ke tasks are executed
instead of a higher priority periodic task, when the systam @onfirm that doing so will
not jeopardize the timely completion of the periodic tasks, 57, 61].

The general model for these types of algorithms is a systeerendll periodic tasks have

hard deadlines equal to the end of their period, their pagambnstant, and their worsts

case execution times are constant. All aperiodic tasksssenaed to have no deadlines
and their arrival or ready times are unknown.

Planning based algorithms tend to be quite flexible in sergiaperiodic tasks while still

maintaining the completion guarantees for hard-deadhsks. Most of the algorithms
also provide a form of guarantee for aperiodic tasks. Thggctea task for execution
if they cannot guarantee its on-time completion. Most ofglaning based algorithms
can provide higher processor utilization than static fyelbased algorithm while still

guaranteeing on-time completion of accepted tasks.

The Earliest Deadline First scheduling [37, 60, 32] is onehef first planning based
algorithms proposed. It provides the basis for many of tlge@thms currently being
studied and used. The LLF algorithm is another planningdbatgorithm.

The Dynamic Priority Exchange Server, Dynamic Sporadicv&erTotal Bandwidth

Server, Earliest Deadline Late Server, and Improved Ryi&kchange Server are ex-
amples of planning based algorithms, which work under EDfvedaling. They are

discussed in Section 4.2.

Best Effort Algorithms seek to provide the best benefit to the application tasksenov
load conditions. The Best Effort scheduling algorithmsksieeprovide the best benefit
to the application tasks. The best benefit that can be acdry@h application task is
based on application-specified benefit functions such aerieegy consumption func-

24

tion [62, 48]. More precisely, the objective of the algonith is to maximize thaccrued
benefit ratio which is defined as the ratio of total accrued benefit to time stiall task
benefits [36, 22, 32].

There exist many best effort real-time scheduling algangh Two of the most prominent
of them are the Dependent Activity Scheduling Algorithm (B4 [16] and the Lockes
Best Effort Scheduling Algorithm (LBESA) [38]. DASA and LEHA are equivalent to
the Earliest Deadline First (EDF) algorithm during undaded conditions [16], where
EDF is optimal and guarantees that all deadlines are alvatigfied. In the event of an
overload situation, DASA and LBESA seek to maximize the aggte task benefit.

The DASA algorithm makes scheduling decisions using theephof benefit densities.
The benefit density of a task is the benefit accrued per uné bynthe execution of the
task. The objective of DASA is to compute a schedule thatmdkimize the aggregate
task benefit. The aggregate task benefit is the cumulativeo$uine benefit accrued by
the execution of the tasks. Thus, since task benefit furctoa step-benefit functions, a
schedule that satisfies all deadlines of all tasks will yielEImaximum aggregate benefit.

LBESA [38] is another best effort real-time scheduling aition. It is similar to DASA
in that both algorithms schedule tasks using the notion nébedensities and are equiv-
alent to EDF during underload situations. However, the itigms differ in the way
they reject tasks during overload situations. In [16], isi®wn that DASA is generally
better than LBESA in terms of aggregate accrued task bewfiile DASA examines
tasks in the ready queue in decreasing order of their bereafgities for determining fea-
sibility, LBESA examines tasks in the increasing order cktdeadlines. Like DASA,
LBESA also inserts each task into a tentative schedule dédsline-position and checks
the feasibility of the schedule. Tasks are maintained ineiasing deadline-order in the
tentative schedule. If the insertion of a task into the tevgaschedule results in an infea-
sible schedule, then, unlike DASA, LBESA removes the leasigliit density task from
the tentative schedule. LBESA continuously removes thet leanefit density task from
the tentative schedule until the tentative schedule besdeasible. Once all tasks in the
ready queue have been examined and a feasible tentativéusehe thus constructed,
LBESA selects the earliest deadline task from the tentatVvedule.

Both the DASA and LBESA algorithms take((V + «)?) time in the worst case, where
N is the total number of the requests in each hyper-period périodic tasks in the
system andv is the number of aperiodic tasks.

25

3.2 Multiprocessor Scheduling Algorithms

The scheduling of real-time systems has been much studéticydarly upon uniprocessor
platforms, that is, upon machines in which there is exaatky shared processor available, and
all the jobs in the system are required to execute on thidesisigared processor. In multi-
processor platforms there are several processors avalgioin which these jobs may execute.
The Pfari scheduling is one of the few known optimal methads€heduling tasks on multi-
processor systems [7]. However, the optimal assignmerisiitto processors is, in almost all
practical cases, an NP-hard problem [24, 44, 35]. Therefeeemust make do with heuristics.
The heuristics cannot guarantee that an allocation willduend that permits all tasks to be
feasibly scheduled. All that we can hope is to allocate teksacheck their feasibility, and, if
the allocation is not feasible, modify the allocation tottyender its schedule feasible. So far,
many heuristic multiprocessor scheduling algorithms Hasen provided (see, for example,
[7,46,42, 2,4, 23, 6,63, 34, 28, 19, 1, 32]).

When checking an allocation for feasibility, we must accdontommunication costs. For
example, suppose that taskcannot start before receiving the output of tagklf both tasks
are allocated to the same processor, then the communicaigins zero. If they are allocated
to separate processors, the communication cost is poaigenust be taken into account while
checking for feasibility.

The following assumptions may be made to design a multigsmescheduling algorithm:

e Job preemption is permitted

That is, a job executing on a processor may be preempted toricompleting execu-
tion, and its execution may be resumed later. We may assuatéhibre is no penalty
associated with such preemption.

e Job migration is permitted

That is, a job that has been preempted on a particular processy resume execution
on a different processor. Once again, we may assume thatigeo penalty associated
with such migration.

e Job parallelism is forbidden
That is, each job may execute on at most one processor at\ay igistant in time.
Real-time scheduling theorists have extensively studi@gracessor real-time schedul-
ing algorithms. Recently, steps have been taken towardsrobg a better understanding of

multiprocessors real-time scheduling. Scheduling tlet®dlistinguish between at least three
different kinds of multiprocessor machines:

26

¢ Identical parallel machines

These are multiprocessors in which all the processors ardihl, in the sense that they
have the same computing power.

e Uniform parallel machines

By contrast, each processor in a uniform parallel machinghagracterized by its own
computing capacity, with the interpretation that a job tBa¢cutes on a processor of
computing capacity for ¢ time units completes x t units of execution. Actually,
identical parallel machines are a special case of uniforralifghmachines, in which the
computing capacities of all processors are equal.

¢ Unrelated parallel machines

In unrelated parallel machines, there is an executionirat@ssociated with each job-
processor ordered paft/;, 7;), with the interpretation that job; completes(r; ; x t)
units of execution by executing on processgfor ¢ time units.

Multiprocessor scheduling techniques fall into two geheategory:

e Global Scheduling Algorithms

Global scheduling algorithms store the tasks that haveeatibut not finished their ex-
ecution in one queue which is shared among all processoppdSe there exist pro-
cessors. At every moment the highest priority tasks of the queue are selected for
execution on then processors using preemption and migration if necessary323

Thefocused addressing and bidding algorittieran example of global scheduling algo-
rithms [32]. The main idea of the algorithm is as follows. Egrocessor maintains a
status table that indicates which tasks it has already ctteuitio run. In addition, each
processor maintains a table of the surplus computationeaty at every other proces-
sor in the system. The time axis is divided into windows, whéee intervals of fixed
duration, and each processor regularly sends to its calEsathe fraction of the next
window that is currently free.

On the other hand, an overloaded processor checks its sunbrmation and selects a
processor that seems to be most likely to be able to suctigsstecute that task by its
deadline. It ships the tasks out to that processor, whichllea selected task. However,
the surplus information may have been out of date and it isiptesthat the selected pro-
cessor will not have the free time to execute the task. Inrdadavoid this problem, and
in parallel with sending out the task to the selected pramesise originating processor
asks other lightly loaded processors how quickly they carcassfully process the task.

27

The replies are sent to the selected processor. If the sdlgrbcessor is unable to
process the task successfully, it can review the repliegéovghich other processor is
most likely to be able to do so, and transfers the task to ttatgssor.

e Partitioning Scheduling Algorithms

Partitioning scheduling algorithms partition the set atssuch that all tasks in a parti-
tion are assigned to the same processor. Tasks are not dltowagrate, hence the mul-
tiprocessor scheduling problem is transformed to many resgssor scheduling prob-
lems [23, 32].

The next fit algorithm for RM schedulinig a multiprocessor scheduling algorithm that
works based on the patrtitioning strategy [32]. In this aildpon, we define a set of classes
of the tasks. The tasks, which are in the same class, arergaachto satisfy the RM-
schedulability on one processor. We allocate tasks one bymthe appropriate proces-
sor class until all the tasks have been assigned. Then, igrassignment, we run the
RM scheduling algorithm on each processor.

Global strategies have several disadvantages versusiqrarty strategies. Partitioning
usually has a low scheduling overhead compared to glob&dsdimg, because tasks do not
need to migrate across processors. Furthermore, pamigosirategies reduce a multipro-
cessor scheduling problem to a set of uniprocessor oneshamdwell-known uniprocessor
scheduling algorithms can be applied to each processor.ek@wpartitioning has two nega-
tive consequences. First, finding an optimal assignmerasidstto processors is a bin-packing
problem, which is an NP-complete problem. Thus, tasks avallyspartitioned using non-
optimal heuristics. Second, as shown in [13], task systexst that are schedulable if and
only if tasks are not partitioned. Still, partitioning appches are widely used by system de-
signers. In addition to the above approaches, we can applydyartitioning/global strategies.
For instance, each job can be assigned to a single procedslara task is allowed to migrate.

4 Constraints of Real-Time Systems

Many industrial applications with real-time demands aremposed of tasks of various types
and constraints. Arrival patterns and importance, for ggl@mdetermine whether tasks are
periodic, aperiodic, or sporadic, and soft, firm, or harde™ontrolling real-time system has
to provide for a combined set of such task types. The sames fiotdhe various constraints on
tasks. In addition to basic temporal constraints, such asge start-times, deadlines, and syn-
chronization demands such as precedence, or mutual exclussystem has to fulfill complex
application demands which cannot be expressed directlylvaisic constraints. An example for
complex demands is a control application that may requirsiraints on individual instances,

28

rather than periods. The set of types and constraints o tdstermines the scheduling algo-
rithm during system design. Adding constraints, howevasreases scheduling overhead or
requires the development of new appropriate schedulingriéigns. Consequently, a designer
given an application composed of mixed tasks and consérhemd to choose which constraints
to focus on in the selection of a scheduling algorithm; atleve to be accommodated as well
as possible.

4.1 Scheduling of Sporadic Tasks

Sporadic Tasks are released irregularly, often in resptmseme event in the operating envi-
ronment. While sporadic tasks do not have periods assoamrtedhem, there must be some
maximum rate at which they can be released. That is, we must$@me minimum interval
time between the release of successive iterations of sjpoi@gks. Some approaches to deal
with sporadic tasks are outlined as follows [32].

e The first method is to simply consider sporadic tasks as giertasks with a period equal
to their minimum interarrival time.

e The other approach is to define a fictitious periodic task ghaést priority and of some
chosen fictitious execution period. During the time thas tiaisk is scheduled to run on
the processor, the processor is available to run any spotasks that may be awaiting
service. Outside this time, the processor attends to thegeitasks. This method is the
simplest approach for the problem.

e TheDeferred Servers another approach, which wastes less bandwidth. Hera)eviee
the processor is scheduled to run sporadic tasks and findschdasks awaiting service,
it starts executing the periodic tasks in order of prioritjowever, if a sporadic task
arrives, it preempts the periodic task and can occupy a tiot&l up to the time allotted
for sporadic tasks.

4.2 Scheduling of Aperiodic Tasks

Real-time scheduling algorithms that deal with a comboratf mixed sets of periodic real-
time tasks and aperiodic tasks have been studied extenfpzl66, 60, 53, 54]. The objective
is to reduce the average response time of aperiodic requébisut compromising the dead-
lines of the periodic tasks. Several approaches for senyiaperiodic requests are discussed
as follows.

A Background Serveexecutes at low priority, and makes use of any extra CPU cycles
without any guarantee that it ever executes. BackgrouneeSoar aperiodic requests executes
whenever the processor is idle (i.e. not executing any gerimsks and no periodic tasks are

29

pending). If the load of the periodic task set is high, thelization left for background service
is low, and background service opportunities are relafiugrequent.

The Polling Serverexecutes as a high-priority periodic task, and every cyhkcks if an
event needs to be processed. If not, it goes to sleep untéxiscycle and its reserved execution
time for that cycle is lost, even if an aperiodic event asiealy a short time after. This results
in poor aperiodic response time. Polling consists of cngg periodic task for servicing
aperiodic requests. At regular intervals, the polling tasktarted and services any pending
aperiodic requests. However, if no aperiodic requests anglipg, the polling task suspends
itself until its next period and the time originally alloeatfor aperiodic service is not preserved
for aperiodic execution but is instead used by periodicgadlote that if an aperiodic request
occurs just after the polling task has suspended, then theogiic request must wait until the
beginning of the next polling task period or until backgrdyrocessing resumes before being
serviced. Even though polling tasks and background prawgsan provide time for servicing
aperiodic requests, they have the drawback that the averagend response times for these
algorithms can be long, especially for background proogssi

The purpose of th@riority ExchangeandDeferrable Serverss to improve the aperiodic
response time by preserving execution time until requifBaking advantage of the fact that,
typically, there is no benefit in early completion of the pelic tasks, the Deferrable Server
algorithm assigns higher priority to aperiodic tasks ugluhe point where the periodic tasks
would start to miss their deadlines. Guaranteed alersdgeriodic service and greatly re-
duced response times for soft deadline aperiodic tasksrgrertant features of the Deferrable
Server algorithm, and both are obtained with the hard deaslof the periodic tasks still being
guaranteed.

The Priority Exchange server allows for better CPU utiliaatibut is much more complex
to implement than the Deferrable Server.

The Priority Exchange technique adds to the task set anapeserver that services the
aperiodic requests as they arrive. The aperiodic servethekighest priority and executes
when an aperiodic task arrives. When there are no aperiosglis t® service, the server ex-
changes its priority with the task of next highest priorityailow it to execute.

The Sporadic Servers based on the Deferrable Server; but provides with lesptexity
the same schedulable utilization as the Priority Exchamgees. Similarly to other servers,
this method is characterized by a periBgd and a capacity's, which is preserved for possible
aperiodic requests. Unlike other server algorithms, h@mehe capacity is not replenished at
its full value at the beginning of each server period, buyomhen it has been consumed. The
times at which the replenishments occur are chosen acaptdia replenishment rule, which
allows the system to achieve full processor utilizatione Bporadic Server has a fixed priority
chosen according to the Rate Monotonic algorithm, thatdspaling to its periodPs. The
Sporadic Server algorithm improves response times fordedidline aperiodic tasks and can

30

guarantee hard deadlines for both periodic and aperiodksta

The above aperiodic servers are designed to operate inrodign with the Rate Mono-
tonic algorithm [66, 60]. We discuss some other servers¢hatoperate in conjunction with
deadline-based scheduling algorithms, such as Earliesdlide First, as follows.

The Dynamic Priority Exchangeserver is an aperiodic service technique, which can be
viewed as an extension to the Priority Exchange server,taddp work with deadline-based
scheduling algorithms. The main idea of the algorithm isetiothe server trade its run-time
with the run-time of lower priority tasks in case there areaperiodic requests pending. In this
way, the server run-time is only exchanged with periodiksadut never wasted unless there
are idle times. It is simply preserved, even if at a lower ptypand it can be later reclaimed
when aperiodic requests enter the system [60, 55, 56].

TheDynamic Sporadic Servés another aperiodic service strategy, which extends tlee Sp
radic Server to work under dynamic EDF scheduler. The mdfarénce between the classical
Sporadic Server and its dynamic version consists in the \waypriority is assigned to the
server. Dynamic Sporadic Server has a dynamic prioritygaes through a suitable deadline.
The methods of deadline assignment and capacity replepisthane described in [60, 55, 56].

Looking at the characteristics of Sporadic Server, we cahize that when the server has
a long period, the execution of the aperiodic requests catelayed significantly, and this is
regardless of the aperiodic execution times. There are tgsiple approaches to reduce the
aperiodic response times. The first is to use a Sporadic Beiitle a shorter period. This
solution, however, increases the run-time overhead ofltf@ithm because, to keep the server
utilization constant, the capacity has to be reduced ptapwlly, but this causes more fre-
guent replenishment and increases the number of contetdissi with periodic tasks [60]. A
second approach is to assign a possible earlier deadlirectoaperiodic request. The assign-
ment must be done in such a way that the overall processaatiiin of the aperiodic load
never exceeds a specified maximum valige This is the main idea behind another aperiodic
service mechanism, which is tiietal Bandwidth Servgb5, 56]. The Total Bandwidth Server
is able to provide good aperiodic responsiveness with mdrsimplicity. However, a better
performance can still be achieved through more complexrélgos. This is possible because,
when the requests arrive, the active periodic instanceshaag enough slack time to be safely
preempted. Using the available slack of periodic tasksdoaacing the execution of aperiodic
requests is the basic principle adopted by Haeliest Deadline Late Servgb5, 56, 60]. The
basic idea behind the Earliest Deadline Late Server is téppog the execution of periodic
tasks as long as possible and use the idle times of periobdedste to execute aperiodic re-
guests sooner. Itis proved that the Earliest Deadline Latee® is optimal, that is, the response
times of aperiodic requests under this algorithm are thedssevable [60].

Although optimal, the Earliest Deadline Late Server hasraah overhead to be con-
sidered practical. However, its main idea can be usefullypéet to develop a less complex

31

algorithm which still maintains a nearly optimal behavidhe expensive computation of the
idle times can be avoided by using the mechanism of prioxdthange. With this mechanism
the system can easily keep track of the time advanced togeriasks and possibly reclaim
it at the right priority level. The idle time of the Earliesieldline Late algorithm can be pre-
computed off-line and the server can use them to schedulsoderequests, when there are
any, or to advance the execution of periodic tasks. In therladse, the pre-computed idle time
can be saved as aperiodic capacity. When an aperiodic reguiesss, the scheduler gives the
highest priority to the aperiodic request if all of the pelimtasks can wait while still meeting
their deadlines. The idea described above is used by theithlgocalledImproved Priority
Exchangd55, 56, 60]. There are two main advantages to this apprdaicst, a far more effi-
cient replenishment policy is achieved for the server. &dcthe resulting server is no longer
periodic and it can always run at the highest priority in thistem.

In this section, we introduced a set of most popular algor#thhat provide good response
time to aperiodic tasks in real-time systems. The algordlidiffer in their performance and
implementation complexity.

4.3 Precedence and Exclusion Conditions

Suppose we have a set of tasks: {71, 7», ..., 7,, }. For each task; we are given the worst-case
execution timeC;, the deadlineD;, and the release timg,. We sayr; precedes; if 7, is in

the precedence set of, that is,7; needs the output of and we cannot start executinguntil

7, has finished executing. Taskexcludes; if 7; is not allowed to preempt;. The sentence
“1, preempts;” is true if wheneverr; is ready to run and; is currently runningy; is always
preempted by,. Some relations between a given pair of distinct tasks arenisistent with
some other relations. For example, we cannot have botprecedes;” and “7; precedes;”.
Also, 7; cannot precede; whent; preempts;. There are a few more examples of inconsistent
relations.

Having a set of real-time tasks with some precedence andsral conditions, we should
provide a scheduling algorithm such that not only all desetlican be met, but also precedence
and exclusion conditions can be handled successfully. 3thieduling problem is an NP-
complete problem [32]. Some heuristic algorithms have hmewided for the problem in
[32, 49, 39, 31, 17, 58].

Generally, the input of any scheduling problem with precegeconstraints consists of a set
of real-time tasks and a precedence graph, where a deadlmedgase time and an execution
time is specified for each task. Sometimes the release tingejoldb may be later than that
of its successors, or its deadline may be earlier than thetifspd for its predecessors. This
condition makes no sense. Therefore, we should derive aote# release time or effective
deadline consistent with all precedence constraints, eimeldsile using that [45]. We apply the

32

following method in order to achieve an effective releaseeti

¢ If a job has no predecessors, its effective release tims reliéase time.

o If it has predecessors, its effective release time is theimmamx of its release time and
the effective release times of its predecessors.

An effective deadline can be found as follows.

¢ If a job has no successors, its effective deadline is its ldead

e |tif has successors, its effective deadline is the minimdiits@leadline and the effective
deadline of its successors.

On the other hand, an exclusion relation between a givengp&irsks can be reduced to a
combination of preemption and precedence relation [32].

4.4 Priority Inversion

In a preemptive priority based real-time system, sometitagiss may need to access resources
that cannot be shared. For example, a task may be writing kock ln memory. Until this is
completed, no other task can access that block, either &alimg or for writing. The method
of ensuring exclusive access is to guard the critical sestwith binary semaphores. When a
task seeks to enter a critical section, it checks if the spoading semaphore is locked. If it s,
the task is stopped and cannot proceed further until thaaphore is unlocked. If it is not, the
task locks the semaphore and enters the critical sectionn\&ask exits the critical section,
it unlocks the corresponding semaphore [32, 50, 22].

The following example represents an undesired behavidnefibove method. Consider
tasksr, 75, andrs, listed in descending order of priority, which share a psste. There exists
a critical sectionS that is used by both; andrs. It is possible forr to issue a request for
the critical sections when it is locked byrs. Meanwhiler, may preempt;. This means that
7o Which is of lower priority thanr, is able to delay, indirectly. When a lower priority task
locks a critical section shared with the higher prioritykiathe priority inheritance protocols
used to prevent a medium priority task from preempting thneelopriority task. Consider two
tasksr; andr;, wherer; > 7;, which need a critical sectiofi. Taskr; inherits the priority of
7, as long as it blocks;. Whenr; exits the critical section that caused the block, it reveats
the priority it had when it entered that section.

Although the Priority Inheritance Protocol prevents unhaed blocking of a higher priority
task by a lower priority task, it does not guarantee that mideadlocks will not occur. It also
suffers from the possibility othained blockingwhich happens because a high priority task is

33

likely to be blocked whenever it wants to enter a criticaltget If the task has several critical
sections, it can be blocked for a considerable amount of @@

The Priority Ceiling Protocolis another protocol that can be used to prevent a medium
priority task from preempting the lower priority task [32),615, 14, 37, 50]. Also, under this
protocol, deadlocks cannot occur and a task can be blockeubstt once by a lower priority
task. In this protocol, when a task tries to hold a resource,resource is made available
only if the resource is free, and only if the priority of theskais greater than or equal to the
current highest priority ceiling in the system. Such a rud@ cause early blockings in the
sense that a task can be blocked even if the resource it waiscess is free. This access
rule guarantees that any possible future task is blockedat ance by the lower priority task,
which is currently holding a resource, and for a durationtahast B, whereB is defined as
the greatest execution time of any critical section usedbydwer priority task [32, 60].

The Priority Ceiling Emulation which is a combination of the two previous methods, has
been introduced to avoid chained blocking and mutual deadloWith this method, the pri-
ority of a low priority task is raised high enough to prevenbeing preempted by a medium
priority task. To accomplish this, the highest priority afyatask that will lock a resource is
kept as an attribute of that resource. Whenever a task isegtaadcess to that resource, its
priority is temporarily raised to the maximum priority assated with the resource. When the
task has finished with the resource, the task is returned triginal priority.

5 Conclusions and Open Problems

5.1 Summary and Conclusions

A real time system is a system that must satisfy explicit ld@ahresponse-time constraints,
otherwise risk severe consequences including failurelufeahappens when a system cannot
satisfy one or more of the requirements laid out in the forgyatem specification.

For a given set of tasks the general scheduling problem asksforder according to which
the tasks are to be executed such that various constrastatisfied. For a given set of real-
time tasks, we are asked to devise a feasible allocatioedsité. The release time, the deadline
and the execution time of the tasks are some of the parantaershould be considered for
scheduling. The deadline may be hard, soft or firm. Othereissa be considered are as fol-
lows. Sometimes, a resource must be exclusively held byka f@sks may have precedence
constraints. A task may be periodic, aperiodic, or sporatifte schedule may be preemptive
or non-preemptive. Less critical tasks must be allowed tpreempted by higher critical ones
when it is necessary to meet deadlines. For the real-timemsgsin which tasks arrive exten-
sively we have to use more than one processor to guarantetaska are feasibly scheduled.
Therefore, the number of available processors is anothanpeter to consider. The available

34

processors may be identical, uniform or unrelated.

Real-time scheduling

| Uniprocessor | | Multiprocessor |

| Partitioning | | Global |

| |
| Off-line | | On-line |
|
| |

Static-priority | Dynamic-priority |

E—— —

| Preemptive | | Non-preemptive | | Planning based | | Best effort |

Figure 3: Real-time scheduling algorithms

In this paper, the concept of real-time systems and the ctaistics of real-time tasks
are described. Also, the concept of utilization bound anuhagdity criteria, which leads to
design appropriate scheduling algorithms, are addresBee.techniques to handle aperiodic
and periodic tasks, precedence constraints, and priontgrsion are explained. Scheduling
of real-time systems is categorized and a description foh etass of algorithms is provided.
Also, some algorithms are presented to clarify the diffeidasses of algorithms. For real-
time multiprocessor systems, we discuss the main strategamely partitioning and global
strategies, to allocate/schedule the real-time tasks tip@processors. The different classes
of the real-time scheduling algorithms studied in this pagre summarized in Figure 3. The
techniques studied in Chapter 4 can be adopted to many dlgariin various classes of real-
time scheduling algorithms. Some of the uniprocessor tiged- scheduling algorithms are
illustrated using examples in the Appendix.

35

Scheduling algorithms for real-time systems have beenieduextensively. This paper
does not cover all the existing real-time scheduling athans. We have not discussed subjects
such as fault-tolerant real-time scheduling algorithnd secheduling of reward functions [32].
Also, we have not mentioned time complexity issues and maapmtheorems about the
feasibility and optimality conditions of the real-time schuling algorithms. There exist many
approximation algorithms for real-time systems (see, f@meple, [64, 8, 9, 18, 40]) that we
did not have an opportunity to discuss in this paper. We tieedresent the main ideas and
classes of real-time scheduling. This paper is organizet tat a computer scientist who is
not familiar with real-time scheduling, can obtain enouglowledge about this area to be able
to analyze and categorize any real-time scheduling problem

5.2 Open Problems

As we mentioned earlier, there are two main strategies tbwligla multiprocessor schedul-
ing problems: partitioning strategy and global strate@gheof which has its advantages and
disadvantages. Real-time scheduling problems for moltgssor systems have mostly been
studied for simple system models. Little work has been denmore complex systems. In this
section, we provide a list of multiprocessor real-time sthieg problems that require further
research. For each problem, scheduling algorithms are tiebeloped that may fall into either
of the above strategies. In addition, designing a suitajteith partitioning/global scheduling
algorithm, one can take advantage of both methods. Praysiirtable hybrid scheduling algo-
rithms that yield the best solutions for each of the follogvproblems is one of the interesting
areas of research.

A list of open problems for multiprocessor real-time schedyis as follows.

Consider a set of hard, soft, and firm real-time tagkss {m, 7, ..., 7, }, where the worst
case execution time of each taske 7' is C;.

(1) If the real-time tasks are hard, periodic, preemptivd have fixed priorities, then find
the minimum number of the processors required to guarahtgeatl deadlines are met.
Some heuristic algorithms have already been proposed,yeswes believe better algo-
rithms with improved performance can be developed.

(2) Suppose in a system consistingoidentical processors, real-time tasks are preemptive
and have fixed priorities. Hard real-time tasks are periodi@mmmunication cost is
negligible. Find a schedule that minimizes mean response While guaranteeing that
all deadlines are met.

(3) Suppose there exist identical processors, real-time tasks are preemptive and fixed
priorities, a penalty functiorP(r;) is assigned to each soft real-time task, and a reward

36

function R(7;) is determined for each firm real-time task. Communicatior osegli-
gible. Find a schedule that guarantees all deadlines aramdgf is minimized.

(4) Consider the conditions of problem (3), except that comigation cost is non-trivial.
Give a schedule that minimize the communication cost. Minimg the number of mi-
grations is one way to reduce the communication cost.

(5) Suppose there exist identical processors, real-time tasks are aperiodic, pptiee,
and have fixed priorities. Communication cost is negligibfénd a schedule that not
only guarantees that all deadlines are met, but also miesnmzean response time. Find
the utilization bound of the algorithm.

(6) Consider the conditions of problem (5), except that taslesnon-preemptive. Find a
schedule that not only guarantees that all deadlines arebuetlso minimizes mean
response time. Find the utilization bound of the algorithm.

(7) Solve all of the previous problems, i.e, problems (1)-(8hen the tasks are dynamic
priority tasks.

(8) Solve all of the previous problems, i.e, problems (2)-(vhen the processors are uni-
form.

We may apply either of the following approaches to solve ed¢he above problems:

e The vast majority of the optimization allocating/schedglproblems on real-time sys-
tems with more than two processors are NP-hard. In thosesaslsere the problems
listed above are NP-hard, one of the following approachetddoe used.

(a) Since the problem is NP-hard, one should strive to olat@iolynomial-time guaranteed-
approximation algorithm. Indeed, for some scheduling [@ois, a heuristic algo-
rithm may be found that runs in polynomial time in the size loé problem and
delivers an approximate solution whose ratio to the optisadution is guaranteed
to be no larger than a given constant or a certain functioheétze of the problem.
However, for most NP-hard problems guaranteeing such arogjppate solution
Is itself an NP-complete problem. In this case, the amoumnnhpfovement of the
heuristic algorithm with respect to the existing algorithehould be measured via
simulation.

A challenging problem in real-time systems theory is catinp the utilization
bounds associated with each allocation/schedule algorithhe obtained utiliza-
tion bound allows not only to test the schedulability of amyeg task set for the

37

scheduling algorithm, but also it allows to quantify theeetff of certain parame-
ters such as the number of the processors, the size of the &tk the number of
preemptions on schedulability. Calculation of utilizatioounds of multiprocessor
scheduling for real-time systems is one of the major re$edirections that should
be further investigated.

(b) If we reduce the scheduling problem into a known NP-catgproblemA, such as
bin-packing or discrete knapsack problem, the existing@pmation algorithms
for problemA can be applied to the scheduling problem.

e Consider each of the aforementioned problems. The secorsibgitg is developing a
polynomial time algorithm that provides an optimal feasibthedule for the problem.
The optimality of the algorithm should be proved. We mustvprthat the algorithm
may fail to meet a deadline only if no other scheduling alidponi can meet the deadline.
In order to prove optimality, we need to have the utilizatloounds associated with
the algorithm. The utilization bounds enable an admissairoller to decide whether
an incoming task can meet its deadline based on utilizattated metrics. In fact,
the utilization bounds express the sufficient conditiorguied for feasibility of the
algorithm.

38

References

[1] B. Andersson and J. JonssdiThe Utilization Bounds of Partitioned and Pfair Static-
Priority Scheduling on Multiprocessors are 50 percerdi3th Euromicro Conference on
Real-Time Systems (ECRTS’03), Porto, Portugal, July 022003.

[2] J. Anderson and A. Srinivasafiarly release fair scheduling,’In Proceedings of the
EuroMicro Conference on Real-Time Systems, IEEE Computeie§oeress, pp. 35-43,
Stockholm, Sweden, June 2000.

[3] N. Audsley, A. Burns, M. Richardson, K. W. Tindell, and A. Wellings,“Applying
new scheduling theory to static priority preemptive schiedui Software Engineering
Journal, pp. 284-292, 1983.

[4] H. Aydin, P. Mejia-Alvarez, R. Melhem, and D. Moss@ptimal reward-based schedul-
ing of periodic real-time tasksIn Proceedings of the Real-Time Systems Symposium,
IEEE Computer Society Press, Phoenix, AZ, December, 1999.

[5] J. W. de Bakker, C. Huizing, W. P. de Roever and G. Rozenb&gal-Time: Thory
in Practice,” Preceedings of REX Workshop, Mook, The Netherlands, SprivMgriag
company, June 3-7, 1991.

[6] J. M. Bans, A. Arenas, and J. Labart&fficient Scheme to Allocate Soft-Aperiodic Tasks
in Multiprocessor Hard Real-Time SystemBDPTA 2002, pp. 809-815.

[7] S. Baruah, N. Cohen, G. Plaxton, and D. Varv&lroportionate progress: A notion of
fairness in resource allocationAlgorithmica , Volume 15, Number 6, pp. 600-625, June,
1996.

[8] P. Berman and B. DasGuptdmprovements in Throughput Maximization for Real-Time
Scheduling,’Department of Computer Science, Yale University, New Ha@h0p6511,
January 31, 2000.

[9] S. A. Brandt, “Performance Analysis of Dynamic Soft Real-Time Systeffisé 20th
IEEE International Performance, Computing, and CommuraoatiConference (IPCCC
2001), April, 2001.

[10] A. Burns, “Preemptive priority based scheduling: An appropriate aregring ap-
proach,” Technical Report, YCS-93-214, Department of Computer Seienniversity
of York, UK, 1993.

[11] A. Burns,“Scheduling hard real-time systems: A revie8bftware Engineering Journal,
Number 5, May, 1991.

39

[12] G. C.ButtazzoHard Real-Time Computing Systems: predictable schedwdlggrithms
and applications,’Springer company, 2005.

[13] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Asmierand S. BaruahA Catego-
rization of Real-time Multiprocessor Scheduling Problesnsl Algorithms,”Handbook
of Scheduling: Algorithms, Models, and Performance AnislyEdited by J. Y. Leung,
Published by CRC Press, Boca Raton, FL, USA, 2004.

[14] M. Chen and K. Lin;A Priority Ceiling Protocol for Multiple-Instance Resougs,” Proc.
of the Real-Time Systems Symposium, 1991.

[15] M. Chen and K. Lin,“Dynamic Priority Ceiling: A Concurrency Control Protocol for
Real-Time SystemsReal-Time Systems Journal 2, 1990.

[16] R. K. Clark, “Scheduling Dependent Real-Time ActivitieBhD dissertation, Carnegie
Mellon Univ., 1990.

[17] L. Cucu, R. Kocik and Y. SoreliReal-time scheduling for systems with precedence,
periodicity and latency constraintsRTS Embedded Systems 2002, Paris, 26-28 March,
2002.

[18] B. Dasgupta and M. A. PalisOnline Real-Time Preemptive Scheduling of Jobs with
Deadlines on Multiple MachinesJournal of Scheduling, Volume 4, Number 6, pp. 297-
312, November, 2001.

[19] D. A. El-Kebbe,“Real-Time Hybrid Task Scheduling Upon Multiprocessor dRrotion
Stages,’International Parallel and Distributed Processing SympongIPDPS’03), Nice,
France, 22-26 April, 2003.

[20] G. Fohler, T. Lennvall, and G. Buttazzémproved Handling of Soft Aperiodic Tasks in
Offline Scheduled Real-Time Systems using Total Bandwidtler3dén Proceedings of
the 8th IEEE International Conference on Emerging Technetgnd Factory Automa-
tion, Nice, France, October, 2001.

[21] W. Fornaciari, P. di Milano,“Real Time Operating Systems Scheduling Lecturer,
www.elet elet.polimi polimi.it/ fornacia it/ fornacia.

[22] K. Frazer,‘Real-time Operating System Scheduling Algorithmd4,997.

[23] S. Funk, J. Goossens, and S. Bard@m-line Scheduling on Uniform Multiprocessors,’
, 22nd IEEE Real-Time Systems Symposium (RTSS’01), pp.11$83-London, England,
December, 2001.

40

[24] M. Garey, D. Johnson;Complexity Results for Multiprocessor Scheduling under Re
source Constraints,SICOMP, Volume 4, Number 4, pp. 397-411, 1975.

[25] R. Gerber, S. Hong and M. Saksena GuaranteeingReal-Time Requirements with
Resource-Based Calibrationof Periodic Process#SEE Transactions on Software En-
gineering, Volume 21, Number 7, July, 1995.

[26] J. Goossens and P. Richaf@verview of real-time scheduling problemsZuro Work-
shop on Project Management and Scheduling, 2004.

[27] W. A. Halang and A. D. Stoyenk6Real Time Computing,NATO ASI Series, Series F:
Computer and Systems Sciences, Volume 127, Springer-Veoiagpany, 1994.

[28] P. Holman and J. H. AndersotiJsing Supertasks to Improve Processor Utilization in
Multiprocessor Real-Time System&3th Euromicro Conference on Real-Time Systems
(ECRTS’03), Porto, Portugal, 2-4 July, 2003.

[29] D. Isovic and G. Fohler;Efficient Scheduling of Sporadic, Aperiodic and Periodic
Tasks with Complex Constraintsfi Proceedings of the 21st IEEE RTSS, Florida, USA,
November, 2000.

[30] M. Joseph;Real-time Systems: Specification, Verification and Anafy®rentice Hall,
1996.

[31] S. Kodase, S. Wang, Z. Gu and K. G. SHinmproving Scalability of Task Allocation
and Scheduling in Large Distributed Real-Time SystemsdJShrared Buffers, The 9th
IEEE Real-Time and Embedded Technology and Applicatioms®gium, pp. 181-188,
2003.

[32] C. M. Krishna and K. G. ShirfReal-Time SystemsMIT Press and McGraw-Hill Com-
pany, 1997.

[33] P. A. Laplante;Real-time Systems Design and Analysis, An Engineer HaokibtEEE
Computer Society, IEEE Press, 1993.

[34] S. Lauzac and R. MelhemAn Improved Rate-Monotonic Admission Control and Its
Applications,” IEEE Transactions on Computers, Volume 52, Number 3, pp. 3 -
March, 2003.

[35] J. Y.-T. Leung and J. Whitehe&atn the complexity of fixed priority scheduling of peri-
odic real-time tasks,Performance Evaluation, Volume 2, pp. 237-250, 1982.

[36] P. Li and B. Ravindran;Fast, Best-Effort Real-Time Scheduling Algorithm$EEE
Transactions on Computers, Volume 53, Number 9, pp. 115%;13&ptember, 2004.

41

[37] C. L. Liu and J. W. Layland;Scheduling Algorithms for Multiprogramming in Hard
Real-Time EnvironmentJournal of the ACM , Volume 20, Number 1, pp. 46-61, 1973.

[38] C. D. Locke,Best-Effort Decision Making for Real-Time SchedulinBhD dissertation,
Carnegie Mellon University, 1986.

[39] J. Luo and N. K. Jh&;Power-conscious Joint Scheduling of Periodic Task Graphd a
Aperiodic Tasks in Distributed Real-time Embedded Systeisceedings of ICCAD,
pp. 357364, November, 2000.

[40] G. Manimaran and C. S. Ram Murthyn Efficient Dynamic Scheduling Algorithm for
Multiprocessor Real-Time SystemHEEE Transaction Parallel and Distributed Systems,
Volume 9, Number 3, pp. 312-319, March, 1998.

[41] F. W. Miller, “the Performance of a Mixed Priority Real-Time Schedulingagkithm,”
Operating System Review, Volume 26, Number 4, pp. 5-13, {d 992.

[42] M. Moir and S. Ramamurthy,Pfair scheduling of fixed and migrating tasks on multi-
ple resources,’In Proceedings of the Real-Time Systems Symposium, IEEE Qtenp
Society Press, Phoenix, AZ, December, 1999.

[43] A. K. Mok, “Fundamental Design Problems of Distributed Systems ferkfard Real-
Time Environment,Technical Report, Massachusetts Institute of Technolhgye, 1983.

[44] A. K. Mok, “Fundamental Design Problems of Distributed Systems ferktard Real-
Time Environment,Ph.D. thesis. Department of Electronic Engineering and Gaerp
Sciences, Mass. Inst. Technol., Cambridge MA, May, 1983.

[45] C. Perkins;Course Notes: Overview of Real-Time Scheduling, Real-GnttEmbedded
Systems (M) Lecture 3University of Glasgow, Department of Computing Science 2004
2005 Academic Year.

[46] C. A. Phillips, C. Stein, E. Torng, and J. WeifQptimal time-critical scheduling via
resource augmentationfh Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, pp. 140-149, El Paso, Texas, 4-6 M@§71

[47] S. Schneider;Concurrent and Real-time systems, The CSP Approadbiin Wiley and
Sons LTD, 2000.

[48] G. Quan, L. Niu, J. P. DavisPower Aware Scheduling for Real-Time Systems with (
k)-Guarantee,”CNDS, 2004.

42

[49] , K. Sandstrm and C. Norstrmi,Managing Complex Temporal Requirements in Real-
Time Control SystemsThe 9th IEEE Conference on Engineering of Computer-Based
Systems, pp. 81-84, Sweden, 2002.

[50] L. Sha, R. Rajkumar and J. P. Lehoczkgriority Inheritance Protocol; an Approach to
Real-Time Synchronizationl[EEE Transactions on Computers, Volume 39, Number 9,
1990.

[51] K. G. Shin and Y. ChandA Reservation-Based Algorithm for scheduling Both Peigod
and Aperiodic Real-Time Task$EEE Transactions on Computers, Volume 44, Number
12, pp. 1405-1419, December, 1995.

[52] H. Singh,“Scheduling Techniques for real-time applications cotisgs of periodic task
sets,”In Proceedings of the IEEE Workshop on Real-Time Applicaipp. 12-15, 21-
22 July, 1994.

[53] B. Sprunt,Aperiodic Task Scheduling for Real-Time Syster®$.D. Thesis, Department
of Electrical and Computer Engineering Carnegie Mellon Ursitg, August, 1990.

[54] B. Sprunt, J. Lehoczky, and L. Shd&xploiting Unused Periodic Time For Aperiodic
Service Using the Extended Priority Exchange Algorithin,’Proceedings of the 9th
Real-Time Systems Symposium, pp. 251-258. IEEE, Hun&sWL, December, 1988.

[55] M. Spuri and G. C. Buttazzo'Efficient Aperiodic Service under Earliest Deadline
Scheduling,’In Proceedings IEEE Real-Time Systems Symposium, pp. &ad,Juan,
Puerto Rice, 7-9 December, 1994.

[56] M. Spuri and G. Buttazzd'Scheduling Aperiodic Tasks in Dynamic Priority Systems,”
The Journal of Real-Time Systems.

[57] M. Spuri, G. Buttazzo, nd F. SensitiRobust Aperiodic Scheduling under Dynamic Pri-
ority Systems,In Proceedings IEEE Real-Time Systems Symposium, pp. 290fisa,
Italy, 5-9 December, 1995.

[58] M. Spuriand J. A. Stankovi¢How to Integrate Precedence Constraints and Shared Re-
sources in Real-Time SchedulinEEE Transactions on Computers, Volume 43, Number
12, pp. 1407-1412, December, 1994.

[59] J. A. Stankovic and K. RamamrithantTutorial Hard Real-Time SystemslEEE Com-
puter Society Press, 1988.

43

[60]

[61]

[62]

[63]

[64]

[65]
[66]
[67]
[68]
[69]
[70]

J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Bzt “Deadline Schedul-
ing for Real-Time Systems, EDF and related algorithridiwer Academia Publishers,
1998.

T. Tia, J. W. Liu, and M. ShankafAlgorithms and Optimality of Scheduling Soft Aperi-
odic Request in Fixed Priority Preemptive Systeriigg Journal of Real-Time Systems,
Volume 10, Number 1, pp. 23-43, January, 1996.

J. Wang, B. Ravindran, and T. MartitA Power-Aware, Best-Effort Real-Time Task
Scheduling AlgorithmIEEE Workshop on Software Technologies for Future Embed-
ded Systems p. 21.

Z. Xiangbin and T. Shiliang;An improved dynamic scheduling algorithm for multipro-
cessor real-time system$&DCAT’2003. In Proceedings of the Fourth International Con-
ference on Publication, pp. 710- 714, 27-29 August, 2003.

M. Xiong, K.-Y. Lam and B. Liang;Quality of Service Gaurantee for Temporal Consis-
tency of Real-Time ObjectsT’he 24th IEEE Real-time System Symposium (RTSS2003),
Cancun, Mexico, December, 2003.

http://www.netrino.com/Publications/Glossanjf®itylnversion.html
http://www.ee.umd.edu/serts/bib/thesis/dsteiadf
http://www-2.cs.cmu.edu/afs/cs/project/jair/putiume4/hogg96a-html/node2.html
http://www.cs.pitt.edu/ melhem/courses/3530/1dE.p
http://www.omimo.be/encyc/publications/fag/dfatm

http://c2.com./cgi/wiki?RealTime

44

Appendix: Examples

In this chapter we present the timing diagrams of the sclesdpitovided by some real-time
scheduling algorithms, namely the earliest deadline fit8tK), the rate-monotonic (RM), and
the least laxity first (LLF) algorithms, on two given sets a$ks.

Period | Computation time First invocation time| Deadline
T 2 0.5 0 2
Ty 6 2 1 6
T3 10 1.8 3 10

Table 2: The repetition periods, computation times, andlliees of the tasks;, » andr; for
Example A.1

AR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 4: The timing diagram of task defined in Table 2, before scheduling

2'2 ;

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5: The timing diagram of task defined in Table 2, before scheduling

Example A.1l: Consider a system consisting of three tasks», and 3, that have the
repetition periods, computation times, the first invocationes and deadlines defined in Table
2. The deadliné); of each task; is P, and tasks are preemptive. Figures 4, 5 and 6 present
the timing diagram of each task, =, andrs, respectively, before scheduling.

e Earliest deadline first algorithm

45

Figure 7: The timing diagram of the schedule provided by dri® earliest deadline first, rate
monotonic, least laxity first algorithms on the tasks setrafiin Table 2

Figure 7 presents a portion of the timing diagram of the saleedrovided by the EDF
algorithm on the tasks set defined in Table 2. Between tineevat 0 and 17 we observe
that no deadline is missed.

e Rate monotonic algorithm
As shown in Figure 7, if we schedule the tasks set by the RMrigo, no deadline is
missed between time interval 0 and 17.

e Least laxity first algorithm

Similar to the previous two scheduling algorithms, the tdasity first algorithm pro-
vides a schedule such that all deadlines are met betweeniriberwal 0 and 17 (see
Figure 7).

For Example A.1, the timing diagrams of the schedules pexidy the earliest deadline
first, rate monotonic, and least laxity first algorithms happo be the same, as indicated in
Figure 7.

46

Period | Computation time First invocation time| Deadline
T 2 0.5 0 2
To 6 4 1 6
T3 3 1.8 3 10

Table 3: The repetition periods, computation times and lileeslof the tasks;, » andrs for
Example A.2

MALL LR
NN
0 1 2 3 4 5 6 7 8 9 100 1 12 13 14 15 16 17

Figure 8: The timing diagram of task defined in Table 3, before scheduling

Tz‘::::?“

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 9: The timing diagram of tagk defined in Table 3, before scheduling

|11

°

Figure 10: The timing diagram of task defined in Table 3, before scheduling

Example A.2: Consider a system consisting of three tasks, and 73, that have the
repetition periods, computation times, first invocatiomds and deadlines defined in Table
3. The tasks are preemptive. The timing diagrams in Figuré&ahd 10 present the timing
diagram of each task, m» andrs, respectively, before scheduling.

47

e Earliest deadline first algorithm

As presented in Figure 11, the uniprocessor real-time systensisting of the tasks
set defined in Table 3 is not EDF-schedulable, because wielexecution of the first
invocation of the task; is not finished yet, the new invocation of the task arrives. In
other words, an overrun condition happens.

'

Figure 11: The timing diagram of the schedule provided bydhriest deadline algorithm on
the tasks set defined in Table 3

¢ Rate monotonic algorithm

As shown in Figure 12, the uniprocessor real-time systensisting of the tasks set
defined in Table 3 is not RM-schedulable. The reason is tleati#adline of the first
invocation of the task; is missed. The execution of the first invocation is requieté
finished by time 6, but the schedule could not make it.

e Least laxity first algorithm

Figure 13 presents a portion of the timing diagram of the dateeprovided by the least
laxity first algorithm on the tasks set defined in Table 3. Aevahin the figure, the
deadline of the third invocation of the task can not be met. we conclude that the
uniprocessor real-time system consisting of the tasksefetet! in Table 3 is not LLF-
schedulable.

48

|
| | |
L —— | — — — — — r--
| | |
| | |
_——— e — = r--
| [|
| [|
P |, r--
| | |
| [|
e r--
| [|
| | |
. [, F--
| |
e ____ (I —
| | |
| | [<D) |
[-l £ r---
| | = ﬂ
I [
< |
e I_ QO |r--
| | o] |
| [o0 |
R - g Fr--
| | 72} |
I [2 I
R B, - M - -
| |
| ! / |
— AN (9p]
(S . (S

Figure 12: The timing diagram of the schedule provided byrt#te monotonic algorithm on

the tasks set defined in Table 3

|
|
[B
|
|
[B
|
|
1
|
|
PR [
|
|
PR
|
P
& |
= |
= T P
< |
<5}
= I
4
=
= |
173}
A |-
- p— _
=]
[N B,
|
|
||||| e ——

e | S
| |
| |
———mm - -
| |
| |
——mm - p—
| |
| |
I e e
| |
JER U A
| |
| |
R Lo
! |
[R, -
! I
! I
R r--
|
| |
J T NN
| |
| |
——e = — L__
| |
| |
R el +||
| |
| |

Figure 13: The timing diagram of the schedule provided byl¢ast laxity first algorithm on

the tasks set defined in Table 3

49

