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Abstract—A comprehensive ¢ tion of p optical prop-
erties (absorption, scattering, total attenuation, effective attenuation,
and/or anisotropy coefficients) of various biological tissues at a variety
of wavelengths is presented. The theoretical foundations for most ex-
perimental approaches are outlined. Relations between Kubelka-Munk
par ters and transport coefficients are listed. The optical properties
of aorta, liver, and muscle at 633 nm are discussed in detail.

I. INTRODUCTION

HE propagation of laser light in tissue is a question

of growing concern in many medical applications.
Numerous models that predict fluence rates in tissue, or
reflection and transmission of light by tissue have been
developed. The accuracy of these models ultimately de-
pends upon how well the optical properties of the tissue
are known. Optical parameters are obtained by converting
measurements of observable quantities (e.g., reflection)
into parameters which characterize light propagation in
tissue. The conversion process is based on a particular
theory of light transport in tissue.

In past years, a host of investigators have reported val-
ues for the total attenuation coefficient, the effective at-
tenuation coefficient, the effective penetration depth, the
absorption and scattering coefficients, and the scattering
anisotropy factor for a variety of tissues at a variety of
light wavelengths. The majority of these results are based
upon approximations to the radiative transport theory
(e.g., diffusion theory). Yet sufficient variations in 1)
model assumptions (e.g., isotropic-anisotropic scattering
or matched-mismatched boundaries), 2) measurement
techniques, 3) experimental apparatus, 4) calibration
schemes, and 5) biological heterogeneities exist that ef-
forts to extract average values for different tissue types is
complicated. Regardless of these problems, there is a need
to consolidate what has already been measured, and the
main thrust of this paper is to present a summary of re-
ported optical measurements. All published (within the
authors’ awareness) optical properties of tissue are gath-
ered into this single compilation.
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A brief description of the radiative transport equation
which is basic to all the light propagation models, and its
associated parameters appears in Section II. Various so-
lutions are presented to show how optical properties can
be determined from using different measurements. Sec-
tion III compares the Kubelka-Munk coefficients and the
transport coefficients. Section IV provides specific de-
scriptions of several methods used to determine optical
properties. Section V discusses the measured optical
properties for three selected tissue groups at 633 nm.

II. LiGHT PROPAGATION MODELS

Most of the recent advances in describing the transfer
of laser energy in tissue are based upon transport theory.
This theory is preferred in tissue optics instead of analytic
approaches using Maxwell equations because of inho-
mogeneity of biological tissue. According to transport
theory, the radiance L(r, s) (W - m~? « st ") of light at
position r traveling in a direction of the unit vector s is
decreased by absorption and scattering but it is increased
by light that is scattered from s’ directions into the direc-
tion s. The radiative transport equation which describes
this light interaction is [1]

s - VL(r,s) = = (pa + p)L(r, s)

+ | ple L) (1)

where u,(m~") is the absorption coefficient, u,(m™") is
the scattering coefficient, u,(m™") is the attenuation coef-
ficient, dw' is the differential solid angle in the direction
s', and p(s, s') is the phase function. The total attenua-
tion coefficient is

(2)

The phase function describes the angular distribution for
a single scattering event. For tractability, the phase func-
tion is usually assumed to be a function only of the angle
between s and s’. If the integral of the phase function is
normalized to equal one, then p(s, s') is the probability
density function for scattering from direction s’ to direc-
tion s,

P = g t pse

S p(s, 8)do' =1 (3)
4z 4

Usually the form of the phase function is not known. In
these cases the phase function is usually characterized by
a single parameter g called the average cosine of the phase
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function g,
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This parameter is sometimes called the anisotropy coef-
ficient. It is a measure of the asymmetry of the single scat-
tering pattern; g approaching 1, 0, and —1 describes
extremely forward, isotropic, and highly backward scat-
tering, respectively.

Formulation of the transport equation assumes that each
scattering particle is sufficiently distant from its neighbors
to prevent interactions between successive scattering ef-
fects. In theory, these scatterers and absorbers must be
uniformly distributed throughout the medium. Fluores-
cence and polarization events are neglected. Until re-
cently, most tissue optics studies considered only steady-
state (time-independent) transport of light.

Calculations of light distribution based on the radiative
transport equation require knowledge of the absorption
and scattering coefficients, and the phase function. Yet to
arrive at these parameters, one must first have a solution
of the radiative transport equation. Because of the diffi-
culty of solving the transport equation exactly, several ap-
proximations have been made regarding the representa-
tion of the radiance and/or of the phase function. Forms
of these approximate solutions for calculating light distri-
bution within tissues are dependent upon the type of ir-
radiance (diffuse or collimated) and the optical boundary
conditions (matched or unmatched indexes of refraction).
Fortunately, two simple solutions of the transport equa-
tion exist that provide expressions for the unscattered
transmission and for the asymptotic fluence rate deep in a
bulk tissue (far from light sources and boundaries).

A. Unscattered Transmission

Unscattered light is attenuated exponentially following
Beer’s law. For light passing through a slab of tissue with
thickness ¢ and having no reflections at the surface, the
transmission is given by

Tc = ¢ ! (5)

where T, is the unscattered transmission (sometimes also
referred to as the collimated or the primary transmission).
Thus the total attenuation coefficient can be obtained from
a tissue sample using

1
e = —? InT,. (6)

If measurements of T, are made when surface reflec-
tions are present, e.g., in air, corrections are required for
the reflections at all mismatched surfaces. For a tissue
sample placed between glass or quartz slides, the colli-
mated beam is reflected at the air-slide, slide—tissue, tis-
sue-slide, and slide-air interfaces. If the sample is only
a few optical depths thick, multiple internal reflections
must be considered. A net reflection coefficient for an air-
glass-tissue layer is given by [2]

rg + 1 = 2rr,

"= U —r,r, (7)
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where the Fresnel reflections at the air-glass and glass—
tissue interfaces are r, and r,, respectively. The measured
transmission T is

2
1-r
T (8)
Equation (8) is first solved for T, before using (6) to cal-
culate y,.

B. Asymptotic Fluence Rate

In tissue regions far from light sources and boundaries,
the fluence rate (W - m~2) decays exponentially. This is
the dominant mode of propagation in an unbounded me-
dium [3] and is often called the diffusion mode. The rate
of decay is called the effective attenuation coefficient
( peg) or the diffusion exponent. An expression for this
asymptotic fluence rate is

®(z) ~ (constant)e ~*" (9)

In this paper, p.s will always refer to the measured rate
of decay of the fluence in this diffusion region. An ap-
proximate relation for the effective attenuation coefficient
in terms of the absorption, scattering, and anisotropy scat-
tering coefficients is given below.

C. Diffusion Theory

The radiance in (1) can be separated into unscattered
and scattered components

L(r,s) = L(r, s) + Ly(r, 5). (10)

The unscattered portion (L) contains all light that has
not interacted with the tissue. It satisfies Beer’s law and
the transmission equation (5). The scattered portion con-
tains all light that has been scattered at least once and can
be expressed exactly with an infinite sum of Legendre
polynomials. However, the diffusion approximation trun-
cates this sum to the first two terms (an isotropic and a
slightly-forward directed term). This approximation sim-
plifies the transport equation to the more tractable diffu-
sion equation [4]

(V2 = )2(r) = —Qo(r) (11)

where ®(r) is the total scattered (diffuse) fluence rate
given by

&(r) = S‘h Ly(r, s) do. (12)

The source term @, (r) is generated by scattering of col-
limated normal irradiation

Qo(r) = -3/"5[”11 + ﬂs(l - g) + I"'tg]

' (1 —'rs)Fo(r) exp(—u,z). (13)
Here F, is the irradiance (W - m~?). The constant « in
(11) is an approximation of the actual measured effective
attenuation coefficient p.; when absorption is dominated
by scattering.

(14)

K =3p[p, + (1 - g)nl.
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For diffuse irradiances, Q, is typically set to zero because
the diffuse incidence is introduced in the boundary con-
ditions. The accuracy of the diffusion equation is affected
by the ratio of scattering to absorption, the scattering an-
isotropy, and the distance from light sources and bound-
aries [5].

Several phase functions are compatible with the diffu-
sion approximation: the isotropic [6], the delta-isotropic,
the Eddington [7], and the delta~-Eddington [8]. These
functions are approximations of the actual phase function
for tissue, e.g., the Henyey-Greenstein function for der-
mal and aortic tissues [2], [9]. In the diffusion approxi-
mation, the delta-Eddington phase function is the best
function for simulating light transport in tissues charac-
terized by Henyey-Greenstein scattering [10]. If gyg is
the average cosine of the Henyey-Greenstein phase func-
tion [3], then the diffusion equation for a delta-Eddington
phase function is found by making the following substi-
tutions in (11).

8uG -
(1 + gua)

ws(1 — gho) = s (15b)

The solution of the diffusion equation (1) for the total
fluence rate in a finite parallel slab is [4]

g (15a)

D (2) = a; exp (kz) + ay exp (—«z)

+ azyexp (—p2). (16)

For a finite slab under plane collimated irradiation, Ishi-
maru provides values for a,, a,, and a; [4] for matched
boundaries. In the case of a semi-infinite slab a; must
equal zero; values for a, and a; have been evaluated by
Phahl, based on the delta-Eddington approximation, for
a uniform collimated irradiance F; for matched and mis-
matched boundary conditions [2].

The dominant term in (16) for large z in a semi-infinite
slab yields the following approximate relation for the
measured effective attenuation coefficient

if p, << u,.

(17)

The accuracy of this relation decreases with decreasing
ratios of scattering to absorption and increasing aniso-
tropy (see Table 23 in van de Hulst [4]) and fails com-
pletely when absorption dominates scattering (since both
the limiting form of (16) changes and the diffusion ap-
proximation itself is inaccurate).

Expressions for light flux solutions of the diffusion
equation (11) are

Heff = K

F (2) 2241[1 — hxle** +%[l + hx]e ™
a
+ —43[1 + h,]

P‘-:g(l — rs)FO
2[/"'11 + (1 - g)”'s]

e Ht (18a)
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F_(z) = % (1 + hx]e™ + % (1 — hx]e ™

a
+ f[l _h""t]

I"'sg(l - rs)FO e M2

_ (18b)
2[1“{1 + (1 - g)l“s]
Fy(z) = F(2) — F_(2). (18¢)

F.(z) and F_(z) are the forward and backward diffuse
fluxes, respectively, and F, (z) is the net scattered flux
along the direction of irradiation. The coefficient A is

h=2/3p, + (1 = )] (19)

For a semi-infinite slab, both the fluence rate and the
fluxes have the same exponential behavior for large z:

Fo(d) ~ 2004 hde™  ifp, << e (20)

Consequently, for highly scattering biological tissues, in-
terstitial measurements of either fluence rate by isotropic
detectors or flux by flat cut fibers placed deep inside the
tissue permits evaluation of « as suggested by (16) and
(20) [11]-114].

The reflection and transmission of a slab of thickness ¢
with index matched boundaries in the diffusion approxi-
mation are given by [2], [4], [15], [16]

Hs8
R= - +_{a1K“azK—'a3K}
[‘La+(1—g)“‘x] 2
(21a)
- Hs8 e Tt
[wa + (1 = 8) ]
~ {aike"” — ayke ™ — azpe M}, (21b)
The total transmission is 7, = T + T,, where T, is given
by (5).

Measurements of diffuse reflection (R), total transmis-
sion (7,), and unscattered transmission ( 7,) provide suf-
ficient information for uniquely determining three optical
parameters ( u,, us, g). However, if only diffuse reflec-
tion and total transmission measurements are available,
only absorption ( u,) and reduced scattering [ u; = p,(1
— g)] coefficients can be calculated. The anisotropy ( g)
has been incorporated into p; by the similarity relations
ps = upand p/(1 — g’) = p,(1 -~ g). Anisotropic scat-
tering is reduced to isotropic scattering by setting g’ = 0
and so pg = (1 — g) p, [3], [17].

Some diffusion models incorporate index mismatched
boundaries, scattering anisotropy, and tissue layers with
varying optical properties. However, these models lead to
complicated relations for reflection and transmission, and
the optical properties cannot be directly expressed in terms
of the reflection and transmission. Iterative methods (dis-
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cussed in the next section) are used to determine optical
properties using such models.

Several models proposed for modeling the propagation
of laser light in tissue are listed in Table I along with the
optical parameters required by each model. In particular,
when a one-dimensional geometry is a reasonable repre-
sentation, then the adding-doubling method [18]-[19]
provides an accurate solution of transport equation for any
phase function. This method permits modeling of aniso-
tropically scattering, internally reflecting, and arbitrarily
thick, layered media with relatively fast computations [3].

D. Kubelka-Munk Theory

The Kubelka-Munk theory describes the propagation of
a uniform, diffuse irradiance through a one-dimensional
isotropic slab with no reflection at the boundaries [20],
[21]. This model is equivalent to a diffusion model having
a forward and backward peaked phase function [3]. The
Kubelka-Munk expressions for reflection and transmis-
sion of diffuse irradiance on a slab of thickness t are

x cosh (Sgmyt) + y sinh (Sgmyt)

(22a)

Y
T =
x cosh (Sgmyt) + y sinh (Sgmyt)

(22b)

where Agy and Sk are the Kubelka-Munk absorption and
scattering coefficients and have units of inverse length
(m™"). The parameters x and y are found using (23c). The
advantage of the Kubelka-Munk model is that the scat-
tering and absorption coefficients may be directly ex-
pressed in terms of the measured reflection and transmis-

sion
1 1 —R(x — y)]
SKM = yt In |: T (233)
Axm = (x — 1) Skm (23b)
1+R*-T2
Y y=++vx’ = 1. (23¢)

The simplicity of the Kubelka-Munk model has made it
a popular method for measuring the optical properties of
tissue. Unfortunately, the assumptions of isotropic scat-
tering, matched boundaries, and diffuse irradiance are
atypical of the interaction of laser light with tissue. De-
spite attempts to extend the Kubelka-Munk model to col-
limated irradiance [16], [22], [23] and anisotropic scat-
tering [15], [22], [25], this method remains a poor
approximation for laser light propagation in tissue [24].

III. TRANSPORT AND KUBLEKA-MUNK COEFFICIENTS

Nearly all optical properties can be separated into either
transport ( p,, p;, ) or Kubelka-Munk (Agy, Skm) coef-
ficients, based on the theory used to obtain them. Not sur-
prisingly, transport properties correspond to theories
based on the transport equation (e.g., the diffusion equa-
tion). Kubelka-Munk properties are obtained using (23)
above.
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TABLE I
CONVERSION FORMULAS RELATING KUBELKA-MUNK TO TRANSPORT
COEFFICIENTS

Author n yory'l Restrictions 2
Kiier3 [26] (1-9) (1-a) A {1 1 ] Isotropic scattering ,
(1+9)% CINY
an Gemert & Star® (1-9) (1-2) a'y_L] Anisolropic scattering;
e Tk % [1 0 } delta-fsotropic phase function
1,10 4,38 oy Anisotropic scattering,
vengemertasr gag ) SrE O v e
Meador & W 1,14, 4,38 . Isotrapic scattering;
t"ap_s]r e ¥ 3t Delta-Eddington phase
function (four moments)
Meador & Wi 1 4,20 4. Isotropic scattering,
e 2 3+850)  DaEadington phase

function (two moments)

[S1E

4,804 . )
Brinkworth 345 Isot(apw scattering,
28,29] Eddington phase function

7 for isotropic and ' for anisotropic scattering; a=jie/(is+Ma) and a'= pg(1-9)/[ns(1-9)+1a]
All formulas assume index matched boundaries

(92-1)/2= (1+R2-T2)/2R, and @= [E+In(1-5)}/ &-In(1-9)]

(@2-1)/2¢= (1+R2-T2)/2R, and pg(1-8)/[1s(1-g)+11a] = [E+In(1-E)]/ E-In(1-E))

W

Transport coefficients can be derived from the collision
of a plane wave with a particle [4]. Some of the wave is
scattered, some is absorbed, and some is undisturbed. The
absorption (¢, ) and scattering ( g,) cross sections (m?) for
tissue are ill-defined, because the particles are not sepa-
rated from one another. Consequently, with the notable
exception of blood [4], these cross sections are not well
defined and measured. However, the volumetric absorp-
tion and scattering coefficients (m™') can be defined by
using ( p) the average density of particles per unit volume
of tissue (m ™). The scattering coefficient is u, = po, and
the absorption coefficient is u, = po,. Note that the phase
function is not involved in the description of the absorp-
tion and scattering coefficients.

The Kubelka-Munk parameters are defined by (22) and
(23) above. In the given formulation, the fraction of light
scattered forward is equal to the fraction scattered back-
ward. Since the Kubelka-Munk formulas are based on a
forward- and backward-peaked phase function, the equal
scattering assumption is equivalent to assuming equal
magnitudes for the phase function peaks. If these peaks
had different magnitudes (as they should for anisotropic
scattering), then two unequal scattering coefficients would
result. The Kubelka-Munk scattering coefficients are thus
dependent on the scattering anisotropy (or phase function)
of the tissue.



2170 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 26, NO. 12. DECEMBER 1990

A large number of investigators have used Kubelka-
Munk theory to obtain optical properties. In response to
this, several authors have attempted to relate the Ku-
belka-Munk coeflicients to transport coefficients using the
following relations [4], [25]-[29]:

Ra = 1AM (24a)
Bs = XSkm (24b)
#s(1 — g) = x'Skm (24c)

Table I provides expressions for n and x (or x'). Only
the relations of Klier [26] or van Gemert and Star [27]
generate transport coefficients which lead to light distri-
butions that agree with distributions based on exact so-
lutions to the transport equation. Van Gemert and Star
extend the isotropic relations of Klier to include aniso-
tropic scattering. Both papers provide graphs of 5 and x
(or x') as functions of p,/( ps; + u,) and Agy /Skm. The
usefulness of these relations is compromised because in-
ternal reflection in the slab is neglected. Such internal re-
flection effects can dramatically change the measured re-
flection and transmission [2]. A final set of
transformations by Star is Agy = 2p, and Sky = {3p,(1
- 8) = pa}/4 1301.

IV. MEASUREMENT OF OPTICAL PROPERTIES

A number of methods have been proposed for measur-
ing the optical properties of tissues. These can be sepa-
rated into two classes: direct and indirect. In direct tech-
niques, optical properties are found using nothing more
complicated than Beer’s law. Unscattered transmission
measurements [31], effective attenuation measurements
[11]-[14], and goniophotometric measurements of the
single scattering phase function [2], [9], [58] are direct
techniques. In indirect techniques, a theoretical model of
light scattering is used. Indirect techniques can be sub-
divided into iterative and noniterative methods. A non-
iterative method uses equations in which the optical prop-
erties are explicitly given in terms of the measured quan-
titites. The Kubelka-Munk and three-flux models are
noniterative, indirect methods. In indirect iterative meth-
ods, the optical properties are implicitly related to mea-
sured quantities. The values for the optical properties are
iterated until the calculated reflection and transmission
match the measured values. These methods are the most
cumbersome to use, but the optical model employed can
be much more sophisticated than in the noniterative meth-
ods.

A. Direct Methods

Direct techniques do not depend on any specific model
to obtain the optical parameter from measurements. Two
optical parameters that are not dependent upon any spe-
cific model are the total attenuation coefficient u, and the
effective attenuation coefficient p 5. These parameters are
determined using the following methods.

1) The total attenuation coefficient g, is obtained from
measurements of unscattered transmission using (6), as

depicted in Fig. 1(a). Thin slabs are employed [31]. Ex-
perimental data are most affected by beam geometry,
sample characteristics, detection schemes, and multiple
reflections at boundaries. This measurement is concep-
tually simple, but difficult to implement because of prob-
lems in separating on-axis scattered light from unscattered
light.

2) The effective scattering coefficient ( u.g) or effective
penetration depth (3.5 = 1/p.g), is estimated from flu-
ence rate measured by interstitial detectors and using (16)
and (19), as depicted in Fig. 1(b) [11]-[14], [32]-[36].
This is the simplest and most commonly determined pa-
rameter (see Tables III and IV). Fiberoptic detectors must
be located inside the diffusion region of irradiated bulk
samples, far from sources and boundaries. It is crucial
that the measurement field be in the diffusion region. Oth-
erwise the orientation of the fiber with respect to incom-
ing beam [9], [34], and its numerical aperture (flat cut
versus isotropic fibertips [37]-[39]) will introduce mea-
surement errors.

B. Noniterative Indirect Methods

Such approaches require simple expressions relating the
optical properties to measured transmission and reflection
(e.g., Kubelka-Munk equations). It is not surprising that
the two methods presented involve using (23).

1) The first method employs calculations of Kubelka-
Munk absorption and scattering coefficients (Axm, Skm)
from measurements of diffuse reflection and transmission
for diffuse irradiance, and use of (23), as depicted in Fig.
1(c). This method is strongly limited because a perfectly
diffuse irradiating source is not readily available.

2) The second method utilizes determination of absorp-
tion, scattering, and anisotropy coefficients from diffuse
transmission and reflection measurements using relations
derived by van Gemert et al. [16]. Kubelka-Munk coef-
ficients are first computed, then transformed into transport
coefficients, and finally combined with a measurement of
unscattered transmission to yield the three optical coeffi-
cients. The same limitations of method 1) apply here. Re-
lations which correct for mismatched boundaries are also
available [40].

Other noniterative methods have also been used. An ex-
ample is the combination of the absorbance of a sample
placed in an integrating sphere and angular phase function
measurements [41}-[43]. Marijnissen et al. [37] com-
bined measurements of angular radiance patterns with
measurements of u.s to deduce p,, pu,, and g. Yoon [9]
used asymptotic measurements of total diffuse transmis-
sion for different sample thicknesses with collimated
transmission and goniophotometric studies to obtain op-
tical properties.

More recent methods include pulsed photothermal ra-
diometry (PPTR) [44], photoacoustic effects [45], and
time-of-flight (TOF) studies [46]. However, PPTR and
photoacoustic methods have been demonstrated only for
measuring absorption coefficient. These three newer tech-
niques are noninvasive and therefore show promise for in
vivo determination of optical properties.
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Fig. 1. Measured values from the unscattered transmission T, through a
sample of thickness ¢ are analyzed using Beer’s law to provide estimates
of the total attenuation coefficient ( g,). (b) Interstitial measurements of
fluence rate (or flux) inside a sample with or without an added absorber
yield an estimate of the effective attenuation coefficient ( p ) or the ef-
fective penetration depth (3.4 = 1/p.q). (c) Measurements of diffuse
reflection R,, and diffuse transmission 7,, and sample thickness ¢, for
diffuse irradiance are used in (22) to compute Kubelka-Munk absorption
Axm and scattering Sxy coefficients. (d) Measurements of diffuse reflec-
tion and transmission for diffuse irradiance lead to Kubelka-Munk coef-
ficients; these are then converted to transport parameters. When colli-
mated transmission is available, u,, u,, and g can be calculated. (e) If
only total reflection and transmission are available, the absorption coef-
ficient y, and reduced scattering coefficient p, (1 — g) can be determined
with an iterative light transport model. An additional measurement (col-
limated transmission or the phase function) permits separate estimation
of u,, py, and g.

C. Iterative Indirect Methods

Unlike noniterative techniques, iterative procedures can
use complicated solutions to the transport equations. Ex-
amples are diffusion theory, adding-doubling models [2],
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and Monte Carlo [47]. Typically, p, and p,(1 — g) can
be obtained if only total reflection and transmission are
measured as shown in Fig. 1(e). If a third measurement
of either the unscattered transmission or the phase func-
tion is available, then values for u,, u,, and g [or p(s,
s')] can be determined. Iterative solutions usually include
corrections for mismatched boundary conditions and/or
for multiple layers. These methods often require two or
more of the following measurements on a sample of
known uniform thickness:

1) total (or diffuse) transmission for collimated or dif-
fuse irradiance;

2) total (or diffuse) reflection for collimated or dif-
fuse irradiance;

3) absorbance of the sample, placed inside an inte-
grating sphere;

4) unscattered (collimated) transmission for colli-
mated irradiation; and

5) angular distribution of emitted light from an irra-
diated sample.

Any three measurements from 1) to 5) would be sufficient
to determine the three optical properties.

D. Sources of Errors

Computed values for the optical coefficients are inev-
itably prone to errors in all (or any) of the following:

1) physiological condition of the biological sample-
hydration level, homogeneity, species variability, fro-
zen-unfrozen state, in vivo-in vitro, fixed-unfixed, sur-
face smoothness of the sample slabs;

2) irradiation geometry;

3) boundary index matching-mismatching;

4) orientation of detecting interstitial fibers with re-
spect to source fiber;

5) numerical apertures of the sensing fibers;

6) angular resolution of the photodetectors;

7) separation of forward scattered light from unscat-
tered light; and

8) theory used for the inverse problem.

These are important factors to consider when comparing
optical properties obtained by different investigators.

V. DiscussioN

In recent years, many measurements of optical proper-
ties have been made. These optical properties can be used
in the models listed in Table II. Tables III and IV are
extensive lists of scattering, absorption, and anisotropy
coefficients based on the transport theory. Table III lists
the in vitro results, and Table IV tabulates optical prop-
erties measured in vivo. Each entry is accompanied by a
brief description of the tissue preparation, sample geom-
etry, experimental measurements and underlying theory.
Kubelka-Munk coefficients are collected in Table V. Not
all measurements listed in Tables III-V are discussed be-
cause of the wide variety of techniques and methods used.
Instead, we concentrate on measurements of aorta, liver,
and muscle at 633 nm and of liver tissue at 1060 nm.
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A. Aorta

Aorta is a turbid tissue composed of interwoven elastin
and collagen fibers, arranged in a trilayer structure of in-
tima, media, and adventitia. Its appearance ranges from
opaque white (porcine) to a pinkish-white in cadaveric
samples.

Cadaveric aorta samples used by Yoon [9] were stripped
to different thicknesses leaving mostly the intimal and me-
dia layers. ‘Maintaining these samples in saline altered
their hydration states. Keijzer er al. [48] froze samples to
make microtome cuts. Despite these differences in sample
preparation, Keijzer measured a scattering coefficient of
315 cm™' and an anisotropy factor of 0.87 for normal me-
dia at 633 nm. These values agree closely with Yoon’s
values of p; = 310 cm ™! and g = 0.90. In contrast, Ke-
ijzer’s absorption coefficient of 2.3 cm™! is higher than
the p, = 0.52 cm™! value obtained by Yoon. If p, =
Agnm/2, then the Agy values by van Gemert et al. [49]
and Oraevsky et al. [50] for normal aorta are in closer
agreement with the result by Yoon. Differences in treat-
ment of internal reflections at the sample boundaries un-
doubtedly affected the computed absorption coefficients.
Yoon fitted the asymptotic portion of a plot of diffuse
transmission versus sample thickness to an equation that
was independent of the tissue index of refraction, thus
eliminating any need for boundary corrections. Keijzer,
however, assumed a value for the refractive index to en-
able the inverse delta-Eddington program to correct for
internal reflections. Another likely source for the descrep-
ancy, was that by soaking the samples in saline, Yoon
removed any remaining blood in the aorta sample, thereby
reducing the measured absorption coefficient.

B. Liver

Unlike the aorta, liver tissues contain a dense popula-
tion of erythrocytes within a vacuolar mesh of connective
tissue and capillary beds. Absorption coefficients for liver
range from 2.3-3.2 cm™' at 633 nm. These are higher
than those of other soft tissues. The reported absorption
coefficients for liver agree within the errors introduced by
interspecies variations. They also match the 1.3-2.7 cm™!
obtained for oxygenated whole blood by Pedersen et al.
[51] and Reynolds et al. [52]. By comparison, the 6.5
cm™! value for murine livers by Parsa using the delta—
Eddington method is very high [53]. Here, index mis-
matching has been iteratively corrected in the inverse pro-
grams using assumed values for refractive indexes; Kar-
agiannes et al. [54] adopted a similar approach.
Marchesini et al. [43] and Andreola et al. [42] have not
offered any clear details regarding their management of
this problem. However, they did correct their absorbance
measurements for multiple reflections associated with the
integrating sphere, a correction ignored by other investi-
gators. Without correction, the measured absorbance (or
reflectance and transmission) exceeds the true absor-
bance.
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TABLE II
FLUENCE MODELS WITH ASSOCIATED OPTICAL PARAMETERS

OPTICAL MODEL OPTICAL COEFFICIENTS
1 FLUX MODELS
1. 2-Flux Kubelka-Munk (Kubelka [20-21]) Agm and Skm
2. 3-Flux (Atkins [22], van Gemert [16]) Ma, Hs,and g
3. 7-Flux (Yoon [9]) Ma, Mg, and g

T DIFFUSION MODELS

1. Asymptotic (Svaasand [11], Profio [67])
Slab Her OF e (= 0/ per)
Symmetric sphere:
Circular solid cylinder

2. Eddington (Ishimaru|4],) Ha, Mg, and g

3. Delta-Eddington (Joseph (8], Prahli2]) Wa, Ms, g and f

T0. Py APPROXIMATION (Bell & Glasstone (68])  pa, Hs, and pls,s")

1V DISCRETE ORDINATE (Houf [69]) Ha, Hs, and pls,s")

V. ADDING-DOUBLING
(van de Hulst {18], Plass [19], Prahl 2]}

Ha, Hs and p(s,s")

V1. MONTE CARLO (Wilson [70], Keijzer [71]) Ma. Ws, and pls,s")

Scattering coefficients of 313 and 414 cm™' were ob-
tained, respectively, by Marchesini et al. [43] and An-
dreola et al. [42] for human liver at 633 nm. The scatter-
ing coefficient of 313 cm™! is characteristic of values for
soft tissues. However, Marchesini obtained a reduced
scattering coefficient pu; (1 — g) of 100.6 cm™! that is sig-
nificantly above the 5.23 cm™' value reported by Karia-
gannes et al. [54] for bovine tissues and the 7.2 cm™!
value for murine samples measured by Parsa et al. [53].
This difference can be attributed to the measured anisot-
ropy factor of 0.65 by Marchesini; it is substantially lower
than reported values of 0.95 for rat liver by Parsa et al.
[53] or values ranging 0.97 to 0.99 for blood by several
authors [31], [55]-[57]. The coefficients determined by
Marchesini also resulted in an approximate penetration
depth of 33 um. This suggests that two or more scattering
events occurred within the 20-100 um thick samples used
in his goniometric studies to find the anisotropy factor.
Jacques et al. [58] have demonstrated that the apparent
anisotropy factor decreases as skin samples become
thicker.

Measurements of effective attenuation coefficients (and
effective penetration depths d.) are done in tissues far
from sources and boundaries using isotropic detectors and/
or flat cut fibers. These results should be functionally in-
dependent of detector geometry. Yet, measurements using
the three orthogonal detectors described by Svaasand et
al. [11] produced different attenuation coefficients for each
detector. This suggests the measurements were made in
regions with nonisotropic radiance distributions. The use
of isotropic detectors [37]-[39], [59] may minimize these
errors by recording an average and direction-independent
signal. Also, measured p.z and calculated x would not
agree if (15a) is used outside its range of validity. Higher
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TABLE V
KUBELKA-MUNK COEFFICIENTS IN VITRO
Tissue A It Agm Skm Tissue Sample Reference
Preparation Geometry
nm cm-! cm-l cm’!
Aorta (human)
Normal 5145 221 11.12.7)* 11.0(0.8) Cadaver specimens; slabs van Gemert, 1985 [49]
633 8.1 1.8(.9) 6.3(1.4)
1060 3.7 0.9(.3) 2.8(2.0)
Normal 633 8.2b 2.0 16.0 Cadaver- slabs Oraevsky, 1988  [50]
488 20.0b 7.8 21.7 2-6 hours post mortem
Blood
Human 514 140 125 15.0 cuvettes van Gemert, 1985 [49]
633 4.0 1.0 3.0 cuvettes
1060 7.0 4.0 3.0 cuvettes
Plaque
Human 5145 37.0 18.0 19.0 Cadaver specimens slabs van Gemert, 1985 [49]
633 14.0 2.0 12.0 (heterogenous plaque)
1060 3.7 1.4 23
Fibrous 633 10.12 25 19.2 Cadaver specimens slabs Oraevsky, 1988 [50]
488 30.18 16.6 19.0 2-6 hours post mortem
Skin (human)
Dermis 630 65.0 5.0 60.0 Frozen sections slabs Anderson, 1981 [84]
Dermis 8 415 - 20.0 138 slabs van Genert, 1986 [85]
500 _ 113 90.8
540 _ 9.0 78.0
5711 - 7.5 69.0
694 - 6.8 55.3
1060 _ 6.0 35.0
Dermis (breast 630 60.0 20 40 In 60°C water to separate slabs Wan, 1981 86}
& abdominal skin) dermis from epidermis
Epidermis 8 415 _ 51.7 44.0 slabs van Genert, 1986 [85]
500 _ 36.7 36.7
540 _ 333 333
5717 _ 30.0 30.0
694 _ 26.7 24.0
1060 - 20.0 16.0
{ Total attenuation coefficient E=Aym + Sgm
® (£ SD) standard deviation
b Effective anemation eud‘ﬁamt =V (Akm>+ 2A¥m Skm)
2 Ab i fficients derived from original spectra produced by Wan et. al [86)

and
mdAndmmet.nl[M].aMcmpdedmﬁmlofmfmec[lS),
tabulated values are digitized from plots in this figure 1.

per Values were obtained directly from interstitial fluence
measurements [12], [13], [33]-[35] than those calculated
from p, and p(1 — g) parameters for bovine (Kara-
giannes), human (Marchesini), and murine (Parsa) livers.

At 1060 nm, absorption coefficients of 10 cm ™' for rab-
bit liver by MacLeod et al. [45] using photoacoustic spec-
troscopy and 0.53 cm™" for bovine liver by Karagiannes
using dlffuse reflection and transmission are reported. The
10 cm ™! value seems hlgh even allowing for biological
variations among species, since it is about twice the 5.5
cm™' value obtained for arterial clots by Cheong [60]. A
possible cause is the 1 cm spatial resolution in the pho-
toacoustic studies. Another possibility is the inclusion of

scattering effects in the absorbance measurements. Scat-
tering redistributes the light over a broader tissue volume,
effectively increasing the pathlength for optical absorp-
tion, and hence a larger absorption coefficient would be
measured. In fact, examination of Table III reveals that
absorption parameters measured by photoacoustic means
are generally higher than those made with other tech-
niques.

C. Muscle

Bovine muscles absorb more light at 633 nm (pu, =
1.5-3.5 cm™') than the whiter chicken muscles (0.17-
0.12 cm™") but less than the better perfused human mus-
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cles (11.2 cm™"). Marijnissen et al. [37] report an ab-
sorption coefficient of 0.4 cm™! for bulk bovine muscle;
this is significantly less than the 1.5 cm ™' from Wilson ez
al. [14] using the ‘‘added absorber’’ technique, or the 3.5
cm ™! value from McKenzie [39] based on fitting isodose
contours on exposed photographic films to diffusion the-
ory. These variations are typical of optical properties re-
ported by different authors. Both Marijnissen and Mc-
Kenzie used isotropic sensors in their measurements.
Wilson used finite aperture detectors. Nevertheless, a
large difference exists between the results by Marijnissen
and the values by McKenzie. The absorption coefficients
by Wilson and Marijnissen are more consistent and are
typical of soft tissues at 633 nm. Marchesini’s [43] direct
measurement of absorbance of a sample placed inside an
integrating sphere yielded a high value of 11.2 ¢cm™' for
human tissues. Absorbance determined in this way is gen-
erally overestimated because scattering increases the
average photon pathlength.

Marchesini er al. reported a scattering coefficient of 530
cm™!, which is higher than other values in Table III. The
4.1 and 7.9 cm ™' values reported for bovine and chicken
muscle by Marijnissen ez al. [59] are extremely low. Star
et al. attributes this to large detecting apertures [61]. In
early studies it was not realized that tissues were highly
forward scattering, as shown later by the 0.97 and 0.94
reported for g by Wilksch ez al. [47] and Flock ez al. [31],
respectively. However, early measurements of the effec-
tive attenuation coefficient seem more reliable because
they compare well with calculated values based on later
measurements of u, and p (1 — g).

Noticeable variations are present among the listed re-
duced scattering coeflicients. The ‘‘added-absorber’’
technique produced u,(1 — g) values of 7.0 and 8.0 cm ™!
for bovine and chicken muscles, respectively, at 633 nm.
These are higher than those obtained using total diffuse
and transmission measurements [42], [54] and from flu-
ence measurements with isotropic detectors [58]. Ironi-
cally, the low anisotropy factor of 0.3 and scattering coef-
ficient of 7.9 cm™' for bovine muscle by Marijnissen is
the reason that his value for u (1 — g) was comparable
with other values listed in Table III.

Diffusion theory [13], [62], [63] and the ‘‘added ab-
sorber’’ technique [14] were used to estimate the effective
attenuation coefficient from interstitial light measure-
ments in bovine muscles. They yielded values of 4.3-6.9
cm™' which are higher than the 2.7 cm™' obtained by
Marijnissen and Star [37] using isotropic detectors. The
3.9 cm™' reported by Kariagannes is within the range of
the above two sets of results.

Doiron reports that rabbit muscle in vivo attenuates
more 630 nm light than in virro samples. Doiron mea-
sured values of 1.6-2.3 cm™" in vivo but 1.1-1.5 cm™ ' in
vitro for the effective attenuation coefficient [12]. These
differences might be due to perfusion of the in vivo sam-
ples. However, effective attenuation measurements of
2.6-4.8 cm ™' in vivo and 2.7-12.5 cm™" post mortem by
Wilson [35] did not exhibit any such difference in atten-
uation.
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D. General Observations

This paper has emphasized the importance of matching
experimental conditions with the theoretical model used
to determine the optical properties. Reliability of optical
properties depends on both theoretical and experimental
techniques. For example, Kubelka-Munk measurements
are questionable because the theoretical model is flawed
and the experimental measurements are difficult to per-
form properly (infinite irradiation width, small diffuse re-
flection signal, and difficulty obtaining uniformly diffuse
irradiances). Judgements of experimental accuracy are dif-
ficult, because many different tissue preparations and
measurement parameters are involved. Preuss and Bolin
[64] have reported a 39% and a 160% change in trans-
mission from prefreezing at 488 and 515 nm, respec-
tively. Such changes may translate into significant errors
in the computed optical properties.

In this compilation, most measurements used a laser
source. Little has been presented about optical properties
measured as a function of wavelength using a spectropho-
tometer. There are optical property spectra for murine skin
[15], cadaveric aorta [48], [65], murine liver [53], and
human brain [66]. In the past, spectrophotometric data
suffered from several errors. Typically, Beer’s law was
used to analyze transmission measurements, which is in-
applicable if the samples scatter light or if the sample
thickness is greater than the average scattering distance.
When both spectrophotometric transmission and reflec-
tion data were available, Kubelka-Munk theory was used.
Usually the data was not corrected for mismatched bound-
ary conditions or pseudo-collimation of the irradiation
source. Prahl [2] has described a procedure for matching
spectrophotometer measurements to iterative computa-
tions of reflection and transmission to obtain u, and u,(1
— g). Undoubtedly careful calibration and use of the
spectrophotometer with an integrating sphere can produce
absorption and reduced scattering coefficients as a func-
tion of wavelength.

VI. CoNcLuSION

Optical properties of biological tissues are vital to do-
simetry studies. An up-to-date compilation of existing ab-
sorption, scattering, and anisotropy parameters accom-
panied by their associated theory and macroscopic
measurements have been presented. Broad ranges in op-
tical properties for any specific tissue are frequent, indi-
cating the sensitivity and vulnerability of such measure-
ments to variations in samples, detection apparatus,
boundary conditions, and the governing light propagation
model. The reliability of the reported values can be com-
promised by any of these factors.
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