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Abstract

Decentralized Security Mechanisms for Routing Protocols

by

Lakshminarayanan Subramanian

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy H. Katz, Co-Chair

Professor Ion Stoica, Co-Chair

Today’s Internet routing protocols are built upon the basic incorrect assumption that

routers propagate truthful routing information. As a result, the entire Internet infrastructure is vul-

nerable to security attacks from routers that propagate incorrect routing information. In fact, a single

router is capable of hijacking a significant fraction of routes by launching such an attack. This issue

is not just restricted to Internet routing protocols but is widely prevalent in several routing protocols

that have been proposed in the research literature. Many existing approaches for addressing the

security problems of routing protocols typically assume the existence of a Public-Key Infrastructure

(PKI) or some form of prior key distribution mechanism along with a central authority. While a

PKI does enable addressing this security threat, building one such key-distribution infrastructure

may not always be feasible. One faces serious deployment barriers in building an Internet-wide

PKI with a central authority especially given that deploying one such architecture requires approval
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across political and economic boundaries. Previous efforts for securing Internet routing and the

Domain Name System using a PKI have not moved towards adoption.

In this dissertation, we address the following question:Using purely decentralized mech-

anisms (void of a PKI and a central authority), what is the best level of security achievable for a

routing protocol in the presence of adversaries?One of the key conclusions that we arrive at is

the direct relationship between decentralized security and thereliable communication problem. The

reliable communication problem relates to determining the constraints under which a set of good

nodes in a network can reliably communicate messages between themselves in the face of adver-

sarial nodes in the network. We show theoretical results on the constraints under which the reliable

communication problem is solvable. Based on these results, we describe the design of areliable

communication toolkitthat implements our algorithms and provides a suite of generic security prim-

itives that can be used to secure a variety of routing protocols. These security mechanisms supported

by the toolkit are well suited for Internet routing since they are both easy to deploy as well as offer

good security guarantees. We also show that the toolkit has broader applicability beyond routing

protocols to: (a) achieve decentralized key distribution; (b) address the data integrity threat to the

Domain Name System (DNS) in a decentralized manner.

Professor Randy H. Katz
Dissertation Committee Co-Chair

Professor Ion Stoica
Dissertation Committee Co-Chair
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An Ode to the Three Elders: The Road to El Dorado

Walking in the wilderness, a cold dark stormy night,
The burning need to reach the doors of El Dorado by daylight,

A life at stake, hunger struck, death tapping at every door,
I was lost, scared, shivering, starving like never before.

After random wanderings, a pencil of light emerged from nowhere,
A ray of hope (I thought), in search for a way out of my despair.
Stumbled across woods, dirtied by the slush, with a rugged attire,

I ran like a mad dog to meet the Three Elders by the fire.

The Elders, knowledgeable of every stone in the wild,
The masters of the art of guiding even the tiny child,

Through the darkest of jungles, neglected by the moon;
A path to be discovered, I approach the Three Elders for a boon.

The road to El Dorado is not told but self-discovered, they say
Not a map exists with clues buried, the restless heart is at bay.

The impatience in my mind, the very thought of gold, should go,
Were their first words of wisdom, the same words that hit my alter-ego.

The day-dreamer of lofty expectations, that was I,
Needed lessons of reality from the Elders, to open my eye,
To see light in blackness, to hear sound in eternal silence,

To trace the road to El Dorado using my little lens.

The way is long, winding, often confusing, they remind,
To be steadfast despite adversity, something I had to find,

Preach Thou, the skill to look beyond into the far
And to not be lost, they point to the North Star.

With these new found priceless gems, I set out in complete poise,
Every being in the once gloomy jungle seemed all lit to rejoice,

To my sudden surprise, the path seemed all crystal clear
And I could discover the route to El Dorado without any fear.

The journey to El Dorado was long but not tiring,
For what I learnt enroute, every syllable had a deep meaning,

A meaning that will take ages to decipher, I think
Setting me in deep thought, till my eyes would wink.

An astounding heap of gold lay in front of me, like never before.
”Am I at El Dorado?”, I ask myself at its very door;

Momentarily blinded was I by the glitter of gold by daylight,
I left without a single piece, into the cold dark stormy night.

–Rivera (pen name of Lakshmi)
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Chapter 1

Introduction

“ Lord Krishna says to Arjuna: ’He who practices the truth without knowing the difference between truth

and lies is a fool.’ ”

– Book of Karna, Mahabharatha

Winston Churchill once jokingly said,“ A lie gets halfway around the world before the truth even

has a chance to get its pants on”. What was once meant as a joke, now sadly stands as the raw truth

about the current state of affairs of Internet routing.

Today, a single malicious router can hijack a large fraction of Internet routes by merely propagating

incorrect routing information. For example, in 1997, a simple configuration error in a router caused

it to advertise incorrect routes claiming direct connectivity to several destinations. This resulted

in a massive black hole that disconnected significant portions of the Internet [29, 84]. Similar

Internet-wide disruptions resulting from configuration errors have been documented in the past [77,

79]. Router configuration errors occur on a very regular basis, affecting roughly a few hundred
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destinations everyday [79].

This dissertation is centered around the question:“ How do we protect the Internet from routers that

lie?” . This question is relevant because current Internet routing protocols are built upon the basic

assumption that routers propagate truthful information. Yet, there is nothing in existing routing pro-

tocols that ensures this assumption holds. As a result, the entire Internet infrastructure is vulnerable

to security attacks from routers that propagate incorrect routing information.

This issue is not restricted to the Internet; the security threat posed by incorrect routing advertise-

ments from malicious nodes is prevalent in several other routing protocols proposed in the litera-

ture [36, 35, 100, 64, 61, 92] and deployed in other real-world networks [2, 6, 14, 10]. In all these

routing protocols, a single malicious node is sufficient to disrupt the routing process in a large frac-

tion of the nodes within the network. To better understand this phenomenon, we now describe a

simple example network where a malicious router can hijack several routes using a single incorrect

routing advertisement.

1.1 A simple example

We begin by providing a basic idea of how a routing protocol works. A routing protocol is a dis-

tributed process by which nodes within a network exchange reachability information and establish

communication paths with other nodes in the network. In most routing protocols, a node is initially

only aware of its neighbors and discovers routes to other nodes by exchangingrouting messages

with its neighbors. In the process, every node establishes arouting tablethat contains a next-hop

entry corresponding to other nodes in the network.
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(a)
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Figure 1.1: A simple example where a single malicious nodeM can disrupt several routes to node
A by propagating a single incorrect routing announcement. Part (a) depicts the execution of the
distance vector routing protocol and the propagation of routing messages. In part (b), the grey-
colored nodes represent the set of nodes affected by the incorrect announcement.

Consider the topology described in Figure 1.1(a) where all nodes choose their next hop neighbors

based on the shortest path calculated using the distance-vector routing protocol. In distance vector

routing, each node exchanges reachability information about other nodes in the network along with

the shortest path length to each node. In the example topology illustrated in Figure 1.1(a),C estab-

lishes a route toA based onB’s routing advertisement and further propagates the advertisement to

D. The remaining nodes in the network establish a route toA throughD.

Consider the case whereM acts as a malicious node and propagates a single bogus announcement

claiming direct connectivity toA (as illustrated in Figure 1.1(b)). Since the path-length through

M appears to be shorter,D ends up choosing the route throughM (instead of the genuine route

throughC). OnceM has inserted itself along the routing path toA, it can drop all the packets

thereby renderingA to be unreachable toD. In the process, all the nodes that connect toA through

D also get affected by this incorrect announcement. This example illustrates the fact thata single

incorrect routing announcement can potentially affect several routes to a destination.
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1.2 Problems with Internet routing

Akin to the example illustrated in the last section, Internet routing suffers from the same security

threat of incorrect routing advertisements, but at a much larger scale. The Internet is a collection of

Autonomous Systems (AS), numbering more than 17,000 in a recent count in early 2005 [125, 107].

The Border Gateway Protocol (BGP) [116], the current inter-domain routing protocol, knits these

autonomous systems together into a coherent whole. BGP currently enables routers to transmit

route announcements over authenticated channels, so that malicious nodes cannot impersonate the

legitimate sender of a route announcement. This approach, which verifieswho is speaking but not

what they say, leaves the current infrastructure extremely vulnerable to both configuration errors

and deliberate attacks.

To recap the 1997 incident [29], a single router of an autonomous system simultaneously propagated

over a thousand incorrect routing announcements claiming direct connectivity to a large number of

different destinations. Routers in other autonomous systems blindly believed these routing adver-

tisements to be correct and many of them ended up choosing the newly advertised route (since it

appeared shorter) over the previously existing route, thereby rendering several destinations unreach-

able. This incident resulted in a massive outage that brought down the Internet for several hours. It

took the collective effort of several network operators in different autonomous systems lasting many

hours to manually trace the location of the problem and fix it.
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1.2.1 Seriousness of the problem

We illustrate the seriousness of the problem along two dimensions. First, incorrect routing an-

nouncements are very widespread in the Internet routing protocols today making this threat a very

real one. Second, in the worst case, a single randomly-placed malicious router can hijackover a

third of the Internet routes by generating incorrect announcements. We will now elaborate on these

two aspects.

Source of the problem: Configuration errors and router compromises by attackers are two of the

primary reasons for a router to propagate incorrect routing information. Configuration errors due

to buggy scripts and human errors are a very common occurrence and generate incorrect routing

advertisements for roughly200 − 1200 destinations daily [79]. This represents a very noticeable

fraction (0.2 − 1%) of entries in a typical Internet routing table. Apart from configuration errors,

router compromises represent a much more serious threat. Routers are surprisingly vulnerable to

compromises. Several routers are known to still havedefault passwords[15, 122] set by the ven-

dor and a customer who purchases a router from a vendor may forget to reconfigure the default

password. An attacker who is aware of the default password can trivially compromise the router.

Additionally, routers use standard interfaces like telnet and SSH, which have their own share of

software vulnerabilities. From our perspective, the primary differences between configuration er-

rors and router compromises are two-fold. First, attackers who compromise routers can take active

countermeasures to the security mechanisms we may build while misconfigured routers do not.

Second, an attacker can compromise multiple routers and use them as a set ofcolludingadversarial

nodes that together launch a targeted attack.



6

Worst-case attack scenario:In order to maximize the number of hijacked routes, a misbehaving

router can advertise incorrect routing announcements claiming direct connectivity to every destina-

tion. Conceptually, this can be considered a generalized version of the 1997 router misconfiguration

incident. By claiming direct connectivity to a destination, the path-length of the incorrect route in

many cases tends to be shorter than the path-length of the actual route to the destination, thereby

forcing other nodes to choose the incorrect route. Based on analyzing the structure of the Internet

topology over the past3 years (2002−2005) gathered from several routing data sources [125, 107],

we found that a single randomly placed router can hijackover one-thirdof Internet routes in the

median case. The exact fraction of routes that can be hijacked by a single router is dependent on the

location of the router in the topology. There are many well-placed routers in the Internet (located in

tier-1 autonomous systems) which can hijackover 70%of routes using this attack.

This clearly shows that a single router is sufficient to cripple the Internet by hijacking a substantial

fraction of Internet routes. The reasons as to why this fraction can be so high are two-fold. First,

in a routing protocol, every node is initially unaware of the network topology thereby making it

easy for an attacker to claim new edges to be existing in the topology. There is no simple way of

verifying the connectivity claims of a node. Second and more importantly, a single malicious router

within an AS can internally (within the AS) propagate incorrect routing information and corrupt

the routing state of all the routers within an AS thereby making the entire AS act in a malicious

manner. Inter-domain routing using BGP treats every AS as a single coherent entity. This makes a

single malicious router within an AS equivalent to the case of the entire AS being malicious. The

power of an adversary substantially increases when the attacker uses a set of compromised routers

in different ASs to simultaneously replicate the same attack from different locations.
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These two arguments are used to drive home the point that the threat of incorrect routing advertise-

ments is a very important one and, if left unaddressed, can have serious implications on the security

of the entire Internet infrastructure.

1.3 Secure routing problem setting

In this section, we provide a brief setting of the secure routing problem along with the threat model

in order to establish the context for describing the key results presented in this dissertation. We

provide a more detailed description of the secure routing problem in Chapter 2. In this section,

we first distinguish between two dimensions of the secure routing problem – one that occurs at the

control-plane and the other at the data-plane. Later, we describe the threat model.

1.3.1 Control plane vs Data plane security

Every routing protocol is associated with acontrol planeand adata plane. The control plane of a

routing protocol deals with the process by which routers exchange routing information and establish

routes. The data plane deals with the actual routing of data packets once the routes are established

in the control plane. In order to secure any routing protocol in the face of misbehaving nodes, it is

essential to solve two problems:

Control plane security: A misbehaving node canhijack a route when it propagates an incorrect

routing advertisement causing other nodes to choose the incorrect route over other routes. Control-

plane security deals with verifying the validity of routing announcements propagated by nodes.
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Data plane security: A misbehaving node that is along the routing path to a destination can cre-

ate data-plane problems by dropping packets or forwarding packets in a manner inconsistent with

the routing advertisements it has received or propagated. Data plane security deals with checking

whether the underlying routes set up in the control plane deliver data packets to the corresponding

destinations.

Control plane security and data plane security are two separate problems and we require separate

mechanisms to address these problems. In the context of Internet routing, Maoet al. [81] show that

for nearly8% of Internet paths, the control plane and data plane paths do not match. Whenever

the routes in the control and data plane have a mismatch, verifying the correctness of the control

plane does not provide any guarantees on the correctness of the route in the data plane. The fact

that a sizable fraction of Internet routes have a control-data plane mismatch motivates the need for

separately verifying the correctness of routes in the data plane and not merely focusing on the control

plane. Prior work [70, 72, 112, 92, 65, 114, 57] on securing Internet routing focuses primarily on

the control plane.

Control plane misbehavior can be triggered by configuration errors or deliberate attacks. Data plane

misbehavior, on the other hand, can be triggered either due to deliberate attacks (malice), forwarding

errors in routers or due to genuine reasons triggered by a control-data plane mismatch (e.g.,a failure

along a routing path in the data plane that may not manifest in the control plane due to a control-data

plane mismatch).
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1.3.2 Adversary model

Any misbehaving node, be it in the control plane or in the data plane, is treated as an adversarial

node. We define three classes of adversaries in our system:isolated adversary, independent adver-

sariesandcolluding adversaries. An isolated adversary covers the case of a single compromised

node or a single node with a configuration error. Independent adversaries refers to a collection of

isolated adversaries that act independently. A collection of different routers each with its own set

of configuration errors can be treated as a set of independent adversaries. Colluding adversaries,

in comparison to independent adversaries, have the additional ability to tunnel and share common

information between them during protocol execution in order to potentially thwart security defense

mechanisms. Colluding adversaries can also fake the existence of direct links between them in the

topology.

From the control-plane perspective, an adversarial node can: (a) drop routing messages; (b) generate

spurious routing messages; or (c) modify routing messages. From the data-plane perspective, an

adversarial node can: (a) drop data packets traversing the node or (b) misroute packets to different

neighbors not along the routing path to the destination.

1.4 The need for a decentralized security solution

Many existing approaches [100, 32, 114, 92, 72, 112, 65, 61] for addressing the security problems of

routing protocols typically assume the existence of a public-key infrastructure (PKI) or some form

of prior key distribution mechanism along with a central authority to enable node authentication.

This is specifically true of several proposals [72, 112, 65, 92] to secure Internet routing that make
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extensive use of digital signatures and public key certification. TheSecure-BGP (S-BGP)[72, 70]

and theSecure Origin BGP (soBGP)[112] are two of these proposals which have working groups

in the IETF [4], the body that governs the Internet protocol standards.

Verification of routing information in Secure-BGP using a PKI works as follows. Secure-BGP

appends each routing advertisement with a signature generated using its public-key. Any router

can verify the validity of the signature of every autonomous system along a path using the PKI

since the public key of every autonomous system is derived from the central authority. Hence, PKI

provides a trusted communication channel between every pair of autonomous systems through a

central authority.

While the presence of a PKI does enable addressing many of the security issues, building one such

key-distribution infrastructure may not always be feasible. Many of the prior security proposals

for securing the Internet architecture (not just routing) face a serious deployment barrier since they

typically require an extensive cryptographic key distribution infrastructure and a trusted central

authority. Neither of these two ingredients is currently available, nor is it likely that they will be

in the near future since building an Internet-wide Public Key Infrastructure (PKI) requires approval

across political and economic boundaries.

Deploying an Internet-wide PKI is a very difficult task due to several reasons including tech-

nical, political and economic ones. PKIs impose a heavy technological and management bur-

den [43, 49, 41]. For a PKI model to be successful, it would require all the autonomous systems to

adopt the standard and fall under the purview of a single central authority. Given that several au-

tonomous systems are within specific countries, the biggest political hurdle to PKI acceptability for

Internet routing is that several countries may oppose the very model of their national telecommuni-
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cations networks to be even partially under the control (or even answerable) to a central authority

outside the country. One striking example of this political dimension occurred in the recent UN In-

ternet summit at Tunis [16] where several governments had a long political argument about whether

ICANN (the body that is responsible for allocating IP addresses) should be held answerable to the

US government or to the UN. Apart from the political aspect, building an Internet wide PKI infras-

tructure incurs huge costs and has a high risk of failure thereby posing a very high barrier to entry.

Due to this deployment hurdle, the Secure-BGP [72], soBGP [112] and Secure-DNS [44] efforts

have not moved towards adoption. Secure-BGP has been adopted only by a very small number of

ISPs after5 years since its introduction.

This motivates the need for developingdecentralizedsecurity mechanisms that are botheasy to

deployas well as providegood security guarantees. These security mechanisms should also be

completely void of both a public-key infrastructure and a trusted authority. In the Internet, deploy-

ability and good security are often at odds with each other and simultaneously achieving both is a

grand challenge. Conventional wisdom has been that a key distribution mechanism is essential to

address many of the security threats, especially since key distribution automatically provides node

authentication. Node authentication becomes much harder to establish in a purely decentralized

manner without a trusted authority.

1.5 Main contribution

The problem of developing decentralized security mechanisms for routing protocols has long been

an open and elusive research challenge. The primary contribution of this dissertation is to address
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this research challenge. More specifically, we answer the following question:Using purely de-

centralized mechanisms, what is the best level of security achievable for a routing protocol in the

presence of adversaries?

In this dissertation, we have developed a suite of decentralized security mechanisms that are generic

and can be used to secure a variety of routing protocols. These security mechanisms are well suited

for Internet routing since they are both easy to deploy as well as offer good security guarantees.

Additionally, they do not rely on any prior key distribution mechanism or a central authority. The

results that we establish in this work provide a foundational set of building blocks that are poten-

tially applicable for achieving decentralized security in other distributed systems beyond routing

protocols. Specifically, we show how our techniques can be extended to secure the Domain Name

System (DNS) [86, 87] in a decentralized manner.

The larger vision behind this dissertation is to determine the basic set of principles essential for

building decentralized security solutions for distributed systems. In the process, we seek to under-

stand the strengths and limitations of adopting a decentralized approach towards security. One of

the conclusions that we arrive in this dissertation is the direct correspondence between decentral-

ized security and thereliable communication problem[22, 23, 45]. The reliable communication

problem relates to determining the constraints under which a set of good nodes in a network can

reliably communicate messages between themselves in the face of adversarial nodes in the net-

work. This problem arises in the context of the classic Byzantine agreement problem in distributed

systems [98, 76]. To achieve decentralized security, it is essential to establish areliable communi-

cation channelbetween every pair of good nodes that enables every node to reliably communicate

messages to other nodes in the face of adversaries attempting to disrupt the communication. By
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addressing the reliable communication problem, we establish two basic constraints that must be

satisfied by any distributed system in order to achieve decentralized security:

• Connectivity constraint: The underlying network that interconnects a set of nodes should

have a minimum vertex connectivity of2k + 1 in order to achieve reliable communication

in the face ofk colluding adversaries. The vertex connectivity of a network is the minimum

number of vertex-disjoint paths between any pair of nodes.

• Fixed-identity constraint: An adversarial node that uses multiple identities when commu-

nicating with different nodes is often referred to as aSybil attacker[47]. We show that one

cannot achieve reliable communication in the face ofSybil attackers[37, 119] irrespective

of the connectivity of the underlying network. In other words, every node in the network is

required to have a unique identity that it cannot fake to its neighbors.

These two constraints have important implications on the applicability of decentralized security

for a variety of distributed systems. The connectivity constraint illustrates the fact that “perfect”

decentralized security is feasible only in the face of abounded set of adversaries. A centralized

approach using a public-key infrastructure is better suited to handle a larger number of adversaries

since the PKI provides a trusted channel between every pair of nodes using a central authority.

The fixed-identity constraint states that decentralized security is impossible to achieve in distributed

systems where nodes do not have fixed identities. Mobile ad-hoc networks [55] and dynamic peer-

to-peer networks [94] are two example networks where decentralized security is very hard to achieve

since an attacker can potentially exhibit Sybil behavior in these networks. We will now briefly

elaborate on the need for these two constraints for decentralized security.
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While these two constraints might seem stringent at the onset, they are both essential as well as

achievable in practice. The Internet as well as many other networks that we operate in today have

some form of fixed identities. For example, in Internet routing, every AS is associated with a fixed

identity in the form of unique AS number which is known to all its neighbors. The connectivity

constraint does impose a theoretical bound on the number of adversaries that a decentralized se-

curity mechanism can handle. However, in many networks, our primary design goal is to defend

against only a few adversaries; a misconfigured router is equivalent to the case of a single adversary.

Within the well-connected core of the Internet comprising tier-1 and tier-2 ISPs, we can achieve

decentralized security in the face of up to10 adversaries but not more. Additionally, in the face

of several adversaries in the system, even a PKI based approach does not provide strong security

guarantees. Therefore, it becomes fundamentally hard to provide any form of security guarantees

in the face of several adversaries in the system.

Fixed Identities vs Public Key Infrastructure: Finally, we reinforce the fact that satisfying the

fixed identity criterion is much easier than building an infrastructure-wide PKI. The reasons are

three-fold. First, if fixed-identities exist, then it is easily enforcible in the face of misconfigurations

and node compromises. Second, with the advent of different forms of tamper-proof hardware [124],

many devices come with inbuilt fixed-identifiers. Third, enforcing the fixed-identity constraint re-

quires only local coordination, which is much easier to enforce than performing system-wide coor-

dination to build a full-fledged PKI. With multiple administrative domains, one faces deployment

hurdles for system-wide coordination [43, 49].
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1.6 Research progress path and thesis organization

Our research progress on the problem of building decentralized security mechanisms for routing

protocols can be categorized into four stages as illustrated in Figure 1.2. In the first stage, we

studied the Border Gateway Protocol (BGP) as a specific case of a routing protocol to secure in a

decentralized manner. In the second stage, we extend the techniques developed for BGP for other

routing protocols. Here, we establish the connection between decentralized secure routing and the

reliable communication problem. In the third stage, we describe the implementation of a practical

toolkit that exports generic security primitives for different routing protocols based on the theoretical

techniques developed to address the reliable communication problem. In the fourth stage, we show

the applicability of the toolkit beyond routing protocols; here, we demonstrate how the reliable

communication toolkit can be used to address the data integrity security threat to the Domain Name

System (DNS).

For ease of exposition, we organize the thesis in the same order as the natural progression repre-

sented by the four stages. In Chapter 2, we set the basic background by presenting an overview of

the secure routing problem and describing how this problem relates to the reliable communication

problem. In this chapter, we formulate the secure routing problem both from the perspective of the

control-plane and data-plane and elaborate the challenges that we face in addressing them.

The next five chapters (Chapter 3 - Chapter 7), describes each of the different research stages in

detail. Now, we will briefly walk the reader through our thought process behind the various research

stages in our methodology. We will also briefly summarize the salient aspects of each of the research

stages.
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Figure 1.2: Research progress path
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1.6.1 Stage #1: Securing the Border Gateway Protocol

Our exploration into the space of decentralized security, began with a search for an answer to the

following question:How can we secure the Border Gateway Protocol (BGP) in a decentralized

manner?BGP is the current inter-domain routing protocol used in the Internet. Prior proposals for

improving BGP security relied on a public-key infrastructure. Hence, BGP was a natural first choice

as a case study for the secure routing problem.

To address the security problems with BGP, we propose a combination of two mechanisms:Listen

andWhisper. Listen passively probes the data plane and checks whether the underlying routes to

different destinations work. Whisper uses cryptographic functions along with routing redundancy

to detect bogus route advertisements in the control plane. These mechanisms are easily deployable,

and do not rely on either a public key infrastructure or a central authority like ICANN. The combina-

tion of Listen and Whisper eliminates a large number of problems due to router misconfigurations,

and restricts (though not eliminates) the damage that deliberate attackers can cause. In Chapter 3,

we provide a detailed description of Listen and Whisper.

1.6.2 Stage #2: Reliable communication problem

Based on our experience developing security mechanisms for BGP, the next natural question that

arises is:What basic primitives are essential to achieve decentralized security in routing protocols

other than BGP? Are these primitives dependent or independent of the underlying protocol?

In order to address this question, we need to first theoretically formulate the secure routing prob-

lem and outline the exact set of security guarantees that we require for each routing protocol. In
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Chapter 2, we define a protocol independent version of the secure routing problem. Based on this

problem formulation, we establish a direct correspondence betweensecure routingand thereliable

communication problem. Addressing the reliable communication problem provides a trusted chan-

nel between good nodes which is a fundamental building block to building secure routing protocols.

In Chapter 4, we describe our theoretical results on the solvability of the reliable communication

problem. We show that the reliable communication problem can be solved if and only if the connec-

tivity and fixed-identity constraints are satisfied. We also show that the fixed-connectivity constraint

is fundamentally essential in that if it is not met, then a single adversary is sufficient to disrupt reli-

able communication irrespective of the connectivity of the network.

In Chapter 5, we study a variant of the reliable communication problem insparse networkswhich do

notsatisfy the connectivity constraint. In sparse networks, it is fundamentally impossible to achieve

reliable communication between every pair of nodes. Hence, decentralized security is not achievable

i.e., malicious adversaries can potentially hijack a certain fraction of routes. In such networks, we

show that it is possible tolimit the damagethat adversaries may cause in sparse networks. We

specifically study the reliable communication problem for the case of a single adversary (k = 1)

and prove optimality results for this case. Our techniques are also applicable to the case of multiple

adversaries(k > 1). However, determining the optimal defense strategy fork > 1 is still an open

research problem.

1.6.3 Stage #3: Generalizing to other routing protocols

During the previous research stage, we primarily established the basic theoretical techniques and

algorithms essential to achieve reliable communication. This only addresses a portion of the decen-
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tralized secure routing problem. Two questions remain to be addressed:(a) How do we leverage

reliable communication to secure different forms of routing protocols? (b) Are these techniques

feasible and practical to implement?

To address these two questions, we developed areliable communication toolkitthat implements the

basic algorithms to achieve reliable communication. This toolkit provides a generic set of security

primitives that can be appended to different routing protocols and secures them. The primitives

exported by the toolkit are independent of the routing protocol. We illustrate the applicability and

the generality of the toolkit by integrating it with three standard types of routing protocols, namely:

link-state, path-vector and distance-vector routing. Based on a detailed performance evaluation of

the toolkit, we show that decentralized security isfeasible, practical and not expensiveunder the

assumption that the number of adversarial nodes is small. We elaborate on the design of the toolkit

in Chapter 6.

1.6.4 Stage #4: Applying reliable communication to the Domain Name System

The reliable communication toolkit has broader applicability beyond routing protocols, especially

for providing decentralized key distribution (since nodes can reliably communicate their public

keys to other nodes). Using this toolkit, one can translate existing PKI-based solutions to purely

decentralized solutions provided reliable communication is achievable.

In Chapter 7, we describe how the reliable communication concept can be applied to address the data

integrity problems associated with the Domain Name System (DNS) [86, 87, 89]. The DNS suffers

from data integrity threats that arise due to configuration errors or malicious adversaries compro-

mising name servers and propagating incorrect DNS responses to end-host queries [74, 44, 96]. The
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DNS delegation process introducestransitive trustrelationships between different domains which

further worsens the data integrity problem [104, 123]. The delegation process introduces complex

dependencies in the system which can enable a single compromised DNS server to affect not only

its domain but also several other domains outside of its control. All of the prior security propos-

als [44, 48, 19] for addressing the data integrity problem of the DNS rely on a public key infrastruc-

ture with a central authority. In Chapter 7, we describe the design of D-SecDNS, a decentralized

security architecture for the DNS that addresses the data integrity threat to the DNS.

Finally, in Chapter 8, we present our conclusions where we revisit the key contributions of this

dissertation and discuss potential avenues for future directions.



21

Chapter 2

Secure Routing Problem

“ Once we roared like lions for liberty; now we bleat like sheep for security. ”

– Norman Vincent Peale, American writer

In this chapter, we will describe a theoretical formulation of the secure routing problem and describe

how this problem relates to the reliable communication problem. In Section 2.1, we begin with

a brief introduction about the control and the data plane of a routing protocol. In Section 2.2,

we illustrate the differences between securing the control plane and the data plane of routing and

why these represent two separate problems. In Section 2.3, we define the secure routing problem

both from the control plane and the data plane perspective. Next, in Section 2.4, we describe

the reliable communication problem and show its correspondence to the secure routing problem.

Here, we describe why prior work on reliable communication is insufficient to address the secure

routing problem and describe a variant of the original reliable communication problem that needs

to be addressed in order to achieve secure routing. In Section 2.5, we provide a summary of our
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(D, E) whereD propagates routing messages toE.

theoretical results on the reliable communication problem. Finally in Section 2.6, we describe prior

work on secure routing which have largely focused on using some form of prior key distribution. In

Section 2.7, we summarize the conclusions from this chapter.

2.1 Routing protocols: A brief overview

The control planeof routing deals with the process by which nodes within a network exchange

routing information and establish routes to other destinations. Therouting protocolspecifies the

manner in which nodes exchange routing messages and compute routes to different destinations.

The data planedeals with the forwarding of data packets once the routes are established in the

control plane.

The type and structure of the routing messages exchanged between nodes is dependent on the un-

derlying routing protocol. Every routing protocol is also associated with aroute selectionprocess

which defines the routing metric used for choosing the best route to every destination. The simplest

routing metric used by many routing protocols is theshortest-pathmetric, in which every node

chooses the route with the shortest path-length to every destination. In a more general version of
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shortest-path routing, every link is associated with a cost value and every node chooses the route

with the lowest net-cost to each destination. Apart from shortest-path routing, there are several

other forms of routing metrics. As an example, in Chapter 3, we will describe the Border Gateway

Protocol (BGP), the current inter-domain routing protocol, which usespolicy-basedrouting where

every node can use its own local policies for route selection.

Figure 2.1 illustrates the type of routing messages for three standard types of routing protocols: link-

state routing, distance-vector routing and path-vector routing. The basic form of all three protocols

use the shortest path metric for route selection. In link-state routing, every node learns the entire

network topology along with the link-costs and computes the shortest path to each destination. In

link-state routing, every routing message contains information regarding a specific link or a set of

links in the network. In distance-vector routing, every routing message propagated by a node to

its neighbors contains the identity of a destination and the length of the shortest path learnt to that

destination. Path-vector routing is a variant of distance-vector routing, where every routing message

contains the entire path comprising of the identities of all nodes along the route to each destination.

BGP uses path-vector routing for propagating routing messages.

Using the routing protocol, every node computes arouting tablewhich stores the next-hop in the

routing path to each destination. In the data-plane, every node uses the routing table to forward each

data packet to the next-hop corresponding to the destination specified in the packet.
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2.2 Separating control and data plane security

The goal of routing in a network is to enable any pair of nodes within the network to communicate

with each other. The goal of secure routing is to achieve the same objective in the face of adversarial

nodes that attempt to disrupt inter-node communication. In order to achieve secure routing, it is

essential to secure both the control-plane and the data-plane of routing.

An adversary (or a set of adversaries) may perform a different set of actions at the control-plane

and the data-plane to disrupt routing. In the control-plane, the primary objective of an adversary

is to propagate incorrect routing messages and attempt to hijack routes to different destinations.

Additionally, an adversary in the control plane can drop routing messages that traverse it or gen-

erate spurious routing messages on behalf of other nodes. In the data-plane, an adversarial node

that is already present along the routing path to a destination can either drop packets or misroute

packetsi.e., route packets to neighboring nodes that are not the next-hop nodes in the routing path

corresponding to the packet destinations.

Securing the control plane and data plane are two different problems given that the adversarial

behavior is very different in the two planes. In the control plane, the goal of secure routing is to

prevent adversarial nodes from propagating routing updates to hijack routes to different destinations.

Securing the data-plane involves determining whether the underlying routing paths setup in the

control plane work in practice.

Control-plane security does not imply data-plane security since node misbehavior in the data-plane

(e.g.,drop, misroute packets) cannot be detected by security mechanisms in the control-plane. Con-

sider the case where a router along the data-plane path has a forwarding error where it does not
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forward data packets for a specific destination. In this case, from a control plane perspective, the

route will appear to be perfectly functional while the underlying route in the data-plane is non-

functional. In this case, verifying the correctness of routing announcements in the control plane

is insufficient to address this data-plane problem. Forwarding errors are known to occur in prac-

tice [120, 81, 129]; in Chapter 3, we briefly describe some of the forwarding errors we detected in

our experiments.

Another motivating reason to separate control-plane verification and data-plane verification is the

case ofroute mismatchesbetween the control plane and data planei.e., the underlying routing path

in the data plane does not match the control plane. An example of a control and data-plane mismatch

is illustrated in Figure 2.2(a) where the control plane path advertised by nodeB for destinationD,

namely(B, C,D), differs from the underlying routing path in the data-plane, namely(B, X,D). In

the context of Internet routing, one possible reason for control-data plane mismatch isstale routes

where a router artificially limits propagation of new routing advertisements during periods of huge

spikes of simultaneous routing updates. In such a case, the route selection process can shift the

route from(B, C,D) to (B, X,D) while the routing protocol does not propagate this update to

other neighbors thereby making the previous routing announcement to become stale. The work
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by Mao et al. [81] cites several reasons that can trigger a control-data plane mismatch in Internet

routing.

Control-data plane route mismatches motivate the need for a separate mechanism for verifying the

correctness of the data-plane. Consider the case where a link-failure occurs along the data-plane

routing path to a destination where the control plane path is different from the data-plane path. In

this case, if the control and data plane paths mismatch, the link-failure may not be visible to the

control plane. For example, in Figure 2.2(b), if the link(B,X) fails, then the control plane does not

observe the failure.

2.3 Secure routing problem definition

In this section, we will define two versions of the secure routing problem from the perspectives of

both the control-plane and the data-plane.

2.3.1 Control plane security problem

Threat Model: We consider two basic forms of adversaries:independentandcolluding. An adver-

sarial node can perform two types of actions: (a) discard messages traversing the node; (b) generate

spurious messages. Colluding adversaries have the additional capability of tunneling routing in-

formation between themselves during protocol execution while independent adversaries cannot. If

there exists only one adversary in the system, such an adversary is referred to as anisolated adver-

sary.

Let G denote the underlying network onn nodes. Letk represent the number of adversarial nodes
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and the remainingn− k are good nodes that obey a specified routing protocol. We define agenuine

route to be one that only contains edges present in the network,G. Additionally, in any routing

protocol, every node is initially aware of only its neighbors but isunawareof the rest of the network.

We define the control plane secure routing problem as follows:

Control-plane secure routing problem: Consider a graphG of n nodes where each node is ini-

tially aware of only its neighbors and every node is aware of a valuek which represents a bound on

the number of adversaries. Under what constraints can every good node discover genuine routes to

every other good node in the network?

This problem definition implicitly assumes that every node is aware of a bound on the number of

adversaries, without which one cannot theoretically solve the secure routing problem. In Chapter 6,

we describe how nodes can determine the appropriate value fork based on the topology.

One of the important aspects to note regarding this problem definition isrouting protocol indepen-

dence. The secure routing problem as we have defined it is independent of any routing protocol

and captures the basic essence of what is required to achieve secure routing. Many of the secure

routing problem definitions in prior work [100, 72, 65, 61, 91, 128, 38, 115, 62, 127] is protocol

specific. For example, prior work on securing link-state routing [100, 91, 38] or distance-vector

routing [127, 115, 62] focus on verifying the correctness of each routing message and hence, the

corresponding techniques developed for securing these protocols are closely tied to the structure

of the routing protocol. By formulating a protocol independent version of the secure routing prob-

lem, we are able to map it to the reliable communication problem, a classic problem in distributed

systems which we will describe later in Section 2.4. The mapping to the reliable communication

problem would be less straight-forward for a protocol dependent problem formulation. Due to the



28

protocol independent nature of the problem definition, we have been able to build areliable com-

munication toolkitwhich provides a generic set of security primitives that can be integrated across

different types of routing protocols to achieve decentralized security. We will describe the toolkit in

greater detail in Chapter 6.

There are two fundamental limitations to control-plane security. First, a genuine route can contain

an adversarial node along the path provided the corresponding edges exist inG. If such an adver-

sary drops data packets, detecting such attacks is a data-plane problem and outside the purview of

control-plane security. Second, two colluding adversaries can always pretend the existence of a di-

rect link by tunneling routing information/advertisements between them. In the absence of complete

knowledge of the underlying topology, these fake links cannot be detected even using a public-key

infrastructure. As mentioned earlier, packet drops on genuine routes using these fake links can be

detected only in the data-plane.

2.3.2 Data-plane security problem

Threat model: An adversary along the routing path to a destination can perform two basic ac-

tions on data packets: (a) drop packets; (b) misroute packets to nodes not present on the routing

path. Also, an adversarial node can potentially use any additional mechanisms to defend against the

security mechanisms we build.

Securing the control plane is a requirement in building a secure data-plane. Once an adversary has

successful inserted itself along a routing path, the adversary can drop packets. Control plane security

deals with preventing adversaries from hijacking routes and inserting themselves in the data-plane

routing path. Hence, before we secure the data plane, we assume that we have some mechanism
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that can secure the control-plane.

In addition, from purely a data-plane perspective (with no information from the control plane), an

adversary that drops packets in the data-plane can appear to be equivalent to a link/node failure that

drops all packets. Hence, the data-plane can at most detect the presence of a problem but cannot

distinguish a failure from adversary-induced packet drops. Also, the data-plane mechanism cannot

correct the solution without the help of the control plane which is responsible for determining an

alternate route. While the control plane may be unable to detect adversary induced packet losses, it

relies on the data plane mechanism to provide feedback on the correctness of data-plane routes.

Correctness at the data-plane can be defined in two ways: (a) Did the packet reach the intended

destination? (b)Did the packet traverse the same route established in the control plane? Based on

this, we can define two variants of the data plane security problem as follows:

Data-plane secure routing problem (Rigid version):Consider a networkG on n nodes and a

routing protocolR that establishes a genuine route between every pair of nodes in the control

plane. Under what constraints, can we build a data-plane mechanism that can determine all invalid

routes where the data-plane routing path does not match the control-plane routing path established

byR?

Data-plane secure routing problem (Relaxed version):Consider a networkG on n nodes and

a routing protocolR that establishes a genuine route between every pair of nodes in the control

plane. Under what constraints, can we build a data-plane mechanism that can determine whether

every data-packet is reliably delivered to its intended destination?
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The data plane security mechanism is at best a verification mechanism to test whether the underlying

routes set up in the control plane work or not. If a route is discovered to not work in the data plane,

it is the responsibility of the control-plane to discover an alternate functional route. While the

relaxed version merely tests whether each data-packet reaches the corresponding destination, the

rigid version provides a more complete specification where it verifies whether the control and data

planes match. Additionally, if we restrict the role of an adversary in the data plane to apassive

adversary that merely drops all data packets and does not generate responses to thwart our security

mechanisms, then we can detect such incorrect routes traversing such an adversary using the simple

Listenprotocol we describe in Chapter 3. Forwarding errors in routers or stale routes are examples

of passive adversarial nodes that induce data-plane problems that can be detected using Listen.

2.4 Relationship to reliable communication

Now, we will elaborate the relationship between the secure routing problem and reliable communi-

cation [45, 22, 23], a fundamental problem in distributed systems that arises in the context of the

Byzantine agreement problem [76, 98]. The classic reliable communication problem can be stated

as follows:

Reliable communication problem: Consider a communication networkG on n nodes and a

boundk on the number of adversarial nodes. Every good nodeA needs to communicate a mes-

sagem(A,B) to every other nodeB in G. Under what constraints, can every pair of good nodes

reliably communicate their messages?

The secure routing problem naturally relates to the reliable communication problem. To achieve
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control-plane security, we need to address two problems:

1. How does a good node reliably discover every other good node in the network?

2. How does a good node learn consistent routing information to the other nodes that it has

discovered?

The first problem is equivalent to the reliable communication problem where every good node needs

to reliably broadcast its identity to all the other nodes in the network. This provides the ability

to establish a reliable channel between every pair of good nodes by requiring every node to reli-

ably broadcast its public-key as part of its identity in the node discovery phase. Once the reliable

communication channel is established, it can be used to address the second problem of reliable

dissemination of routing information.

To secure the data-plane, again one would need reliable communication. In the relaxed version

of the problem, the verifying node needs to reliably communication with the destination to obtain

proof of reliable delivery of a packet. In the rigid version, the verifying node needs to establish

reliable communication with every node along the path to the destination.

While there have been several prior results on the reliable communication problem, they do not

directly translate to the secure routing problem. The original version of the reliable communication

problem [76, 45, 98, 22] implicitly assumes that the entire networkG is initially known to all

the nodes or nodes use a prior key distribution mechanism tosign messages. Neither of these

assumptions hold in the secure routing problem wherein each node is initially only aware of its

neighbors and is not aware of the entire topology. Additionally, there is no form of prior key

distribution to enable node authentication.
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In our work, we address a new variant of the reliable communication problem inunknown networks,

where each node is only aware of its neighbors and is unaware of the entire network. We define an

unknown network as follows:

Definition 1: An unknown networkU(n,G,N) comprises ofn nodes connected by an undirected

graphG where each node: (a) has a unique identity it cannot fake; (b) knows the identities of its

neighbors inG; (c) knows a valueN ≥ n which represents a bound on the size of the network.

Given this definition, the reliable communication problem in unknown networks can be defined as:

Reliable communication in unknown networks:Consider an unknown networkU(n, G,N). As-

sume thatk among then nodes act in anadversarialmanner and the remainingn−k aregoodnodes

that follow a prescribed algorithm. Under what constraints does there exist a distributed algorithm

that enables every pair of good nodes inG to reliably communicate between themselves?

2.4.1 Need for the connectivity constraint

The need for the connectivity constraint is best motivated by a simple example topology shown in

Figure 2.3, Letx represent an adversarial node and let the nodesx andy form a2-vertex cut, where

they separate the rest of the nodes into two groups: groupA and groupB. In other words, any path

from a node in groupA to a node in groupB has to traverse eitherx or y. In this example,x can

prevent nodes in groupA to reliably communicate with nodes in groupB.

To illustrate this better, consider the case wherex modifies every message that traversing it. Con-

sider a nodeu ∈ A and a nodev ∈ B. Any message thatu transmits tov has to either traversex

or y or both. Ifx modifies a messagem to m′ from u, then the recipientv may receive two distinct



33

x

y

u v

Group A Group B

m

m

mm

m

m

m

m

m

m’
m’

m’

2-vertex cut

Figure 2.3: Example of a sparse network where a single adversaryx can disrupt reliable communi-
cation between two groups of verticesA andB.

messagesm andm′ and cannot determine as to whetherm or m′ is the genuine message. Therefore

u cannot reliably communicate withv. Here, in the absence of any prior secret exchange between

u andv, neither of these nodes can determine as to whetherx or y is adversarial.

This is an example of a2-vertex connected graph (2 vertex disjoint paths exist between every pair

of nodes) where a single adversary is sufficient to disrupt reliable communication. For a general

graph, Dolev [45] proved that if there arek adversarial nodes, then every pair of nodes can reliably

communicate if and only if the underlying graph is2k + 1 vertex connected. This result was

established in the context ofknown networkswhere the entire graph is known in advance to all the

nodes. We establish similar results in the context ofunknown networkswhere each node is initially

only aware of its neighbors but not the entire network.
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2.4.2 Need for the fixed-identity criterion

Routing protocols operate inunknown networkswhere each node is initially aware of only its neigh-

bors and not the rest of the network. In unknown networks, it is essential for the network to satisfy

thefixed-identity criterionto be able to achieve decentralized security. The fixed identity criterion

simply states that every node should have a unique identity that it does not fake to its neighbors.

This assumption is essential to prevent an adversarial node from acting as multiple nodes using dif-

ferent identities. If the fixed-identity criterion is not met, then we show in Chapter 4 that a single

adversarial node can disrupt reliable communication irrespective of the connectivity of the network.

Prior results [37] have established the impossibility of establishing reliable communication in the

face of Sybil attackers. The crux of the argument is that a Sybil attacker withN neighbors can

simulate the behavior ofN colluding adversaries.

The Internet and many social networks that we operate in today fall under the category ofunknown

networksthat have nodes with fixed-identities. For example, the Internet topology comprises of

roughly 17, 000 Autonomous systems (AS) where every AS has a unique identity (AS number)

assigned by IANA [66]. When a new AS joins the network, it is only aware of the identities of its

neighbors but is unaware of the AS topology. In fact, the complete AS graph structure of the Internet

is unknown and is an open research problem to characterize the representativeness of the actual

Internet topology collected from different measurement studies [34]. The Domain Name System

(DNS) [88] and intra-domain routing are two other real-world examples of unknown networks with

fixed-identities. Mobile ad-hoc networks [55] and P2P networks [94] are examples of two networks

that donot fall into this category. The techniques we develop in this work are not applicable to

networks which do not meet the fixed-identity criterion.
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Enforcing the fixed identity constraint

Once a network has every node associated with a fixed-identity, additional work needs to be done

at the protocol level to ensure that the fixed-identity criterion is adhered toi.e.,a node with a fixed

identity does not modify it. In order to enforce the criterion, whenever a new node joins the network,

there needs to be an explicit binding process associated with each neighbor that enforces the identity

of the new node. Once the fixed-identity constraint is established between a node and its neighbors,

we assume that the routing protocol adds basic checks to disallow an attacker that compromises the

node from changing the node’s identity. A link is broken if either party attempts to modify their

identity. Hence, in our threat model,misconfigurations and node compromises explicitly cannot

break the fixed-identity criterion once it is established.

2.5 Reliable communication: summary of key results

Figure 2.4 presents a complete summary of our theoretical results on the reliable communication

problem in unknown networks. We will elaborate on these results in Chapters 4 and 5. The

following results are important to note:

1. In the face ofk adversaries, we require a minimum level of vertex connectivity to achieve

reliable communication. A network that does meet this connectivity requirement is defined as

adense network; a network that does not meet this requirement is defined as asparse network.

2. In sparse networks, where the minimum vertex-connectivity constraint is not met, our goal

is to limit the damage that adversarial nodes may cause. In a dense network, our goal is to

achieve reliable communication.
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k=1 k>1

Optimal Not optimal Optimal

Figure 2.4: Summary of key results on reliable communication. In this figure,k represents the
number of adversaries.

3. To handlek colluding adversaries, a minimum vertex-connectivity of2k + 1 is a necessary

and sufficient constraint. However, to handlek independent adversaries, one requires only a

minimum of(k + 2) vertex connectivity.

4. In Chapter 5, we describepenalty-based filteringas a defense strategy to limit the damage of

adversaries in sparse networks. We show that penalty-based filtering is the optimal defense

strategy in the face of a single adversary. However fork > 1, the optimal strategy is still

an open research question and we apply the same technique that we developed for the single

adversary case.
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2.6 Prior Work on secure routing

There is an enormous body of research literature in the space of secure routing. Most of these

proposals to secure routing protocols leverage some form of public key distribution or prior key

distribution. In this section, we will summarize the important works that are closely related to our

work.

2.6.1 Byzantine robust routing

Perlman’s thesis work [100] on Byzantine robustness of network protocols represents one of the

early seminal works which describes mechanisms for securing network protocols in the presence of

Byzantine failuresi.e.,nodes through malice or malfunction exhibit arbitrary behavior such as cor-

rupting, forging, dropping or delaying routing protocol messages. Specifically, her thesis provides a

detailed description of how to secure link-state routing using the techniques developed in her thesis.

All these mechanisms described in her work assume some form of prior key distribution using a

“trusted server”.

We have integrated some of these techniques in our reliable communication toolkit to secure link-

state routing. In our setting, reliable communication provides decentralized key distribution assum-

ing the underlying graph satisfies the necessary constraints outlined earlier in Section 2.4.1.

2.6.2 Secure Interdomain routing

There have several proposals in the past few years to secure BGP, the current inter-domain routing

protocol. We classify these into two categories: (a) Key-distribution based approaches; (b) Non-PKI
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approaches.

Key-distribution based approaches:Several different security mechanisms that use a PKI to sign

routing updates have been proposed for BGP. These include the works by Smithet al. [114], Mur-

phy et al. [92], Secure BGP (S-BGP)by Kentet al. [72, 70], Huet al [65] andSecure Origin BGP

(soBGP)[112]. All these protocols make extensive use of digital signatures and public key certifi-

cation. Adigital signatureis simply a signature proof associated with any message that proves that

the message indeed originated at the specified source (specified as part of the message). We will

now briefly describe each of these proposals:

1. Hop-by-hop authentication:In BGP, routers use TCP connections to communicate routing

messages. In hop-by-hop authentication, neighboring routers exchange symmetric public

keys and sign every message using the key to prevent malicious adversaries from injecting

invalid messages over the TCP connection by spoofing the source. The work by Smith and

Garcia [114] identifies some of the weaknesses of BGP and propose basic counter measures

using digital signatures to achieve hop-by-hop authentication. TCP-MD5 authentication, a

more efficient authentication mechanism, has also been proposed for hop-by-hop authentica-

tion [59].

2. Secure BGP (S-BGP):S-BGP [72, 70] associates every routing update with a signature that

protects all the fields within each routing update. S-BGP assumes a public-key infrastructure

rooted at ICANN, the body responsible for address allocation, to distribute public keys for

authentication. The Internet IP address space is divided into various address blocks called

prefixesas allocated by the ICANN. Every BGP announcement corresponds to a specific

prefix and the route corresponding to a prefix. In order to prevent unauthorized prefix adver-
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tisements, S-BGP usesaddress attestationswhere the owner of a prefix signs a delegation

message to enable the prefix to be advertised. Subsequently, every autonomous system (AS)

along the path signs aroute attestationfor the path up to and including its identity. Each of

these attestations can be verified using the PKI. S-BGP provides entire route validation while

many other security proposals for BGP do not provide this guarantee.

3. Secure Origin BGP (soBGP):soBGP [112] is an effort to secure BGP where every router

keeps an entire database of the network topology, BGP policy information as well as trusted

certificates. The routers use this database to assess the authenticity of route updates. soBGP

is specifically well tailored for origin authentication but is not well suited for validating an

entire route. Additionally, soBGP cannot handle the case of modifications to the database

cleanly; especially when routers or autonomous systems modify their public keys or if prefix

ownership is modified.

4. Secure Path-Vector routing (SPV):SPV [65] is a recent proposal that proposes several cryp-

tographic enhancements that make the public-key cryptography operations in signing BGP

route updates much more efficient. One of the key ideas used in SPV to achieve an order of

magnitude improvement is to useMerkle Hash Trees[83]. Merkle Hash Trees are an efficient

signature mechanism that reduces the problem of authenticating a sequence of values to that

of authenticating a single value. This reduces the number of signature verification operations

that each router needs to perform. We refer the reader to [83] for a detailed explanation of

Merkle hash trees.

Compared to the other proposals, S-BGP [72, 70] and soBGP [112] have gained a lot of traction

having been refined and standardized by IETF working groups. However, none of these proposals
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have moved towards adoption given the deployment hurdles associated with a Public Key Infras-

tructure [43, 49].

Non-PKI approaches: All the non-PKI approaches currently known for BGP do not provide any

form of security guarantees in the face of deliberate attacks. However, some of these mechanisms

are well-suited to handle configuration errors. Mahajanet al. [80] and Zhaoet al. [133] pro-

vide mechanisms for detecting misconfigurations by correlating route advertisements in the control

plane from several vantage points. One of the fundamental limitations of detecting misconfigu-

rations based on analyzing BGP streams isthe lack of knowledge of the Internet topology. Since

the topology is not known, these techniques can pinpoint invalid routes only when the destination

AS is wrongly specified but not when the path is modified. Other proposals for verifying the cor-

rectness of routing announcements include theInternet Routing Registry[5] and theInter-domain

Route Validation Serviceproposed by Goodellet al. [57]. These mechanisms assume the exis-

tence of databases with up to date authoritative route information which can aid routers to verify

the route announcements that they receive. In these mechanisms, the routers contact authoritative

route servers to verify the validity of routing information. However, the problem is to ascertain the

authenticity, completeness, and availability of the information in such a database. First, ISPs are

reluctant to submit routing information because this may disclose local policies that the ISPs regard

as confidential. Second, the origin authentication of the database contents again demands a public

key infrastructure [93]. Third, access to such databases relies on the very infrastructure that it is

meant to protect, which is hardly an ideal situation.
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2.6.3 Secure Distance Vector Routing

Hu et al. [62] propose several efficient mechanisms using one-way hash chains and authentication

trees for securing distance-vector (DV) routing protocols. Their approach is one of the first attempts

to authenticate the factual correctness of DV routing updates, and can prevent shorter and same

distance fraud. It can also prevent newer sequence number fraud if a sequence number is used to

indicate the freshness of a routing update. However, it does not address the case where an adver-

sary increases the path length corresponding to a route. We use some of these constructions while

integrating distance vector routing in our reliable communication toolkit as described in Chapter 6.

Routing Information Protocol (RIP) [36] is one of the first protocols that was adopted for intra-

domain routing. RIP is a distance-vector routing protocol and is well-suited primarily for networks

with a small number of nodes; however, RIP did not scale to large network sizes. Like most of the

other routing protocols, RIP is also prone to the control plane security threat of incorrect routing

announcements from adversarial nodes. S-RIP [127] is a secure distance vector routing protocol

which uses a reputation based mechanism as a countermeasure to address the threats of router im-

personation as well as to detect incorrect routing announcements involving an invalid path length.

S-RIP only works in the presence of non-colluding adversaries. Peiet al. [99] propose a triangle

theorem for detecting potentially or probably invalid RIP advertisements. Probing messages based

on UDP and ICMP are used to further determine the validity of a questionable route. One disad-

vantage with this mechanism is that probing messages may be manipulated by adversarial nodes. A

node advertising an invalid route can convince a receiver that route is valid by: a) manipulating the

TTL value in a probing message; or b) sending back an ICMP message (port unreachable) on behalf

of the destination. To prevent probe packet manipulation, one would either require all-pair reliable
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communication to be established or have a prior key distribution mechanism to sign messages.

2.6.4 Secure Link-state routing

Open Shortest Path First (OSPF) [90], a link-state routing protocol, was later developed to address

some of the limitations of RIP. The thesis work by Perlman [100] outlines the basic set of tech-

niques essential to secure link-state routing. The work by Murphy and Badger [91] builds upon

Perlman’s work and shows how these techniques can be extended to secure OSPF using digital sig-

natures where every routing message is associated with a digital signature from the source. Later,

Cheung [38] showed how routers can use message authentication schemes for reducing the cost of

link-state routing. All these works assume a Public Key Infrastructure (PKI) for signing messages.

While an Internet-wide PKI is hard to deploy, deploying a PKI within a domain is relatively easier

largely because the entire domain is under a single administrative entity.

2.6.5 Data-plane secure routing

All the prior related works that we mentioned focused on control-plane security. Data-plane secu-

rity, in contrast, has received far less attention. In the context of BGP, Maoet al. [81] have build

an AS-traceroute tool to detect the AS path in the data plane which can be used for data-plane ver-

ification. While this tool can detect several forms of invalid routes in the data plane, it is useful

for diagnostic purposes only once a problem is detected. Padmanabhanet al. [95] propose a secure

variant of traceroute to test the correctness of a route. However, this mechanism requires a

prior distribution of cryptographic keys to the participating ASs to ascertain the integrity and au-

thenticity of traceroute packets. In the design of feedback-based routing, Zhuet al. [134] proposed
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a data plane technique based on passive and active probing. The passive probing aspect of this work

shares some similarities to our Listen method which we will describe in Chapter 3.

Mizrak et al. [85] use a distributed collaborative mechanism between different routers to detect and

isolate malicious routers with incorrect packet forwarding behavior in the network. They map the

problem of detecting compromised routers as an instance of anomalous behavior-based intrusion

detection where a compromised router is identified by correct routers when it deviates from ex-

hibiting expected behavior. While this mechanism is well suited to detect routers with forwarding

errors, it cannot handle the case of malicious adversaries that can potentially fool the learning based

system.

2.7 Summary

In this chapter, we describe the secure routing problem, establish its correspondence to the reli-

able communication problem and discuss prior works on secure routing. The primary take-away

messages from this chapter are four-fold:

1. Securing the control plane and the data plane of routing are two separate problems and one

requires different mechanisms for addressing them.

2. The secure routing problem (both from the control plane and the data plane perspectives)

is closely related to the reliable communication problem. However, the assumptions made

by prior work on reliable communication do not satisfy the constraints of the secure routing

problem. To achieve secure routing, we need to address a variant of the reliable communica-

tion problem for unknown networks where each node is initially only aware of its neighbors
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and not the entire network.

3. A network should satisfy thefixed-identity constraintand theconnectivity constraintto achieve

reliable communication in an unknown network.

4. Finally, the problem of decentralized secure routing has received little attention in previous

work. Previous work on secure routing primarily assume the existence of some form of prior

key distribution for node authentication and signing routing messages.

In the next chapter, we consider the Border Gateway Protocol (BGP) as a specific case study and

show how one can secure BGP in the face of adversaries.
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Chapter 3

Securing the Border Gateway protocol

“We will bankrupt ourselves in the vain search for absolute security.“

– Dwight David Eisenhower, American President

In this chapter, we consider the Border Gateway Protocol (BGP) as a specific case study and describe

two decentralized security mechanisms, namelyWhisperand Listen that we have developed for

BGP. In the design of these security mechanisms, we abandon the goal for “perfect security” (as

provided by a Public Key Infrastructure) and instead seek for “significantly improved security”

through more easily deployable mechanisms. Both Whisper and Listen do not rely on any form of

prior key distribution or on a central authority. Whisper is a control-plane verification mechanism

that forms one of the basic building blocks for achieving reliable communication as illustrated later

in Chapter 4 and Chapter 5. Listen, on the other hand, is a data-plane verification that verifies the

validity of routes in the data-plane.

The chapter is organized as follows. In Section 3.1, we describe a brief overview of BGP and follow
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that up with a brief introduction of the threat model we are dealing with in BGP in Section 3.2. Then,

we summarize the security guarantees that our techniques in Section 3.3. Next, in Section 3.4, we

describe the Whisper mechanism for control-plane verification and follow it up in Section 3.5 with

a description of the Listen mechanism. In Section 3.6, we will describe our implementation of

Listen and Whisper and describe its system overhead characteristics. We later perform a detailed

performance evaluation of both these techniques using a real-world deployment in Section 3.7.

Later in Section 3.8, we expose certain types of new attacks that colluding adversaries can launch

by exploiting policy routing to cause more damage. Finally, we conclude with a summary of this

work in Section 3.10.

3.1 Border Gateway Protocol: A brief introduction

The Internet is a network of over17, 000 Autonomous Systems where each Autonomous System

(AS) is by itself a network comprising of several routers under a single administrative entity. The

Border Gateway Protocol (BGP) is the current de-facto routing protocol used in the Internet to

maintain connectivity between ASs. Routers within an AS externally peer with routers in other ASs

and exchange routing information using BGP.

For the technical material presented in this chapter, the following three basic aspects about BGP are

important to note:

1. BGP performsprefix-level routing. A prefix represents an address block which is a portion

of the Internet IP address space. Each institution or network is allocated ownership for a

specific prefix by Internet Corporation for Assigned Names and Numbers (ICANN) [3]. BGP
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routes at the granularity of prefixes and every entry in the BGP routing table corresponds to a

specific prefix. To route a packet to a destination IP address, a BGP router performs alongest

prefix matchand routes the packet to the corresponding next hop.

2. BGP is apath-vector routingprotocol at the AS level. Every AS is associated with a unique

AS number which is allocated by the Internet Assigned Numbers Authority (IANA) [66].

Every BGP routing message is associated with a prefix and anAS pathwhich contains the

identities of all the ASs along the path to the destination network.

3. BGP usespolicy routingwhere routers can use their local preferences for choosing routes to

different destination. The policy choices of an AS need not follow any standard routing metric

choice like the shortest path metric. Additionally, every AS can use its ownimportandexport

policy rules which dictate what routing advertisements from neighboring nodes are accepted

(route advertisements can be ignored) and which advertisements are further propagated.

3.2 BGP threat model

The primary underlying vulnerability in BGP that we address in this work is the ability of an AS to

createinvalid routes. There are two types of invalid routes:

Invalid routes in the Control plane: This occurs when an AS propagates an advertisement with a

fake AS path (i.e., one that does not exist in the Internet topology), causing other ASs to choose this

route over genuine routes. A single malicious adversary can divert traffic to pass through it and then

cause havoc by, for example, dropping packets (rendering destinations unreachable), eavesdropping

(violating privacy), or impersonating end-hosts within the destination network (like Web servers
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etc.).

Invalid routes in the Data Plane: This occurs when a router forwards packets in a manner incon-

sistent with the routing advertisements it has received or propagated; in short, the routing path in

the data plane does not match the corresponding routing path advertised in the control plane. Mao

et al. [81] show that for nearly8% of Internet paths, the control plane and data plane paths do not

match.

As described earlier in Chapter 2, invalid routes in the control plane can be triggered by configura-

tion errors or malicious routers resulting from router compromises. Data plane, on the other hand,

can be triggered by forwarding problems, malicious routers along the data path, stale routes (as

illustrated in Chapter 2) and control-data plane route mismatches.

3.3 Summary:Listen and Whisper

In this work, we propose two decentralized mechanismsWhisperandListento secure the control

and data plane of the Border Gateway Protocol. Whisper checks for consistency of routes in the

control plane. Listen detects invalid routes in the data plane by checking whether data sent along

routes reaches the intended destination. While both these techniques can be used in isolation, they

are more useful when applied in conjunction. The extent to which they provide protection against

the three threat scenarios can be summarized as follows:

Misconfigurations and Isolated Adversaries:Whisper guaranteespath integrityfor route advertise-

ments in the presence of misconfigurations or isolated adversaries;i.e.,any invalid route advertise-

ment due to a misconfiguration or isolated adversary with either a fake AS path or with any of the
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fields of the AS path being tampered (e.g.,addition, modification or deletion of ASs) will be de-

tected. Path integrity also implies that an isolated adversary cannot exploit BGP policies to create

favorable invalid routes. In addition, Whisper can identify the offending router if it is propagating

a significant number of invalid routes. Listen detects reachability problems caused by errors in the

data plane, but is only applicable for destination prefixes that observe TCP traffic. However, none

of our solutions can prevent malicious nodes already on the path to a particular destination from

eavesdropping, impersonating, or dropping packets. In particular, countermeasures (from isolated

adversaries already along the path) can defeat Listen’s attempts to detect problems on the data path.

Colluding Adversaries:Two colluding nodes can always pretend the existence of a direct link be-

tween them by tunneling packets/ advertisements. In the absence of complete knowledge of the

Internet topology, these fake links cannot be detected even using heavy-weight security solutions

like Secure BGP [71]. While these fake links enable colluding adversaries to propagate invalid

routes without being detected, we show that if BGP employsshortest-pathrouting then a large frac-

tion of the paths with fake links can be avoided. On the contrary, colluding adversaries can exploit

the current application of BGP policies to mount a large scale attack. To deal with this problem and

yet support policy-based routing, we suggest simple modifications to the BGP policy engine which

in combination with Whisper can largely restrict the damage that colluding adversaries can cause.

3.4 Whisper: Control Plane Verification

In this section, we will describe the whisper protocol, a control plane verification technique that

proposes minor modifications to BGP to aid in detecting invalid routes from misconfigured or ma-
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licious routers. In this section, we restrict our discussion to the case where an isolated adversary

or a single misconfigured router propagates invalid routes. We will discuss colluding adversaries in

Section 3.8.

The Whisper protocol provides the following properties in the presence of isolated adversaries:

1. Any misconfigured or malicious router propagating an invalid route will always a trigger an

alarm.

2. A single malicious router advertising more than a few invalid routes will be detected and the

effects of these spurious routes will be contained.

3.4.1 Triggering Alarms vs Identification

The main distinction between our approach and a PKI-based approach is the concept oftriggering

alarmsas opposed toidentifying the source of problems. In Secure-BGP, a router can verify the

correctness of a single route advertisement by contacting a PKI and a central authority to test the

validity of the signatures embedded in the advertisement . For example, in Figure 3.1 (Case(i)),

each ASX appends an advertisement with a signatureSX generated using its public key. Another

AS can use a PKI to check whetherSX is the correct signature ofX. In this case, any misconfig-

ured/malicious AS propagating an invalid route will not be able to append the correct signatures of

other ASs and can beidentified.

Without either of these two infra-structural pieces, a router cannot verify a single route advertise-

ment in isolation. The Whisper model is to consider two different route advertisements to the same

destination and check whether they are consistent with each other. For example, in Figure 3.1
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Case(ii), each route advertisement is associated with a signature of an AS path. ASD receives two

advertisements to destinationA and can compare the signatureshABC andhAXY to check whether

the routes(C, B,A) and(Y, X,A) are consistent. When two routes are detected asinconsistent,

the Whisper protocol can determine that at least one of the routes is invalid. However, it cannot

clearly pinpoint the source of the invalid route. Upon detecting inconsistencies, the Whisper proto-

col cantrigger alarmsnotifying operators about the existence of a problem. This method is based

on the composition of well-known principles ofweak authenticationas discussed by Arkko and

Nikander [20].

Whisper does not require the underlying Internet topology to have multiple disjoint paths to every

destination AS. As long as an adversary propagating an invalid route is not on every path to the

destination, whisper will have two routes to check for consistency: (a) the genuine route to the

destination; (b) invalid path through the adversary.

3.4.2 Route Consistency Testing

A route consistency testtakes two different route advertisements to the same destination as input

and outputstrue if the routes are consistent and outputsfalseotherwise. Consistency is abstractly

defined as follows:

1. If both route announcements are valid then the output istrue.

2. If one route announcement is valid and the other one is invalid then the output isfalse.

3. If both route announcements are invalid then the output istrueor false.
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Figure 3.2: Different outcomes for a route consistency test. In all these scenarios, the verifying node
is V . The verifying node checks whether the two routes it receives to destinationP are consistent
with each other.

The key output from a route consistency test isfalse. This output unambiguously signals thatat

least oneof the two route announcements is invalid. In this case, our protocols can raise an alarm

and flag both the suspicious routes as potential candidates for invalid routes. If the consistency test

outputs true, both the routes could either be valid or invalid. Figure 3.2 depicts the outcomes of a

route consistency test for various examples of network configurations.

We will now describe different flavors of route consistency tests of increasing complexity which

offer different security guarantees. Conceptually, these constructions introduce asignaturefield in

every BGP UPDATE message which is updated by every AS along a path and is used for performing

the route consistency test. The origin AS (the originator of a route announcement) of a destination

prefix initiates the signature field and every intermediary AS that is not the origin of a destination

prefix is required to update the signature field using a cryptographic hash function.
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Figure 3.3: Weak-Split construction using a globally known hash functionh()

Weak-Split Whisper(WSW): Figure 3.3 illustrates the weak-split construction using a simple ex-

ample topology. Weak-Split whisper is motivated by the hash-chain construction used by Huet

al. [63, 62] in the context of ad-hoc networks. The key idea is as follows: The origin AS generates a

secretx and propagatesh(x) to its neighbors whereh() is a globally known one-way hash function.

Every intermediary AS in the path repeatedly hashes the signature field. An AS that receives two

routesr ands of AS hop lengthsk and l with signaturesyr andys can check for consistency by

testing whetherhk−l(ys) = yr.

The security property that the weak-whisper guarantees is:An independent adversary that isN AS

hops away from an origin AS can propagate invalid routes of a minimum length ofN − 1 without

being detected as inconsistent.However, weak split whisper cannot offer path integrity since an

adversary can modify the AS numbers along a path without affecting the path length.

The path integrity property requires the whisper protocol to satisfy two properties: (a) a malicious

adversary should not be able to reverse engineer the signature field of an AS path; (b) any modifi-

cation to the AS path or signature field in an advertisement should be detected as aninconsistency

when tested with a valid route to the same destination.



55

R(A)= {P, [(A,g(A)), (B,g(B))],[ ] },
sgn(R(A)) (using g(A))

R(B)= {P, [(A,g(A)), (B,g(B)), (C,g(C))], [ sgn(R(A) ] },
sgn(R(B) (using g(B)) 

R(C)= {P, [(A,g(A)), (B,g(B)), (C,g(C)), (D,g(D))], 
[ sgn(R(A), sgn(R(B)) ] },
sgn(R(C) (using g(C)) 

R(M)= {P, [(A,g’(A)), (M,g(M)), (D,g(D))], [ fake-sgn using g’(A) ] },
sgn(R(M)) (using g(M)) 
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Figure 3.4: RSA-based Strong Split Whisper construction. When nodeM claims to have direct
connectivity toA while in reality it does not, it has to generate a new public key forA, namely,
g′(A) (different from the actual public keyg(A)) to generate a genuine signature. Hence, a public-
key mismatch implies a route inconsistency.

RSA-based Strong Split Whisper

We motivate RSA-based Strong-Split Whisper (SSW) using an example topology illustrated in

Figure 3.4 where every node represents a AS. In this topology,D has a genuine routing path

(D, C, B, A) to nodeA andM is a malicious node that pretends to have a direct link toA. D

receives two routing advertisements toA, one fromC and one fromM and needs a mechanism for

determining that these two routing announcements areinconsistentwith each other.

To achieve this property, we associate every routing announcement with asignaturewhich is ini-

tialized by the source and incrementally updated by every node along the path. We use the example

topology in Figure 3.4 to illustrate the signature construction. The signature construction has the

following steps:

1. Initialization: In the initialization step (before propagating any route advertisement), every

AS generates its own public key, private key pair and propagates its public key to its direct
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neighbors. HenceA generates its own public-keyg(A) and claims its public key asg(A) to

B. Each node is associated with akeyed-identitywhich is the (identity, public-key) pair. The

keyed-identity ofA is (A, g(A)). However, an adversary can generate different public key

claims for different neighbors but with respect to each neighbor it can have a single keyed

identity.

2. Originating a routing advertisement:Let ASA in Figure 3.4 own prefixP . In order to adver-

tise the prefixP to B, A generates the routing messageRA = {P, [(A, g(A)), (B, g(B))]}

that containsA andB’s keyed identities.A generates a signaturesgn(RA) where it signs

RA using its private key.A propagatesRA, sgn(RA) to B. Here, it is important to note that

every AS appends the identity of its successor before propagating the route announcement

to its successor. This prevents the successor from removing its identity from the routing an-

nouncement. In this case,B cannot remove its keyed identity claim without modifying the

keyed identity ofA. If B attempts to remove its identity, it has to generate a new public-key

claim forA to generate a corresponding signature.

3. Updating a routing advertisement:Updating a routing advertisement occurs in the same fash-

ion as the signature generation by the origin. Every routing advertisement is associated with

a keyed-identity pathand achain of signatures. The keyed-identity path contains the entire

AS path as well as the public-key claims of the all the ASs along the path. The chain of

signatures is the corresponding set of signatures generated by every AS along the path. In

Figure 3.4, whenB receives the advertisementRA along with its signaturesgn(RA), thenB

constructs the routing messageRB = {P, [(A, g(A)), (B, g(B)), (C, g(C))], [sgn(RA)]}. It

then propagatesRB along with its signaturesgn(RB) generated using its private key. There
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are two aspects to note here. First,B includessgn(RA) as part ofRB and signs it as well.

This creates a linkage across signatures which makes it difficult for an adversary to modify

and replace individual pieces of the signature. Second, whenC receives bothsgn(RA) and

sgn(RB) in the routing announcement.

4. Verifying the signature:Verifying the signature is a simple operation which applies well-

known public-key cryptographic mechanisms. Given a messagem, an RSA public keyP

and a signatures(m), any node can verify whethers(m) is signature for messagem using

the public-keyP using well-known RSA mechanisms described in [108]. In this case, every

routing advertisement contains a chain of signatures as well as the set of claimed public keys

of the ASs along the path. Before propagating any routing announcement, a node needs to

verify whether each signature generated by an AS along the path indeed corresponds with the

claimed public key in the announcement. For example,C needs to verify whethersgn(RA)

andsgn(RB) are the signatures corresponding to the public key claimsg(A) andg(B).

Route consistency testing:The above signature mechanism lays the foundation for testing whether

two routing advertisements corresponding to a destination areconsistentwith each other. Consider

the example topology in Figure 3.4 whereM is an adversarial node that generates an incorrect

routing announcement claiming direct connectivity toA while in reality it does not have a direct

connection. In order to generate a corresponding signature that matches this announcement,M

has to generate a new public-private key pair forA and sign the message using this new key pair.

Hence, the keyed-identity corresponding toA (as generated byM ) is (A, g′(A) which is different

from the actual keyed-identity(A, g(A)). Hence, whenD receives two routing announcements to

A (one fromC and the other fromM ), D can determine that these announcements are inconsistent
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with each other because the keyed-identity claims forA do not match. However, just based on

these two routing announcementsD cannot determine the genuine keyed identity corresponding to

a destination AS. In Chapter 4, we present the reliable communication algorithm which determines

the constraints under whichD can determine the genuine keyed-identity corresponding to other ASs

in the network. In summary,two routing announcements to a destination are consistent with each

other if the public-key claims corresponding to the two announcements match.

The signature mechanism described above forms the basis of the reliable communication theory

described in Chapters 4 and 5. The above construction leverages public-key cryptography which

is relatively computationally expensive. We will show in Section 3.6.3, that the computational

overhead imposed on routers by this technique is marginal.

We will now describe two alternate whisper constructions which offer path-integrity but do not

involve public-key cryptography. However, these mechanisms would require significant modifica-

tions to be integrated into BGP. On the other hand, the RSA based SSW signature mechanism can

be easily integrated into BGP today as shown in Section 3.6.1.

SHA-based Strong Split Whisper

The SHA-based Strong split whisper is an emulation of the previous RSA construction where the

RSA signature operation is replaced with the SHA one-way hash function [110]. Unlike RSA-based

SSW, SHA-based whisper signatures can only be verified by the originator.

Let hS() represent the SHA one-way hash-function which takes an arbitrary string as input and

outputs a 160-bit hash value. A SHA-SSW signature of a routeR consists of two parameters: (a) the
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hash-value of the path; (b) public-key of the originator (as published in the route announcement).

In SHA-based SSW, an originA initiates an announcement to its neighborB with the signature

hS(Z, (A, B)) whereZ is a 160-bit nonce andP , its public key. Every intermediary ASB along

a path that receives an update from a neighborA with a SHA signatureY generates the signature

hS(Y, (A,B,C)) to its successorC along the path. Hence, a SHA whisper signature is simply a

hash signature of the initiator’s nonceZ and all neighbor bindings(A, B,C) along a path. The path

integrity of SHA signatures follows because the SHA signatures are not: (a) invertible given the

one-way hash function property; (b) reproducible by an adversary.

Consistency Testing:Unlike RSA, only the originA can verify the correctness of the SHA signature

of a path. A nodeV that receives two routesR, S to origin A performs the following operations

for consistency testing. First, if the public keys advertised in routesR andS are inconsistent, then

the routes are obviously inconsistent. Second, if the public-keys are the same,V choosesR as

its routing path (by fixing its routing table) and sends the encrypted form ofS’s SHA signature

to A querying whether the signature matches the path.A is supposed to send its response toV

and signs it with its private key so thatV can verify whetherA indeed generated the message.

Similarly, by settingS as the chosen route,A can verifyR’s signature. IfA responds positively,

the routes are deemed consistent. Note that the above test does not make any assumption about

the nature of the path fromA to V (i.e., symmetric routing is not necessary) sinceA signs its

response using its private key. However, it assumes that at least one valid reverse path exists from

A to V . In summary, SHA-based SSW guarantees path-integrity but has the additional complexity

of a pair of message exchanges between the verifier and the originator. From an implementation

perspective, these messages are routed using normal IP routes and the only modification necessary
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V A

B C

X Y

R=(B,C,A)

S=(X,Y,A)

P=[(B,C,A,Y,X), nonce z]

Figure 3.5: Loop Whisper: Source route a packet along a loop and test whether the packet is
successfully received.

is an additional signature field in the BGP UPDATE message. We leverage two optimizations to

reduce message overhead: (a) The public key of an origin needs to be communicated only once

provided future updates use the same consistent public key. (b) Given that the set of distinct routes

to a destination AS is relatively stable over time as well as small [33], the SHA signature verification

needs to be done only once for each distinct AS path.

Loop Whisper

Loop Whisper is a simple consistency testing strategy which uses AS-level traceroute to check

correctness. A verifierV that receives two route advertisementsR andS to the same destinationA

can form an AS-loop involving itself and ASs inR andS. If R andS are completely vertex-disjoint

(except the originA), then the AS-loop is simplyR−1S whereR−1 is the inverse AS-path ofR.

The loop whisper mechanism is illustrated in Figure 3.5. Given an AS-loop, the verifier generates

a special control message (like an ICMP message) with a nonce and the AS-loop andsource-routes
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the message along the loop to test whether the loop exists (nonce is used as a packet identifier).

Routing such control messages requires: (a) Each AS should have an additional control mechanism

in the routers to handle these specific packets and route them to the neighbor as specified in the

source route. (b) Each AS should forward control messages to a neighbor only when a genuine

neighbor exists. The second constraint guarantees that if an adversary generates an invalid route

with a non-existent path, the loop-test will never succeed. If a loop-test succeeds, two routes are

deemed consistent. In summary, while loop whisper guarantees path integrity, it requires at least

one router in each AS to support AS-level traceroute.(Note that not all routers need to be modified).

From a deployment perspective, SHA-SSW signature based mechanism is easier to deploy than

loop whisper.

3.4.3 Containment: Penalty Based Route Selection

Route consistency testing only provides the ability to trigger alarms whenever a node propagates

invalid route announcements. We append consistency testing withpenalty based route selection, a

simple containment strategy that attempts to identify suspicious candidates and avoid routes prop-

agated by them. The strategy works as follows: A router counts across destinations how often an

AS appears on an invalid route, and assigns this count as apenaltyvalue for the AS. The more

destinations an adversary affects the higher becomes its penalty and the clearer it stands out from

the rest. The route selection strategy is tochoose the route to a destination with the lowest penalty

value.

Consider the topology in Figure 3.6, whereM is a malicious node that propagates3 invalid route

announcements with AS pathsMA, MB, MC. By choosing the minimum penalty route, the
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Figure 3.6: Detecting Suspicious ASs: In this example,M is a malicious AS that propagates 3
invalid routes to 3 different destinationsA,B,C. The AS paths in the routes propagated are indicated
along the links. The verifierV assigns penalty values of3,1, 1, 1 to M,A, B, C respectively.

verifier V can avoid the invalid routes throughM since they have a higher penalty value. One

key assumption used in this technique is:The identity of an AS propagating invalid routes is always

present in the AS path attribute of the routes.The identity of every AS is verified by the neighboring

AS which receives the advertisement. For example, Zebra’s BGP implementation [67] explicitly

checks for this constraint for every announcement it receives. BGP should use shared keys across

peering links to avoid man in the middle attacks.

Penalties should primarily be viewed as a reasonable first response to detect suspicious candidates

and not as a fool-proof mechanism. In the presence of an isolated adversary, penalty based filtering

can ensure that the effects of the adversary are contained. We believe that penalties is a good

mechanism to detect malicious adversaries in customer ASs but should be applied with caution

when involving ASs in the Internet core. In particular, penalties are not a good security measure
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in the presence of colluding adversaries or when the number of independent adversaries is large.

For example, multiple adversaries can artificially raise the penalty of an innocent AS by including

its AS number in the invalid route. In Chapter 5, we show that a simple modified version of this

penalty-based filtering strategy is theoptimaldefense strategy in the presence of a single adversary.

3.5 Listen: Data Plane Verification

In this section, we will present the Listen protocol, a data plane verification technique that detects

reachability problems in the data plane. Reachability problems can occur due to a variety of reasons

ranging from routing problems to misconfigurations to link failures. Listen primarily signals the

existence of such problems as opposed to identifying the source or type of a problem.

Data plane verification mechanisms are necessary in two contexts: (a) connectivity problems due

to stale routes or forwarding problems are detectable only by data plane solutions like Listen. (b)

Blackhole attacks by malicious adversaries already present along a path to a destination. However,

proactive malicious nodes can defeat any data plane solution by impersonating the behavior of a

genuine end-hosts. The attractive features of Listen are: (a) passive; (b) incrementally deployable

and standalone solution with no modifications to BGP; (c) quick detection of reachability problems

for popular prefixes; (d) low overhead.

The basic form of the protocol described in this section is vulnerable to port scanners generating

many incomplete connections. In Section 3.7.2, we use propose defensive measures against port

scanners and motivate them using real world measurements.



64

procedureLISTEN(P,T,N)
Require: PrefixP , time periodT , number of unique destinationsN

1: t0 = time at which first SYN packet observed
2: wait until |flows with distinct dest. inP | ≥ N
3: wait till clock time> t0 + T
4: {Clean the data-set}
5: For every pair of IP addresses(src, dst) observed
6: if at least a single connection has completedthen
7: Add sample(src, dst, complete)
8: else
9: Add sample(src, dst, incomplete)

10: end if
11: {ConstantsCh, Cl must be determined in practice}
12: if fraction of complete connections> Ch then
13: return “route is verifiable”
14: end if
15: if at least one connection completesthen
16: if fraction of complete connections< Cl then
17: {Test for false positive}
18: sample 2 future complete TCP flows towardsP
19: apply active dropping and retransmission checks
20: if test is successfulthen
21: return “route is verifiable”
22: else
23: return “route is not verifiable”
24: end if
25: end if
26: end if

Figure 3.7: Pseudo-code for the probing algorithm.
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3.5.1 Listening to TCP flows

The general idea of Listen is to monitor TCP flows, and to draw conclusions about the state of a

route from this information. The forward and reverse routing paths between two end-hosts can be

different. Thus we may observe packets that flow in only one direction. We say that a TCP flow is

completeif we observe a SYN packet followed by a DATA packet, and we say that it isincomplete

if we observe only a SYN packet and no DATA packet over a period of 2 minutes (which is longer

than the SYN timeout period).

Consider that a router receives a route announcement for a prefixP and wishes to verify whether

prefixP is reachable via the advertised route. In the simplest case, a router concludes that the prefix

P is reachable if it observes at least one complete TCP flow. On the other hand, the router cannot

blindly conclude that a route is unreachable if it does not observe any complete connection. Incom-

plete connections can arise due to reasons other than just reachability problems. These include: (a)

non-live destination hosts; (b) route changes during the connection setup of a single flow i.e. SYN

and DATA packets traverse different routes. (c) port scanners generating SYN packets.

Under the assumption that port scanners are not present, detecting reachability problems would be

easy. To deal with non-live destinations, a router should notice multiple incomplete connections

to N different distinct destination addresses (for a reasonable choice ofN ). The problem of route

changes can be avoided by observing flows over a minimum time periodT . Hence, a router can

conclude that a prefix is unreachable if during a periodt it does not observe a complete TCP flow

wheret is defined as themaximumbetween: (a) the time taken to observeN or more incomplete

TCP flows with different destinations within prefixP ; (b) a predefined time periodT .
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The basic probing mechanism described above suffers from two forms of classification errors: (a)

false negatives; (b) false positives. A false negative arises when a router infers a reachable prefix

as being unreachable due to incomplete connections. A false positive arises when an unreachable

prefix is inferred as being reachable. A malicious end-host can create false positives by generating

bogus TCP connections with SYN and DATA packets without receiving ACKs. In Section 3.7.2,

we show how to choose the parametersN andT to reduce the chances of incomplete connections

causing false negatives.

Dealing with False Positives

Malicious end-hosts can create false positives by opening bogus TCP connections to keep a router

from detecting that a particular route is stale or invalid. Adversaries noticing route advertisements

from multiple vantage points (e.g., Routeviews [125]) can potentially notice mis-configurations

before routers notice reachability problems. Such adversaries can exploit the situation and open

bogus TCP connections.

We propose a combination ofactive droppingand retransmission checksas a countermeasure to

reduce the probability of false positives.

1. Active dropping:Choose a random subset ofm1 packets within a completed connection (or

across connections), drop them and raise an alarm if these packets arenot retransmitted.

Alternatively, one can just delay packets at the router instead of dropping them.

2. Retransmission check:Sample a different random subset ofm2 packets and raise an alarm if

more than50% of the packets are retransmitted.
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An adversary generating a bogus connection cannot decide which packets to retransmit without

receiving ACKs. If the adversary blindly retransmits many packets to prevent being detected by

Active dropping, the Retransmission check notices a problem. We set a threshold of 50% for re-

transmission checks assuming thatmostgenuine TCP connections will not experience a loss-rate

close to 50%.

Consider an adversary that has transmittedk packets in a TCP connection without receiving ACKs to

retransmit a fraction,q, of these packets. LetC(x, y) = x!
(x−y)!.y! represent the binomial coefficient

for two valuesx andy. The probability with which the adversary is able to mislead the active

dropping test is given byC(k·q,m1)
C(k,m1) . The probability with which the retransmission check cannot

detect an adversary is given by the tail of the binomial distribution(1− (
∑m2

l=m2/2 C(m2, l)ql(1−

q)m2−l)). Hence the overall probability,pe, that our algorithm does not detect an adversary is:

C(k · q,m1)
C(k, m1)

× (1− (
m2∑

l=m2/2

C(m2, l)ql(1− q)m2−l))

For a given prefix, the overhead of active dropping can be made very small. By choosingm1 = 6

and dropping only6 packets across different TCP flows, we can reduce the probability of false

positive,pe, to be less than0.1%.

This countermeasure is applied only when we notice a discrepancy across different TCP connections

to the same destination prefix,i.e.,number of incomplete connections and complete connections are

roughly the same. In this case, we sample and test whether a few complete connections are indeed

bogus.
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Detailed Algorithm

Figure 3.7 presents the pseudo-code for the listen algorithm. The algorithm takes a conservative

approach towards determining whether a route is verifiable. Since false positive tests can impact the

performance of a few flows, the algorithm uses the constantCh andCl to trade off between when

to test for false positives. When the test is not applied, we use the fraction of complete connections

as the only metric to determine whether the route works. The setting ofCh, Cl depends on the

popularity of the prefixes. Firstly, we apply the false positive tests only for popular prefixesi.e.,

Cl = 0 for non-popular prefixes. For a popular prefix, we choose a conservative estimate ofCh

(closer to1) i.e., a large fraction of the connections have to complete in order to conclude that

the route is verifiable. On the other hand, if we observe that a reasonable fraction of combination

of incomplete connections, we apply the false positive test to2 sampled complete connections.

The user has choice in tuningCl based on the total number of false positive tests that need to

be performed. For non-popular prefixes, the statistical sample of connections is small. For such

prefixes, we set the value ofCh to be small.

3.6 Implementation

In this section, we will describe the implementation of Listen and Whisper and their overhead

characteristics.
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3.6.1 Whisper Implementation

In this section, we will only focus on the implementation of the strong split whisper protocol (RSA

variant). The SHA variant requires a modification to the hash function we use in our code.1

The whisper implementation contains two basic components: (a) a stand alone whisper library

which performs the cryptographic operations used in the protocol. (b) a Whisper-BGP interface

which integrates the whisper functions into a BGP implementation. We implemented the Whisper

library on top of thecrypto library supported by OpenSSL development version 0.9.6b-33. We

integrated this library with the Zebra BGP router implementation version 0.93b [67]. Our Whisper

implementation works on Linux and FreeBSD platforms.

Whisper Library

The structure of a basic Whisper signature is:

typedef struct {
BIGNUM *seed;
BIGNUM *N;

}Signature;

BIGNUM is a basic data structure used within the OpenSSL crypto library to represent large num-

bers. The whisper library supports these three functions using the Signature data structure:

1: generatesignature(Signature *sg);
2: updatesignature(Signature *sg, int asnumber, int position);
3: verify signatures(Signature *r, Signature *s,int *aspathr, int *aspaths);

These functions exactly map to the three whisper operations described earlier in Section 3.4.2. The

main advantage of separating the whisper library from the whisper-BGP interface is modularity. The
1The additional control messages in SHA-based SSW are data-plane messages and are not incorporated in the code.
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whisper library can be used in isolation with any other BGP implementation sufficiently different

from the Zebra version.

Integration with BGP

The Whisper protocol can be integrated with BGP without changing the basic packet format of BGP.

BGP uses32 − bit community attributes which are options within UPDATE messages that can be

leveraged for embedding the signature attributes. This design offers us many advantages over updat-

ing a version of BGP. First, a single update message can have several community attributes and one

can split a signature among multiple community attributes. Second, a community attribute can be

set using the BGP configuration script to allow operators the flexibility to insert their own commu-

nity attribute values. In a similar vein, one can imagine a stand-alone whisper library computing the

signatures and a simple interface to insert these signatures within the community attributes. Third,

one can reserve a portion of the community attribute space for whisper signatures. In today’s BGP,

community values can be set to any value as long as they are interpreted correctly by other routers.

An RSA-SSW uses2048 bits per signature field generated by each AS, while SHA-SSW needs a

total of1184 = 160 + 1024 bits for the SHA signature and public key.

3.6.2 Listen Implementation

We implemented the passive probing component ofListen(i.e. without active dropping) in about

2000 lines of code in C and have ported the code to Linux and FreeBSD operating systems. The

current prototype uses thelibpcaputility [7] to capture all the packets off the network. This form

of implementation has two advantages: (a) is stand-alone and can be implemented on any machine



71

(need not be a router) which can sniff network traffic; (b) does not require any support from router

vendors. Additionally, one can executebgpd(Zebra’s BGP daemon [67]) to receive live BGP up-

dates from a network router. For faster line-rates (e.g. links in ISPs),listen should be integrated

with hardware or packet probing software like Cisco’s Netflow [40]. The current implementation

cannot support false positive tests since the code can only passively observe the traffic but cannot

actively drop packets (since this does not perform the routing functionality).

In our implementation, the complexity of listening to a TCP flow is of the same order as a route

lookup operation. Additionally, the state requirement isO(1) for every prefix. We maintain a small

hash table for every prefix entry corresponding to the (src,dst) IP addresses of a TCP flow and a

time stamp. While a SYN packet sets a bit in the hash table, the DATA packet clears the bit and

record a complete connection for the prefix. Using a small hash table, we can crudely estimate the

number of complete and incomplete connections within a time-periodT . Additionally, we sample

flows to reduce the possibility of hash conflicts. This implementation uses simple statistical counter

estimation techniques used to efficiently maintain statistics in routers. Hence, the basic form of

Listen can be efficiently implemented in the fast path of today’s routers.

Deployment: We deployed ourListenprototype to sniff on TCP traffic to and from a/24 prefix

within our university. Additionally, we received BGP updates from the university campus router

and constructed the list of prefixes in the routing table used by the edge router. The tool only needs

to know the list of prefixes in the routing table and assumes a virtual route for every prefix. The

Listen tool can report the list of verifiable and non-verifiable prefixes in real time. Additionally, the

Listenalgorithm is applied only by observing traffic in one direction (either outbound or inbound).
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Operation 512-bit 1024-bit 2048-bit
updatesignature 0.18 msec 0.45 msec 1.42 msec
verify signatures 0.25 msec 0.6 msec 1.94 msec
generatesignature 0.4 sec 8.0 sec 68 sec

Table 3.1: Processing overhead of the Whisper operations on a 1.5 Ghz Pentium IV with 512 MB
RAM.

3.6.3 Overhead Characteristics

Overhead of Whisper: One of the important requirements of any cryptography based solution is

low complexity. We performed benchmarks to determine the processing overhead of the Whisper

operations. Table 3.1 summarizes the average time required to perform the whisper operations for

3 different key sizes:512− bit, 1024−bit and2048−bit. As the key size increases, the RSA-based

operations offer better security. Security experts recommend a minimum size of1024 bit keys for

better long-term security.

We make two observations about the overhead characteristics. First, the processing overhead for all

these key sizes are well within the limits of the maximum load observed at routers. For2048 bit

keys, a node can process more than42, 000 route advertisements within1 minute. In comparison,

the maximum number of route advertisements observed at a Sprint router is9300 updates every

minute [13]. For1024 bit keys, Whisper can update and verify over100, 000 route advertisements

per minute. Second,generatesignature()is an expensive operation and can consume more than1

sec per operation. However, this operation is performed only once over many days.

Overhead of Listen: By analyzing route updates for over17 days in Routeviews [125], we observed

that99% of the routes in a routing table are stable for at least1 hour. Based on data from a tier-1 ISP,

we find that a router typically observes a maximum of20000 active prefixes over a period of1 hour
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i.e., only 20000 prefixes observe any traffic. If the probing mechanism uses a statistical sample of

10 flows per prefix, the overhead of probing at the router is negligible. Essentially, the router needs

to process200000 flows in 3600 sec which translates to monitoring under60 flows every second

(equivalent toO(60) routing lookups). Even if the number of active prefixes scales by a factor of

10, current router implementations can easily implement the passive probing aspect of Listen.

Active dropping and retransmission checks are applied only in the IP slow path and are invoked only

when a prefix observes a combination of both incomplete and complete connections. To minimize

the additional overhead of these operations, we restrict these checks to a few prefixes.

3.7 Evaluation

In this section, we evaluate the key properties of Listen and Whisper. Our evaluation is targeted at

answering specific questions about Listen and Whisper:

1. How much security can Whisper provide in the face of isolated adversaries?

2. How useful is Listen in the real world? In particular, can it detect reachability problems?

3. How does Listen react in the presence of port scanners? How does one adapt to such port

scanners?

We answer question (1) in Section 3.7.1, questions (2),(3) in Section 3.7.2. Our evaluation method-

ology is two-fold: (a) empirically evaluate the security properties of Whisper; (b) use a real-world

deployment to determine usefulness of Listen. To evaluate the security properties of Whisper, it

is necessary to determine the effects of the worst-case scenario which is better quantified using an

empirical evaluation.
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Figure 3.8: Effects of penalty based route selection

We collected the Internet AS topology data based on BGP advertisements observed from15 different

vantage points over17 days including Routeviews [125] and RIPE [11]. The policy-based routing

path between a pair of ASs is determined using customer–provider and peer–peer relationships,

which have been inferred based on the technique used in [121].

3.7.1 Whisper: Security Properties against Isolated Adversaries

In this section, we quantify the maximum damage an isolated adversary can inflict on the Internet

given that Strong Split Whisper is deployed. Since SHA-based SSW offers path integrity, an isolated

adversary cannot propagate invalid routes without raising alarms unless there exists no alternate
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route from the origin to the verifier (i.e. adversary is present in all paths from the origin to the

Internet).

Given an adversary that is willing to raise alarms, we analyzed how many ASs can one such ad-

versary affect. In this analysis, we exclude cases where the adversary is already present in the only

routing path to a destination AS. We use penalty based route selection as the main defense to contain

the effects of such invalid routes. We assume that in the worst-case, an adversary compromising a

single router in an AS is equivalent to compromising the entire AS especially if all routers within

the AS choose the invalid route propagated by the compromised router.

Let M represent an isolated adversary propagating an invalid route claiming direct connectivity to

an origin ASO. AS V is said to beaffectedby the invalid route ifV chooses the route throughM

rather than a genuine route toO either due to BGP policies or shorter hop length. Based on common

practices, we associate all ASs with a simple policy where customer routes have the highest prefer-

ence followed by peers and providers [54]. Given all these relationships, we define thevulnerability

of an origin AS,O, asV (O, M) to be the maximum fraction of ASs,M can affect. Given an iso-

lated adversaryM , we can quantify the worst-case effect thatM can have on the Internet using the

cumulative distributionof V (O, M) across all origin ASs in the Internet.

With ASs deploying penalty based route selection as a defense, we expect the vulnerabilityV (O, M)

to reduce. We study how the cumulative distribution ofV (O, M) for a single adversaryM varies as

a function of how many ASs deploy penalty based route selection. We consider the scenario where

the topn ISPs deploy penalty based route selection (based on AS degree). Figure 3.8 shows this

cumulative distribution for for different values ofn = 100, 300, 500 and1000. These distributions

are averaged across all possible choices forM .
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We make the following observations. First, a median value of1% for n = 1000 indicates that a

randomly located adversary can affect at most1% of destination ASs by propagating bogus adver-

tisements assuming that the top1000 ISPs use penalties. This is orders of magnitude better that

what the current Internet can offer where a randomly located adversary can on an average affect

nearly30% of the routes (repeat the same analysis without SSW) to a randomly chosen destination

AS.

Second, in the worst case, a single AS can at most affect8% of the destination ASs forn = 1000.

8% is a limit imposed by the structure of the Internet topology since it represents the size of the

largest connected without the top1000 ISPs. One malicious AS in this component can potentially

affect other ASs within the same component.

Third, if all provider ASs use penalties for route selection, the worst case behavior can be brought to

a much smaller value than8%. Additionally, there is very little benefit in deploying penalty based

route selection in the end-host networks since they are not transit networks and typically are sources

and sinks of route advertisements. Hence, any filtering at these end-hosts only protects themselves

but not other ASs.

To summarize, the Whisper protocol in conjunction with penalty based route selection can guarantee

that a randomly placed isolated adversary propagating invalid routes can affect at most1% of the

ASs in the Internet topology.
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Number of Probability of
Reachability Problems False Negatives

Outbound 235 0.93%
Inbound 343 0.37%

Table 3.2: Listen: Summary of Results

3.7.2 Listen: Experimental Evaluation

In this section, we describe our real-world experiences using the Listen protocol. We make two

important observations from our analysis. First, we found that a large fraction of incomplete TCP

connections arespurious i.e.,not indicative of a reachability problem. We show that by adaptively

setting the parametersT, N of our listen algorithm we can drastically reduce the probability of

such false negatives due to such connections. Second, we detect several reachability problems

using Listen including specific misconfiguration related problems like forwarding errors. Table 3.2

presents a concise summary of the results obtained from our deployment. We detected reachability

problems to578 different prefixes with a very false negative probabilities of0.95% and 0.37%

respectively due to spurious outbound and inbound connections.

We will now describe our deployment experience in greater detail. In our testbed, we use three ac-

tive probing tests to verify the correctness of results obtained using Listen: (a) ping the destination;

(b) traceroute and check whether any IP address along in the path is in the same prefix as the desti-

nation; (c) perform a port 80 scan on the destination IP address. These tests are activated for every

incomplete connection. We classify an incomplete connection as having a reachability problem only

if all the three probing tests fail. We classify an incomplete connection as aspurious connectionif

one of the probing techniques is able to detect that the route to a destination prefix works. A spurious
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Number of end-hosts behind/24 network 28
Number of days 40
Total No. of TCP connections 994234
No. of complete connections 894897
No. of incomplete connections 99337
Average Routing Table Size 123482
Total No. of Active Prefixes 11141
Average No. of Active Prefixes per hour 141
Average No. of Active Prefixes per day 2500-3000
Verifiable Prefixes 9711
Prefixes with perennial problems 42

Table 3.3: Aggregate characteristics of Listen from the deployment

TCP connection is an incomplete connection that is not indicative of a reachability problem.

Table 3.3 presents the aggregate characteristics of the traffic we observed from a/24 network for

over40 days. In reality, we found that nearly10% of the connections are incomplete of which a

large fraction of these connections are spurious (91% inbound and63% outbound). A more careful

observation at the spurious connections showed that nearly90% of spurious inbound connections

are due to port scanners and worms. The most prominent ones being the Microsoft NetBIOS worm

and the SQL server worms [9]. Spurious outbound connections occur primarily due to failed con-

nection attempts to non-live hosts and attempts to access a disabled ports of other end-hosts (e.g.,

telnet port being disabled in a destination end-host).Given this alarmingly high number of spurious

connections, we propose defensive measures to reduce the probability of false negatives due to such

connections.
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Defensive Measures to reduce False Negatives

In this section, we show that one can adaptively set the parametersN , T in the listen algorithm to

drastically reduce the probability of false negatives due to spurious TCP connections. In particular,

we show that by adaptively tuning the minimum time period,T , one can reduce false negatives due

to port scanners and by tuning the number of distinct destinations,N , one can deal with non-live

hosts.

Given the nature of incomplete connections in our testbed, we use outbound incomplete connections

as a test sample for non-live hosts and inbound connections as the test sample for port scanners and

worms. In both inbound and outbound, we restricted our samples to only those connections which

are known to be false negatives.

SettingT : One possibility is to choose an intervalT large enough such that the router will notice at

least one genuine TCP flow during the interval. Such a value ofT will depend on the popularity of a

prefix. The popularity of a prefix,pop(P ), is defined as the mean time between two complete TCP

connections to prefixP . We can model the arrival of TCP connections as a Poisson process with a

mean arrival rate as1/pop(P ) [97]. Given this, we can set the value ofT = 4.6 × pop(P ) to be

99% certain that one would experience at least one genuine connection within the periodT . To have

a99.9% certainty, one needs to setT = 6.9× pop(P ). For prefixes that hardly observe any traffic,

the value ofT will be very high implying that port scanners generating incomplete connections to

such prefixes will not generate any false alarms.

From our testbed, we determine the mean separation time between the arrival of two incoming

connections to bepop(P ) = 34.1 sec. By merely settingT = 156.8 to achieve99% certainty, we
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Type of problem Number of Prefixes
Routing Loops 51
Forwarding Errors 64
Generic (forward path) 146
Generic (reverse path) 317

Table 3.4: The number of prefixes affected by different types of reachability problems.

could reduce the probability of false negatives in Listen from91.83% to 0.37%. Throughout the

entire period of measurement, only during8 periods of156 seconds each did we verify incorrectly

that the local prefix is not reachable.

Setting N : The choice of an appropriate value ofN trades off between minimizing the false neg-

ative ratio due to non-live hosts and the number of reachability problems detected. In our testbed,

we noticed that by merely settingN = 2, we can significantly reduce the false negative ratio in

outbound connections from63% to less than1%. However, Listen reported only35 out of 663

potential prefixes to have routing problems. For several/24 prefixes, we observed TCP connections

to only a single host and by settingN = 2, we tend to omit these cases. In practice, the value of

N is dependent on the diversity of traffic to a destination prefix and the traffic concentration at a

router. For many/24 prefixes, we need to setN = 1. For /8 and/16 prefixes, one can choose

larger values ofN = 4 or N = 5 provided the prefix observes diversity in the traffic.

Detected Reachability Problems

Among the reachability problems detected by Listen, two specific types of routing problems (as

detected by active probing) include:routing loopsand forwarding errorsdue to unknown IP ad-

dresses. We detected routing loops using traceroute and inferred forwarding errors using the routing
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Figure 3.9: The effects of colluding adversaries in the current Internet.

table entries at the University exit router. A forwarding error arises when the destination IP address

in a packet is a genuine one but the router has no next hop forwarding entry for the IP address.

This can potentially arise due to staleness of routes. Table 3.4 summarizes the number of prefixes

affected by each type of problem. In particular, we observe routing loops to51 different prefixes

and forwarding errors to64 different prefixes. Additionally, Listen detected463 prefixes having

other forms of reachability problems.

To cite a few examples of reachability problems we observed: (a) A BGP daemon within our net-

work attempted to connect to another such daemon within the destination prefix 193.148.15.0/24.

The route to this prefix was perennially unreachable due to a routing loop. (b) The route to Yahoo-

NET prefix 207.126.224.0/20 was fluctuating. During many periods, the route was detected as

unavailable.
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Figure 3.10: Effects of colluding adversaries with whisper + policy routing.

3.8 Colluding Adversaries

Additional to acting as a group of isolated adversaries, colluding adversaries can tunnel advertise-

ments and secrets between them and create invalid routes with fake AS links without being detected

by the Whisper protocols. These invalid routes are not detectable even with a PKI unless the com-

plete topology is known and enforced. Despite the limitation, we can provide protective measures

for avoiding these invalid routes.

Given the hierarchical nature and the skewed structure of the Internet topology, the invalid paths

from colluding adversaries not detectable by the Whisper tend to be longer in AS path length.

This is because, a normal route would traverse the Internet core (tier-1 + tier-2 ISPs) once while a

consistent invalid route through2 colluding adversaries traverses the Internet core twice (since the
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Figure 3.11: Effect of colluding adversaries with whisper + shortest path routing

adversary cannot remove any AS from the path). Hence, by choosing the shortest path we have

a better chance of avoiding the invalid route. Figures 3.9, 3.10 and 3.11, illustrates this effect

of colluding adversaries for3 scenarios: (a) the current Internet with no protection; (b) whisper

protocols with policy routing; (c) whisper protocols with shortest path routing. All these graphs

show the cumulative distribution of the vulnerability metric (defined in Section 3.7.1) for a set of

colluding malicious adversaries. We specifically consider three cases: (a)2 colluding tier-1 ASs;

(b) 2 colluding tier-2 ASs (c)12 colluding customer ASs.

We make two observations. First,12 randomly compromised customer routers can inflict the same

magnitude of damage as that of two tier-1 nodes illustrating the effect of colluding adversaries in

the current Internet. Typically, customer ASs are easier to compromise since many of them are un-

managed. Second, whisper protocols with shortest path routing drastically reduces the possibility of
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colluding adversaries (in comparison to policy routing) propagating invalid routes without trigger-

ing alarms. In particular, even when12 customer ASs are compromised, the effect on the Internet

routing is negligible.

Whisper protocols with policy routing offers much lesser protection since BGP tends to choose

routes based on thelocal preference. The typical policy convention based on stable routing and eco-

nomic constraints is to prefer customer routes over peer and provider routes [54]. This preference

rule increases the vulnerability of BGP to pick consistent invalid routes from customers over poten-

tially shorter routes through peers /providers. In principle, this problem also exists in S-BGP. To

strike a middle ground between the flexibility of policy routing and this vulnerability, we propose a

simple modification to the policy engine:Do not associate any local preference to customer routes

that have an AS path length greater than2 (any route from a pair of colluding route should have

a minimum path length of3). We believe that this modification to BGP policies should have little

impact on current operation since most customer routes today have a path length less than3.

To summarize, whisper protocols in combination with the modified policies (emulating shortest path

routing) can largely restrict the damage of colluding adversaries.

3.9 Discussion

We now discuss three specific issues not covered earlier.

Hijacking unallocated prefixes:With the deployment of Whisper, a malicious adversary can still

claim ownership over unallocated address spaces without triggering alarms by propagating bogus

announcements. One way of dealing with this problem is to request ICANN [3] to specifically
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advertise unallocated address spaces with its own corresponding Whisper signatures whenever it

notices an advertisement for an unallocated prefix. Additionally, to avoid a DoS attack on ICANN

for such prefixes, routers should not maintain forwarding entries for these prefixes.

Route Aggregation:Whenever an AS aggregates several route advertisements into one, it is required

to perform one of the following operations to maintain the consistency of the aggregated route: (a)

Append the individual signatures corresponding to each advertisement so that an upstream AS can

match at least one of the signatures with the whisper signatures for alternate routes to sub-prefixes.

(b) If the AS owns the entire aggregated prefix (common form of aggregation in BGP), ignore the

whisper signatures in the sub-prefixes and append its own whisper signature.

Other types of security attacks:Other than propagation of invalid routes, one can imagine other

forms of routing attacks or misconfiguration errors which may result in routing loops, persistent

route oscillations or convergence problems. Such problems are out of the scope of this work.

3.10 Summary

In this work, we consider the problem of reducing the vulnerability of BGP in the face of mis-

configurations and malicious attacks. To address this problem we propose two techniques: Listen

and Whisper. Used together these techniques can detect and contain invalid routes propagated by

isolated adversaries, and a large number of problems due to misconfigurations. To demonstrate the

utility of Listen and Whisper, we use a combination of real world deployment and empirical anal-

ysis. In particular, we show that Listen can detect unreachable prefixes with a low probability of

false negatives, and that Whisper can limit the percentage of nodes affected by a randomly placed
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isolated adversary to less than1%. Finally, we show that both Listen and Whisper are easy to im-

plement and deploy. Listen is incrementally deployable and does not require any changes to BGP,

while Whisper can be integrated with BGP without changing the packet format.
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Chapter 4

Reliable Communication in Unknown

Networks

“ Any fool can tell the truth, but it requires a man of some sense to know how to lie well. The best liar is he

who makes the smallest amount of lying go the longest way.”

– Samuel Butler, English writer

In this chapter, we will describe our theoretical result on the solvability of the reliable communi-

cation problem in unknown networks. We show that one can achieve reliable communication in

an unknown network in the presence ofk colluding adversaries if and only if the network has a

minimum vertex connectivity of2k + 1. For the case ofk independent adversaries that do not use

any out-of-band mechanism to exchange information both prior and during protocol execution, we

show that a vertex connectivity ofk + 2 is necessary and sufficient. To put our result in context, we

begin by describing the key results established in prior work in the context of known networks and
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follow it up with a theoretical exposition of our result for unknown networks.

This chapter is organized as follows. In Section 4.1, we begin by summarizing the key prior re-

sults on reliable communication. In Section 4.2, we summarize our theoretical results on reliable

communication. In Section 4.3, we describe path-vector signatures, a fundamental building block

for achieving reliable communication. This path-vector signature is a more detailed version of the

RSA-based Strong Split Whispers concept described in Chapter 3. In Section 4.4, we describe the

reliable broadcast algorithm which enables every node to reliably broadcast its public-key to other

nodes in the network provided the connectivity constraint is met. In this section, we also provide

the proof of the reliable communication result for both the colluding adversaries case and the in-

dependent adversaries case. In Section 4.5, we analyze the complexity of the reliable broadcast

algorithm. Finally, in Section 4.6, we describe the implications of this result and the brief summary

of the chapter.

4.1 Prior results on reliable communication

The problem of reliable communication between nodes in the presence of byzantine adversaries [22,

23] was first considered in the context of the classic Byzantine General’s problem [98, 76]. Consider

a networkG = (V, E) where the edges inE represent reliable channels between nodes inV .

By reliable channels, we mean channels over which message transmissions cannot be dropped,

tampered, or forged. In the simplest case, whenG is a clique, reliable communication between

every pair of nodes can be trivially achieved. For a general graphG, Dolev [45] and Dolevet

al. [46] proved that if there arek faulty nodes, then every pair of nodes can reliably communicate if
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and only if the underlying graph is2k + 1 vertex connected. Biemel and Frankin [22] showed that

the connectivity constraint can be relaxed if some pairs of nodes share authentication keys.

A simpler version of the reliable communication problem is the reliable broadcast problem where

each node intends to reliably communicate the same message to every other node in the network.

Reliable broadcast and reliable communication are dual problems of each other. Once reliable

broadcast is achieved, one can perform pair-wise reliable communication by exchanging public

keys through reliable broadcast.. The relationship between the reliable broadcast (RB) problem and

the Byzantine agreement (BA) problem is summarized by the following observation:

Observation:Givenn nodes of whichk are adversarial, then two results hold: (a) BA=⇒ RB;

(b) If RB is achievable, then one can achieve BA ifn ≥ 3k + 1.

The first result implicitly follows from the fact that¬RB =⇒ ¬BA. If two good nodes cannot

reliably transmit messages between themselves, then they cannot achieve BA. The second result

indirectly follows from previous works by Lamportet al. [76, 98] and Dolev [45].

4.2 Summary of our results

Given that the reliable broadcast and reliable communication problems are duals of each other, we

focus on the reliable broadcast problem for the rest of this chapter. The primary result we prove in

this chapter is:

Theorem 1. Given a boundk on the number of adversaries, there exists a distributed algorithmΓ

that achieves reliable broadcast in an unknown fixed-identity networkU(n,G, N) if and only ifG

is 2k + 1 vertex connected.
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This result extends the prior result of Dolev [45] for unknown fixed-identity networks. Dolev proved

that a minimum(2k + 1) vertex connectivity is essential for achieving reliable broadcast even if

the entire graph,G, is known to all the nodes. Our result shows that one can achieve reliable

broadcast even in the case whereG is unknown to the nodes provided the graph satisfies the(2k+1)

connectivity requirement. The time-complexity of the algorithm is dependent on the values ofk, N

and is discussed in detail in Section 4.5.

The fixed-identity assumption is critical towards addressing this problem. If this assumption is not

met and an adversary uses different identities to different neighbors, then we can show prove the

following result:

Lemma 1. For any given integerm > 0, there exists anm-vertex connected networkG on n

nodes where each node is initially aware of the identities of only its neighbors, such that, a single

adversary using multiple identities is sufficient to disrupt reliable broadcast inG.

4.3 Path vector signatures

In this section, we describe the concept ofpath vector signatures, one of the basic building blocks

we use to solve the problem of reliable broadcast. The signature mechanism described in this

section is a detailed version of the RSA-based Strong Split Whisper signature mechanism presented

in Chapter 3 (Section 3.4).

A path-vector signature is a signature associated with a message that traverses a particular path

within the network. These signatures enable a good node todifferentiatebetween genuine messages

generated by good nodes from spurious ones generated by adversaries. An adversary (or a set of
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adversaries) that intends to disrupt a good nodev from reliably communicating a messagem(v),

will attempt to propagate spurious messagesm′(v) claiming to be fromv. To defend against such

adversaries, we associate with each message a specific path-vector signature that is cryptographi-

cally computed and updated by every node along the path through which the message is propagated,

so that no adversary can tamper with the message. Hence, an adversary intending to propagate a

spurious message claiming to be from a good nodev is forced to generate adifferent signaturein

comparison to the same message being generated by the source.

More formally, apath-vector message(m, s, p) consists of three parameters: a messagem, the

identity of the sources, and a pathp containing the identities of the nodes the message traverses

including the sources. A path-vector signature, sgn(m, s, p), is a signature corresponding to a path-

vector message(m, s, p) which is initiated by the sources and incrementally updated by every node

along the pathp. It is important to note that if a nodeu propagates a path-vector message(m, s, p)

to v, thenv’s identity is already appended to the pathp by u signifying thatu has propagated the

message tov. Hence, a nodev that receives a message should have its identity as the last node

in the path and cannot remove its identity (in case,v is an adversary). The path-vector signature,

sgn(m, s, p), should satisfy three properties:

1. Verify: Given(m, s, p) andsgn(m, s, p), any node should be able to verify that the message

traversed the nodes in pathp provided the messagem was initiated ats.

2. Append an identity: Let a node with identityx receives a message(m, s, p) along with

sgn(m, s, p). If x intends to forward the message to a neighbor with identityy, x should be

able to compute the valid signaturesgn(m, s, p′), for the message(m, s, p′), wherep′ is the

path(p, {y}).
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3. Inability to modify: Given a path-vector message,(m, s, p), an adversaryshould notbe able

to produce a valid signature for any message(m′, s, p′) wherem′ 6= m or p′ is not a path of

the form(p, pf ) wherepf is any other path of identities. In other words, the adversary can

append identities to the path but not remove identities.

We now discuss a simple path signature construction that satisfies these requirements. This construc-

tion relies on an underlying conventional public-key signature schemeG, whereG(m,P ) refers to

the messagem signed using the public keyP . There are several known schemes that can be used for

this purpose, one example being the El Gamal signature scheme [53]. Consider a nodev1 sending a

messagem to nodevn over the path(v1, . . . vn). Let each nodevi generate a public keyg(vi). The

prescriptions of our protocol are as follows:

1. Initialization: Every nodevi generates its public keyg(vi), and for(i > 1), communicates it

to its neighborvi−1.

2. Message Initiation:The sourcev1 sends the messagem1 = [ (m, s, p1), sgn1 ] to its neighbor

v2 wheres = (v1, g(v1)), p1 = [ (v1, g(v1)), (v2, g(v2)) ], andsgn1 = {G((m, s, p1), g(v1))}.

3. Incremental update:Nodevi (i > 1) receives messagemi−1 = [ (m, s, pi−1), sgni−1 ] from

its predecessorvi−1. It then sends messagemi = [ (m, s, pi), sgni ] to its successorvi+1

wherepi = [ pi−1, (vi+1, g(vi+1)) ] andsgni = {sgni−1, G((m, s, pi), g(vi))}.

Note that each nodevi includes the identity of its successorvi+1 in its messagemi. This identity

also includes the public key announced byvi+1. Thus, in essence, the message received by node

vi consists of the original messagem, the identity of originators along with its claimed public

key g(vi), and a path signature where the identity and public key of each hop is certified by its

predecessor. Any nodevi on the path that receives a message(m, s, p) along withsgn(m, s, p)
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can verify the correctness of each individual signature according to the signature schemeG. This

construction satisfies the following lemma:

Lemma 2. Any fake path vector messageM = (m, s, p) generated by an adversarial node with a

genuine signaturesgn(M) can only be one of two categories:

1. M was generated by a single adversaryv which generated fake public keysg′(u) for all

identitiesu that precedev in p.

2. Two colluding adversariesv, w that occur inp can insert a spurious path fragment comprising

arbitrary identities (including identities of good nodes) betweenv and w in the path. For

each such good nodex whose identity was added byv andw, the adversarial nodes need to

generate a fake public keyg′(x).

It is essential for every node along the path to sign every message for this lemma to hold and

distinguish any fake message. If not, an adversary can insert arbitrary path-fragments with identities

and this can perturb the graph-computation process described in Section 4.4. This motivates the

concept of akeyed-identity of a node denoted as(x, g(x)), wherex is the identity andg(x), the

claimed public key ofx in a message. Every path-vector message contains a string of keyed-

identities. Any message with the keyed-identity(x, g(x)) is distinctly different from a message

containing the keyed identity(x, g′(x)), of which, certainly one of the messages is bogus (since

good nodes do not claim conflicting public keys). However, given only these two messages, a

receiving node cannot immediately determine as to whetherg(x) or g′(x) is the genuine public-key

of x. We address this problem of determining the genuine keyed-identity in the next section.
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4.4 Reliable Broadcast Algorithm

Based on the concept of path-vector signatures, we describe our reliable broadcast algorithm in this

section. The algorithm uses two main ideas:

Keyed-identity graph computation: Every good nodex uses the information from path-vector

messages to continuously compute a keyed-identity graphGx, where the nodes in the graph are of

the form(v, g(v)), comprised of the actual identityv and the claimed public keyg(v). To prevent

unnecessary path exploration, a path-vector message that contains no additional information(no new

edge or vertex) isnot propagated further.

Determining genuine identities: If the underlying graphG is 2k + 1 vertex connected withk

adversaries, then, between every pair of good nodes, there exists at leastk + 1 vertex disjoint paths

that traverse only good nodes. Hence, in the keyed-identity graph,Gx, if the number ofidentity-

disjoint paths to a keyed-identity(v, g(v)) is at least(k + 1), thenx can concludeg(v) to be the

genuine public-key corresponding to identityv. Any bogus keyed identity(v, g′(v)) generated by

adversaries can at most traversek vertex disjoint paths since the identity of at least one adversary

should be present in each path. If a message is not signed by every node along the path, an adversary

can generate spurious edges and disrupt the computation of disjoint paths. The fact that adversaries

can at most provek disjoint paths to a fake node is critical for the solvability of this problem.

4.4.1 Asynchronous Broadcast Algorithm

Based on these two ideas, we describe an asynchronous algorithm to achieve reliable broadcast.

Given a path-vector message(m, s, p) and its signature, we define thekeyed identity pathPI(m, s, p)
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associated with(m, s, p) to consist of vertices(vi, g(vi)), wherevi is the identity of a node inp and

g(vi) is the public key ofvi in the signature. We useGx to denote the keyed-identity graph com-

puted by a nodex with a set of neighborsN(x). Every good nodex performs the following set of

operations.

BROADCAST(Nodex, NeighborsN(x))

1. Asynchronous node wakeup:A node can either begin broadcast by itself or begin transmis-

sions upon receipt of the first message from a neighbor.

2. Initiation: Gx consists of one vertex(x, g(x)).

3. For everyu ∈ N(x), x transmits(m(x), x, [x, u]) to u along with its signature.

4. Propagation:For every path-vector message(m, s, p) with signatureS thatx receives from

u ∈ N(x), x performs:

(a) Immediate-neighbor key check:Check if public-key ofu in S matches the same public-

key used in previous messages. If not, reject(m, s, p). If v ∈ N(x)−{u} appears inp,

then the public-key ofv should also match the one directly advertised byv.

(b) Verify S.

(c) Learn one vertex at a time:Accept the message only ifPI(m, s, p) contains at most

one new keyed identity (at the end of the path) not present inGx. If so, updateGx with

PI(m, s, p).

(d) Message suppression:If PI(m, s, p) adds no new vertices or edges toGx, ignore the

message.

(e) To everyu ∈ N(x), x transmits(m, s, p′) wherep′ = p ∪ {u} after updating the

signature.
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5. Flow computation:If the number of identity-disjoint paths to(v, g(v)) in Gx is at leastk +1,

thenx deemsv to be a genuine identity andg(v) to be its public key. By identity disjoint

paths, we mean that no two paths should contain two different vertices(v, g(v)) and(v, g′(v))

which share the same identityv.

The immediate-neighbor key check is necessary to ensure that if an adversaryv ∈ N(x), thenv

uses only a single keyed-identity(v, g(v)) in all its messages propagated tox. Any other message

thatx receives (from other neighbors) which contains the identityv is accepted only if it contains

the same public keyg(v).

4.4.2 Proof of Theorem 1: asynchronous version

In this section, we will prove Theorem 1 and show that the asynchronous BROADCAST algorithm

will eventually achieve reliable broadcast in an unknown networkU(n,G, N) if and only if G is

2k + 1 vertex connected. This proof consists of two parts. First, we establish the requirement that a

minimum2k +1 vertex connectivity is necessary to achieve reliable broadcast. Next, we show how

the BROADCAST algorithm achieves reliable broadcast.

Minimum (2k+1) connectivity requirement: Consider a graphH that is2k vertex connected with

k adversaries. Consider any vertex cutC of size2k containing thek adversaries that separatesH

into two componentsA andB. Thek adversaries can prevent nodes inA from reliably broadcasting

to nodes inB by modifying every messagem(u) from u ∈ A to m′(u). Nodes inB cannot

determine whetherm(u) or m′(u) is genuine. Therefore,2k vertex connectivity is insufficient to

achieve reliable broadcast in the presence ofk adversaries.
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BROADCAST analysis: Let every good node execute the BROADCAST algorithm to broadcast

m(x). Consider a particular good nodex. For every other good nodev with public-keyg(v), if

(v, g(v)) is a vertex inGx, thenx would have learnt the messagem(v) in the first path-vector

message where(v, g(v)) is added toGx since(v, g(v)) was the last node in that message.

Let Gg = (Vg, Eg) represent the sub-graph comprising of all the edges between the set of good

nodes. Given thatG is 2k + 1 vertex connected with at mostk adversaries,Gg is at leastk + 1

vertex connected. If every good nodex can learn all the edges inEg, then it can definitely compute

(k + 1) identity-disjoint paths to every other good node and hence, can successfully determine

every other good nodev, its public keyg(v) and messagem(v). To show that the BROADCAST

algorithm achieves reliable broadcast, we need to show that every good node will learn all edges in

Eg.

To prove that each good node will eventually learnEg, let us separate the message exchange process

between neighboring nodes intorounds. In roundi, let each node exchange the new path-vector

messages it learnt in roundi − 1 with its neighbors. Within each roundi, every node will learn all

nodes within a distancei from the node. Hence, withinO(n) rounds every good node will learn all

edges inEg and hence discover all the genuine nodes inG. Finally, the following simple result on

message complexity holds:

Lemma 3. In an unknown networkU(n,G, N), letG comprise ofe edges. Whenk = 0, each node

transmits at moste path-vector messages to each neighbor using the BROADCAST algorithm.

This result trivially follows from the message suppression step in the BROADCAST algorithm. This

step ensures that for each edge inG, a good node propagates only one path-vector message. In the
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absence of any adversary (k = 0), the number of path-vector messages along each link is bounded

by e. In the presence of adversaries (k > 0) generating fake messages, the number of path-vector

messages along each link depends onk. We discuss this complexity in Section 4.5.

4.4.3 Multiple Identities: Proof of Lemma 1

Consider the case where an adversarial node uses different identities to different neighbors. A

single adversary using multiple identities is sufficient to disrupt reliable broadcast in certain types

of networks however large the connectivity may be. For any positive integer valuem > 0, one can

construct a graphH consisting ofn(> m) vertices which satisfies the following two constraints:

1. H is 2m− 2 vertex-connected but not2m− 1 vertex-connected.

2. H contains a vertex-cutC such thatm− 1 verticesA1, . . . Am−1 ∈ C have non-overlapping

neighbor-setsN(A1), . . . N(Am−1).

In essence ifA1, . . . Am−1 act as adversaries, then they can disrupt reliable broadcast inH. Given

one such graphH, construct a new graphH ′ where the verticesA1, . . . Am−1 are collapsed into a

single vertexA whose set of neighbors represent the union of the set of neighbors ofA1, . . . Am−1.

ClearlyH ′ is m-connected. One can show that a single adversarial nodeA using different identities

is sufficient to disrupt reliable broadcast inH ′. To do so, the adversaryA uses different identities

to its neighbors inN(Ai) for each0 < i < m, thereby creating an underlying graph that resembles

H.
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Figure 4.1: Independent adversaries case: In this example, a(k + 1) vertex cut containingk ad-
versarial nodes separates nodeB from the rest of the nodes in the network. Here, nodeA receives
conflicting claims for the keyed-identity forB and cannot determine as to which keyed-identity is
the genuine one.
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4.4.4 The Case of Independent Adversaries

Independent adversaries, by definition, do not communicate with each other before our during pro-

tocol execution. On the other hand, independent adversaries can potentially (in the worst case) target

the same set of good nodes to affect. An additional assumption we explicitly make regarding inde-

pendent adversaries is that, two independent adversaries are not direct neighbors in the underlying

network enabling them not to directly exchange messages between them.

To handle the case of independent adversaries, we consider a simple modified version of the reliable

broadcast algorithm presented earlier:

INDEPEDENTBROADCAST(Node x, NeighborsN(x))

1. Perform all the steps of the BROADCAST(x, N(x)) algorithm except the final flow compu-

tation step.

2. Modified Flow computation:If the number of identity-disjoint paths to(v, g(v)) in Gx is at

least2, thenx deemsv to be a genuine identity andg(v) to be its public key. By identity

disjoint paths, we mean that no two paths should contain two different vertices(v, g(v)) and

(v, g′(v)) which share the same identityv.

For the case of independent adversaries, we prove the following theorem:

Theorem 2. Given a boundk on the number of independent adversaries, the INDEPENDENT-

BROADCAST algorithm achieves reliable broadcast in an unknown fixed-identity networkU(n,G, N)

if and only ifG is k + 2 vertex connected.

Proof: The proof of this theorem follows directly from two observations. First, based on the proof
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of Theorem1, the BROADCAST algorithm guarantees that every node in the graph with discover

all the edges between good nodes in the network. Given that the graph isk + 2 connected with at

mostk adversaries, the subgraph of the good nodes is guaranteed to be2-vertex connected. Hence,

every good node will learn this entire graph and can determine2-identity disjoint paths to every

node in the graph. Therefore every node can determine the public key of every other good node in

the network.

Second, to show that a good node does not learn any fake node as a genuine node follows from

the definition of independent adversaries. Two independent adversaries that propagate an incorrect

announcement about the same identityX will generate two different keyed-identities forX. By

definition, independent adversaries do not communicate either during or prior to protocol execution.

Hence, the keyed identities generated for the same identity are different. Therefore, if(X, g′(X))

is a fake keyed-identity generated by an adversaryM , the number of identity disjoint paths to

(X, g′(X)) is at most1 since all such paths have to traverseY .

To complete the proof, we need to show that a minimum connectivity ofk + 2 is essential. We

show this by construction. Consider any graphG which isk + 1 vertex connected where the set

of k adversaries along with an additional nodeV form a k + 1 node vertex cut (as illustrated in

Figure 4.1). In such a graph, there exist two nodesA andB which have only one vertex disjoint

path between them through the good nodeV . When each of thek independent adversaries gener-

ates a spurious announcement with a modified keyed identity forB, A cannot determine the true

identity of B since it has at most1 identity disjoint path to each keyed-identity ofB. Hence, the

different keyed-identities ofB appear indistinguishable. In this graph, one cannot achieve reliable

communication in the presence ofk independent adversaries. .
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4.5 Complexity analysis

In this section, we consider a synchronous version of the BROADCAST algorithm and analyze its

time complexity. One needs to be careful when analyzing the time-complexity of an algorithm in

an unknown fixed identity network. The traditional Byzantine agreement literature uses the concept

of rounds [45, 76, 52, 78] to analyze time-complexity. However, given that the entire network is

unknown, enforcing the global concept of a round is not feasible. On the other hand, a completely

asynchronous mode of communication [24, 78, 30] is also not suitable for our analysis since it is

not possible to provide time guarantees for message deliveries. Hence, we revert to the traditional

synchronous model andlocally enforce the concept of time by imposing capacity constraints on

links based on the following definition:

Definition A networkG is said to becapacity-constrainedif every node can only transmitO(1)

bits of information to each of its neighbors in a single unit of time.

Capacity constraints enable us to loosely enforce the concept of a round globally while every node

operates locally at its own link-capacity rates. By enforcing anO(1) capacity constraint on each

link, we ensure that the ratio of the time to deliver a message along a link isO(1). While we

analyze the time complexity of our algorithms based on the capacity-constrained assumption, it is

conceivable that alternative measures of time may apply.

4.5.1 Message scheduling algorithm

To produce a synchronous version of the BROADCAST algorithm for a capacity-constrained net-

work, it is essential to determine the mechanism used to schedule messages at every node. In a
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capacity constrained network, each node receives multiple messages from each neighbor but can

propagate only one message on each outgoing link. Hence, each node needs to buffer messages and

use a scheduling algorithm to prioritize the messages to be transmitted. The lemma described below

shows that using a simple FIFO scheduling algorithm does not suffice:

Lemma 4. If every node uses a simple First-in-First-out (FIFO) queue with an infinite buffer

to schedule messages on each link, there exists an unknown network,U(n,G, N), whereG is

3−connected such that the minimum time complexity of any algorithm to achieve reliable broadcast

in the presence of a single adversary is2(n−3)/2.

Proof: We first show that in the particular topology illustrated in Figure 4.2, the delay incurred in

transmitting a single message fromA to B separated bym capacity-constrained hops can be as

high as2m−1 if intermediary nodes use FIFO queues. Let this topology be capacity constrained in

that every node can transmit only one message along every link in unit time. Let all nodes begin

transmission at timet = 0 with all queues initially being empty. Now, assume that the nodesSi

connected toRi continuously transmit one message every unit time. In this case, if allRi’s use

FIFO queuing, a single message fromA to B will incur a worst-case delay of2m−1. Since eachSi

transmits one packet per unit time toRi, in the worst-case,A’s packet reachesR2 from R1 at time

t = 2, reachesR3 at t = 4 and reachesRi+1 at t = 2i. Hence, the bound2m−1.

Next, using the previous result we construct a topology where reliable broadcast with FIFO queues

has a minimum time complexity of2(n−3)/2. Consider a modified topology (as shown in Figure 4.3)

with 2m + 1 nodes comprising of a loop of2m nodes and a central nodeC connected to all the

nodes in the loop. Now let nodeC be the only adversarial node that continuously injects fake

path-vector messages on each of its links. Each such fake message is generated from a non-existent
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vertex and also contains an arbitrary non-existent path. Now, two good nodesA andB can only

communicate through the two paths in the loop of lengthm. By the previous argument, if all nodes

use a FIFO queue with an infinite buffer, any message fromA to B will incur a minimum delay of

2m−1. However, any algorithm that achieves reliable broadcast should enable at least one message

to be communicated fromA to B. Hence, the minimum time complexity of any such algorithm

using FIFO queues is lower bounded by2m−1 = 2(n−3)/2.

The above argument can also be directly extended to the Fair Queuing discipline where a node di-

vides a link’s capacity equally amongst all its other neighbors. In the above example, FIFO schedul-

ing and Fair queuing does not work primarily because an adversarial node can flood the network

with spurious messages and delay the delivery of packets.

Identity-based rate limiting

The goals of identity-based rate-limiting are two-fold: (a) hold nodes accountable for every message

they transmit and limit the capability of adversaries to flood messages; (b) associate a higher priority

to the messages from lesser-known nodes which have not received enough opportunities to transmit

messages. To achieve these, the key idea is torate-limit messagesacross identities and keyed-

identities. To do so, the algorithm computes two simple metrics:

1. Identity priority: Let I1(u, t) represent the number of path-vector messages transmitted prior

to timet with identity u in the path. A message(m, s, p) has an identity priorityp1(m, s, p)

which is the maximum value ofI1(u, t) for all identitiesu ∈ p.

2. Keyed-identity priority: Let I2((u, g(u)), t) represent the number of messages transmitted

prior to timet with keyed identity(u, g(u)) in the keyed-identity path. The keyed-identity
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Figure 4.4: (a) Single adversary case. (b) Example topology for the case whenk > 1.

priority p2(m, s, p) of a message is the maximum value ofI2((u, g(u)), t) over all keyed

identities(u, g(u)) in the path.

The scheduling strategy is as follows:

1. Schedule message(m, s, p) with the lowest identity priority,p1(m, s, p).

2. If multiple messages have the same minimum identity priority, schedule the message among

them with the lowest keyed-identity priority,p2(m, s, p).

3. Use FIFO as a final tie-breaking rule.

The rationale behind maintaining two separate priorities is two-fold. First, theidentity-based pri-

ority is essential to prevent an adversary to use multiple keyed identities and propagate spurious

messages. For example if we use only keyed-identity priorities in the topology illustrated in Fig-

ure 4.2(b), the lower bound argument used in the case of FIFO holds in this case too. Second, the

keyed-identity based count is essential because an adversary can artificially increase the identity-

based count of a good node by inserting the good node in a path. However, an adversary cannot

artificially increment the keyed-identity based count of a node.
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4.5.2 BROADCAST algorithm complexity

We useGg = (Vg, Eg) to represent the sub-graph ofG comprising of only the good nodesVg and

Eg, the set of edges between them. AssumingGg is connected, letdiam(Gg) denote its diameter.

We prove the following theorem on the BROADCAST algorithm.

Theorem 3. Given a boundk on the number of adversaries and a bound∆ ondiam(Gg) in an un-

known networkU(n,G, N), the BROADCAST algorithm with identity-rate limiting (IRL) achieves

reliable broadcast in:

1. O(N2n log n) time fork = 0.

2. O(N3n log n) time fork = 1.

3. O((k + 1)∆N2n log n) time fork > 1.

Proof. In a capacity constrained network, a node can transmit onlyO(1) bits per unit time. For

simplicity, we bound the total number of bits consumed by every path-vector message byO(n log n)

(log n bits for each identity andn for the maximum number of signatures in a message). We analyze

the complexity separately for three cases:

Lemma 5. Whenk = 0, BROADCAST + IRL achieves reliable broadcast inO(ne log n) time

wheree is the number of edges inG.

Proof: If the first node initiates transmission at timet = 0, every node will receive a wake up

signal aftern path-vector message transmissions given that the diameter ofG is bounded byn.

After wakeup, the message suppression step in the BROADCAST algorithm ensures that every

node learnsG after e message transmissions along each edge. Since each node will always have
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a new path-vector message to transmit and that each message hasO(n log n) time complexity for

transmission on a link, BROADCAST requiresO(en log n) time to converge.

Lemma 6. Whenk = 1, BROADCAST+IRL achieves reliable broadcast inO(n2e log n) time.

Proof: We first analyze a simple scenario as illustrated in Figure 4.4(a) where nodesA andB are

m + 1 hops away andA propagates one message toB in the presence of an adversaryX that

continuously injects packets along each hop in the path (No other node propagates any message in

this example). If all transmissions begin att = 0 with the identity based counts set to zero, the IRL

algorithm will ensure that for every message thatA propagates,X can at most insertm messages,

one along each of the linksXRi. Hence,A’s message is delivered toB within (m + 1)n log n time

assuming a simple upper bound ofn log n bits for each message.

In the general case, from the proof of Lemma 5, we know that every good node needs to receivee

different path-vector messages to completely learn the good graphGg. To analyze the worst-case

time bound, we analyze each such message in isolation. Each message(m, s, p) that traverses a

pathp comprising of|p| good nodes experiences a delay of(|p| + 1)n log n since an adversaryX

can inject spurious messages (either directly or indirectly) for each node alongp. |p| represents the

length of pathp and is clearly bounded byn− 1. Hence, each message in isolation if delivered one

at a time is delivered to a good node inO(n2 log n) time. The time to delivere messages is bounded

by O(n2e log n) time.

Lemma 7. For a general valuek, given a bound∆ ≥ diam(Gg), using BROADCAST+IRL, every

good node achieves reliable broadcast afterO((k + 1)∆en log n) time.

Proof: Much like Lemma 6, we consider a simple scenario of two good nodesA andB separated
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by m hops (as shown in Figure 4.4(b)), except that the adversariesX1, . . . , Xk continuously inject

messages at every nodeRi along the path. Unlike Lemma 6, we show that the delay incurred by

every message fromA in this case can be as high asO((k+1)m×n log n). The crux of the argument

is that at each hop, the adversaries can delay the packet at most by a factor(k + 1). In this case,

every adversary uses a different keyed identity with respect to each router along the path. Therefore,

for every packet thatRj−1 transmits toRj , each of the adversaries can append one more packet to

the queue atRj creating a delay factor ofk + 1. HenceA’s packet reachesB after(k + 1)m packet

transmissions. Each packet transmission takesO(n log n) time providing an overall complexity of

O((k + 1)m × n log n). In the general case, given a bound∆ ondiam(Gg), the information about

every edge inGg can be transmitted along a path of at most∆ hops. Hence, the maximum time

required to discovere edges inGg is bounded byO((k + 1)∆en log n).

Stoppage constraint:The final element of the proof is the stoppage constraint. Since no node is

aware of the values ofn ande, each good node cannot determine when the full graph is learned.

We use the boundN to represent a bound onn andN2 as a bound one, the number of edges.

These bounds need to be applied only on the number of messages but not on the size of each

message. Hence, we can still retain theO(n log n) bound on the maximum time complexity of a

single message. Replacing these bounds in Lemmas 5, 6 and 7 completes the proof.

4.5.3 Lower-bound time complexity

We show the following lower-bound on the time complexity of any reliable broadcast algorithm.

Lemma 8. Given a boundk on the number of adversaries, there exists a capacity constrained

networkU(n,G, N) whereG is 2k + 1 vertex connected, such that any algorithm that achieves
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reliable broadcast inU(n,G, N) has a minimum time complexity of2k.

Proof:To illustrate the lower bound, consider the topology illustrated in Figure 4.5 where nodesA0

andAk+1 are connected by a path of lengthk + 1 and thek adversariesX1, . . . Xk directly connect

to the nodes along the path. In this example topology, the adversaries can delay the propagation of

a single message fromA0 to Ak+1 by a minimum time of2k.

For simplicity, we assume that the propagation of a single message takes unit time along a link.

The basic idea of the argument is that for every message thatAi−1 transmits toAi, Xi can transmit

a message toAi. SinceAi cannot differentiate a message fromAi−1 and Xi, it has to accord

both messages equal priority. Hence, for a single message fromA0, X1 can transmit one message

thereby forcingA1 to propagate2 messages toA2. Extending the argument,Ai−1, in the worst

case, propagates2i−1 messages toAi to finally propagate a single message fromA0. During this

period,Xi can propagate an equal number of message delayingA0’s message toAi+1 by time2i+1.

Hence, in the worst case,A0’s message needs2k time to reachAk+1.

Based on this example, consider the graphH illustrated in Figure 4.6, where every nodeAi (in the

previous figure) is replaced with a cliqueYi of sizek + 1 and each clique is connected to the next

with a matching of sizek + 1. The adversarial nodesX1, . . . Xk form a complete clique.H is

2k + 1 connected withk adversaries. As in the previous example, letXi continuously inject bogus

messages to all nodes in the cliqueYi. To achieve reliable broadcast inH, every node inY0 needs to

propagate at least one message to nodes inYk+1. The previous argument can be extended to show

that this message transmission fromY0 to Yk can be delayed by2k in the worst case.

Notice the wide gap between the lower-bound result and the time complexity of our algorithm.
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Addressing this complexity gap is an open research problem; our work primarily illustrates the

existence of an algorithm to achieve reliable broadcast but does not target optimality.

4.5.4 Limitations of capacity-constraints

Analyzing the time complexity of a distributed algorithm with capacity constraints on link-topologies

is a very restrictive model. Lemma 4 illustrates the limitation of FIFO in the face of a single adver-

sary, where a single message transmission can be exponentially complex with capacity constraints.

In other words, many simple distributed algorithms including the emulation of a single round in

a Byzantine agreement algorithm has exponential complexity. Therefore, in this restrictive model,

several simple distributed algorithms end up having exponential complexity in the face of adver-

sarial nodes. Given this, the bound for the casek > 1 of the BROADCAST algorithm should

be viewed as a worst-case bound (where an adversary generates infinite bogus message) which is

not completely reflective of the real-life scenario. In a realistic setting, we would expect the asyn-

chronous version of the BROADCAST algorithm to have much lower run-time complexity and

anticipate an adversary to generate only a finite number of bogus announcements. With finite bo-

gus announcements from adversaries, the complexity is polynomial in the number of nodes with

capacity constraints. In realistic settings, we anticipate adversarial nodes to propagate only a finite

number of bogus announcements.
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4.6 Implications and summary

In this chapter, we proved three important results on the reliable communication problem in un-

known networks:

1. To achieve reliable communication in the face ofk colluding adversaries, we require a mini-

mum vertex connectivity of2k + 1.

2. To achieve reliable communication in the face ofk independent adversaries, a minimum

vertex connectivity ofk + 2 suffices.

3. The fixed identity criterion is critical to achieve reliable communication. If this is not met, a

single adversary is sufficient to disrupt reliable communication.

Achieving reliable communication in unknown networks has two important practical implications.

First and foremost, the reliable broadcast algorithm described in this chapter enables every good

node to distribute its public key to every other good node in the network. In essence, this algorithm

provides decentralized key distribution between good nodes which is what a PKI strives to provide.

After this step is accomplished, one can translate PKI-based solutions into purely decentralized

security solutions. Second, addressing the problem in the context of unknown networks is essential

to apply these techniques for securing routing protocols. In Chapter 6, we describe the system

implementation of the reliable communication toolkit which uses these basic algorithms and exports

a generic set of security primitives that can be used by a variety of routing protocols.

This chapter focused on the constraints under which reliable communication is achievable. In the

next chapter, we consider the case ofsparse networkswhere the connectivity constraint is not met.
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Chapter 5

Reliable Communication in Sparse

Networks

“ Scott says: ‘Fool me once, shame on you. Fool me twice, shame on me!’. Chekov retorts: ’I know this

saying. It was invented in Russia.’ ”

– In “Star Trek: Chekov’s Russian Pride”

In this chapter, we address an alternative aspect of the reliable communication for sparse networks

which do not satisfy the(2k+1) vertex connectivity requirement. In such networks, it is fundamen-

tally impossible to achieve reliable broadcast. In such networks, we show that it is possible tolimit

the damagethat an adversaries may cause in sparse networks. We specifically study the reliable

broadcast in sparse networks for the specific case of a single adversary (k = 1) and show optimality

results for this case. While the techniques we describe in this chapter are also applicable to the case

for multiple adversaries, it is an open research problem to determine the optimal defense strategy
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for such networks.

The rest of this chapter is organized as follows. In Section 5.1, we summarize the two key theoretical

results presented in this chapter: (a) optimal defense mechanism for sparse networks; (b) the amount

of damage that an adversary can cause in power-law random graphs (Internet-like graphs) is very

small. In Section 5.2, we elaborate on the optimal defense strategy and in Section 5.3, we summarize

the proof of the power-law random graph result. Finally, we summarize the key results presented in

this chapter and their implications in Section 5.4.

5.1 Summary of our results

In this chapter, we only focus on the case of a single adversaryi.e., k = 1. Hence, we only deal

with cases where the connectivity of the underlying network is1−connected and2− connected

where the network does not permit reliable broadcast in the presence of a single adversaryi.e.,

k = 1. In 3−connected networks, one can achieve reliable communication in the presence of a

single adversary. In the rest of the chapter, we use the termsparse networkto refer to1−connected

and2−connected networks.

5.1.1 Defining the minimum damage caused by an adversary

Given that reliable communication problem is not achievable in a sparse network, an adversary

can create a certain minimum amount of damage. To motivate this, consider the example topology

illustrated in Figure 5.1 where the adversaryx and the nodey form a 2-vertex cut, where they

separate the rest of the nodes into two groups: groupA and groupB. In this case,x can prevent
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Figure 5.1: Example of a sparse network where a single adversaryx can disrupt reliable communi-
cation between two groups of verticesA andB.

nodes in groupA from reliably communicating with nodes in groupB. Hence, the minimum

damage thatx can create in this network is to separate the set of good nodes into two reliable

communicating groupsA ∪ {y} andB ∪ {y} where two nodes in different groups cannot reliably

communicate with each other (unless it represents the same node in two groups). In general, we can

define abroadcast partitionas follows:

Definition An adversary is said to create abroadcast partition of sizem, if it can classify the set of

good nodes,Vg, into m groups(X1, . . . Xm), such that the following constraints are met:

1. EachXi is non-empty andVg = X1 ∪ . . . ∪Xm.

2. Nodes withinXi can reliably broadcast to other nodes inXi but not to nodes inXj for j 6= i.

One dimension for quantifying the minimum damage that an adversary can cause is based on the

maximum size of the broadcast partitionthe adversary induces. However, this may depend on the
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location of the adversary in the topology and also the degree of the adversary in the underlying

topology. An alternative dimension for quantifying the damage of an adversary is to measure the

cumulative damagethat an adversary may cause based on the following definition:

Definition Given a broadcast partitionB = (X1, . . . Xm) of Vg created by an adversaryw, the

cumulative damagecaused byw is given bymini|Vg −Xi|. If Xj represents the largest broadcast

group inB, then the cumulative damage represents the number of nodes that cannot communicate

with Xj .

The cumulative damage of an adversary measures the number of nodes that a single adversary can

affect. If we consider Internet routing as an example, this metric represents the lower bound on the

number of nodes that an adversary can affect by propagating incorrect messages.

5.1.2 Our theoretical results

We prove the following result for reliable broadcast on sparse networks:

Theorem 4. Given that an unknown fixed-identity networkU(n,G, N) has exactly a single adver-

saryA with degreed(A), the following statements hold:

1. If G is 1−connected,A can create a broadcast partition of size at most2× d(A).

2. If G is 2−connected,A can create a broadcast partition of size at mostd(A).

These results are optimal in the sense that these represent not only the lower-bound on the amount

of damage that an adversary can cause but also a tight upper-bound. We provide an algorithm that

restricts the amount of damage an adversary can cause and achieves the lower bound. While Theo-
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rem 4 provides only a bound on the size of a broadcast partition, it does not provide a bound on the

cumulative damage caused by a single adversary. One can construct1−connected and2−connected

graphs where the cumulative damage isO(n). However, we show that the cumulative damage of an

adversary in a power-law random graph [18, 39] is much smaller thann as summarized below:

Theorem 5. Given an unknown fixed-identity networkU(n,G,N) whereG is a power-law random

graph onn vertices with parameterα satisfying2 < α < 3, the cumulative damage caused by a

single adversary is bounded byO(n1/α × (log n)(5−α)/(3−α)) with high probability.

This result has important practical implications for the Internet and many social networks that ex-

hibit structural similarities to power-law random graphs [18]. In such types of networks, the cumu-

lative damage that an adversary may cause is very small compared to the size of the network.

5.2 Sparse networks: Proof of theorem 4

In this section, we describe our results for the problem of reliable broadcast in1−connected and

2−connected graphs in the presence of a single adversaryi.e.,k = 1.

5.2.1 Lower bound of Theorem 4

In this section, we show the existence of1−connected and2−connected graphs such that a single

adversary with a degreed can create broadcast partitions of sizes2d andd respectively in these

graphs. This establishes the lower bound on the size of a broadcast partition that a single adversary

can create in1-connected and2−connected graphs. In this analysis, we assume that the adversary

is aware ofG while good nodes are aware of only their neighbors. This assumption is valid since
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the adversary can first learn aboutG from good nodes and then propagate spurious messages. The

following lemmas establish the lower-bound.

Lemma 9. There exists a treeG such that an adversarial nodeA in G with degreed can create a

broadcast partition of size2d in U(n,G, N).

Proof: We first analyze the case whend = 1. LetG0 be a tree rooted at a noder (refer Figure 5.2(a)).

Let v be a child ofr such that the sub-tree rooted atv is non-empty and does not contain the

adversarial nodeA. Let T (v) represent the set of nodes in the sub-tree rooted atv (excludingv)

and letT ′(v) = V − T (v) − {v, A}. Pick any treeG0 such thatT (v) andT ′(v) are non-empty.

For every nodeu ∈ T (v) that attempts to reliably broadcast a messagem(u), let A propagate a

spurious messagem′(u) as if u propagated the message (as illustrated in Figure 5.2(a)). Since no

node inT ′(v) is directly adjacent to any node inT (v), these nodes will receive two messagesm(u)

andm′(u) and cannot figure out which message is genuine. All genuine messages fromT (v) are

routed throughv and all spurious messagesm′(u) are routed throughA and nodes inT ′(v) cannot

determine which node to believe. Hence no node inT ′(v) can reliably communicate with any node
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in T (v). Thereby,A creates a broadcast partition(T (v) ∪ {v}, T ′(v) ∪ {v}) of size2.

For the general case, we can create a treeG with d replicas ofG0 with the vertexA merged across all

these replicas (as illustrated in Figure 5.2(b)). In this case, by simply dropping all good messages

traversing it,A can created separate components which cannot reliably broadcast to each other.

Within each such component,A acts as a leaf node and can create a broadcast partition of size2.

Hence,A can create a broadcast partition of size2d.

Lemma 10. There exists a 2-connected graphG such that an adversarial nodeA in G with degree

d can create a broadcast partition of sized in U(n,G, N).

Proof: Consider the graphG illustrated in Figure 5.2(c), whereP1, . . . Pd are paths of good nodes

such that the end-points of each path connect to two separate verticesA andv. In this case,A

has degreed. For every nodeui ∈ Pi that intends to reliably broadcast a messagem(ui), A

propagates a messagem′(ui) to all its neighbors inPj wherej 6= i. Hence, every nodeuj ∈ Pj will

receive two messages:m(ui) (throughv) andm′(ui); hence for everyui ∈ Pi (i 6= j), uj cannot

ascertain which of the two messages is genuine. Therefore, no pair of nodes(ui, uj) , ui ∈ Pi and

uj ∈ Pj , j 6= i, can reliably communicate.A creates a broadcast partition (P1∪{v}, . . . , Pd∪{v})

of sized.

5.2.2 Upper bound analysis of Theorem 4

Now, we describe an optimal penalty-based defensive strategy that a good node uses to limit the size

of a broadcast partition that an adversary can cause to the lower bound. This mechanism works only

for k = 1. This defense strategy is a generalization of the penalty-based filtering strategy described
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in Chapter 3 (Section 3.4). The defensive strategy uses one key corollary that directly follows from

Theorem 1 (described in Chapter 4):

Corollary 1: Let H be a2−connected subgraph ofG in an unknown networkU(n, G,N), com-

prising of only good nodes. In the presence of a single adversary,M , every node inH can reliably

broadcast to all nodes inH.

This corollary follows directly from the BROADCAST algorithm described in Chapter 4. Using

this algorithm, every node inH can reliably discover two identity disjoint paths to every other node

in H. Therefore, every node inH can reliably broadcast its public key to all other nodes inH.

We now explain the intuitive idea behind the penalty-based defense strategy using an example illus-

trated in Figure 5.3. LetH(v) represent the set of all keyed-identities that have a2 identity disjoint
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paths tov. An adversaryM cannot disrupt any of these nodes. In this example, however,M at-

tempts to disrupt reliable communication to multiple nodesP , Q, R, S which connect (directly or

indirectly) using good paths to different nodesA,B, C andD in H(v). From the perspective of

v, M andA disagree onP , M andB disagree onQ, M andC on R and finallyM andD on S.

Hence, ifv associates a penalty with a node for every identity-disagreement, thenM obtains the

maximum penalty of4 while the nodesA, B,C, D each obtain a penalty of1. Therefore,v notesM

to be a suspicious candidate and filtersM ’s messages and chooses the genuine identities propagated

by A,B,C, D.

Now, we present the penalty-based algorithm based on the idea explained above. Initially, every

nodex executes the BROADCAST+IRL algorithm for the case ofk = 1 and computes the keyed-

identity graphGx. Next, they apply the following penalty algorithm onGx.

PENALTY (Node x, Graph Gx)

1. We declare a keyed-identity(y, g(y)) to begenuineif x has two identity disjoint paths to

(y, g(y)).

2. Thetail-endof a keyed-identity(v, g(v)) is the path from the node(y, g(y)) to (v, g(v)) in

Gx such that(y, g(y)) is the last genuine node in any path fromx to (v, g(v)).

3. An identityu has aconflict if there are at leasttwo keyed identities with the same identity in

Gx.

4. Penalty assignment:Thepenaltyof an identityu is the number of distinct conflicting iden-

tities y for which some keyed-identity(u, g′(u)) appears in the tail-end of a keyed-identity

(y, g(y)).
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Node-selection criteria: Based on the penalties assigned to identities, the criteria for selecting

nodes is simple. For each keyed identity,(v, g(v)) that has a conflict, determine themaximum

penaltyof the identityu that appears in the tail-end of(v, g(v)). Choose the keyed-identity with the

minimum value of the maximum penalty. If no unique minimum exists, then we declare the identity

as non-identifiable.

Revisiting the example in Figure 5.3,v will notice P, Q,R andS to be conflicting identities. The

genuine keyed-identity ofP propagated byM will have a maximum penalty of1 while the fake

keyed-identity generated by the adversaryM will have a penalty of4. Hence, the penalty based

algorithm chooses the genuine keyed-identities forP, Q,R, S.

The following lemma holds regarding the penalty-based algorithm:

Lemma 11. In an unknown networkU(n, G,N), if all good nodes use the BROADCAST+IRL+PENALTY

algorithm for determining genuine nodes, a single adversary with degreed(A) can create a broad-

cast partition of size at most: (a)d(A) if G is 2−connected; (b)2× d(A) if G is 1−connected.

Proof: We first analyze the penalty algorithm for two simple1−connected and2−connected graphs,

namely, trees and cycles. Later we use these cases for analyzing general graphs.
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Analysis for trees: In the simplest case, let the adversary,w, be a leaf node in a treeT and propagate

bogus messages aboutl genuine identitiesv1, . . . vl in T . Let g(vi) be the genuine public keys

advertised andg′(vi) be the fake public keys generated byw. Let Pi represent the path inT from

w to the identityvi. Let r be the last common vertex along all these pathsPi (beyondr the paths

diverge, as illustrated in Figure 5.4(a)). LetTr refer to the sub-tree to the right, rooted atr andT ′(r)

be the remaining sub-tree that containsw (not containingr). The noder will maintain a penalty ofl

for all vertices in the path fromr to w (excludingr). Hence the value ofs(vi, g
′(vi)) is l. However,

since the paths diverge atr, the values ofs(vi, g(vi)) < l for all i. Hence,r will choose the genuine

identitiesvi over the bogus identities propagated byw. Whenr filters out the bogus messages from

w and broadcasts the chosen identity, the nodes inTr can reliably broadcast between themselves.

On the other hand, any node inT ′(r) will associate a value ofl for boths(v, g(vi)) ands(v, g′(vi))

since all these nodes (exceptw) will maintain a penalty ofl with bothw andr. Hence, these nodes

cannot reliably communicate with nodes inT (r) but can broadcast within themselves. Therefore, a

leaf nodew can create a broadcast partition of size at most2 in T .

Extending the argument to an adversaryw of degreed in a treeT . T − {w} hasd disjoint sub-

trees. Clearly, to cause maximum damage,w should not propagate any good messages across these

disjoint sub-trees. Hencew acts as a leaf node in each sub-tree and can thereby create a broadcast

partition of at most size2d.

Analysis for cycles:Consider the cycle illustrated in Figure 5.4(b) where nodew has a left neighbor

u1 and right neighborv1. w clearly should not propagate any message fromu1 to v1 and vice-versa.

We call an identityv to beaffectedif w propagates a bogus message aboutv. Also, we refer to

the orientation of the cycle beginning fromu1 as the left portion of the cycle and the opposite
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orientation beginning fromv1 to be the right portion of the cycle. To maximize the damage,w

should propagate bogus messages about the left portion throughv1 and about the right portion tou1

(since this minimizes the chance of intermediary nodes filteringw’s messages) (refer Figure 5.4(c)).

Also, it is tow’s disadvantage to propagate two bogus messages about the same identity to bothu1

andw1.

Let w propagatek1 bogus messages tou1 andk2 messages tou2. Letx andy be the first unaffected

nodes in the left and right portion of the cycle (refer Figure 5.4(c)). Letg(v) be the genuine public

key of identityv andg′(v), the fake public key generated byw.

Consider a vertext in the pathu1x. For every vertexz in the pathv1y, the penalty values of

s((z, g(z)) ands(z, g′(z)) that t maintains are both equal tok1. Hencet cannot differentiate be-

tween the two keyed identities and hence cannot communicate withz. However, for any vertexz in

the pathu1x, the penalty value ofs(z, g(z))is smaller thans(z, g′(z)). Hence all nodes withinu1x

can reliably communicate within themselves. All nodes in the pathxy can reliably communicate

their public keys to all the nodes since they are unaffected. In the limiting case,x andy are the

same node. Hence, in a cycle, a single adversaryw creates a broadcast partition of size2, namely

u1x andv1x (with x = y).

2-connected graphs:Let G be a2−connected graph with a single adversaryw of degreed(w).

Using Corollary 1, ifH is a2−connected sub-graph ofG comprising only of good nodes, we can

merge all these vertices to create a single vertex forH. LetG′ be the graph obtained after shrinking

all 2−connected componentsH to single vertices inG. ClearlyG′ − {w} is a tree since it contains

no 2−connected subgraphs. Also, sinceG′ is 2−connected,w connects to all the leaf nodes of

G′ (except in the trivial case whenG − {w} is 2-connected,G′ contains only2 vertices). We can
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extend the cycle argument to show thatw can create a broadcast partition of sizedG′(w) in G′

wheredG′(w) is the degree ofw in G′. In the case whendG′(w) is even, we can identifydG′(w)/2

non-vertex overlapping cycles (exceptw) and apply the cycle argument to each in isolation. When

dG′(w) is odd, we handle a special case where two cycles have an overlapping path fragment (where

we use the lower bound argument for2−connected graphs to show a broadcast partition of size3

for overlapping cycles). In the limiting case, we havedG′(w) = d(w) as illustrated earlier in the

lower-bound analysis in Figure 5.2(c). Hence,w can create a broadcast partition of sized(w) in G.

1-connected graphs:Let G be a1−connected graph with an adversaryw of degreed(w). Using

corollary 1, if we collapse all2− connected sub-graphs inG to single vertices, the remaining graph

G′ resembles a tree with cycles involving only the adversarial nodew. Let d1(w) represent the

number of neighbors ofw in the 2-connected portion ofG′ (involving w) and letd2(w) be the

remaining set of vertices. Using the previous case,w can create a broadcast partition of size at

most d1(w) in the 2−connected portion and a broadcast partition of at most2 × d2(w) in the

remaining portion of the graph (tree case). Hence, the maximum size of a broadcast partition is

d1(w) + 2× d2(w) which is upper-bounded by2× d(w) (givend1(w) + d2(w) ≤ d(w)).

5.3 Power-law random graphs: Proof of Theorem 5

Finally, we provide a proof for Theorem 5 described in Section 5.1 where we show that given a

power-law random graph (PLRG)G(n, α) on n nodes with parameterα (2 < α < 3), the cumu-

lative damage that a single adversary can cause is bounded byO(n1/α × (log n)(5−α)/(3−α)) with

high probability. We prove two results on power-law random graphs to show this result.
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Lemma 12. Every PLRGG(n, α) for large values ofn has a 3-connected subgraphH with

O(n/((log n)
α−1
3−α )) vertices with high probability.

Proof: Let Gλ represent the subgraph ofG induced by all vertices with a degree at leastλ =

(log n + 3 log log n)1/(3−α) in G. The number of vertices inGλ is O(n/λα−1). Given that in a

PLRG, the probability of an edge between two nodes is proportional to the degrees of the two nodes,

we estimate the expected degree of every node inGλ to be at leastdm = λ3−α = log n+3 log log n.

Now, we construct a subgraphH from Gλ as follows. For each edgee = (u, v) in Gλ perform

the follow step to generate a sub-graphH: Let d(u) andd(v) denote the degrees ofu andv in

Gλ. Retain the edgee in H with probabilityp(u, v) = d2
m/(d(u) × d(v)) providedp(u, v) < 1

(otherwise setp(u, v) = 1).

In essence, every edge inH occurs with the same probability and one can show thatH is Erdos-

Renyi graph where each node has an expected degreedm = λ(3−α).

Bollobas proved the following result on Erdos-Renyi random graphs:

[Bollobas85]: Consider a Erdos-Renyi random graphG on n nodes where every edge is present

with a probabilityp (i.e., average degree of a node isnp). G is m-vertex connected with high

probability if: np > log n + (m− 1) log log n.

Using Bollobas’s result [27] on Erdos-Renyi graphs, we showH is3−connected with high probabil-

ity. Hence, the subgraphGλ with O(n/((log n)
α−1
3−α )) vertices is3−connected with high probability.

Lemma 13. Given a PLRGG(n, α) and a random vertexv with degreed, the number of vertices

that get disconnected from the largest component inG − {v} is bounded byd(log n)(5−α)/(3−α)



128

with high probability.

Proof: This follows directly by applying Lemma11 and a conductance result by Gkantsidiset

al. [56] in power-law random graphs. LetT (v) be the set of nodes that are separated from the

largest componentL(v) in G− {v}. Consider a unit flow to be routed between every pair of nodes

in G. Any flow from T (v) to L(v) has to be routed viav. Given that all links have unit capacity,

Gkantsidiset al. show that there exists a way to route the demand such that all links have a flow of

at mostO(n log2 n). Hence, we get the bound that|T (v)| × |L(v)| is O(dn log2 n). From Lemma

11, L(v) contains a2-connected graph with at leastO(n/((log n)
α−1
3−α )) vertices. Combining the

two results, we obtain the required bound.

To quantify the cumulative damage an adversaryA can cause, letA have a maximum degree in

G of n1/α. The number of vertices solely reliant onA is bounded byn1/α × (log n)(5−α)/(3−α).

Given that there exists a sub-graphH which is3−connected,A cannot affect any node within this

subgraph. Also, all these nodes can reliably broadcast all their messages withinH. Additionally,

every vertexv has one or more (indirect) neighbors withinH. For every identityv thatA propagates

a spurious message, the penalty value ofA increments by1 and so does the penalty value of the

indirect neighbors ofv in H. If A targets specific identities such that the indirect neighbors of these

identities are distributed among different vertices inH, thenA obtains the maximum penalty value

and hence is always ignored. To prevent this,A can at most target identities connected to a specific

vertexu in H such that the penalties ofu andA from the perspective of other nodes is the same.

If A targets any additional identity which has a different indirect neighbor inH, thenA’s penalty

overshootsu. Hence, to maximize the cumulative damage,A should target only those identities that

solely rely on eitherA or u or both to connect toH. Using Lemma 12, we can bound this number
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by 4× n1/α × (log n)(5−α)/(3−α).

5.4 Summary and Implications

In this chapter, we proved two important results on the reliable communication in sparse networks

for the specific case of a single adversary:

1. For the case of a single adversary in a sparse network, penalty-based filtering with the BROAD-

CAST algorithm described in Chapter 4 is the optimal defense strategy to limit the damage

of the adversary.

2. For the specific case of power-law random graphs, the cumulative damage that a single ad-

versary can cause is much smaller than the size of the network.

The first result establishes the rationale behind using the penalty-based filtering algorithm as a de-

fense mechanism in the BGP case in Chapter 3. The power-law random graph result is particularly

important for Internet-like topologies where it shows that a single adversarial node will not be able

to cause much damage. Specifically, in the case of Internet routing, using this result we can show

that the number of incorrect advertisements that a single malicious router can propagate without be-

ing detected is bounded. This limits the number of routes that such a malicious router can potentially

hijack.

In the next chapter, we describe how the reliable communication theory described in the past two

chapters (Chapter 4 and Chapter 5) can be used in practice to secure a variety of different routing

protocols.
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Chapter 6

Generalizing to secure routing protocols

“ Every generalization is dangerous, especially this one. ”

– Mark Twain, American writer

In this chapter, we describe the design of a reliable communication toolkit that provides a basic

set of primitives that can be integrated to provide decentralized security to other routing protocols

beyond BGP. The reliable communication toolkit implements the basic theoretical techniques de-

scribed previously in Chapters 4 and 5 to achieve reliable communication in an unknown network.

The primitives exported by the toolkit are independent of the routing protocol. We illustrate the

applicability and the generality of the toolkit by integrating it with three standard types of routing

protocols, namely: link-state, path-vector and distance-vector routing. Based on a detailed perfor-

mance evaluation of the toolkit, we show that decentralized security isfeasible, practical and not

expensiveunder the assumption that the number of adversarial nodes is small.

The rest of the chapter is organized as follows. In Section 6.1, we begin by providing a summary of
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our key theoretical results on the reliable communication problem as described earlier in Chapters 4

and 5. In Section 6.2, we describe the basic set of primitives which forms the core set of building

blocks that implement the reliable communication algorithms. Next, in Section 6.3, we describe the

system implementation aspects of the reliable communication toolkit. In Section 6.4, we consider

three basic routing protocols (link-state, distance-vector and path-vector) and illustrate how the

toolkit can be integrated with these three routing protocols to secure them in a decentralized manner.

In Section 6.5, we describe a detailed evaluation of the reliable communication toolkit. Finally, in

Section 6.6, we summarize the key take-away messages from this chapter.

6.1 Reliable communication: summary of key results

Based on our prior results on reliable communication discussed in Chapters 4 and 5, we establish

two basic constraints for decentralized security: (a)fixed-identity criterion; (b) graph-connectivity

constraint. The fixed-identity criterion states that every node in the network should have aunique

identity that itcannot faketo its neighbors.1 While this constraint may seem stringent, existing

inter-domain and intra-domain routing use some form of fixed-identities. However, one requires

certain basic changes to these systems to strictly enforce the fixed-identity; currently, the criterion

can easily be violated. Mobile ad-hoc networks and dynamic P2P networks are two examples of

networks that donotsatisfy this criterion.

The graph-connectivity constraintstates that one can achieve reliable communication if and only

if the minimum vertex connectivity (number of disjoint paths between any pair of nodes) of the

underlying network is at least2k + 1 given a boundk on the number of adversaries. If this con-

1An adversarial node cannot lie about its own identity to its neighbors.
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Reliable Communication Problem
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Figure 6.1: Summary of key results on reliable communication. In this figure,k represents the
number of adversaries.

straint is not met, we show that it is impossible to achieve all-pair reliable communication in such

networks which in turn implies that ”perfect” decentralized security is not possible in such a net-

work. However, for such networks, we use a penalty-based mechanism to restrict the damage that

potential adversaries may cause. In reality, given that the vertex connectivity of many existing net-

works is small (typically< 10), perfect decentralized security is feasible only in the face of a few

adversaries.

Figure 6.1 presents a complete summary of our theoretical results on the reliable communication

problem in unknown networks and the basic building blocks essential for achieving these results.

The following results are important to note:

1. In the face ofk adversaries, we require a minimum level of vertex connectivity2 to achieve

2The vertex connectivity of a graph is the number of vertex disjoint paths between any pair of nodes.
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reliable communication. A network that does meet this connectivity requirement is defined

as adense network; a networks that does not meet this requirement is asparse network.

2. In sparse networks, where this minimum vertex-connectivity constraint is not met, our goal

is to limit the damage that adversarial nodes may cause. In a dense network, our goal is to

achieve reliable communication.

3. To handlek colluding adversaries, a minimum vertex-connectivity of2k + 1 is a necessary

and sufficient constraint. However, to handlek independent adversaries, one requires only a

minimum of(k + 2) vertex connectivity.

4. Keyed-identities and path-vector signatures3 are two fundamental building blocks that we use

extensively in combination with other techniques achieve reliable communication in different

types of networks.

5. In sparse networks, keyed-identities and path-vector signatures along withpenalty-based fil-

tering is the optimal strategy in the face of a single adversary. However fork > 1, the optimal

strategy is still an open research question and we apply the same technique that we developed

for the single adversary case.

We will now elaborate on the basic building blocks that enable us to achieve reliable communication.

6.2 Reliable communication primitives

In this section, we first elaborate on the basic building blocks necessary to achieve reliable commu-

nication. Then, we review the topological structure of several existing networks and comment on

3The path-vector signature construction is independent of the routing protocol deployed and should not be confused
with path-vector routing. We use this construction to secure distance-vector, link-state and path-vector routing.



134

the level of security achievable in today’s networks. While our basic theoretical techniques assume

a specific bound on the number of adversaries (parameterk), we describe ajoint reputation metric

(that combines two different reputation mechanisms) that is independent of the value ofk.

6.2.1 Primitives

We use five basic primitives to address the reliable communication problem:

Primitive #1: Keyed-identity: The primary building block in achieving reliable communication

is the ability todifferentiatea message from a good node and a spurious message. To do this, we

associate akeyed-identity (KId)with every node. A node with a fixed-identityX has itsKId =

(X, g(X)) whereg(X) is the claimed public key ofX. For every messagem transmitted byX,

it appends its keyed identity and signs the message with its private key. An adversary generating a

spurious message impersonating nodeX is forced to generate a newKId with a different public-

key claim forX. Hence, a truthful message from a good node and a spurious message will have two

different keyed identities.

Primitive #2: Path-vector signatures: A path-vector message,(m, p), has two parameters: the

messagem and the path of identities traversed by the messagem. A path-vector signature contains

the keyed-identities of the nodes in the path along with their signatures and thereby establishes a

transitive trust between the various nodes along the path traversed by this message similar to the

web of trust [101] concept used in Pretty Good Privacy (PGP). The property we require is that an

adversary should not be able to modify a path-vector message or append (or remove) an identity

to the path without modifying the keyed identities of the nodes along the path. Therefore, any

spurious message from an adversary is forced to appear from a different keyed-identity path. A
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simple signature construction is described in [119].

Primitive #3: Flow reputation: Given two conflicting keyed-identities(X, g(X)) and(X, g′(X))

about the same identity,X, flow reputationis one metric used in dense networks to establish the

trust-worthiness of each keyed-identity. From a nodeY ’s perspective, the flow reputation of a

keyed identity(X, g(X) is the number of identity disjoint paths thatY has discovered to(X, g(X)).

In [119], we prove that if the flow reputation of(X, g(X)) is greater than the number of adversaries,

theng(X) is the genuine public key ofX.

Primitive #4: Penalty-based reputation:Penalty-based reputation is an alternative metric used in

sparse networks for measuring the trustworthiness of a keyed identity in the face of a conflict. The

penaltyof an identityu is a measure of the potential number of bogus announcements thatu might

have propagated. Whenever we observe two conflicting keyed-identities(v, g1(v)) and(v, g2(v))

for an identityv, then any node along the common path to either keyed-identity could have propa-

gated a lie; for each such conflict, all these common nodes are penalized equally. From a nodex’s

perspective, given a single path to a keyed identity(y, g(y)), the reputation of(y, g(y)) is inversely

proportional to themaximum penaltyof an identityu that appears in all paths fromx to (y, g(y)).

We denote this maximum penalty asmax(y, g(y)). An identityy that hasm different keyed-identity

claims(y, gi(y))∀1 ≤ i ≤ m (all of which have a single disjoint path), has a normalized reputation

of:

1/max(y, gi(y))∑m
i=1 1/max(y, gi(y))

The penalty-based filtering strategy of choosing the route to an identity with the highest reputation

is the optimal strategy in the face of a single adversary [119].
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Figure 6.2: Effectiveness of penalty-based filtering: The fraction of nodes that are vulnerable to a
single randomly placed adversary after. This result is computed for the AS topology collected in
Jan 2005 based on Routeviews and RIPE data.

Primitive #5: Loop Test: Loop-test is used to defend against independent adversaries where a

node source-routes a packet (with a nonce) in a loop and tests whether it successfully traverses the

loop. If the loop consists of fake edges generated by independent adversaries, the loop-test will

fail. However, colluding adversaries can defeat this mechanism by tunneling the loop-test. This

test is essential to show that a vertex-connectivity ofk + 2 is sufficient to deal withk independent

adversaries.



137

6.2.2 Achievable security in existing networks

Based on theoretical results summarized in Section 6.1, we will now describe the connectivity prop-

erties of different networks and relate it to the corresponding level of security achievable for these

networks.

Internet-AS topology: The Internet AS-topology is a sparse network that is1−vertex connected.

Therefore, one cannot achieve reliable communication even in the face of a single adversary in such

a network. Today, a single randomly-placed router can hijack nearly one-third of Internet routes

by propagating bogus information [84, 120]. The best one can do is to limit the damage that an

adversarial node can cause using the penalty-based filtering. Figure 6.2 shows the effectiveness of

this mechanism on a specific AS-topology gathered from BGP routing data. We observe that a single

randomly placed adversary, in the median case, can hijack less than1% of nodes in the topology.

While the overall topology may not satisfy the connectivity requirements, portions of the topology

exhibit high vertex-connectivity. Figure 6.3 shows the connectivity at different levels within the AS

hierarchy. The set of Tier-1 and important Tier-2 ASs form a 19 vertex connected graph. Hence,

it is possible to defend against9 colluding adversaries within this sub-graphi.e., using the flow-

reputation mechanism. Similarly, one can provide different levels of security protection for various

portions of the Internet topology. In particular, a large fraction of transit networks in the Internet

form a 3−connected subgraph in which we can defend against a single adversary. Additionally,

multi-homing improves the connectivity of the underlying topology which in turns improves the

achievable security properties of the Internet. An AS that is multi-homed to two upstream providers

is not susceptible to attack from a single adversary as long as the adversary is not present in one of

the upstream paths to the core of the Internet.
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Tier-1 AS’s + Important Tier-2 AS’s
(75 AS’s, 19- vertex connected)

Tier-2 AS’s (170 AS’s, 11- vertex connected)

Internet Core (360 AS’s,7 conn)

Regional ISPs (630 AS’s,5 conn)

Largest 3-connected subgraph (2210,3)

Multi-homed ISPs (9000+,2 connected)

Rest of the Internet (4000-5000, 1 connected)

Figure 6.3: Internet AS-topology: Different levels of protection.

k=1 k=2 k=3 k=4
AS1221 (Telestra) 210 93 51 23
AS1239 (Sprint) 622 275 195 60
AS7018 (AT&T) 568 238 160 58
AS1755 (EBone) 101 49 23 11
AS2914 (Verio) 689 249 172 62
AS3967 (Exodus) 231 53 22 13

Table 6.1: Level of protection in Intra-domain routing. Each entry represents the largest(2k + 1)
vertex connected subgraph within a domain for a given value ofk.
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Intra-domain networks: The router and the POP level topologies of individual domains also ex-

hibit different levels of connectivity for different sub-graphs. Table1 shows the size of the largest

subgraph of an intra-domain network which is2k + 1-vertex connected for different values of

k = 1, 2, 3, 4. We make two important observations. First, the sub-graphs that exhibit high connec-

tivity properties are POPs in well-populated cities forming the backbone of the network providing

better security to the backbone in the face of a few adversaries. Second, a system administrator

can easily add a few more intra-domain routing sessions to explicitly construct a3−connected net-

work to defend against a single adversary. For the Sprint and AT&T networks,this would involve

adding at most1−2 additional sessions per router (mostly to geographically-proximate routers). In

essence, a system administrator can configure the connectivity to improve the level of security.

Structured P2P networks: Recent research efforts have argued for using structured P2P net-

works [105, 117, 109, 131] for a variety of services including essential services like the Domain

Name System [103, 58, 42], worm-defense systems [31, 130]. Existing security solutions for such

networks use a PKI with a certification authority [32]. Such networks can potentially be associ-

ated with fixed identifiers. Reliable communication can be useful for routing information reliably

in the face of adversaries between the various nodes in the system. Several existing P2P network

technologies [105, 117, 109, 131] use different types ofd−regular graphs (all nodes have degreed)

for different values ofd. In such networks, we can achieve reliable communication in the face of

d/2− 1 adversaries.
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6.2.3 A joint reputation metric

Our theoretical results assume a specific boundk on the number of adversaries and provide prov-

able security guarantees assuming such a bound exists and is known in advance. However, in real

world networks, it may not always be possible to fix a specific value ofk and in practice, one may

require different values ofk for different sub-graphs of the network as observed for the Internet

AS-topology and intra-domain networks. In order to accommodate this variability in different val-

ues ofk, we define areputation metricwhich combines the salient aspects of the flow based metric

and the penalty-based metric. For a specific keyed-identity(y, g(y)), a nodex sets the reputation,

repx(y, g(y), as:

1. If x has two or more identity disjoint paths to(y, g(y)), thenrepx(y, g(y)) = number of

disjoint paths to(y, g(y)).

2. If (y, g(y)) has just one disjoint path and no conflicting identities. thenrepx(y, g(y) = 1.

3. If (y, g(y)) has just one disjoint path and has conflicting identities. thenrepx(y, g(y) =

penalty-reputation of(y, g(y)).

This joint reputation metric satisfies two properties. First, if the reputation of a keyed-identity is

more than a known bound on the number of adversaries, then that keyed-identity claim is genuine.

Second, for a given identity with a conflict, the keyed-identity with a higher reputation is more

trust-worthy than the one with a lower reputation. The mechanism of choosing routes based on the

highest reputation is the optimal strategy to defend against a single adversary. On the other hand,

in the face of multiple adversaries (where the number of adversaries is unknown), one can use the

reputation as a guiding factor and choose routes probabilistically. However, providing any form of
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security guarantees for probabilistic reputation-based route selection is hard.

6.3 The reliable communication toolkit

In this section, we will describe the reliable communication toolkit and discuss the salient design

issues of our implementation.

6.3.1 Interface

The reliable communication toolkit provides routing protocols a set of primitives to achieve secure

routing. It is useful to think of the toolkit as a layer that is used by the routing protocols to commu-

nicate securely. This modular design enables it to be easily integrated with the routing protocols.

The toolkit exposes the following functions (which implement the primitives) to each node that

implements the toolkit:

Keyed-Identity functions: gen keyed identity() andsign message(msg) are the basic func-

tions for generating a keyed identity and signing messages (typically route updates) using the private

key. All public key operations are based on 1024-bit RSA keys.

Path-vector signature functions:The three basic functions associated with path-vector signatures

are: initiate(path vector), verify(path vector), update(path vector). The initiate() func-

tion initiates reliable communication of a value and generates the path-vector containing the value

and the corresponding signature. Theverify() function verifies the authenticity of a path vector

originating at another node. This makes use of public key signatures and chained signatures for

verification. Given a path vector, if thepath vector cannot be authenticated, it is discarded. The
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Variable Description
nodes path vectors to keyed identities
reliable nodes path vectors to reliable keyed identities
edges edges discovered
id count vector of counts for the IDs seen
keyed id count vector of counts for the keyedIDs seen

Table 6.2: The basic state maintained by the toolkit

update() function updates an authenticated path vector along with the identity of the node receiving

the vector.

Reputation functions: Theget keyed identities(ID) outputs the different public-key claims that

have been learnt for a given identity. Theget reputation(keyedID) implements the joint reputa-

tion metric discussed in Section 6.2.3. Theflow reputation() andpenalty reputation() perform

the flow and penalty reputation computations. Additionally, thelooptest(keyedIDloop) performs

the loop-test functionality on a keyed-identity loop.

6.3.2 Implementation

Each node must run the reliable communication process to be able to utilize routing protocols se-

curely. The toolkit is a single-threaded event-driven program. The toolkit was written in C and C++

comprising about 6000 lines of non-comment code. The implementation includes the functions

that implement the primitives, the identity-based scheduler (Section 6.3.3) and the secure routing

protocols (Section 6.4).

The state maintained by a node is shown in Table 6.2. A node, on booting up, first goes into a

bootstrap phase in which it initiates the reliable communication, and then into a propagation phase
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in which it learns the nodes.nodes is a table of path-vectors to all keyed-identities,edges is a

compact representation of all the edges in different paths andreliable nodes refers to the set of

nodes discovered reliably (flow reputation() > k ). id count andkeyed id count keep track of

the number of messages that are received by the node containing an ID or a keyedID respectively

and is used by the scheduler.

The toolkit can be decomposed into three modules.Thenetwork modulehandles the sending and

receiving of the different types of packets, including the marshaling and unmarshaling. Thepacket

processor moduleupon receipt of each path-vector packet: (a) verifies the signature; (b) adds the

path vector to the sourcenodes; (c) schedules an authenticated path-vector packet for dispatch; and

(d) at regular intervals, performs the flow computation to estimate the reputation of identities and

makes the necessary updates to thereliable nodes data structure. Thescheduler moduleis used to

ensure that a malicious node does not prevent the remaining nodes from getting their packets across

by flooding the network. We elaborate on the scheduler in Section 6.3.3.

Bootstrap phase: Consider a nodeA that joins the network.A needs to build a keyed iden-

tity graph over the set of nodes that it has discovered reliably. It reads its neighbor set from

a configuration file and connects to each of these nodes.A creates a public-private key pair

(Kpub
A ,Kpriv

A ). (A,Kpub
A ), which we shorten to(A,KA) is the keyed identity ofA. It sends

each of its neighbors ansend keyed id(KId) message containing its public key. Each neigh-

bor sends ansend keyed id(KId) message containing its public key. NodeA then broadcasts a

initiate(path vector) message to each of its neighbors. The path-vector message thatA sends to

a neighborB is of the form(m(A), [(A,KA), (B, KB)], signA) wherem(A) is the data thatA

wishes to broadcast andsignA is A’s signature on(m(A), [(A,KA), (B,KB)]) using its private
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key.

Propagation phase:Propagation of path vector messages is triggered off by two events - by the

arrival of a path vector message and by the arrival of a new node in a node’s neighbor set (specif-

ically when a node receives ansend keyed id(KId) message from a neighbor with a new keyed

identity). In the former case, the message is simply queued at the scheduler to wait for its turn to be

propagated. The latter case occurs whenever a new node or a new link comes up. In this case, the

node examines the path vectors in thenodes table andreliable nodes table. It then queues these

messages at the scheduler for dispatching to its new neighbor. A node that receives a path vector

message, verifies the chained signatures in the path vector message usingverify(path vector). If

the message is authentic, it adds newly learnt edges or vertices to the keyed-identity graphGA and

usesgetreputation to assign reputation to the keyed idse.g. for computing the flow reputation

it usesflow(reputation(keyedId) > k. The updated message is then queued to be broadcast

to the remaining neighbors. When the scheduler notifies the packet processor of a message to be

broadcast, it callsupdate(path vector) on the message and forwards the message.

6.3.3 Design Issues

Path Suppression

One of the fundamental problems in propagating path-vector messages is the exponentially large

number of distinct paths and hence, unique path-vector messages. The worst case convergence time

for a path-vector routing protocol is exponential in the number of nodes [75]. To address this com-

binatorial explosion, we use the idea ofpath suppressionwhere every nodeexplicitly suppresses a
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path-vector routing message in the event where it does not contain any additional information com-

pared to previous messages. More specifically, if a nodeA has already propagatedm path-vector

messages with pathsP1, . . . Pm to its neighborB, thenA transmits a new path-vector message with

pathPm+1 to B only if Pm+1 contains a new edge or a new vertex not present inP1, . . . Pm. In the

absence of any adversaries, the number of path-vector messages propagated on any link is bounded

by the number of edges in the graph.

The Scheduler

We show in our prior work [119] that simple Fair Queuing or FIFO scheduling is inadequate to

protect against malicious flooding attacks in bandwidth-constrained networks. To mitigate such

an attack, we make use of identity-based scheduling. The scheduler has two vectors of counters

- id count the identity priority counter andkeyed id count the keyed-identity prioritycounter.

For a given identity,id count counts the number of path vector messages received that contain

this identity. The Identity priority of a path vector messageIP (M) is themaximum value of the

identity priority counter over each identity in the path.keyed id count counts the number of path

vector received messages with a given keyed identity. The Keyed-identity priority of a path vector

messageKIP (M) is themaximum of the keyed-identity counterover each keyed identity in the

path. The scheduler gives highest priority to messages with lowIP (M), breaking ties favoring

low KIP (M), and finally using FIFO. We will later demonstrate in Section 6.5 that identity-based

scheduling provides fast convergence even in the face a flood attack from an adversarial node.

The scheduler is implemented as a simple priority queue. For this scheduling discipline, the ad-

dition of a new message to the queue does not alter the priority of the remaining messaged. The
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priority queue allows both enqueueing and removing the highest priority message to be performed

in O(log n) time. When the buffer fills up, messages with the lowest priority are dropped (this is a

simple operation that involves dequeuing messages from the end of the queue).

Maintaining State

The third important design issue that we faced while implementing the toolkit was the maintenance

of state associated with reliable communicationi.e., how does each node maintain its keyed identity

graph as the underlying topology continues to evolve with time (node arrivals/failures)? The two

options that we need to consider are hard state and soft state. In a soft state approach, each node in

the keyed identity graph has associated with it two timers. One timerτ1 is started when the node

is discovered and the otherτ2 when the node is identified to be reliable. Whenτ1 fires, all path

vectors associated with the node are discarded. whenτ2 fires, the path vectors are discarded and the

node is no longer considered reliable. Nodes must re-initiate reliable communication periodically to

keep the state fresh. This periodic operation increases the cost of providing reliable communication.

Further, it can be abused by adversaries to flood the network during each repeated broadcast.

The hard state approach simply involves reliable communication whenever a new link comes up.

Nodes that are reliably discovered remain so irrespective of any changes in the topology. This is

acceptable because once a node has been reliably discovered and the knows the other node’s public

key, the underlying topology is irrelevant in exchanging data reliably. So a nodeA that has reliably

discovered nodeB will continue to believeB to be reliable even whenB goes down and comes back

up providedB has the same keyed identity(B, KB). This also ensures that reliable communication

is not triggered off by transient events such as link failures. If nodeB changes its keyed identity
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to (B, K ′
B) however, then reliable communication is again initiated. NodeA replaces the former

keyed identity of B-(B, KB) with its new identity(B,K ′
B) if it can again discoverk + 1 identity-

disjoint paths to(B, K ′
B). Further, in a hard state design, the adversary cannot cause much damage

after the initial reliable broadcast phase (Any bogus updates propagated by the adversary will be

given a very low priority by the scheduler making it hard for the adversary to flood the network).

For these reasons, we have used a hard state approach in our system.

Liveness of State

While securing routing protocols, we guarantee that a node cannot claim to have a non-existent link.

However, this does not prevent a node from forwarding packets along a path different from the one

advertised by it or from not forwarding any packets at all. This problem is a data plane issue while

our solution helps to secure the control plane alone. Thus, the liveness guarantees provided in the

control plane are limited and we need to use data plane techniques like [120, 81] to address liveness.

Deployment of secure routing does not prevent malicious nodes from affecting the traffic.

This issue also ties in with another aspect of routing protocols - refreshing the routes. Refreshing

of the routes ensures that nodes have the most up-to-date information required to forward packets.

However in the presence of data plane techniques for detecting liveness, periodic refresh of routes

can be done away with. This is desirable from the point of reducing the overhead of maintaining

up-to-date routes.
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6.3.4 Optimizations

Now, we describe some optimizations that further bring down the cost of protocol operations.

Using neighbors’ information: When a node is trying to discover the graph, it can make use of the

path vector computations performed by its neighbors. If at leastk + 1 neighbors of nodeA claim

that a nodeX is reliable, thenA can considerX to be reliable. This does not requireA to know any

of the path vectors containingX. This is particularly beneficial when a new node joins the network

- it learns most of the nodes in the network simply from its neighbors. Nodes periodically propagate

any new reliably discovered nodes to their neighbors.

Lazy propagation: When a new node joins the network, a neighboring node can lazily propagate

path-vector messages. Instead of propagating all the path vector messages it has received to the new

node, it sends the graph and its edges alone. It then forwards all the reliable identities learnt. The

new node determines the reliable nodes based on the updates from its neighbors. If there exist nodes

in its graph that have not been reliably discovered, it then requests each of its neighbors for signed

path vector originating from these nodes. These are then used to determine if the nodes are reliable.

This lazy propagation of path vector messages reduces the cost of node joins.

Symmetric keys and one-time signatures:After a node has reliably discovered other nodes in the

network, it can use the secure channel to exchange symmetric keys or setup a one-time signature

exchange. This ensures that the frequent updates are inexpensive. In the latter case, nodes will have

to periodically renew their one-time signatures. This optimization is particularly useful for the case

of distance-vector routing where nodes only exchange routing information with their neighbors and

their neighbors’ neighbors.
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Path vector reuse: In secure path vector routing, when a node finds that the current path to a

destination goes down, it needs a new path vector before it can again route to the destination. This

path vector must originate from the destination with a higher sequence number than the last path

vector sent out. This increases the time to convergence of the routing protocol. On the other hand,

other nodes may know of alternate genuine paths to the destination. These nodes could, potentially,

propagate the path vector to the destination so that nodes can repair their broken routes. This

requires nodes to be allowed to reuse path vector messages. However, the protocol is now vulnerable

to replay attacks in which a nod claims reachability even after the path no longer exists. This violates

the monotone property that we would like the routing protocol to guarantee. An alternate take views

this attack as equivalent to one in which the malicious node that advertises a path to a destination

drops or misroutes packets in the data plane. In the presence of mechanisms to detect data plane

malice, we can allow nodes to reuse path vectors to improve performance.

6.4 Secure routing

In this section, we describe how secure versions of three standard routing protocols, namely, link-

state, distance-vector and path-vector routing, can be layered on top of the reliable communication

toolkit. Oneimportant distinctionbetween reliable communication and secure routing is in order.

The former is a nearly-static protocol to reliably discover the network while the latter is a dynamic

process that needs to setup routes in the network. Once reliable communication has been estab-

lished, a routing protocol can use it as a building block to reliably propagate routing information

in the face of adversaries. The routing protocol is independent of the actual mechanism used to

establish reliable communication.
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In general the routing protocols that we describe make use of the following functions provided

by the toolkit: a) the path-vector signature functions for the route updates, and b) the reputation

functions to compute the reputation associated with a node. When the routing protocol receives a

packet, it evaluates the reputation associated with the nodes in the packete.g., in a dense graph, it

would computeflow reputation() associated with the relevant nodes in the packet and accept the

packet only if their reputation is> k. The protocol then uses the path-vector signature functions to

perform updates to the packet. We present the details in sections 6.4.1, 6.4.2, and 6.4.3.

The basic security property that we desire from the protocol is thatno node must be able to prop-

agate routing information that is inconsistent with the state of the network at that time. More

concretely, we require two security properties to be met:

Property 1. No node can claim a route to a destination that includes non-existent links in the graph.

Property 2. A routing protocol has the monotone update property if and only if the cost of the path

claimed by a node to a destination (other than itself) is not lower than that of the least-cost path

from any of its neighbors.

We make two observations. First, property 2 arises in the context of distance-vector routing where

we require that an adversary should not be able to reduce the cost of a route. However, any node

can always increase the cost of a route. Second, two colluding adversaries can always prove the

existence of a genuine link between them; such links are considered to be existent links in the

underlying graph.
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6.4.1 Secure path-vector routing

The reliable communication toolkit is a generalization of the Whisper technique developed in our

prior work [120] as a mechanism to secure BGP, a path-vector routing protocol. Therefore, to secure

path vector routing, we can directly leverage the chained path-vector signature construct used in

reliable communication. Any bogus announcement containing a non-existent link to a genuine node

will result in a keyed-identity conflict where we revert to the reputation mechanisms to determine

the genuine keyed identity. While applying the toolkit to BGP, two specific issues arise:

Propagating address ownership:BGP routes at the granularity of prefixes as opposed to based on

the destination identities (as performed by the toolkit). Hence, to do prefix-level routing, each AS

needs to propagate ownership claims for the prefixes they own as part of the initial keyed-identity

claims. Here, unfortunately, one cannot blindly use flow-based reputation mechanism to address

ownership conflicts. If an adversary raises only a single bogus claim for a specific prefix, it is

fundamentally impossible in a decentralized setting to determine the identity of the real-owner of

the prefix. This is a fundamental limitation of decentralized security in comparison to a PKI-based

approach where the ownership is authenticated by the PKI root. The best one can do is to use a

penalty reputation scheme to prevent adversaries from generating several bogus ownership claims.

One can show that penalty reputation is the optimal strategy even in the face of several adversaries.

Route aggregation: BGP allows route aggregation which enables a router to aggregate routes to

two prefixes. The operational practice of BGP today suggests that route aggregation is either per-

formed by the owner of a prefix or the first upstream provider who allocated the prefix-range to its

customers [50]. To support such aggregation, we simply concatenate the two signatures associated
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with the individual sub-prefixes. However, if the origin ASs of two prefixes are different, aggre-

gation is explicitly not allowed in reliable communication since the identity of the origin becomes

hidden.

6.4.2 Secure link-state routing

Once reliable communication is established, every node is aware of the entire topology and has a

trusted channel to every node in the system. To secure link-state routing, we use the trusted chan-

nels to establish two-way authentication on each linki.e., a link-cost update on a link(A,B) is

genuine only if the cost has been authenticated by bothA andB. Unless a two-way authentica-

tion is obtained, a link is not considered as part of the topology for routing purposes. Instead of

needing two separate update messages for a link cost-change, each node initially obtains a signa-

ture from its neighbor and appends both the signatures (including its own) as proof to each update.

However, when a link fails, each node will simultaneously propagate the link failure information

independently without two-way authentication; the link is treated as a failure as long as one of the

messages reaches a node. Each link-state updates is flood reliably. Since trusted channels are pre-

established, flooding is the same as traditional link-state flooding along every link coupled with the

additional cryptographic operations. Hence, the subsequent cost of propagating link-state updates

is the same as traditional link-state flooding except the cryptographic checks. In order to support

secure OSPF routing across areas (link-state routing within an area, distance-vector across areas), it

is essential to use reliable communication to learn all the nodes across areas but then revert to secure

distance-vector routing across areas.
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6.4.3 Secure distance-vector routing

Distance vector (DV) routing is hard to secure because of the limited information that is passed

around. This makes it easy for a malicious node to claim a fraudulent low-cost path or a non-

existent link to a destination node. We describe two simple techniques to mitigate this problem.

The first approach is to use thehash-chain signaturemechanism used in prior work [63], where

every origin initiates a routing announcement based on a seeds and a pre-specified one-way hash

functionh(). Every intermediary node incrementally hashes the signature such that a route of cost

c has a signaturehc(s) (assumingc is an integer,hc() is theh() appliedc times); givenh() is one-

way, an adversary cannot reduce the cost. Any node can use the hash-chain signature to check for

consistency across different routes [63, 62] – however, to verify authenticity of a single signature, a

node needs to use the trusted channel to the origin. An alternative simpler strategy to defend against

independent adversaries is to uselookahead informationfrom the neighbor’s neighbor. In this

scheme, whenever a node propagates a DV update to its neighbor, it needs to: (a) sign the DV update

(including cost, origin, its identity) using its private key; (b) forward the signature of the neighbor it

received the update from. Given that reliable communication is established, the neighbor’s neighbor

signature can be verified using the pre-established trusted channel. By doing so, one can prevent an

independent adversary from propagating bogus announcements since it cannot generate a genuine

neighbor’s signature. This signature mechanism does not require involving the origin to verify the

authenticity of the signature.
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6.4.4 Protecting against replay

To have up-to-date routing information, the routing protocol must propagate updates at regular

intervals. The routing table entries are also maintained in soft state so that a node that does not

receive an update with a time window removes the corresponding entries from its routing table.

However, an adversary may replay old update messages to claim the existence of a link that has

gone down. This is solved by including with each update a sequence number - the sequence number

must be an increasing number. A node checks each update to see if it is a higher sequence number

before using it in its routing table. In path vector routing, for a path vector update originating from

nodeA, nodeA is responsible for using an increasing sequence number and signing it to ensure that

it cannot be modified. In the link state case, for a link betweenA andB, nodeA gets its sequence

number signed byB. This ensures thatA cannot replay an old response fromB claiming that the

link A − B exists.A includes this along with the sequence number in its link state advertisement

which it again signs. This ensures that no other node can replay the advertisement. In the distance-

vector routing, a nodeA again shares its sequence number with its neighbors. Every distance-vector

update contains the sequence number of both the nodes sharing the link.

6.5 Evaluation

In this section, we evaluate the system performance of the reliable communication toolkit. Our eval-

uation is targeted at answering three questions: (a) What are the costs of the functions implemented

by the toolkit? (refer Sec 6.5.1); (b) How do the system-wide properties (time to converge, mes-

sage complexity) vary as we scale the system? (refer Sec 6.5.2); (c) What is the cost of integrating
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routing protocols with the reliable communication toolkit? (refer Sec 6.5.3). Separating the routing

protocols from the toolkit makes sense because reliable communication is invoked at the frequency

with which new identities appear in a node’s neighbor set and this is infrequent. Routing on the

other hand happens whenever link costs change. This separation allows us to consider the one-time

and the recurring costs of secure routing in isolation.

Our experiments show that the toolkit can implement the basic operations at rates comparable to a

BGP router. The time to complete reliable discovery is around 15 seconds in a 50 node network.

The routing protocols layered on the toolkit have convergence times close to the normal routing

protocols -the difference being on the order of seconds.

6.5.1 Microbenchmarks

We measure the time taken by the toolkit to perform its basic operations. We also study the behavior

of these metrics with increasing path vector length. The setup comprises three machines each run-

ning a reliable communication process. Each machine is a quad-3.06 GHz Intel Xeon. The topology

assumed by the reliable communication processes is a chain. Each experiment is parametrized by

the value of the path vector length. The nodes at either end of the chain generate path vectors of the

specified length and propagate it along the chain. Each experiment is run for 2 minutes and repeated

10 times. The path vectors are varied from single-hop vectors to those with a hop length of 20. We

use 1024-bit RSA keys in all cases.
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Operation Avg time with 95% CI (µsec)
initiate() 4326.53± 30.25
generate key() 149710.864± 5234
update() 3992.28± 4.90
verify() (path length=10) 2579.73± 4.77

Table 6.3: Operations involved in reliable communication.
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Time taken for unit operations

The processor-intensive operations in the reliable communication toolkit are primarily the crypto-

graphic operations namely: generate a public-keygenerate key(), the time taken to initiate a path

vectorinitiate(path vector), the time to verify a path vectorverify(path vector), and the time

taken to update a path vectorupdate(path vector). Table 6.3 shows the mean-time consumed by

each of these operations. The basic path-vector signatures average roughly in the order of a few

milliseconds whilegenerate key() is a much more expensive operation. Thegenerate key() op-

eration is a relatively infrequent operation and is reinvoked only if a node intends to change its

public-key. The time complexity ofverify() scales linearly with the path-length since each ver-

ify operation requires a node to verify the signature corresponding to each hop of the path vector.

Figure4 illustrates the variability of theverify() as a function of the path length. For path lengths

up to 6 hops (most BGP AS paths have a path-length less than6), the verification takes less than

1.5ms. This implies we can process roughly40, 000 route updates per minute which is4 times

larger than the maximum update rate observed at a BGP router [13]. The time to update a packet is

constant across path vector lengths since it involves appending a single signature to a path vector.

6.5.2 System-wide properties

The next set of experiments is intended to test the system-wide properties including thetime taken by

nodes to reliably discover (TOR)other nodes in the network and thecommunication overhead. Our

testbed comprises the 62-node Millennium PSI fast-storage and compute cluster [25]. Each node is a

dual 3.0GHz Pentium4 Xeon with 3GB of RAM. We specifically chosenot to run multiple instances

in the same machine since the contention for local resources of different instances within the same
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Figure 6.5: a)Time taken for nodes to reliably discover(TOR) other nodes in the network as a
function of network size. b) TOR as a function of the network size in the presence of a single
malicious node

machine greatly affected the system-wide properties we measured (especially since some of our

operations are crypto intensive). Hence, we report system-wide properties only for a maximum

system-wide configuration of60 nodes. Additionally, we chose to run our experiments at time-

periods when the resource contention from other processes in this shared cluster was minimal (if

not none). We generate randomm-connected topologies by constructing a random graphGd where

each node has an edge tod nodes chosen uniformly at random. For a collection ofn nodes, by

settingd = log n + (m − 1) log logn, we can obtain a graph that ism−vertex connected with

very high probability [27]. We consider two scenarios for measuring system-wide properties: (a)

Simultaneous start-up; (b) Single node arrival.

Simultaneous start

In this setup, all nodes are initiated simultaneously. We consider two scenarios: i) all nodes are

well-behaved, and ii) there’s a single malicious node that propagates bogus path vector messages

every second.
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Nodes Messages MBytes
60 3249.47 5.66
50 2701.64 4.59
40 2035.65 3.34
30 1554.13 2.64
20 929.1 1.33
10 295.2 0.35
5 80 0.75

Table 6.4: Average number of packets and bytes transferred when all nodes join simultaneously.
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Figure 6.5(a) shows the median and 90-th percentile of the time taken to reliable discovery (TOR)

as a function of the network size. This value has been averaged over 20 runs. We see that the TOR

increases slowly with network size. Even for a 50 node network, the 90-th percentile is under 20

seconds even in the presence of the malicious node (Figure 6.5(b)). In fact interestingly, the time

to converge decreases slightly in malicious presence. This happens because the spurious messages

injected results in nodes learning about the other genuine nodes more quickly. The other inter-

esting observation regarding the trend is that the median TOR curve flattens out with more nodes

suggesting that for a given connectivity the TOR usually depends on the diameter.

Figures 6.6(a) and 6.6(b) give us some more insights into the reliable communication process.

Figure 6.6(a) shows that the time interval between a node being discovered and being reliably

discovered is of the order of a second. Thus, the overhead of waiting for multiple path vectors and

computing identity-disjoint paths is small. Figure 6.6(b) shows that most of the reliable discovery

happens during short span of time - the time interval between when the number of nodes discovered

is about 5 (only neighbors discovered) to the entire network being reliably discovered.

The overhead of reliable communication in terms of the time taken to reliably discover nodes before

routing is much smaller than the the times shown in Figure 6.5. We also measure the communication

overhead in terms of the number of bytes sent and received, as shown in Table 6.4. In a 50 node

network, nodes send and receive about 4.5MB (2500 messages) over an entire session on average

which is an acceptable overhead in most networks. This is comparable to node discovery by flooding

which would require 300 messages on the 50 node topology that we have used (a message traversing

an edge in each direction). In steady state, the median memory footprint is about 12MB with a

maximum footprint of about 20MB.
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We make two observations. First, the scenario of nodes joining the network simultaneously is not

very realistic though it gives us a worst-case estimate of the cost incurred by reliable communication.

Second, the code has not been optimized for performance. The results reported here are more useful

as an indication of the performance rather than as an accurate estimate.

Single node arrival

In this scenario, we consider a more plausible scenario of node joins. We have a set of 49 nodes

that have reliably discovered one another. A new node now joins the network. We measure the time

taken for the old nodes to reliably discover the new node and vice-versa. This is again shown in

figure 6.7(a) and 6.7(b). We see that it follows the same trends as the graphs in Figure 6.5 though

the discovery happens in about 10 seconds. Communication overhead numbers for this scenario also

show that the overhead incurred is similar to the simultaneous join case (5.1MB on the average).

To summarize, we find that with respect to the most interesting system-wide property of TOR, the

system shows low convergence delays, even in the presence of bogus traffic, and has an acceptable

overhead.

6.5.3 Routing protocol

To evaluate the cost of integrating security into routing protocols, we implemented simple versions

of path-vector, distance-vector and link-state routing. These protocols make use of the reliable

communication layer to perform the initial key distribution. These protocols can be run in secure

and insecure modes. We ran each protocol over a randomly-generated 50 node network in which all
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the nodes come up simultaneously. Initially nodes perform reliable discovery. Routing is begun 30

seconds after boot-up. A link between any pair of nodes has unit cost. We measure the time taken

for a node to obtain a finite cost path to all the other nodes in the network. Figure 6.8 shows that

the secure versions of the routing protocols perform nearly as well as the insecure versions. The

median and 90th percentile convergence times are almost equal except for secure link-state routing

which requires a larger number of messages before it discovers paths to nodes in the network.

These results show that once reliable communication is established, the subsequent complexity of

propagating routing updates in a secure manner is marginal.

6.6 Summary

In this chapter, we have addressed the question of securing routing protocols in a completely decen-

tralized manner. Based on the direct relationship between secure routing and the reliable communi-

cation problem, we describe the design of a reliable communication toolkit that provides a generic

set of primitives to enable decentralized security for a variety of routing protocols.

To briefly recap, Figure 6.9 presents a complete summary of our theoretical results on the reliable

communication problem in unknown networks and the basic building blocks essential for achieving

these results. The theoretical aspects of the reliable communication results were presented earlier in

Chapters 4 and 5. The reliable communication toolkit implements the basic building blocks shown

in the Figure 6.9. The reliable communication toolkit exports generic primitives which are protocol

agnostic, that can be used to secure different routing protocols in a decentralized manner. Specif-

ically, we show how these primitives can be integrated to secure three standard routing protocols:
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Figure 6.9: Summary of key results on reliable communication and the set of reliable communica-
tion primitives in the toolkit

link-state, distance-vector and path-vector routing. Finally, using a detailed performance evaluation

of the toolkit, we show that cost of reliable communication is marginal. This demonstrates the fact

that the reliable communication toolkit is feasible, practical and not expensive.
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Chapter 7

Addressing the Data Integrity Threat to

the Domain Name System

“ Marilyn Monroe wasn’t even her real name, Charles Manson isn’t his real name, and now, I’m taking that

to be my real name. But what’s real? You can’t find the truth, you just pick the lie you like the best.”

– Marilyn Manson, ’Shock’ rock-star

The primary purpose of this chapter is to illustrate the broader applicability of the reliable com-

munication concept beyond routing protocols. In this chapter, we describe the preliminary design

of D-SecDNS, a decentralized security architecture that uses the reliable communication toolkit to

address the data integrity security threat to the Domain Name System (DNS).

The DNS suffers from data integrity threats that arise due to configuration errors or malicious adver-

saries compromising name servers and propagating incorrect DNS responses to end-host queries.

The data integrity problem is further exacerbated due totransitive trustrelationships inbuilt in the
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current DNS that introduces complex dependencies among name servers. These dependencies can

enable a single compromised DNS server to affect the data integrity of not only its domain but also

several other domains outside of its control.

Prior proposals [44, 48, 19] for addressing the data integrity problem of the DNS have relied on

using a Public Key Infrastructure (PKI) with a central authority. Our proposal, D-SecDNS, on the

other hand, does not rely on any form of prior key distribution mechanism or a central authority.

The rest of the chapter is organized as follows. In Section 7.1, we provide a brief overview of

the Domain Name System. Next, we describe the data integrity security threat associated with

the DNS in greater detail in Section 7.2. This is followed by a description of the different related

work that have addressed the DNS data integrity threat in Section 7.3. We also briefly explain

some of the pitfalls of prior work. Later, in Sections 7.4, we elaborate on the design principles

and the architectural design of the D-SecDNS architecture. In Section 7.5, we describe the security

guarantees that D-SecDNS can provide, show preliminary results in Section 7.6 to illustrate the

feasibility of this architecture and present our conclusions from this study in Section 7.7.

7.1 Domain Name System: Overview

The Domain Name System (DNS) is an Internet directory service that resolves host names into

IP addresses. The name-space of different host names is hierarchically partitioned intodomains

where each domain has several subdomains within the hierarchy. For example,cs.berkeley.eduis a

subdomain ofberkeley.eduwhich in turn is a subdomain of the top-level domainedu, which falls

under the global root domain. Each domain is associated with a set ofauthoritative nameservers
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Figure 7.1: An example illustrating the DNS lookup process where the local DNS server iteratively
contacts nameservers in the DNS hierarchy to resolve a DNS name.

that serve names within that domain. At the top of the DNS hierarchy areroot nameserversand the

authoritative nameservers fortop-level domains(TLDs). The top-level domain name-space consists

of generic TLDs (gTLD), such as.com, .edu, and .net, and country-code TLDs (ccTLD), such as

.uk, .tr, and.in.

DNS uses a delegation based architecture for name resolution [86, 87]. Clients resolve names by

following a chain of authoritative nameservers, starting from the root, followed by the TLD name-

servers, down to the nameservers of the queried name. For example, the namewww.cs.cornell.edu

is resolved by following the authoritative name-severs of the parent domainsedu, cornell.edu, and

cs.cornell.edu. Following a chain of delegations requires additional name resolutions to be per-

formed in order to obtain the addresses of intermediate nameservers. Each additional name resolu-

tion, in turn, depends on a chain of delegations.
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DNS lookup process:The DNS lookup process is illustrated in detail in Figure 7.1. An end-host

that wants to resolve the IP address corresponding to the host namefoo1.foo2.bar.orgperforms the

following steps:

1. Each end-host is initially configured with a set of local DNS servers. The end-host contacts

one of the local DNS servers to resolve the name.

2. If the local DNS server has a cache entry corresponding to the name or is the authoritative

nameserver for the domainfoo2.bar.org, it provides a direct response to the end-host.

3. If not, the local DNS server contacts one of the root-servers which redirects the local DNS

server to an authoritative nameserver corresponding tobar.org.

4. The local DNS server is repetitively redirected within the DNS hierarchy until it obtains the

final response from an authoritative server offoo2.bar.orgdomain.

5. The local DNS server caches this response and also forwards it to the end-host.

7.2 The DNS data integrity threat

In “Lives and Doctrines of Eminent Philosophers”, one of the few ancient manuscripts to have sur-

vived since the 3rd century A.D., Diogenes Laertius poses the following famous question:Could

you tell me what was Plato’s real name?This question still remains unanswered for several cen-

turies. Some say that Plato’s real name was Aristocles, and that Plato was a nickname, meaning

”the broad”.

The same is the case with the DNS today. An end-host that queries for a DNS name has no proof
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that the IP address provided as a response is indeed the address corresponding to the name. This is

thedata integrityproblem associated with the current DNS.

The DNS forms a critical component of the Internet infrastructure which provides the essential

service of name translation. Users accessing hosts on the Internet rely on the correct translation

of host names to IP address by the DNS. However, the current design of DNS is susceptible to

thedata-integritysecurity threat whereby an attacker or a misconfigured nameserver can propagate

incorrect DNS responses to name resolution queries. DNS data integrity can be affected due to

configuration errors (e.g.,incorrect table entries) or various types of attacks launched by adversarial

nodes. Once data integrity of name resolution is compromised, an attacker can redirect legitimate

traffic to fake destinations. For example, the RSA Security web site was hijacked by spoofing DNS

tables [1] wherein the attacker redirected all traffic bound to the RSA Security’s original page to a

fake destination by manipulating the corresponding DNS entry.

Now, we elaborate on three common ways through which the DNS data-integrity can be affected:

• Configuration errors: Several DNS entries in different tables are manually input creating

the possible of data integrity problems due to incorrect entries. A recent study by Passaset

al. [96] shows that15% of DNS zones suffer from a specific misconfiguration calledlame

delegationin which the parent of a DNS zone points to wrong nameservers for the child zone.

In the same study, they found that nearly2% of zones have acyclic zone dependencywhere

information required to resolve a name in zoneX depends on zoneY which in turn depends

on zoneX.

• nameserver compromises:Several DNS servers continue to execute unpatched, vulnerable
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versions of DNS software making them easy targets for server compromises [26]. One soft-

ware vulnerability of BIND is said to have affected a large number of DNS servers. An

attacker that gains control over a nameserver can modify the DNS entries and thereby affect

DNS data integrity.

• Cache poisoning:For performance reasons, every DNS server caches DNS responses for fu-

ture use. DNS cache poisoning [48, 21, 111] occurs when a DNS server accepts and uses

incorrect information from a host that has no authority giving that information. One mech-

anism for cache poisoning is for an attacker to initiate a DNS query to a DNS serverX for

foo.attacker.netwhere the attacker controls the nameserverY for attacker.netdomain. When

X contactsY to resolvefoo.attacker.net, Y can respond with its entire set of DNS records in

its cache (not just for the query) and poisonX ’s cache with bogus DNS records (providedX

cachesY ’s responses). Nearly25−30% of DNS servers are vulnerable to the cache poisoning

attack [44].

7.2.1 Transitive trust relationships

The DNS data integrity problem is further exacerbated by the presence of transitive trust relation-

ships in the current DNS model. DNS uses nameserver delegations to resolve host-names to IP ad-

dress. This delegation mechanism induces complex dependencies between names and nameservers

which can lead to a highly insecure system. A DNS lookup can be redirected to a nameserverout-

side the controlof the primary domain. For example, whilecornell.eduhas20 nameservers, only

9 of these belong tocornell.edu. Several nameservers that are outside the administrative domain

of Cornell have indirect control over Cornell’s name-space. In this case,cornell.edudepends on
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rochester.edu, which depends onwisc.edu, which in turn depends onumich.edu. While Cornell di-

rectly trustscayuga.cs.rochester.eduto serve its name-space, it has no control over the nameservers

thatrochester.edutrusts.

The transitive trust relationships lead to indirect dependencies between nameservers that can severely

affect data integrity. Thedelegation graphassociated with a domain consists of the transitive clo-

sure of all nameservers involved in the resolution of a given name associated to the domain. The

nameservers in the delegation graph of a domain name form thetrusted computing base(TCB) of

that name. Compromise of any nameserver in the trusted computing base of a name can lead to a

hijack of that name. Previous work by Ramasubramanianet al. [104] shows that the resolution of a

domain name depends on a large trusted computing base of46 servers on average, not including the

root servers. Of this, only2.2 servers on average are directly designated by the name-owner. Addi-

tionally, their work also shows that nearly30% of domain names can be hijacked by compromising

merely two servers.

The risk of domain hijack due to transitive trust relationships is further aggravated by the way DNS

uses time-to-live (TTL) for each record. A compromised server providing incorrect records can

associate long TTLs with the bindings ensuring that the incorrect records are cached and used for a

longer period of time.

7.3 Prior work on DNS data integrity

DNSSEC [44, 19, 48, 111] is one of the first and foremost solutions that has been proposed to

address the data-integrity security threat of DNS. DNSSEC provides a set of extensions to DNS
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to perform three basic functions: (a) origin authentication of DNS data, (b) data integrity and (c)

authenticated denial of existence.

DNSSEC uses a public-key infrastructure to achieve public-key distribution using which it can ad-

dress DNS data integrity problems. DNSSEC relies on cryptography to ensure authenticity and

integrity. DNS servers supporting DNSSEC use public-key cryptography to sign DNS responses.

Every DNS query and response is associated with a transaction signature to authenticate communi-

cation between DNS servers as well as to authenticate the integrity of the response.

The DNSSEC approach has several shortcomings. First and foremost, DNSSEC relies on a public-

key infrastructure for signing DNS responses. The use of a PKI induces a serious deployment hurdle

since enforcing an Internet-wide PKI is fraught with the danger of non-adoption. Unlike the Inter-

net routing case, the adoption can be easier in the DNS setting since the PKI hierarchy matches the

DNS hierarchy. Apart from deployment hurdles, using a PKI induces additional problems. First,

DNSSEC requires DNS servers to perform public-key operations for every DNS response. This can

induce a heavy computational overhead at each server. Second, one drawback of the PKI hierarchy

matching the DNS hierarchy is that if the authoritative name servers associated with a domain are

compromised, then all subdomains associated with it are also affected. Hence, in DNSSEC, it is

not possible to provideislands of securitywhere one can secure a child zone though the parent

zone may be insecure. Third, it is hard to performsecure delegationin DNSSEC. In other words,

how does one delegate authority from a parent to a child zone in DNSSEC? The zone-cuts (bound-

aries) between different parent and child zones are ill-specified in DNSSEC. Finally, the DNSSEC

approach for providing authenticated denial is complicated and expensive. The current approach

is for the nx-domain responses where the parent DNS server responds that the child zone does not
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Figure 7.2: D-SecDNS architecture: Authoritative nameservers use additional trust links (apart
from the DNS hierarchy) to set up a well-connected trust network between nameservers. Within
this network, they disseminate nameserver records to other nameservers.

exist. Additionally, it is an complicated process for a parent zone to generate an authenticated denial

response for every record.

7.4 D-SecDNS Architecture

In this section, we will describe the design of D-SecDNS, a decentralized architecture which uses

the reliable communication concept to address the data integrity threat to the DNS.
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The basic system architecture of D-SecDNS is illustrated in Figure 7.2. D-SecDNS makes an ex-

plicit distinction between authoritative and non-authoritative nameservers. An authoritative name-

server is a primary server that responds to DNS queries corresponding to a specific domain. A

non-authoritative DNS server, on the other hand, acts primarily as a local DNS server within a do-

main which serves end-host requests and caches DNS responses from authoritative nameservers.

Non-authoritative DNS servers are used primarily to improve the availability of the overall system.

Given the separation between authoritative and non-authoritative name servers, the key idea of D-

SecDNS is touse the reliable communication toolkit to propagate nameserver record information

across authoritative nameservers.We will now elaborate on this key design principle and how we

achieve it.

7.4.1 Reliable communication between authoritative nameservers

The basic design principle used in D-SecDNS is to consider the network among the set of author-

itative nameservers and establish areliable communication channelbetween every pair of name

servers. By doing so, every nameserver can directly contact the authoritative nameserver corre-

sponding to a domain as opposed to using the traditional DNS lookup process. If a reliable com-

munication channel can be established, this avoids many of the security threats that are induced by

DNS redirection thereby reducing the scope of damage that a compromised nameserver can cause.

However, in order to establish a reliable communication channel between every pair of authoritative

nameservers, we need to satisfy two basic constraints: (a) fixed-identity criterion; (b) connectivity

constraint.
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Meeting the fixed-identity criterion

We rely on the model of the current DNS architecture to satisfy the fixed-identity criterion. Each

authoritative nameserver is associated with a set of trusted neighbors which include parent name-

servers, child nameservers and delegation-based trusted nameservers. Whenever an domain adds a

truster neighbor, it is the responsibility of the domain to ensure the correctness of the identity of

the neighbor being bootstrapped into the system. In our threat model, we explicitly assume that

nameservers that are not compromised or misconfigured are not malicious i.e.,a nameserver can

turn malicious only when it is misconfigured or is compromised. Additionally, we assume that a

configuration error does not affect the very identity of a node; while the nameserver records may be

misconfigured, the identity of a node is not. Hence, once the fixed-identity is established at the time

of forming a new trusted link, nameservers at either end are explicitly disallowed to modify their

identities. This is to ensure that once the identity of a neighbor has been verified, it is enforced. Any

modification to the identity is treated as breaking an existing trusted link. Therefore, once trusted

links are established, the fixed identity criterion is enforced. If trusted links are established out of

band, it is essential for the participating domains to initially verify the identities of their trusted

neighbors.

Meeting the connectivity constraint

Previously in Chapter 4, we showed that a minimum vertex connectivity of(2k + 1) is essential to

achieve reliable communication in the face ofk colluding adversaries. Hence, in order to establish

reliable communication between authoritative name servers, it is essential to set up an underlying

communication network between the nameservers which satisfies this vertex connectivity constraint.
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Every link in this underlying network is required to be atrusted link between two nameservers.

Hence, this network should be viewed as an extended version of the trusted computing base across

domains where each authoritative nameserver has a trusted set of other authoritative nameservers as

neighbors. The additional links established in the trusted computing base can be used as alternative

channels for verifying the correctness of a DNS response. In the absence of a certificate authority,

it is essential to have these alternate channel for verification.

However, achieving the2k + 1 vertex connectivity across the entire network of authoritative name-

servers is a challenging problem. This would involve addressing two questions: (a) how does a

nameserver identify other “trustworthy” nameservers to be direct peers with? (b) how does one

achieve the connectivity constraint?

Establishing trusted links with neighbors: We propose two different strategies for building such

a trusted computing base. The first is to use anout-of-bandmechanism to establish relationships

between different entities. Typically, each domain is under a specific administrative entity which

enables the case for replicating thepublic peering modelin BGP. In this model, a group different

administrative entities together establish a public trusted relationship where every entity will have

a trusted relationship with every other entity in the group. The problem with this model however is

that smaller administrative entities have a bigger barrier to entry into such a system. The alternative

model is to use anin-bandmechanism where we use the existing DNS to establish new transitive

trust relationships. Here, every pair of authoritative nameservers that establish a trusted link place a

certain level of trust on the root to exchange path-vector signatures for the entire path from the root

to each domain. However, in the in-band model, we expect each node to regularly modify its set of

trusted links to reduce the potential damage that adversarial nodes can cause.
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Connectivity constraint: Vertex-connectivity of a network is a global property and not a local one.

To achieve a minimum connectivity of2k + 1 does not merely translate to each DNS server having

2k + 1 trusted neighbors. For example, if every nameserver within the.edudomain only chooses

other.edunameservers, the vertex connectivity does not improve (except the paths through the DNS

hierarchy). However, if the set of chosen trusted links is randomly distributed, then one can establish

the connectivity using local constraint. The following result [27] establishes the requirement:

Theorem [Bollobas85]:Consider a random graphG onn nodes where every edge is present with

a probabilityp (i.e.,average degree of a node isnp). G is m-vertex connected with high probability

if: np > log n + (m− 1) log log n.

Using this result on random graphs, we can conclude that if the set of trusted neighbors of a name-

server are random distributed, each name server should choose roughlylog n + 2k log log n name-

servers as neighbors (n is the total number of nameservers) to achieve a2k + 1 vertex-connectivity

for the trusted computing base with high probability. In reality, we intend to defend against a small

set of adversaries (typical value ofk < 10). For such small values, the number of additional trusted

links required per nameserver is small as well as manageable.

7.4.2 Reliable dissemination of nameserver records

Previously, in Section 7.4.1, we described on how to construct a trusted computing base of authori-

tative nameservers that satisfies the fixed-identity and connectivity constraints. Once such a trusted

computing base is setup, the next step is to use reliable communication toolkit to disseminate name-

server records amongst authoritative nameservers.
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Corresponding to every domain, DNS maintains NS-records which contain the name to authoritative

nameserver mapping and A-records which contain the authoritative nameserver to IP address map-

pings. Whenever an end-host performs a DNS query for an unknown name (not present in the local

DNS server cache), the request traverses the DNS hierarchy to determine the NS-records and A-

records of the authoritative name server corresponding to the destination domain. The current DNS

uses a pull-based architecture wherein the NS-records and A-records are pulled for every query. In

D-SecDNS, the goal is to disseminate the NS-records and A-records between nameservers.

Dissemination of nameserver records raises two important questions:

1. Transitive ownership trust:Can nameservers outside the control of a domain claim to be

authoritative nameservers for that domain?

2. Push vs pull: The current DNS is built on the pull model where one fetches nameserver

records. Does dissemination of nameserver records affect scalability?

We will now address these two questions in turn.

Explicitly disallow transitive ownership trust

The current DNS model of providing authority beyond the primary domain is fundamentally flawed

from a security perspective. Today, the fact thatrochester.edunameserver is an authoritative name-

server forcornell.eduintroduces an additional level of dependency between nameserver which can

be used as a mechanism to attack the system. In such an inter-dependent system, a single compro-

mised nameserver can not only affect its own domain but also inflict damage on any other domain

which has a transitive trust relationship with it.
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Figure 7.3: Hybrid push-pull model and the D-SecDNS lookup process example. Not every author-
itative nameserver needs to participate in the process of proactive dissemination of NS records. In
this example,foo2.bar.org’s authoritative nameserver does not participate in the NS-record push.

In D-SecDNS, we retain the authoritative nameservers corresponding to a domain to be only within

the domain and not outside of it. While this may potentially reduce the number of authoritative

nameservers corresponding to a domain, this is essential to restrict the damage that a single mali-

cious server can cause. Hence, if an authoritative nameserver is compromised, it cannot directly

affect data integrity on any other domain apart from its own domain. This also restricts the complex

dependencies between nameservers introduced by transitive trust.
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Hybrid push-pull dissemination model

The basic design principle is to use apush-basedmodel where authoritative nameservers use the

reliable communication toolkit to reliably broadcast their NS-records and A-records to other author-

itative nameservers. From a security perspective, a push-based model has two significant advantages

over a pull-based model. First, by reliably communicating the NS-records and A-records to other

name servers, one can avoid the entire DNS redirection possibility and directly contact the author-

itative nameserver corresponding to a domain. This prevents a variety of DNS redirection attacks

that can be performed in a pull-based model. Second, a push-based model enablesoff-line verifica-

tion of nameserver authority. In a pull-based model, the process of verifying the correctness of the

authoritative nameserver corresponding to a domain for every query is a very expensive operation.

To perform such a verification, the end-host needs to send the same query multiple times along dif-

ferent node-disjoint paths and test correctness across these. In a push-based model, this verification

is an infrequent operation and can be performed offline. Off-line verification reduces the public-key

cryptography burden that DNSSEC imposes for every DNS lookup.

However, one of the drawbacks of a push-based model is the amount of state that needs to be

maintained by each authoritative server. In a pull-based model, the amount of state maintained by

each nameserver is relatively low and each DNS record is fetched only on demand.

D-SecDNS can support a hybrid model between these two approaches where some authoritative

nameservers may not participate in the push-based model and can revert to a pull-based model. An

example of this is illustrated in Figure 7.3 where an authoritative nameserver offoo2.bar.orgdoes

not participate in the push model while its parent authoritative nameserver forbar.org participates
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in the push-model. The nameserver forfoo2.bar.orgacts in the same fashion as a non-authoritative

nameserver in passive mode pulling records from other authoritative nameservers (preferably from

the parent). When an end-host issues a DNS query forfoo1.foo2.bar.org, the push-based system

directs the query to the nameserver ofbar.orgwhich then redirects (in the normal DNS fashion) to

the nameserver offoo2.bar.org.

The hybrid push-pull model has better flexibility and scalability at the cost of slightly inferior se-

curity properties to the pure push-based model. The hybrid model has flexibility in determining

the set of authoritative nameservers which participate in the push-based system where nameserver

records are distributed. Hence, in a hybrid model, the size of the push-based system determines the

amount of state maintained at each nameserver and the amount of nameserver information being

disseminated. This in turn directly affects the scalability of the system

From a security perspective, a complete push-based model is preferable to a hybrid or a pull-based

model. The reasons are two-fold. First, an authoritative nameserver that is not part of the push-based

system is completely reliant on its parent domain. If the parent domain is compromised, the child

zones also get affected. The same problem is present in DNSSEC. Finally, the overhead of public-

key cryptography increases – for every DNS request, a DNS server needs to perform a verification

process to test for validity. In a push-based system, this overhead is reduced by off-line verification

of nameserver records which is a one-time operation.

7.4.3 Specific Design Issues

In D-SecDNS, the authoritative nameservers form a well-connected trusted computing base. Each

authoritative nameserver claims ownership of a specific domain and propagates this ownership to
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its neighbors which in turn propagate this information to their neighbors. Every ownership claim

is propagated as a path-vector message along with a path-vector signature containing a chain of

signatures from the authoritative nameservers along the path.

Three specific issues need to be addressed: (a) given two conflicting NS-records for the same do-

main name, how do we determine the validity of NS-records? (b) how do we determine whether a

domain name exists? (c) How do we add new authoritative nameservers? We now describe how we

deal with these questions:

Name-conflict resolution:Conflict resolution occurs in the same fashion as in the reliable commu-

nication toolkit. We use thejoint reputation metricdescribed in Chapter 6 to measure the trustwor-

thiness of each domain name claim. To recall, the joint reputation metric uses a combination of the

number of vertex-disjoint paths and penalties to determine the reputation of a domain claim. If the

reputation of a name is more thank (a bound on the number of adversaries), the domain name claim

is declared genuine. If however, the number of adversaries is more thank, the security property of

determining domain names to be genuine does not hold any more.

Validity of a domain name: In addition to establishing a reputation for every domain name, ev-

ery authoritative nameserver that obtains a nameserver claim associates each domain name with a

primary root paththrough the DNS hierarchy. Consider an authoritative nameserverX and a do-

main nameY . The primary root path fromY to X refers to the path in the DNS hierarchy from

the destination domain to a specific target domain. A specific example of one such primary root

path is illustrated in Figure 7.4. The path-vector signature associated with the primary root path can

traverse any of the authoritative name servers associated with each of the domains along the path. In

our design, it is essential for each domain name to be associated with a primary root path for it to be



183

Root servers

 .org

foo.org

X

primary root-path
from X to foo.org

Figure 7.4: An example illustrating the primary root path.

considered a valid domain name. If an authoritative nameserver obtains a domain name claim that

does not have a primary root path, such a domain is deemed to be non-existent. This reinforces the

role of DNS hierarchy to determine the validity of a domain name. However, the primary root path

is primarily used for determining the existence of a domain name but not to establish the validity

of the NS-record and A-record corresponding to the domain. The validity of nameserver records

is established based on the reputation computed by the reliable communication toolkit. This way,

even if one of the authoritative nameservers of a parent domain is compromised, a child domain

can establish the validity of its NS-records using alternate paths provided a primary root path claim

corresponding to that domain name exists. Hence, D-SecDNS can provide security to child domains

even if specific authoritative nameservers of the parent domain are compromised.

Adding a new authoritative nameserver: Adding a new authoritative nameserver is a relatively

straightforward process. Consider a new nameserverX corresponding to the domainxyz.abc.org.
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A new nameserver can only be introduced into the system by its parent. Hence, an authoritative

nameserver corresponding toabc.org initiates a path-vector signature that propagates ownership

information claimingX to be an authoritative nameserver forxyz.abc.org. This information needs to

be pushed through the DNS hierarchy to all the other authoritative nameservers in the system which

need to establish a primary root-path to the subdomain namexyz.abc.org. After this step,X can

set-up trusted link (or initiate pre-existing trusted links) and propagate the ownership information

through the additional trusted links. Every authoritative nameservers which can establish(k +

1) disjoint paths toX in the trusted computing base will be able to verify thatX is the genuine

authoritative nameserver corresponding toxyz.abc.org.

7.4.4 The role of non-authoritative nameservers

In the D-SecDNS architecture, a non-authoritative nameserver acts in roughly the same fashion

as a normal DNS server today with a few minor changes. Each such server maintains a cache of

DNS responses. Upon each DNS request from an end-host, the server checks whether it has a

cached response to the request. If not, the server needs to determine an authoritative nameserver

corresponding to the target domain of the lookup and issue a DNS query to such a server.

A non-authoritative nameserver can determine an authoritative name server in two different ways:

passiveor activemode. In the passive mode, the non-authoritative nameserver can issue a query

to any authoritative nameserver to determine the authoritative name server for a domain. In the

traditional model, such a server would issue a query to the root server and issue repetitive queries

to different authoritative nameservers within the hierarchy. However in D-SecDNS, given that NS-

records and A-records are pushed to authoritative nameservers, any nameserver can act as a root
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and provide the NS-record corresponding to a domain.

In the active mode, a non-authoritative nameserver can act as aslaveto an authoritative nameserver

and download the entire list of NS-records and A-records from the authoritative nameserver. How-

ever, by operating in slave mode, the non-authoritative nameserver only has the ability to download

the NS-records from an authoritative server but cannot generate its own NS-records. The active

mode enables a non-authoritative server to directly generate a query to a target domain nameserver

without having to perform a lookup operation.

Validity of an NS-record: In both the passive and the active mode, it is essential to verify the valid-

ity of an NS-record. If a non-authoritative nameserver contacts exactly one authoritative nameserver,

then it may obtain incorrect NS-record information if that server is compromised. To establish va-

lidity of an NS-record, it is essential to query multiple authoritative nameservers and compute a

majority. To have provable guarantees in the face ofk adversaries, it is essential to query2k + 1

different authoritative nameservers and compute a majority response. In the active mode, this verifi-

cation is performed off-line and this removes the nameserver lookup part in name-resolution. Hence,

this will improve DNS lookup performance at the expense of more nameserver state at a local DNS

server. However, in the passive mode, verifying the validity of an NS-record is an expensive op-

eration since this would require multiple NS-record lookup queries for every name resolution. In

the passive mode, we initially perform a single NS-record lookup to one authoritative nameserver,

but perform a lazy verification of the NS-record by querying other nameservers. Here, the server

can aggregate several such queries into a single request in order to reduce the verification overhead.

Hence, for the first DNS query to a target domain, we cannot guarantee validity of the NS-record if

the authoritative nameserver contacted is compromised.
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7.4.5 D-SecDNS name lookup process

Figure 7.3 illustrates the name lookup process in D-SecDNS. An end-host that wants to resolve the

IP address corresponding tofoo1.foo2.bar.orgperforms the following steps. First, each end-host is

configured with a set of local DNS servers. The end-host contacts one of the local DNS servers

with a DNS request. The local DNS servers examines its local cache and if the name is not present.

If not, we have two different cases: (a) local DNS server is an authoritative nameserver; (b) local

server is a non-authoritative server.

If the local DNS server is an authoritative nameserver, then it sends a request to the authorita-

tive nameserver that has the longest suffix match tofoo2.bar.org. Typically, the longest domain

suffix should matchfoo2.bar.orgin which case it should directly obtain a response. Otherwise,

if the longest suffix isbar.org (which happens when the NS-record corresponding to subdomain

foo2.bar.orgis not pushed), the DNS server traverses the DNS hierarchy frombar.org to resolve the

name.

If the local DNS server is an non-authoritative server in active mode, it performs the same process

of querying the authoritative nameserver with the longest domain suffix match tofoo2.bar.org. If in

passive mode, this is preceded by a query to any authoritative name server to determine the longest

suffix match. Upon receiving a response to a DNS query, the response is cached and forwarded to

the end-host.

It is also important to note that from the end-host’s perspective, D-SecDNS presents the same lookup

interface as the traditional DNS. Hence, D-SecDNS does not require any modifications to end-hosts.
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7.5 Security guarantees

D-SecDNS provides a practical security approach for addressing the data integrity threat to the DNS

and we believe that D-SecDNS does not introduce new vulnerabilities over the underlying legacy

DNS system. Overall, D-SecDNS provides the following security guarantees. First, it ensures that

data integrity is preserved as long as the original authoritative nameservers are not compromised.

Second, it alleviates the impact of compromises of legacy servers. Third, it eliminates the risk of

domain hijacks introduced by subtle dependencies due to transitive trust. Finally, by disseminating

DNS records it increases the resilience of the system by providing the ability to directly contact the

authoritative nameserver of a domain as opposed to using redirection based lookup model. This also

reduces the overhead of data-integrity verification by supporting off-line verification.

A fundamental issue in relying on DNS bindings obtained through any server in the system, not

necessarily the servers authorized to disseminate the bindings, is a risk of accepting corrupt data.

D-SecDNS uses the guarantees of the reliable communication toolkit, to ensure that the DNS bind-

ings used are uncorrupted and match the DNS bindings originally advertised by the authoritative

nameserver, as long as fewer thank malicious nodes in the system collude. A subtle security issue

in D-SecDNS is however, in ensuring that the bindings are advertised by authoritative nameservers

in the first place. Note that, it is possible for a number of malicious nameservers to pretend to be

authoritative for a domain name, and there by introduce bogus bindings for that domain. Since the

adversary is at a liberty to introduce any number of such bogus data sources, a simple majority

voting is insufficient to authenticate the data, or more importantly will wrongly authenticate the

bogus data. D-SecDNS thwarts this attack by verifying the authenticity of data sources with the



188

legacy DNS delegation path. Thus only DNS bindings introduced by a name server that is listed as

authoritative for that domain by the parent zone are propagated by D-SecDNS.

The above scheme, however, does not provide protection when the attacker compromises the au-

thoritative nameserver in the first place. D-SecDNS uses a simple technique to alleviate the effect

of server compromises. Wherever there are multiple authorities for a domain name, it performs a

simple majority voting to evaluate the authenticity of DNS data. Thus, unless the attacker takes over

every authoritative nameserver for a domain, D-SecDNS can detect data integrity violations. How-

ever, majority voting cannot by itself separate corrupt data from correct data. Out-band intervention

may be necessary to determine which nameservers have been attacked. Nevertheless, this scheme

significantly raises the barrier to a successful attack and alleviates the impact of compromises of

legacy DNS servers.

7.6 Feasibility study

In this section, we argue that the above described D-SecDNS architecture is practically feasible.

From the data dissemination perspective, we quantify feasibility based on the following metrics: (a)

effects of system size (number of DNS servers); (b) amount of information disseminated and update

rate of information; (c) verification overhead. We will summarize the system size and update rate

characteristics of the current DNS as quantified by various measurement studies and describe their

implications on the D-SecDNS architecture.

System Size:Measuring the size of the existing DNS is a challenging problem in itself especially

given that the current DNS uses a pull-based model. The pull-based model makes it difficult to
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determine whether the entire space of nameservers and domains have been accurately covered by

a measurement study. A recent large scale survey [103, 104] of DNS conducted at Cornell in July

2004 analyzes the properties of DNS bindings for about600, 000 domain names obtained by crawl-

ing the Yahoo and Dmoz.org web directories. Their study indicates that about 530,000 distinct

domains are served by about 160,000 different nameservers. A recent but more detailed survey [12]

determined roughly11 million domains of which several domains are being hosted by a single

name server. As per their study, the DNS nameservers corresponding toname-services.comhandled

roughly127, 000 domains each. Verisign’s data indicates a linear growth in the number of registered

domains in the past few years with roughly10 million domains being registered each year (roughly

27, 000 per day). An alternate recent DNS study [8] discovered roughly400, 000 nameservers.

However, they also indicate that only a small fraction of these are authoritative nameservers. In sum-

mary, based on the existing measurement studies [103, 104, 8, 58, 12], the DNS supports roughly

100 million domains and has7.5 million nameservers of which roughly200, 000−300, 000 servers

are authoritative nameservers. The number of authoritative nameservers roughly matches with the

number of IP prefixes within the BGP routing table.

In D-SecDNS, every authoritative nameserver maintains an entry corresponding to every authori-

tative nameserver but is not required to maintain the binding for every domain name. Hence, even

though, the number of domains grows at the rate of tens of million domains every year, not each

domain name to nameserver mapping is maintained by every authoritative nameserver. In fact,

many subdomains of.com(or other top-level domains), often resolve to a specific end-host thereby

making a.comnameserver as their authoritative nameserver. Thereby, a few nameservers end up

being the authoritative nameserver for over100, 000 domain names. Such domain name mappings
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need not be pushed to all authoritative name servers and can be resolved by the longest suffix match

which redirects them to the top-level domains. This hybrid approach drastically reduces the amount

of state that needs to be distributed to (as well as stored at) each authoritative nameserver. In sum-

mary, we anticipate the number of domain name mappings that are widely distributed to be only a

small fraction of the total number of domain names.

Update rate: The Cornell DNS study [104] also conducted an active study of the rate of change

of DNS records performed by repeatedly polling the domain names every day and comparing the

snapshots over a period of 1 week shows that the average amount of change per day is about 0.8%.

Another study by Handleyet al. [58], determined that roughly0.5% of the domains change name-

servers and about0.1% of domains expire permanently everyday. Extrapolating to the entire DNS,

approximately420, 000 domains and100, 000 domains change everyday. For the entire DNS, this

translates to an update rate of760 KB/hour or1.6 Kbps, a relatively small bandwidth requirement.

This assumes that all the domain name information is explicitly pushed; in reality, the required

bandwidth should be lower than this quantity. Hence, the bandwidth requirement for propagating

DNS updates is well within the bandwidth capabilities of existing nameservers. In face, this rate

is orders of magnitude smaller than the total number of routing changes propagated in the Internet

today; a single session reset can simultaneously trigger updates for150 − 200K prefixes across a

single hop.

Verification overhead: The reliable communication toolkit can verify the validity of roughly

40, 000 signatures per second. Hence, the verification overhead associated with proactive dissemi-

nation is negligible. Additionally, offline verification ensures that this verification process does not

affect the performance of DNS lookup.
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7.7 Summary

In this chapter, we described D-SecDNS, a decentralized architecture that addresses the data in-

tegrity security threat to the Domain Name System. D-SecDNS uses three basic ideas to address

these security problems. First, D-SecDNS forms a trusted computing base across DNS servers that

has a2k + 1 vertex connectivity and uses the reliable communication toolkit within this network to

propagate DNS information reliably in the face of at mostk adversarial nodes. Second, D-SecDNS

does not delegate ownership of a domain outside it to prevent transitive trust problems. Finally,

D-SecDNS distributes important nameserver information proactively using the reliable communi-

cation toolkit to provide the ability to pre-verify the authoritative name server for a domain.

D-SecDNS is one design point in the space of different mechanisms to secure the DNS. Four as-

pects of our design make it appealing. First, D-SecDNS is a completely decentralized architecture

that does not rely in any form of central authority or a public key infrastructure. This enhances

the deployability and acceptability of D-SecDNS. Second, D-SecDNS retains the existing notion

of a DNS hierarchy yet can embed additional trusted links to this hierarchy to enable decentral-

ized verification of DNS mappings. Third, apart from the need to push DNS mappings between

nameservers, D-SecDNS retains many of the other functionalities of the existing DNS requiring

only minor modifications for deployment. Finally, D-SecDNS does not require any modifications

to end-hosts.
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Chapter 8

Conclusions and Future Work

“ Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.”

– Winston Churchill, November 1942

In this chapter, we conclude this dissertation with: (1) a summary of our contributions, (2) a de-

scription of the limitations of our solutions, and (3) a list of potential directions for future work.

8.1 Contributions

The main contribution of this dissertation is to address the question:Under what constraints, can

one can secure a routing protocol in a decentralized manner in the presence of adversaries?This

question was motivated by two related observations:

1. Today’s Internet infrastructure is vulnerable to the threat of malicious routers hijacking Inter-

net routes by propagating incorrect routing information. A single malicious router is capable
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of hijacking a significant fraction of Internet routes by launching such an attack. Such in-

cidents have happened in the past and have triggered Internet-wide outages. Hence, it is

paramount to secure Internet routing from this threat.

2. Internet routing protocols are in dire need of decentralized security mechanisms given the

deployment problems associated with a Public Key Infrastructure (PKI). Prior work [72, 112,

65, 92] on securing Internet routing protocols has primarily relied on the existence of a PKI

with a central authority to enable verification of the correctness of routing messages.

One of the key observations that enabled us to address this problem is to map the secure routing

problem to thereliable communication problem in unknown networkswhich represents a variant of

the original reliable communication problem [45, 22]. In the original version of the reliable commu-

nication problem without signed messages (i.e., no prior key distribution), an implicit assumption

was that the entire network topology was known to every node in the network. However, in secure

routing, this assumption does not hold; here, every node operates in an unknown network where

every node is only aware of its neighbors and needs to discover a genuine route to every other node

in the network.

The unknown network constraint makes the reliable communication problem a challenging one due

to the absence of any form of node authentication. In an unknown network, adversarial nodes can

generate incorrect routing information with non-existent nodes, edges and genuine nodes have no

direct way of determining the truthfulness of a routing information. We address this challenge using

the concept ofpath-vector signaturesas described in Chapter 4 which enables a good node to clas-

sify truthful and incorrect information into different bins; however, they cannot always determine
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Figure 8.1: Summary of key results on reliable communication. In this figure,k represents the
number of adversaries.

as to which bin contains the truthful information. Here, we show that if the network satisfies the

connectivity constraint(i.e.,a minimum vertex connectivity of2k+1 in the presence ofk colluding

adversaries), then a good node can determine the truthfulness of routing information.

8.1.1 Summary of theoretical results on reliable communication

In this dissertation, we establish the following theoretical results (Chapter 4 and 5) on the reliable

communication problem in unknown networks as summarized in Figure 8.1:

1. A network needs to satisfy thefixed-identity criterionwhere every node has a unique identity

which it cannot fake. If this criterion is not met, then we show the existence of unknown

networks where a single adversary is sufficient to disrupt reliable communication irrespective

of the connectivity of the network.
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2. Along with the fixed-identity criterion, we require a minimum level of network connectivity

to achieve reliable communication. To handlek colluding adversaries, we require a minimum

vertex connectivity of2k + 1 while for k independent adversaries, we only require a vertex

connectivity ofk + 2.

3. If the connectivity constraint is not met, we show that nodes can usepenalty-based filtering

as a defense strategy to limit the potential damage that adversaries may cause. We show that

penalty-based filtering is the optimal defense strategy in the presence of a single adversary.

4. In Internet-like topologies which are modeled by power-law random graphs, we show that the

cumulative damage that a single adversary can cause is very small (O(n1/α logβ n)) where

2 < α < 3 is the power-law random graph parameter andβ is a constant) compared to the

size of the network (comprisingn nodes).

8.1.2 Applying reliable communication theory in practice

In this dissertation, we demonstrate three different real-world applications on how the reliable com-

munication concept theory can be applied in practice to achieve decentralized security:

1. Listen and Whisper: Security Mechanisms for BGP(Chapter 3): We propose Listen and

Whisper as two mechanisms to secure the data plane and control plane of the Border Gateway

Protocol (BGP). Whisper checks for consistency of routing advertisements in the control

plane and Listen detects non-functional routes in the data plane by checking whether the

data sent along routes reach the intended destinations. Whisper forms the basic building

block for the path-vector signature construction used to solve the reliable communication
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problem. Whisper along with penalty-based filtering is a direct application of the reliable

communication theory in sparse networks (Chapter 5) where the goal is to limit the damage

that malicious routers can cause. Listen presents a simple solution to the relaxed version of

the data-plane secure routing problem described in Chapter 2. While one could apply the

reliable communication theory to address the rigid version of the data plane secure routing

problem, we chose not to do so since such a solution becomes expensive in practice.

2. Reliable Communication Toolkit (Chapter 6): The reliable communication toolkit is a sys-

tem implementation of the basic building blocks essential to achieve reliable communication.

This toolkit exports a generic set of primitives that can be integrated with various forms of

routing protocols to secure them in a decentralized manner. In Chapter 6, we illustrate how

this toolkit can be integrated with three basic routing protocols: link-state routing, distance-

vector routing and path-vector routing. Using a detailed system evaluation of the toolkit, we

show that reliable communication is feasible, practical and efficient from a systems perspec-

tive. Specifically, we show that the additional overhead of integrating the toolkit with routing

protocols is minimal.

3. Addressing Data Integrity Threat to the DNS: (Chapter 7) The principle of reliable com-

munication has broader applicability beyond routing protocols. To illustrate this, we present

the design of D-SecDNS, a decentralized security architecture to address the data integrity

security threat to the Domain name System (DNS). The basic idea in D-SecDNS is to use the

reliable communication toolkit to establish reliable communication channels between differ-

ent name servers. Using this channel, each name server disseminates its name-server records

to other authoritative name servers in a verifiable manner. Thereby, D-SecDNS can ensure
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the integrity of a DNS query response unless an authoritative name server of a domain is itself

corrupted.

8.2 Limitations

In this section, we will describe some of the limitations of our solutions.

Fixed-identity criterion: Our theoretical results establish the need for the fixed-identity criterion

to achieve reliable communication which in turn restricts the applicability of our solutions. There

are many real-world networks like dynamic peer-to-peer networks and mobile ad hoc networks

which do not satisfy the fixed-identity criterion. Our techniques are not directly applicable to such

networks.

Connectivity constraint: In addition to the fixed-identity constraint, a network needs to have a

minimum connectivity of2k + 1 in the face ofk colluding adversaries for reliable communication.

This imposes a fundamental bound on the number of adversaries that any decentralized security

mechanism can handle. Unfortunately, the practical value ofk that can be supported for many

such real world networks is small typically in the range[0..10]. In fact, there are many networks

which cannot even handle a single adversary completely. For example, the Internet topology is only

1−connected, while portions of the topology are well-connected. In such a network, it is fundamen-

tally impossible to achieve “perfect” decentralized security in the face of a single adversary. The

best result we show for sparse networks is the optimality of penalty based filtering defense strategy

in the presence of a single adversary. However, the case of the optimal defense strategy for the

case of multiple adversaries is open. In the future, we hope to address this gap. Our solution for
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sparse networks is based on minimalistic assumptions: (a) apart from the fixed-identity criterion,

we operate in an unknown network and make no other specific assumption about the network; (b)

every node locally estimates reputation of nodes for routes without relying on any form of reputation

feedback from other nodes. One can potentially design better security mechanisms by exchanging

reputation feedback between nodes and obtain tighter security guarantees for sparse networks. If

we relax the unknown network assumption where one can has partial information of the topology

(based on prior history in the absence of adversaries), then one can potentially get better security

guarantees.

Data-plane correctness verification:Verification of route correctness in the data plane is funda-

mentally a hard problem in the face of adversarial nodes along the data path especially given that

such nodes can merely drop all data packets while acting as genuine nodes for probe packets used for

testing correctness. Any data-plane probing mechanism that tests validity of a route can potentially

be proven to be correct if the adversarial nodes can explicitly identify such packets. The hardness of

the data-plane verification problem motivated us to designListenas a simple data plane verification

mechanism for BGP. Listen is also susceptible to the case of adversarial nodes propagating bogus

acknowledgments to TCP connections. In such a case, Listen will detect the route to be functional

while in reality it is not. Detecting such non-functional routes with active adversaries along the data

path is fundamentally hard.
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8.3 Future Directions

There are several interesting directions for future work that one could pursue based on the work

presented in this dissertation. Some of the future directions that we present are open theoretical

problems relating to the reliable communication problem while others have more of a systems per-

spective to them.

8.3.1 Compact path-vector signatures

The path-vector signature construction presented in Chapter 4 which forms the basis of reliable com-

munication has a message length ofnM bits wheren is the length of the path and every individual

signature is represented usingM bits (the value ofM should be at leastO(log N) whereN is the

size of the identity space). The open research question is:Can one construct a compact path-vector

signature construction which satisfies the same security properties of the original construction with

a message length ofO(M) bits? This question is relevant due to two reasons. First, in the context

of BGP, reducing the signature length has the practical implication that the signature can be easily

integrated into the BGP update message using a single field in the route updates. BGP has a max-

imum message size of4096 bytes, which imposes certain limitations on the signature length per

message; if longer, a signature needs to be split across two or more route updates. Second, reducing

the message length also reduces the complexity of reliable communication since this reduces the

time complexity of propagating messages across links as well as reduces the storage requirements

at every node.

The problem of compact path-vector signatures has been addressed in the context of Secure-BGP [72].
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All these works [73, 132] leverage the basic idea ofaggregate signatures, a seminal cryptographic

construct developed by Bonehet al. [28] where a set ofn distinct signatures onn distinct messages

from n different users can be aggregated into a single short signature. However, this construction

relies on the fact that all the public keys of the users are derived from a single master authority

(equivalent to central authority of a PKI). This assumption does not hold in unknown networks

since each node generates its own keyed identity.

8.3.2 Sparse networks with multiple adversaries

As described earlier in Section 8.2, the problem of determining the optimal defense strategy in

the case for sparse networks in the presence of multiple adversaries (colluding or independent) is an

open research problem. The case of independent adversaries should be much simpler to address than

the case of colluding adversaries. The challenging aspect of this problem of multiple adversaries

(colluding or independent) is to determine theminimum damagethat a set of adversaries can cause

without being detected by good nodes in the networki.e., no decentralized security mechanism

should enable a good node to be able to pinpoint any adversarial node with certainty over other

good nodes in the network. The property we require is that a set of adversaries can trigger spurious

announcements as long as they can remain indistinguishable from other good nodes in the network.

8.3.3 Complexity analysis in unknown networks

We need good models for analyzing the complexity of distributed algorithms in unknown networks.

The problem is that since the network is unknown, there is no global notion of time. In Chapter 4,

we used a simplistic model which indirectly enforced a global notion of time by establishing band-



201

width constraints along each link. However, this model is too restrictive. In the face of queuing

delays at each node, a single adversarial node propagating an infinite number of spurious messages

(one message per unit time) can make several simple distributed algorithms to have exponential

complexity. For example, consider Lemma 4 described in Chapter 4. In this case, the minimum

time required to propagate a single message between two nodes (separated by a path of lengthl) in

the face of adversaries continuously injecting spurious messages has exponential complexity inl.

The problem with this analysis is that an adversarial node injects an exponential number of spurious

messages (one message per unit time where each new spurious message has a new fake identity

embedded in it) that in the presence of nodes with infinite buffers causes exponentially long delays.

A more realistic model would involve only a bounded number of spurious messages with distinct

fake identities from each adversarial node. In summary, one requires better complexity models for

unknown networks to analyze the complexity of distributed algorithms.

8.3.4 Secure network coding

The reliable communication theory can be used to address some open security problems in the space

of network coding. The concept of network coding was introduced in a seminal work by Ahlswede

et al. [102] where they show that the net utilization of a network can be improved if intermediary

nodes in the network are allowed to encode packets. The general network coding problem can be

stated as follows:

Network Coding Problem: Consider a directed acyclic graphG = (V, E) with a sources and

a set of receiversT ⊂ V . Given that every edge inG has a unit capacity, what is the minimum

transmission rate achievable froms to all the receivers inT?
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Ahlswede et.al. [102] showed that there exists a network code which can send information at rate

Cmin whereCmin is the minimumedge-cutfrom the source to each of the receivers.

One variant of the network coding problem that has not yet been completely addressed is the prob-

lem of secure network coding. The specific question, we wish to address:What is the optimal

capacity of network coding in the face of adversarial nodes in the network?Prior work on estimat-

ing the capacity of network coding in the face of adversaries [60], only consider the case of wire-tap

adversaries (adversaries on the links) but not the case wherenodes are adversaries. Additionally,

these works assume that the topology is known.

The secure network coding that we intend to address can be stated as follows:

Secure network coding problem:Consider a graphG = (V, E) where each node is aware of only

its neighbors and every link has bi-directional unit capacity. A sources in G intends to multicast a

stream to a set of receiversT ⊂ V . Given a boundk on the set of colluding adversaries, what is the

minimum transmission rate achievable froms to T?

Reliable communication enables us to achieve decentralized key distribution which in turn can aid

in secure network coding. If reliable communication is achievable in a network, we conjecture that

one can achieveerror-freecapacity where the adversarial nodes can at best act as node failures by

dropping packets.

We define theadversary-free subgraphof a graph to be the subgraph generated by removing all

the adversarial nodes from the original graph. We denoteadvf(G) to represent the adversary-free

subgraph of a graphG. We conjecture the following result:

Conjecture: Consider an undirected graphG with at mostk adversaries and unit-capacity edges.
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Let Ĝ be any directed acyclic orientation of an undirected graphG containing a sources and a

set of receiversT . The capacity of secure network coding inĜ is equal to the multicast capacity of

advf(Ĝ) if and only ifG is 2k+1 vertex connected. Otherwise, the secure network coding capacity

is zero.

8.3.5 Reputation systems

The area of reputation-based systems is growing rapidly as an important area in distributed sys-

tems [106]. Marti and Garcia-Molina [82] present a good survey of different reputation mechanisms

for P2P mechanisms. In reputation systems, nodes associate areputation metricwith every other

node in the system that determines the level of trust that one node places on another. In the presence

of conflicting information, the reputation metric has been used as the primary metric for decision

making in different systems [68, 51]. The reliable communication toolkit described in Chapter 6 is

one such reputation system where every node computes a reputation for every route and uses this

metric for route selection.

One of the important open problems in reputation systems is:how does one compute reputation in

the face of adversarial nodes whose primary goal is to game the reputation system?An exact answer

to this question may be dependent on the system under consideration, the underlying assumptions of

the system and the adversarial model. In the reliable communication toolkit, the reputation metric

we developed can provide provable guarantees provided the fixed-identity criterion holds and we are

given a bound on the number of adversaries. Traditional reputation systems [106] operate under the

assumption that the system only comprises of long-lived entities that capture and distribute feedback

between them for computing reputations.
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Two additional constraints make the problem even more challenging. First, inunknown networks

like P2P networks [82] and Internet routing [119], we operate under the constraint that nodes are

not aware of other nodes in the system. In such environments, associating nodes with reputation is

fundamentally hard; a recent result by Cheng and Friedman [37] establishes the non-existence of

Sybil-proof reputation mechanisms where nodes can modifies their identities. Second, a dishonest

party can lie about the reputation metric that it propagates to other nodes. In this case, a node needs

to compute a reputation metric based on potentially incorrect feedback from other nodes.

The larger vision for future work on reputation systems is the hope to develop a set of foolproof

reputation mechanisms that can be used as building blocks across different kinds of systems. Such

a system could have widespread applicability in P2P networks, distributed data storage and routing

protocols among many other distributed systems.

8.3.6 Centralized vs decentralized security

Another of the important unaddressed research problems in this thesis is the gap between central-

ized and decentralized security. If the network satisfies the connectivity constraint, then the security

guarantees offered by decentralized security matches that of centralized security using a Public Key

Infrastructure (PKI). This is because reliable communication essentially provides decentralized key

distribution if the connectivity constraint is met. In sparse networks, centralized security offers sig-

nificantly better security guarantees than decentralized security; however, the exact gap between the

two approaches is unknown for the case of multiple adversaries. For the case of a single adversary,

the gap between the two approaches can be established based on the results described in Chapter 5.

Another open research problem is to quantify the effectiveness of a hybrid approach withmultiple
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certificate authorities, a potential security solution that is deployable for Internet routing. To address

this, we recently proposed HLP [118], a next-generation routing protocol replacement for BGP,

where we argued the model of deploying a separate PKI rooted at each tier-1 ISP and requiring the

tier-1 ISPs to mutually re-conciliate routing conflicts. The security guarantees that such an approach

offers have not yet been well understood.

8.3.7 Verifiable transactions in federated databases

A federated database [113, 17] is a distributed database consisting of a collection of sub-systems

each maintained and administered by different autonomous entities. A federated database is similar

to the case of Internet routing with different autonomous systems. Many database transactions in

federated databases involve multiple autonomous entities who may potentially not trust each other.

We define a transaction to beverifiable in a federated environment if upon execution of the trans-

action, every autonomous entity participating in the transaction obtains a proof that the transaction

executed the exact set of operations that it was supposed to perform as specified before execution.

One crude example of a verifiable transaction of Internet routing is whenever a data packet is routed

in the network, every autonomous system along the path obtains a proof that the data was cor-

rectly routed to the destination. We believe, reliable communication can aid as a building block

for verifiable transactions in federated databases. One of the open research problems here is to

clearly articulate the space of verifiable transactions in federated environments and the essential set

of building blocks needed to support them.
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8.3.8 Routing in sensor and fixed-wireless networks

Sensor networks and fixed-wireless networks (e.g.,wireless backhaul networks) are two other classes

of networks which we did not consider in this dissertation which satisfy the fixed-identity criterion.

These devices can be inbuilt with tamper-proof identities in the firmware [124] to satisfy the fixed-

identity criterion. Hence, the reliable communication toolkit can be applied to these networks for

achieving secure routing and secure data dissemination (in sensor networks). In a recent work by

Wackeret al. [126], they provide a new mechanism for establishing pairwise keys in sensor net-

works. The underlying techniques used in this work closely match with the techniques used in our

reliable communication toolkit to achieve decentralized key distribution.

The additional challenges that one faces in the context of sensor networks islow battery powerand

low computing power. Public-key cryptography operations are known to be very expensive for these

tiny devices as illustrated by a recent work by Karlof and Wagner [69] on sensor network security.

Hence, an open research question is to build practical and energy-efficient security mechanisms for

achieving secure routing in sensor networks.
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