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As technology scaling continues, computer systems are facing the challenge of re-
liability degradation. It is projected that the fault rates of nanoelectronic devices will
be several orders of magnitude higher than that of conventional CMOS technology.
How to build reliable systems from unreliable devices is becoming an increasingly
challenging issue. Meanwhile, with abundant devices rendered by technology scaling,
it is also important to convert massive computing horsepower to high performance.
However, the requirements of reliability and performance are often competing for
hardware resources. This compels us to find solutions to address the dual challenges
in a unified manner.

This dissertation explores the architectural design of nanoscale integrated systems
to address multiple challenges in reliability and performance. Several novel solutions
are proposed for the design of memories and computing/signal processing systems.
These solutions open up opportunities for design space exploration along many new

dimensions to unfold the full potential of nanoscale integrated systems.
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Chapter 1

Introduction

1.1 Overview

Since the invention of CMOS-based integrated circuits (IC), computer system de-
sign has reaped a dramatic improvement in computational performance. The key
enabling technologies are a combination of advances in semiconductor process and de-
sign methodology, and innovations of architecture/microarchitecture. As technology
scaling continues, growing chip complexity introduces new challenges at both device
and architectural levels. In particular, nanometer regime devices are approaching
their physical limits, and precise control over design uniformity becomes extremely
difficult [1].

Many novel nanoelectronic devices including carbon nanotubes [2], silicon nanowires [3],
quantum-dot cellular automata [4] and resonant tunneling devices [5] have emerged
as the potential computational substrates for nanoscale integration. However, the
bottom-up stochastic assembly of nanoelectronic devices leads to substantial relia-
bility degradation. Defect rates in nanoelectronic devices are projected to be in the
range of 1073 — 107!, several orders of magnitude higher than conventional CMOS
technology [51]. In addition, nanoelectronic devices are also vulnerable to soft (tran-
sient) errors caused by particle strikes and timing failures [123, 124], causing erroneous
behaviors even more difficult to model and predict. Thus, building reliable nanoscale

integrated systems is becoming a challenging problem that must be addressed at
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various levels of design hierarchy.

In addition, chip security is another important aspect of computer systems and has
drawn more attentions recently. Well-designed cryptographic algorithms can provide
strong protection on the secret information. However, cryptographic implementation
always leaks certain information, such as erroneous behaviors, timing, power, and
electromagnetic, etc., through side channels, which can be exploited to retrieve secret
keys much more easily compared with algorithm weaknesses. This further exacerbates
the challenges of building reliable computer systems.

Meanwhile, with abundant devices rendered by technology scaling, it is impor-
tant to convert the massive computing horsepower effectively to high performance.
However, this is difficult especially because the various requirements of reliability
and performance are often conflicting. In particular, reliability requires certain forms
of redundancy to detect possible errors/faults, whereas performance desires paral-
lel execution. Thus, these two requirements are competing for hardware resources.
This compels us to find efficient hardware resource management and architecture-
level solutions to balance these requirements and to achieve careful tradeoffs. This

dissertation explores the design space to address the above challenges.

1.2 Thesis Contributions

This dissertation contributes to the field of computer engineering by developing novel
techniques to address the crucial design challenges of building reliable and high-
performance nanaoscale systems. Different from existing solutions, these solutions
seek to satisfy the different requirements in a unified manner. This promising research
direction can lead to the advancement of nanoscale integrated systems and can unfold
the full potential of these systems. The following published work has been done as

the contributions in this direction:

e Proposed novel memory microarchitectures [22, 24, 25, 26, 27, 33| to address
the complicated tradeoffs among requirements for error tolerance, performance,

power, and bandwidth usage.
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e Proposed architectural level solutions and resource management policies [34, 28]
for nanoscale computing systems to efficiently manage abundant nanoelectronic

devices for the enhanced reliability and performance.

e Developed algorithms for nanoscale signal processing [31, 32] to achieve self-
enabled defect-tolerance at reduced complexity as compared with traditional

defect-mapping based techniques.

e Proposed microarchitecture/circuit approaches [29] to enhance chip security

against power analysis attacks in an algorithm-independent manner.

1.3 Outline

This dissertation is organized as follows. Chapter 2 briefly summaries the related work
in the literature. In chapter 3 through 7, the proposed solutions will be elaborated.

Chapter 8 outlines some topics for further research.



Chapter 2

Related Work

In this chapter, some related work on the general topics of enhancing system per-
formance, reliability, and chip security is briefly reviewed. More specific techniques

related to our work can be found in the following chapters.

2.1 Performance

To improve the performance of computer systems, research in computer architecture
aims at exploiting higher levels of parallelism in instruction processing. There is
a clear trend towards multithreading and multicore. Simultaneous multithreading
(SMT) [11], [12] and chip multiprocessors (CMP) [13], [14] exploit instruction-level
and thread-level parallelism jointly to improve instruction throughput. Many tech-
niques have been proposed to further improve the performance of SMT-CMP based
architecture.

It should be pointed out that memory system remains a bottleneck for the per-
formance improvement of computer systems. To shorten the gap between processor
and memory speeds, many hardware/software approaches [15, 16] are proposed to
reduce miss rate and miss penalty by prefetching data to exploit parallelism. In ad-
dition, pipelined caches, multibanked caches, and nonblocking caches are proposed to
increase cache bandwidth.

As single-threaded computing still struggles with the memory wall, SMT-CMP
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based architectures are further challenged by the incompatible memory hierarchy
that is developed originally for single-threaded computing. As each processing core
in SMT-CMP systems is extended with the capability of multithreaded execution,
competition for memory resources is exacerbated. This not only hurts the overall
performance but also affects the energy efficiency.

Some existing research studies inter-thread conflicts by modeling [17] and software
optimization [18, 19]. It was shown that these techniques might be only affordable in
large and less active L2 or L3 caches in high-performance processors. For embedded
multicore systems-on-chip with limited memory resources, the effectiveness of these
techniques becomes marginal. Some other work on the topic of improving memory
performance can be found in [46, 47, 48, 49|, where cache memory is reconfigured
to reduce conflicts and hence miss rates. It should be pointed out that the above

techniques only focus on memory performance.

2.2 Reliability

Most existing work addresses reliability issues by exploiting certain forms of redun-
dancy. At the device/circuit level, defect mapping techniques [6] were proposed to
identify and replace defective devices with spare defect-free devices (hardware redun-
dancy). However, these per-chip based test-then-reconfigure approaches are expensive
and time-consuming for ultra high-density nanoscale integrated systems.

In another approach, error correcting codes (ECC) exploit information redundancy
by implementing error checking bits for the data under protection. ECC’s are widely
employed to provide fault tolerance mainly for memories and interconnects |7, §].
However, it might be difficult, if not impossible, for practical ways of implementing
ECC in logic operations and instruction processing.

At the system level, redundancy based techniques, such as modular redundancy
and multiplexing logic, were proposed [9] to achieve fault-tolerant logic operations.
Recently, NAND multiplexing is improved with a rather low degree of redundancy [84].
However, the existing redundancy-based techniques all introduce large overheads. In

addition, most existing work uses fixed modular redundancy, which is inflexible to
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cope with different reliability requirements at runtime.

2.3 Chip Security

Chip security is another important aspect of building reliable computer systems.
Well-designed cryptographic algorithms can provide strong protection on the secret
information. However, cryptographic implementations always leak certain informa-
tion, such as timing, power, and electromagnetic, etc., through side channels, which
can be exploited to retrieve secret keys much more easily compared with algorithm
weaknesses. This raises a challenge on building reliable and secure computer systems.

Furthermore, chip security and error/fault tolerance are related. Fault analysis
attacks [37], which insert errors into cryptographic systems then observe and ana-
lyze the erroneous behaviors to break the secret key, can be effectively prevented by
reliability enhancing techniques [38, 39].

Besides fault analysis attacks, there are many other types of side-channel attacks.
Examples include timing attacks [40], cache-based attacks [41, 42], power attacks [44],
and electromagnetic analysis, etc. Countermeasures [43, 45] try to address the side-
channel attacks by targeting the source of information leakage (cache conflicts and

data-dependent power etc.).



Chapter 3

Soft Redundancy for Memory
Design

3.1 Overview

Among all on-chip functional units, memory is particularly exposed to the reliability
degradation in nanoscale integration. This is because memory circuits are built on
minimum-geometry devices that are very sensitive to variations in process parameters,
supply voltage and temperature. In addition, nanoscale memory circuits are also likely
to suffer from unpredictable soft errors caused by particle strikes and timing failures.

Existing techniques, such as double/triple memory redundancy [117, 125] and
ECC-based techniques, incur large area and performance overhead due to integer
factor redundancy and complex error detection and recovery circuits. New solutions
are needed to achieve better tradeoffs between reliability and performance. In our
research, we exploit a unique memory behavior referred to as soft (transient) redun-
dancy, which is created at runtime due to dynamic access patterns of the workloads.
Specifically, some memory spaces may store irrelevant data or remain idle over time.
They can be released and utilized to store copies of important data. Soft redundancy
was initially studied in our prior work [22], where we exploited soft redundancy at
cache subline level. Later, we extended this study to cache line level [25] and thread

level [27]. Different from existing work, soft redundancy does not increase memory size
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(e.g., no extra memory cells for redundancy as in N-modular redundancy). Rather,
it exploits the under-utilized memory spaces. Furthermore, soft redundancy can be
adaptively allocated to improve error tolerance and access performance in a unified
manner. Our solutions at different memory levels are elaborated in the following

sections.

3.2 Soft Redundancy at Subline Level

3.2.1 Introduction

Traditional cache design focuses primarily on access performance such as reducing
miss rate. Large cache lines take advantage of the inherent spatial locality to reduce
cache misses. However, many irrelevant data are likely to be fetched as well, thereby
wasting memory space and bandwidth. Sub-blocked cache [118] is beneficial to band-
width usage by dividing each cache line into several addressable sub-blocks. During
a miss, only one sub-block will be fetched, thereby reducing bandwidth requirement.
However, sub-blocked cache tends to increase cache misses. In most designs, the sizes
of cache line and sub-block are fixed, but the spatial locality varies during runtime
under different workloads. This makes even more difficult to manipulate the tradeoff
between access performance and bandwidth usage. To adapt to the varying locality of
the program, some existing techniques dynamically adjust the block size [126], [127],
number of sub-blocks [128], cache size [46], set-associativity [47], or replacement pol-
icy [129] during the course of execution. However, it should be pointed out that
memory robustness (i.e., error tolerance) is not the primary focus of these above
techniques.

The dual challenges of device-level reliability degradation and architecture-level
performance gap make memory design tradeoffs more complicated but in favor of
techniques which address memory robustness, access performance, and bandwidth
in a unified manner. While the increasing physical and architectural complexities

impose significant challenges to memory design, they also create opportunities for
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design space exploration along many new dimensions. Different from the aforemen-
tioned techniques, this subsection studies a unique memory behavior referred to as
the soft (transient) redundancy at cache subline level. Exploiting soft redundancy
at subline level, we are able to achieve self-adaptive and selective error control while
improving memory performance. In contrast to conventional error-correction codes
(ECC) which provide static error-control coverage to all the cache lines, our technique
deliberately enhances the tradeoff between error tolerance and performance improve-
ment by exploiting the fact that memory usually contains many irrelevant or to be
replaced data, and thus providing full error-control coverage to all memory data is
unnecessary. In addition, the proposed technique does not increase memory size (e.g.,
no extra memory cells for redundancy as in N-modular redundancy) but exploits the
inherent transient redundancy for error protection. Our technique is suitable to a
large body of general purpose computing applications. Note that for specific appli-
cations, such as multimedia processing, some techniques different from traditional
ECC or N-modular redundancy for general scenarios have also been developed. One
example is reconstruction of the missing macroblocks for error concealment [130].
Different from these techniques, our approach focuses specifically on memory systems
(e.g., on-chip cache) which are vulnerable to soft errors.

Soft redundancy was initially proposed for on-chip memory design in our past
work [22], where some preliminary results demonstrated joint improvement of error
tolerance and access efficiency. In [24], a new soft-redundancy allocation mechanism
is developed to allow more effective utilization of soft-redundant memory resources.
This is achieved by distinguishing two types of cache misses: tag mismatches and
subline misses, thereby enabling more accurate judgement on the status of cache
lines to detect soft redundancy. In addition, a new runtime optimization method is
proposed to adaptively utilize the soft-redundant memory for time-varying workloads.

In section 3.2.2, we present the memory architecture to exploit the soft redundancy
at cache subline level. A design optimization method supporting runtime reconfigu-
ration is developed in section 3.2.3. Simulation results are provided in section 3.2.4

to evaluate the effectiveness of the proposed technique.
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3.2.2 Memory Architecture Exploiting Soft Redundancy

Soft Redundancy

| Tag | Index |Offset|
Y<11> <8> J<5>
soft redundancy |Decoder |Decoder| Valid bit

mapping pair Tag array and data array

Al
ModeHistoryRedund nicy Tag V Data V _Data V Data V Data
T T
Tl

ISubline{ 00 01

I
d
I
. |
00; 01] 11,10 }«4-4 N
I
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Look-up table LRI kg

Encoder| <2+2=4

pass the two subline
IDs to Data Mux
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A
=
~
oo
\
r
=]
2
0
2
=1
W

<16/8>

Mode
1: error checking;
0: no checking

Hit/Miss Data Cancel

Figure 3.1: The generic architecture of the proposed soft-redundancy allocated mem-
ory. The numerical values of bit-widths are used in an example described in sec-
tion 3.2.2 for the purpose of illustration.

Figure 3.1 shows the cache architecture allocating soft redundancy for memory
access. The numerical values of bit-widths are used in an example described below
for the purpose of illustration. In this example, the physical memory address consists
of 24 bits. The total cache size is 32KB with set-associativity of four, and each cache
line contains 32B. Only one way is shown in Fig. 3.1 as all the four ways are identical.
In order to identify and utilize soft redundancy, each cache line is divided into multiple
sublines (e.g., four sublines in Fig. 3.1 for the purpose of illustration). Note that the
subline size is a key parameter that affects the distribution of soft redundancy, the
coverage of error control, the miss rate, and the bandwidth usage of memory access.
A general solution determining the subline size is given in section 3.2.3. A decoder
(the top-left one in Fig. 3.1) uses the index to select a cache set and the cache lines in

this set. Tag comparison will indicate whether it is a hit or a miss. Another decoder
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(the top-right one in Fig. 3.1) uses the lower bits of the offset to decode the word /byte
address and the higher bits to determine which subline is accessed. This information
will be used to determine the soft redundancy mapping pair. For example, in Fig. 3.1
subline 00 stores the original data and subline 11 stores the redundant copy. These
two subline IDs are used by the data mux to select the original data and its redundant
copy. The original data is read out directly. Meanwhile, the two copies are compared
for error detection. If an error is detected, the read operation will be canceled and
new data will be fetched from the lower level of memory.

A look-up table is introduced to monitor the subline status for soft redundancy
detection and allocation. The look-up table is composed of three fields: (i) mode field,
indicating the operation mode of each cache line, (ii) history field, storing the IDs of
the sublines that experience misses most recently, and (iii) redundancy field, storing
the IDs of the soft-redundant sublines. In general, if a cache line is divided into n
sublines, both the history field and the redundancy field will contain the IDs of n /2
sublines. Any two sublines with IDs in the same positions of the two fields maintain
a soft-redundancy mapping pair, and the mappings are updated at runtime based on
access activities. In the example shown in Fig. 3.1, the history field of each cache line
uses four bits to keep track of the two most recently missed sublines. For example,
the value “00-01” shown in the history field indicates that misses occur most recently
in the sublines “00” and “01”. In the subsequent memory accesses, a miss in the
subline “00” will not change the history field; whereas a miss in the subline “01” will
update the history field to “01-00”. If a miss occurs in any other sublines, e.g., subline
“10” or “117, the history field will be updated to “10-00” or “11-00”, respectively.
Similar to the history field, the redundancy field uses four bits to store the IDs of soft-
redundant sublines. For example, if the history and redundancy fields have “00-01”
and “11-107, respectively, then subline pairs “00”, “11” and “017, “10” are assigned
as two soft-redundancy mapping pairs, i.e., the sublines “117 and “10” are utilized
as soft redundancy to store the copies of sublines “00” and “01”, respectively, for the

purpose of error control.
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Each cache line can be operated in two allocation modes, error-checking and no-
checking, as indicated in the mode field of the look-up table. Cache lines in the no-
checking mode are accessed as conventional cache, while those in the error-checking
mode exploit soft redundancy for enhanced error control. The procedure of mode

switching is explained through an illustration example as follows.

An Illustration Example

We use a sequence of memory accesses shown in Fig. 3.2 as an example to explain
the operation of soft-redundancy allocation. Initially, this cache line is in the error-
checking mode by default. The mode field is set to “1” indicating this mode. The
history field stores “00-01” for the two default subline IDs “00” and “01”, while the
redundancy field stores “10-117, indicating that subline pairs “00”, “10” and “01”,
“117 are two soft-redundancy mapping pairs. Note that these initial values can be
chosen arbitrarily as soft-redundancy allocation will converge during the course of
execution. The valid bits of all sublines are set to “0” before fetching any data into
the cache.

We classify the cache misses into two types: one is due to tag mismatch, and the
other occurs when the tag matches but the valid bit of the accessed subline is not set
(referred to as subline miss). These two types of misses are treated differently in look-
up table update and mode switching. Assume that the first miss in this cache line is
a tag mismatch in the subline “01” (step 2 in Fig. 3.2). Since this is a tag miss, the
current cache line is likely to undergo a change in access pattern. The operation mode
is thus reset to error-checking so that the proposed technique can promptly detect
soft redundancy once a new access pattern starts. The history and redundancy fields
are updated together as a single field to “01-00-10-11". Instead of fetching the entire
cache line (the content of which would be, for example, A, B, C, and D in the four
sublines, respectively), our technique only fetches data for sublines “01” and “00”
listed in the history field. The sublines “10” and “11” listed in the redundancy field
are utilized to store the copies of sublines “01” and “00”, respectively. The valid bits
of subline “01” and “00” are set to “1”, while the other two sublines remain invalid

(i.e., being used as soft redundancy).
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Miss sequence
Mode History Redundax}éyV Data V Data V Data V Data
[1]oo o1 10} 1] [o] [o] [o] [o] |step 1
00 01\10 11 Tag miss, the subline being accessed is #01
(initial miss)

(oo [0y 1| VOV 00 Al m//J0] @y Jo| oy |step2
B B A

ntent: A

Tag matches, but a subline miss occurs in #10

[1]10700 01 1\ [1] oy [o[ aoy VII/@y/Jo] oy |siep3
A C C A
Tag matches, but a subline miss occurs in #11

[1]1710]o0jo1]/[o] ary Jo[ aoy [1] aoy [IJ/5/)|step 4
D C C D
Tag matches, but a subline miss occurs in #01
(oo [ o] | 785078 il i Jsens
A B C D
:l:’le:l Tag misses, the subline being accessed is #10
(w0 o[ 1joo] Vo[ o [IN///il//0y/Jo] oy |stepe
\\ F I G G

\\ F ,
X v 4

EZ):mode switching miss location newly fetched sublines

Figure 3.2: An example of soft-redundancy allocation with a specific miss sequence
assumed.

Assume that the next miss occurs in subline “10”, which is not listed in the history
field (step 3). Since only the history field in the error-checking mode contains the IDs
of valid sublines, this miss is caused by subline invalidity, i.e., the valid bit of subline
“10” is not set. When subline misses occur, the history field and redundancy field
are updated separately. In this example, “10” is moved to the first position in the
history field, so is “01” in the redundancy field to maintain the same soft-redundancy
mapping pair. Other subline IDs will shift their positions within the corresponding
field if necessary. Since the subline miss in step 3 is the first time that the look-up
table fails to predict, the cache line stays at the error-checking mode. The sublines
listed in the redundancy field remain as soft redundancy to store the copies of the
sublines listed in the history field for enhanced error tolerance.

After three consecutive subline misses that the look-up table fails to predict (steps
3-5), the memory access pattern becomes unpredictable due to runtime variations in
spatial locality. Hence, the allocation mode is switched to no-checking at step 5. The

sublines “00” and “01” listed in the redundancy field at the end of step 4 are released.
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After fetching new data into these two sublines, the entire cache line becomes valid.
Note that in this example the confidence level of mode switching is set to three
consecutive subline misses. A general method for determining the confidence level
and other key parameters will be given in section 3.2.3.

Assume that a tag miss occurs in subline “10” in the no-checking mode (step 6).
This will reset the mode back to error-checking, and the history and redundancy fields
are updated together to “10-01-11-00”. The sublines “10” and “01” are replaced with
new data (the contents of which are G and F', respectively), while the sublines “11”
and “00” are employed as soft redundancy to store the copies of sublines “10” and

“017, respectively.

General Algorithm for Soft-Redundancy Allocation

The above example demonstrates the underlying idea of soft-redundancy memory
allocation. By monitoring runtime access activities, we can keep track of the locations
(sublines) in a cache line that are accessed more frequently. If the spatial locality is
stable, the history field can capture this behavior and predict future memory accesses.
Accordingly, the sublines can be classified into two groups: frequently accessed and
seldom used. For stable memory spatial locality, the frequently accessed sublines
are likely to continue being accessed subsequently. The data in these sublines are
presumably important and error protection is thus needed. On the other hand, the
seldom-used sublines are most likely the ones containing irrelevant data. We can
release these sublines and assign them as soft redundancy for error protection of
frequently accessed sublines. Note that the access frequency alone is not effective
enough for soft redundancy capturing, because the temporarily “inactive” sublines
may still contain useful data while the frequently missed sublines may be occupied
by the irrelevant data. Therefore, we take into account both the access history and
the hit/miss information to direct the soft redundancy allocation. This is achieved
by updating the history and redundancy fields based on the order of miss occurrence.
As a result, the proposed technique is self-adaptive to runtime program variations. It
also helps to reduce the bandwidth wasted on fetching the irrelevant data.

Algorithm 1 shows the general algorithm for identifying and allocating memory
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Algorithm 1: Algorithm of soft-redundancy allocation. The allocation mode
and look-up table update as well as data replacement policy are shown.

begin
(part 1: allocation mode and look-up table update)
while a miss occurs do
if tag miss then
con fidence_counter = 0
update history_field and redundancy-field together
end
else if subline miss then
if confidence_counter < 2¢ — 1 then
| confidence_counter ++
end
update history-field and redundancy_field separately
end
if con fidence_counter < c then
| allocation_mode=error-checking
else
| allocation_mode=no-checking
end
end
(part 2: data replacement policy)
while replace do
switch switching of allocation mode do
(no-checking to no-checking transition will not happen)
case error-checking to error-checking
if tag miss then
fetch sublines listed in the history_field (1/2 line)
‘ store copies to the soft redundancy mapping pairs
end
else if subline miss then
‘ fetch the missed subline only (1 subline)
store a copy to the mapping pair

end
end
case error-checking to no-checking
if subline miss then
| fetch all the invalid sublines (1/2 line)
end
(tag miss will not happen in this case, as tag miss always switchs the mode to
error-checking)
end
case no-checking to error-checking
if tag miss then
fetch sublines listed in the history-field (1/2 line)
store copies to the soft redundancy mapping pairs
end
(subline miss will not happen in this case, as all the subline is valid in no-checking mode)

end

end
end

end

soft redundancy. There are two parts in the algorithm: one is regarding allocation
mode and look-up table update, the other is regarding data replacement policy. The

allocation mode is determined by the runtime access pattern predicted by the look-up
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table. The allocation mode switches according to the confidence level ¢ on whether
the access pattern could be sufficiently predicted or not. A counter is employed to
direct the allocation mode switching. Two types of misses, i.e., tag mismatches and
subline misses, lead to different operations on mode switching and data replacement.
When a subline miss occurs, the counter value will be increased by one. Consecu-
tive subline misses making counter value larger than the confidence level switch the
mode from error-checking to no-checking. On the other hand, a tag miss indicates
a possible change in access pattern. The counter is reset, switching the mode back
to error-checking. The counter values within [c + 1, 2¢ — 1] are reserved for runtime
reconfiguration as discussed in section 3.2.3.

The data replacement policy is determined as follows. (i) In the error-checking
mode, only the missed subline is replaced during a subline miss, whereas all the
sublines listed in the history field are replaced during a tag miss. Meanwhile, copies
of the newly fetched data are also stored in the sublines listed in the redundancy
field according to the soft-redundancy mapping pairs. (ii) If the mode is switched
to no-checking (caused by consecutive subline misses), only the sublines listed in the
redundancy field are replaced making the entire cache line valid. Note that subline
misses only occur in the error-checking mode because all the sublines are valid in
the no-checking mode. (iii) If the mode is switched to error-checking (caused by
tag misses only), only the sublines listed in the history field are replaced, thereby
reducing the bandwidth usage by half. Since the bandwidth usage during a miss is
either one subline or half of the cache line, the soft-redundancy allocation improves
memory access efficiency. Note that the soft-redundancy allocation is performed
simultaneously on a per-cache-line basis. Thus, the proposed technique can be directly

applied to caches with different set-associative placements.

Error Control

The proposed technique relies upon a dynamic mapping strategy by utilizing the
unused memory resources and thus enabling error control only when necessary, e.g.,
for the sublines being hit frequently where the data are most likely needed in subse-

quent accesses. Different from conventional cache operations, the proposed technique
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introduces an additional comparison between the soft-redundancy mapping pairs at
the error-checking mode. Mismatches in comparison indicate data upsets and result
in cancelation of the read-out data. Note that this additional comparison can be
made off the critical path to minimize the performance overhead (see section 3.2.3).
If errors are detected, a data refetch is performed to recover from any pattern of bit
corruptions. There is a possibility that the soft-redundant copy is corrupted thereby
introducing an additional miss. However, the performance overhead is negligible as
shown in section 3.2.4.

In the past, soft errors are typically modeled as single-bit upsets (SBU). As semi-
conductor process being scaled into the nanometer domain, a single particle strike may
potentially corrupt multiple memory bits, resulting in multiple-bit upsets (MBU). In
addition, timing noise tends to cause MBU as well. Among the existing solutions,
parity checking is considered as most effective for detecting SBU (and an odd number
of errors), whereas widely-used Hamming code provides error detection for up to two
bits of errors. ECC for more than two bits of errors is quite complicated and seldom
used in memory design. The proposed technique could detect and recover multiple
errors at any bits. Simulation results in section 3.2.4 demonstrate that the proposed
technique achieves 10X improvement in error detection over the parity checking and
Hamming code in both SBU- and MBU-dominant situations.

Access Efficiency

In addition to enhancing error control, the proposed technique also improves memory
access efficiency. In general, a cache memory with low bandwidth usage and/or miss
rate is considered as having high access efficiency. Conventional cache fetches entire
cache line during a miss. Obviously, this wastes bandwidth and leads to high miss
penalty. Sub-blocked cache fetches one sub-block each time to reduce bandwidth
usage but may further increase the miss rate.

The proposed technique improves access performance by selectively fetching sub-
lines according to history-based prediction. From Algorithm 1, if a cache line is in
the error-checking mode, a miss will only result in the replacement of either one sub-

line (if it is a subline miss) or half of sublines in the cache line (if it is a tag miss).
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Also, only half of sublines in the cache line are fetched when the allocation mode
switches between no-checking and error-checking. As a result, the bandwidth usage
is reduced. Furthermore, in the no-checking mode when memory access pattern is
not stable, the entire cache line will be valid. Hence, subline misses can be avoided
thereby improving the access performance over the sub-blocked cache. Simulation

results clearly demonstrate these benefits.

3.2.3 Design Optimization for Soft-Redundancy Allocated
Memory
In this section, we present the design optimization for soft-redundancy allocated mem-

ory. We first discuss the hardware implementation and then develop a general method

for parameter selection and runtime reconfiguration.

Implementation

In comparison with the traditional cache design, the soft-redundancy allocated mem-
ory introduces two additional components: a comparator for error detection and a

look-up table with the control logic.

Index Original offset Bit lines from data array
Hit/miss’s I_,_
—,;| Lookup table Data Mux
redundancy offset
Mode

original data redundant copy

g

Cancel

Figure 3.3: Logic schematic of error detection comparator (bit-widths can be found
in Fig. 3.1).
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The error detection comparator is shared by all cache lines at each read port.
From the look-up table we can get the subline IDs of a soft-redundancy mapping
pair. Possible soft errors can be detected through bitwise comparison between the
two data copies from the corresponding sublines. The logic schematic of the error
detection comparator is shown in Fig. 3.3, where the comparator is k-bit wide in
general (k is the memory access data width, e.g., & = 16 for a word and k = 8 for
a byte). Note that the error detection can be performed in parallel with the timing-
critical read operations to avoid performance degradation. During a hit, the primary
subline is read out directly without waiting for the result of comparison. If later
the comparator reports data upsets, a cancelation signal will be asserted, notifying
the execution unit to nullify the involved results and initiating a data replacement
request.

The look-up table is addressed by the index address and the hit/miss information
of each cache line. Each entry in the look-up table consists of one mode status bit
plus a history field and a redundancy field storing the IDs of the primary sublines
and soft-redundant sublines, respectively. These two fields consume n[log,n| bits in
total, where n is the number of sublines in each cache line. The procedure of subline
ID update in the look-up table is shown in Figs. 3.4(a) and (b) for four different cases.
Note that we need to keep the order of subline IDs in the history field to follow their
miss occurrence, i.e., the first ID must refer to the subline having the most recent
miss (see the example in section 3.2.2). If a subline miss occurs (see Fig. 3.4(a)), the
IDs of this subline and its soft-redundant pair will be moved to the first positions of
the history field and redundancy field, respectively, while the other subline IDs will
either shift to the right within the corresponding field or remain at the same location.
This will maintain the same soft-redundancy mapping pairs between the two fields to
avoid reshuffling the data in the sublines. On the other hand, if a tag miss occurs (see
Fig. 3.4(b)), the history and redundancy fields will be updated together as a single
field. Only the missed subline ID will be moved to the first position of the history
field.

The control logic of the lookup table is responsible for mode transition. The

counter in this control logic is designed with 2c¢ states, where ¢ is the confidence level.
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Subline miss:

Case 1 subline ID of Case 2
the miss
History field[ [ | -~ % -0 History field
First Last
subline ID subline ID|

Redundancy field IE |:| ----- |:| Redundancy field

Case 1: the subline ID of the miss is stored in Case 2: the subline ID of the miss is stored in
the history field. In this case, the IDs of the the redundancy field. In this case, the IDs of

missed subline and its soft-redundancy pair the missed subline and its soft-redundancy
are moved to the first positions of each field. pair are moved to the first positions of the
The other subline IDs either shift to the right  other field. The other subline IDs either shift
or remain at the same positions as shown to the right or remain at the same positions
above. as shown above.

(a)

Tag miss:

Case 3 Case 4

History field m -0 History field

Redundancy ﬁeldl:l |:| ----- |:| |:| ----- |:| Redundancy field

Case 3: the subline ID of the tag miss is Case 4: the subline ID of the tag miss is stored
stored in the history field. In this case, the in the redundancy field. In this case, the two
subline ID of the tag miss is moved to the fields are updated together. Specifically, the ID
first positions of the history field. The other of the tag miss is moved to the first position.
subline IDs in the history field either shift to The other subline IDs either shift to the right
the right or remain at the same positions. or remain at the same position as shown

IDs in the redundancy field stay at the same above.

positions.

(b)

Figure 3.4: Illustration of look-up table update: (a) update procedure on a subline
miss, (b) update procedure on a tag miss.

Thus, it is sufficient to express the counter by [log,2¢| = 1 4 [log,c] bits.

Note that same as other error-tolerant techniques, the proposed technique relies
upon the correctness in error detection and correction operations. The look-up table
is much less complex and easy to be implemented with sufficient reliability margin.
Thus, it is practically reasonable to assume that the error probability is much smaller
than that of the cache lines. In addition, some simple error-control techniques such
as parity checking may be able to further improve the robustness of look-up table.

For these reasons, we will focus on the dominant errors in cache lines for the sake of
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demonstrating the essence of the proposed technique.

Parameter Selection

The confidence level ¢ and the number of sublines n are the two key parameters that
need to be optimized for soft-redundancy allocated memory. The selection of these
two parameters must consider the hardware cost, error tolerance, and access efficiency

in terms of miss rate and bandwidth usage.

Hardware Overhead

Consider a general case where each m-word cache line is divided into n sublines. The
value of n needs to be an even number (usually power of two), which can be chosen
between 2 and m.

To estimate the hardware overhead, we consider the logic complexity of error
detection comparator and look-up table, the two new components in soft-redundancy
allocated memory. The comparator is k-bit, where k is fixed by the memory data
width. The look-up table contains 1+ n[log,n]| bits per cache line to store the mode
status and the IDs of all sublines. The control logic has a counter with 1 + [log,c]
bits, where c¢ is the confidence level. For a specific implementation, the hardware
overhead is proportional to the logic complexity of these components. Let 71, 72 and
v3 be the hardware cost per bit of the comparator, the history and redundancy fields,
and the control logic, respectively, where the numerical values are determined by the
specific physical implementation. The total hardware overhead of a memory with L

cache lines can be expressed by
C(n,c) =k -y + (1 +nfloggn]) - L v+ (1 + [logye]) - L - 3. (3.1)

Note that the overhead of the proposed technique is less than that of the tradi-
tional error-tolerant techniques such as ECC. The look-up table only needs to store
the subline IDs, and the control logic and the comparator have a very simple struc-
ture. In comparison, many ECC implementations require additional memory cells

for information redundancy and complicated logic such as finite field multipliers and
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division circuits.

Error Tolerance

The proposed technique enables error tolerance for those cache lines in the error-
checking mode. The cache lines in the no-checking mode experience frequent misses.
Thus, it is of low priority to provide error protection to those irrelevant and soon to-
be-replaced data. The error-control coverage ratio, denoted as R, can be calculated

as
MAerrorfchecking

)
MAtotal

where M Acrror—checking and M Agorq are the number of memory accesses in the error-

R:

(3.2)

checking mode and the total number of memory accesses, respectively.
In the following analysis, we rewrite R as R(n,c) because it is a function of
parameters n and c¢. The value of R(n,c) can be obtained by averaging over a group

of benchmark programs, as discussed in section 3.2.4.

Access Efficiency

To evaluate the access efficiency, we consider both the miss rate and bandwidth
usage. In the error-checking mode, the bandwidth usage can be reduced by exploiting
history-based prediction on spatial locality, which enables fetching only the relevant
portion of the cache line. In the no-checking mode where the memory does not show
stable spatial locality, the cache lines work in the same way as conventional cache
to avoid increase in subline misses. The self-adaptive mode transition enables better
performance over the sub-blocked cache. We denote the miss rate and bandwidth
usage as M(n,c) and B(n,c), respectively, to reflect the fact that they are functions
of subline number n and confidence level ¢. The value of M (n, c) can be calculated as

M(n,c) = tuss count. “and B(n,c) can be estimated by the number of fetched words.
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Joint Optimization for Hardware Cost, Error Tolerance, and Access Effi-

ciency

The needs of enhancing error tolerance (R(n,c)), improving access efficiency (M (n, c)
and B(n,c)), and reducing hardware cost (C(n,c)) are usually competing with each
other. For example, exploiting soft redundancy for high error tolerance may sacrifice
access efficiency in terms of miss rate and bandwidth usage, while pursuing high
access efficiency may increase hardware cost. Therefore, the optimal design should
achieve the best tradeoff in a design space spanning over these correlated dimensions.

To enable a general approach, we first normalize these metrics by their maximum

values, i.c.,
Cln,c) = CCS”’C), (3.3)

R(n,c) = R}gn’c)7 (3.4)

Min,c) = 20 (35)

Bln.e) = 29 (3.6)

The optimal soft-redundancy allocation is the one that achieves the best tradeoff
among error-control coverage ratio, access efficiency and hardware overhead. This
can be expressed as

A(Nopt, Copt) € (0, ), s.t.,

(E(nozm COpt))Wr

—

(a(nozatv Copt )V (M (Topt, Copt) )™ (‘/B\(nOPt7 COpt))Wb

~ max | — (F(n, )™ , (3.7)

(C(n, €))We (M (nopt, Copt)) V' (B (1ope, o)W

where W,., W., W,,, and W, are the weight factors that adjust the design priority.
Specific values can be determined by the designers to best meet their goals. For

example, if the four metrics are treated as equally important, the weight factors
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can be selected to have the same value. The solution to (3.7) can be obtained by
iteration over all the possible combinations of (n,c¢)’s, where the results of error-
control coverage ratio R(n, ¢), miss rate M (n, ¢), and bandwidth B(n, ¢) are obtained
along with the hardware cost C'(n, ¢) over a group of benchmark programs. Note that

the optimization method is applicable to different memory systems.

Runtime Reconfiguration

The subline number n,,: and confidence level ¢,,; obtained from (3.7) are optimal
with respect to the average effect of the benchmark programs. In practice, however,
different programs may have different memory activities and performance require-
ments over time. Thus, it is necessary to reconfigure the soft-redundancy allocation
at runtime. Note that changing the number of sublines is difficult because it is fixed
by hardware after the n,y, is implemented. The confidence level, however, can be
adjusted up to 2¢ — 1 states.

As discussed in section 3.2.2, a high confidence level makes the memory stay in the
error-checking mode longer. In general, the more accesses are in the error-checking
mode, the higher error-control coverage ratio and less bandwidth usage are expected.
This, however, may increase the cache misses, especially if the memory access pat-
tern deviates away from that predicted by the current confidence level. Apparently,
an optimal design would prefer the operation to be at the error-checking mode as
much as possible but without increasing the miss rate. This can be achieved by run-
time reconfiguration that monitors the miss count and adjusts the confidence level
periodically. If during the most recent period the miss count drops by a predefined
threshold, the dynamic confidence level ¢’ is increased by one. Otherwise, if the miss
count increase by a predefined threshold, the dynamic confidence level ¢ is decreased
by one. Consequently, the reconfiguration dynamically adjusts the confidence level
within the range of [1,2¢ — 1] through a direct correspondence with memory per-
formance. The reconfiguration threshold is determined by the stability of memory
access of the workload. If the access pattern is stable, a small threshold can help the
confidence level quickly converge to an optimal level. Otherwise, a large threshold is

needed to avoid the confidence level to be adjusted back and forth frequently, which



CHAPTER 3. SOFT REDUNDANCY FOR MEMORY DESIGN 25

may hurt the performance or the capability of error tolerance.

Note that the runtime reconfiguration is performed by software at a relatively
long interval. In addition, it can be done after the data accesses or when there is no
pending access. Thus, the performance overhead is negligible. When the confidence
level is adjusted, it is transparent to the cache as a global setting. Therefore, no

specific hardware is needed to support the runtime reconfiguration.

3.2.4 Evaluation and Discussion

In this section, we evaluate the proposed soft-redundancy allocated memory. We
will compare the error tolerance, access efficiency and bandwidth usage with the
conventional approaches.

The simulations were performed on a simulator based on the trace-driven simu-
lator Dinero IV [113]. We use the SPEC CPU2000 [10] trace files collected from the
Stream-Based Trace Compression (SBC) [114], where trace files of 23 benchmarks
are available. The cache model is modified to support the proposed technique. The
total cache size is 32K B with set-associativity of 4 and 328 each cache line. The
replacement policy being used is the Least Recently Used (LRU). The conventional
cache does not divide the cache line into sublines, whereas the sub-blocked cache and
the proposed technique divide each cache line into multiple sublines as determined in
section 3.2.4.

Design Optimization

We apply the optimization method as discussed in section 3.2.3 to determine the
subline number n and confidence level ¢. Since each cache line contains 16 words (32
bytes), the possible subline number n is 2, 4, 8, or 16, and the confidence level ¢ can
be chosen between 1 and 8. Figure 3.5 shows the optimization results of different
combinations of (n,c) with weight factors W, = 2, W, = W,, = W, = 1, i.e., error
tolerance is given the highest priority. The optimal parameters were found at ng, =
16 and cop = 2.

Note that these optimal parameters account for the average effect of all the 23
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Figure 3.5: Parameter selection based on the average effect of 23 benchmarks.
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Figure 3.6: Parameter selection for the vortex benchmark.

benchmarks. If the design targets a specific class of applications, e.g., object-oriented
database applications, the optimal parameters may be different. Figure 3.6 shows the
example of running the vortex benchmark only. The configuration level is adjusted to
copt = 1 for overall optimization of this application. This clearly shows the variations
of memory access behavior across different applications. The runtime reconfiguration
as discussed in section 3.2.3 can be quite effective to address this problem. We found
that for the vortex benchmark the runtime reconfiguration leads to 12.3% and 4.0%
reduction on miss rate and bandwidth usage, respectively, along with 8.6% increase
on protection ratio as compared to the case without applying runtime reconfiguration.
Similar results were observed in other benchmarks as well.

In the following simulations, we will start with the optimal parameters n,, = 16
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and ¢,y = 2 and then employ runtime reconfiguration. The interval of runtime
reconfiguration is every 1000 memory accesses with an adjustment threshold equal
to 30%. This threshold indicates that the confidence level ¢ will be reduced (or
increased) by 1 if the miss count in the current interval is 30% more (or less) than
that in the previous interval (see section 3.2.3). It can be adjusted by software when

necessary.

Error Tolerance

Existing work [120]—[122] on the soft error problem usually assumes certain operation
conditions or target specific architectures. In this paper, instead of simulating soft
errors directly, we evaluate the error-control ratio R as defined in (3.2), which is
a system-level measure for evaluating error tolerance. Table 3.1 shows the results
obtained from the 23 benchmarks. As discussed earlier, we would like to maximize
R but a full coverage is not necessary. This is because many sublines may contain
irrelevant data and thus do not need to be protected. The average error-control ratio
is observed at 74.8%. In some benchmarks, e.g., art, mcf, and swim, nearly all the

memory accesses are protected by the proposed technique.

Table 3.1: Error-control Coverage Ratio.

’ Workloads \ Coverage \ Workloads \ Coverage ‘

1.ammp 929 % | 13.lucas 91.6 %
2.applu 944 % | 14.mcf 100.0%
3.apsi 97.9 % | 15.mesa 51.6 %
4.art 100.0% | 16.mgrid 85.9 %
5.crafty 43.9 % | 17.parser 75.4 %
6.eon 67.9 % 18.perlbmk 32.9 %
7.equake 65.2 % | 19.sixtrack 33.4 %
8.fma3d 91.6 % | 20.swim 99.9 %
9.galgel 98.6 % | 21.twolf 70.2 %
10.gap 324 % | 22.vortex 85.7 %
11.gcc 96.1 % | 23.wupwise 49.6 %
12.g7ip 64.3 % | Average 74.8 %
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The proposed soft-redundancy allocation is self-adaptive to the variations in mem-
ory spatial locality, thereby enabling error protection only when necessary while re-
leasing the unused memory resources for other critical tasks. This feature is demon-
strated by the error detection capability measured in terms of the probability of
undetected errors in the valid data. Tables 3.2 and 3.3 show the results under differ-
ent soft-error rates in comparison with parity checking and Hamming code. In [119],
the rates of single-bit upsets (SBU) and multiple-bit upsets (MBU) were found to be
different by one to three orders of magnitude. Thus, we apply two orders of mag-
nitude of difference between the SBU and MBU rates in these simulations. Clearly,
our technique achieves 10X improvement in error detection over the conventional

techniques without introducing large hardware overhead.

Table 3.2: Probability of Undetected SBU (PUS).

SER PUS PUS

parity checking | proposed technique
10~* 1.20 x 107° 1.60 x 1077
107° 1.20 x 1078 1.60 x 107
107° 1.20 x 10710 1.60 x 1071
1077 1.20 x 10712 1.60 x 10713
1078 1.20 x 10~ 1.60 x 101

Table 3.3: Probability of Undetected MBU (PUM).

SER PUM PUM
Hamming code | proposed technique
10~* 1.20 x 10710 1.60 x 10~
107° 1.20 x 10712 1.60 x 10713
1076 1.20 x 10~ 1.60 x 1071
107 1.20 x 10716 1.60 x 10~17
10~8 1.20 x 10718 1.60 x 10719
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Access Efficiency

Figure 3.7 shows the access efficiency as compared to the conventional cache and
sub-blocked cache. By fetching only relevant sublines during memory accesses, our
technique reduces the bandwidth usage by 41.3% over the conventional cache, which is
comparable to the sub-blocked cache. Furthermore, the proposed technique achieves
59.5% reduction in miss rate on average over the sub-blocked cache. This is expected
as our technique leverages soft redundancy for improving memory access efficiency.
Thus, the proposed technique approaches the sub-blocked cache in bandwidth usage
while further reduces the miss rate. These results demonstrate the advantages of
soft-redundancy allocated memory for jointly improving error tolerance and access
efficiency. Note that we have to admit some limitations in the proposed technique,
as shown in the perlbmk benchmark, where the bandwidth is slightly increased as
compared to the conventional cache. This is because the overhead induced by mis-
judgement on soft redundancy offsets the bandwidth reduction. A solution to this
problem is to increase the weight factor for bandwidth during parameter selection
or limit the reconfigurable confidence level at a cost of reduction in error-control

coverage.
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Figure 3.7: Improvement in access efficiency over the conventional cache and sub-
blocked cache.
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Scalability

To investigate the scalability of the proposed technique, we consider a range of mem-

ory associativities and block sizes.

M error control coverage ratio
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Figure 3.8: Performance of the proposed soft-redundancy allocated memory under
different memory configurations (vortex).

In these simulations, we first choose the cache line size equal to 328 and vary
the set-associativity among 1, 2, 4 and 8. Then, we fix the set-associativity at 4
and change the cache line size between 165 and 64B. The optimal parameters are
determined by using optimization method discussed in section 3.2.3. Figure 3.8 shows
the results of error-control coverage ratio, miss rate reduction, and bandwidth usage
reduction for the vortex benchmark under different memory configurations. The
same trends were observed in other benchmarks as well. As indicated, our technique

is robust to different memory configurations and thus supports good scalability for

memory design.
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3.3 Soft Redundancy at Cache Line Level

3.3.1 Introduction

Soft redundancy can be exploited at different level. In this section, we study a new
approach referred to as the soft indexing that exploits the soft redundancy at cache
line level. The idea is based on the observation that memory accesses are non-uniform
across different cache lines, which results in many idle memory spaces (cache lines)
and high conflict misses. The idle memory spaces create transient memory redun-
dancy that can be exploited for both performance improvement and error control.
The proposed soft indexing technique allocates memory resources in a self-adaptive
manner in accordance with runtime memory behaviors, thereby achieving efficient
memory access and effective error protection jointly. The benefits of the proposed
technique are demonstrated by the SPEC CPU2000 benchmarks [10]. Simulation re-
sults show 94.9% average error-control coverage on the 23 benchmarks, with average
of 23.2% reduction in memory miss rate as compared to the existing techniques.

In section 3.3.2, we develop the soft indexing memory microarchitecture for joint
error protection and performance improvement. In section 3.3.3, we present a statisti-
cal analysis on error tolerance and provide the comparison to the existing techniques.

In section 3.3.4, we evaluate the performance of the proposed technique.

3.3.2 Soft Indexing Memory Microarchitecture

The size of cache memory has a direct impact on the overall processor performance.
In general, increasing cache size can reduce the miss rate by providing more memory
resources for the workloads. However, runtime program statistics reveal some non-
uniform memory access patterns, where many cache lines are accessed less frequently
and could even remain idle or unused over time. This creates transient redundancy
that can be exploited to jointly improve memory access performance and error tol-
erance. Since the distribution of idle cache lines varies during runtime, we need an

adaptive (soft) indexing mechanism for dynamic allocation of memory resources.
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In this section, we present the soft indexing memory microarchitecture that ex-
ploits the transient redundancy generated by non-uniform memory accesses for joint

performance improvement and error tolerance.

‘ Tag ‘ Tndex ‘Offsel|

Status Tag Data
Primary line

Tagl Datal
Redundant line

" Tag2 Data2

* J
eindexing|

Tagl [Tag2 Datal Data2

3 "

hit/miss Data Cancellation

Figure 3.9: Microarchitecture of soft indexing memory.

Soft Indexing

Fig. 3.9 shows the proposed memory microarchitecture. A re-indexing function is
introduced to assign an idle cache line to the currently accessed cache line for different
purposes that will be explained later. Each cache line is extended with some status
bits that keep track of the history of access patterns. These status bits are stored
in a status table for the control of memory allocation. As shown in the following
discussion, memory resources are dynamically allocated according to the availability
of transient redundancy and the statistics of memory access patterns.

An example of memory access sequence using soft indexing is shown in Fig. 3.10.
Each cache line can be operated in one of the three allocation modes: idle, no-

checking, and error-checking, which represent different memory access patterns. The
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Mode Original Block Assigned Redundancy
idle ‘ Data0 | (no assignment) (1)
#miss
no—checking | Data 1 | ‘ | @
| hit
no—checking | Data 1 \ \ | @
,Lmiss
no—checking ‘ Data 2 \ \ Data 1 ‘ ®
§ hit
no—checking ‘ Data 2 \ \ Data 1 ‘ )
¢ hit
error—checking | Data 2 | \ Data 2 | ©
| it
error—checking | Data 2 | \ Data 2 | @
{miss
error—checking | Data 3 | \ Data 3 | ®
¢mi§s
no—checking | Data 4 | \ Data 4 | ©@
#miss
no—checking | Data 5 | \ Data 4 | 10
¢miss
idle \ Data 6 \ (no assignment) (11)

Figure 3.10: An example of soft indexing.

tdle mode indicates that a cache line is currently idle or unused. Thus, this cache line
can be used for transient redundancy. The no-checking mode represents the situation
where a cache line is accessed frequently but the access pattern is less predictable.
The program lacks the confidence in the outcome (hit or miss) of subsequent accesses
to this cache line. Since the performance of this cache line is unstable, we can assign a
redundant cache line (i.e., one of those in the idle mode) to this cache line to improve
the access performance. On the other hand, the error-checking mode indicates the
confidence in hit occurrence for a frequently accessed cache line. Since this cache line
is experiencing access hit in a stable pattern, we can assign a redundant cache line to
this cache line to improve the error tolerance.

The mode switching is based on the access history stored in the status table. The
detailed operation of memory access is explained below in reference to the steps in
Fig. 3.10.

Initially, all cache lines are set to the idle mode by default, and the re-indexing

function is disabled. In the subsequent operations, assume that a miss occurs in
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a cache line. The status of this cache line is thus changed from the idle mode to
the no-checking mode (step 2 in Fig. 3.10). Meanwhile, a redundant cache line will
be assigned to this cache line by re-indexing the requested address. Ideally, the
redundant cache line should be the one currently in the idle or unused status. In the
proposed technique, we locate the redundant cache line using a re-indexing function
as discussed later.

A single, non-consecutive hit in the cache line that is in the no-checking mode will
not cause any data replacement (steps 3 and 5), whereas a single, non-consecutive miss
will result in a replacement of both the primary and the redundant cache lines (step
4). The current data in the primary cache line will be transferred to the redundant
cache line, and the new data will be filled into the primary cache line. Note that in the
no-checking mode, the redundant cache line keeps the previously accessed data (data
1), which in general is different from the new data (data 2) in the primary cache line.
This improves memory access performance by saving the previously accessed data
nearby for possible future use.

Two consecutive hits in the no-checking mode establish the confidence in memory
hit occurrence in this cache line. Thus, this cache line is switched to the error-checking
mode (step 6). The redundant cache line is thereafter updated as a redundant copy
of the primary cache line. Note that the switch condition (e.g., two consecutive hits
or misses in this example) can be configured for different requirements on memory
performance and error control. In the error-checking mode, a hit will get both copies
in the primary cache line and the redundant cache line. The two copies are then
compared to detect any possible data errors. If an error is detected, the hit is canceled
and a miss is generated instead (step 7, also see Fig. 3.9). On the other hand, a single
miss will replace both cache lines with the new data (step 8).

Two consecutive misses in the error-checking mode will change the status of the
primary cache line to the no-checking mode (step 9) due to the loss of confidence in
hit occurrence. Furthermore, two consecutive misses in the no-checking mode will
send the cache line back to the idle mode (step 11). When the status returns to
tdle mode, this cache line is no longer associated with any redundant cache line.

Subsequently, this cache line can either return to the no-checking mode if an access
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occurs, or remain in the ¢dle mode if no access occurs. For the latter case, this cache

line can be used as a transient redundancy for other cache lines.

idle

hit/miss hit

) / miss
no—checking # S 3 a error—checking

hat miss miss hat

miss

_ {

~ error—checking

no—checking

Figure 3.11: Allocation mode switch control.

In the proposed soft indexing microarchitecture, the allocation mode switches
when enough confidence in hit or miss occurrence has been established. In the above
example, this confidence is measured by two consecutive hits or misses. The switch
control diagram is shown in Fig. 3.11. In total, five states are needed to control the
mode switch, which requires only three status bits each cache line. This incurs very
small hardware overheads.

Ideally, we would like to find the idle or unused cache lines for redundancy. How-
ever, this is a really difficult task due to the complexity of memory runtime behaviors.
Here, we exploit memory spatial locality to locate redundant cache lines. Specifically,
we utilize a XOR-based re-indexing function, where the primary cache index are
masked by an XOR code to generate the address of the redundant cache line that
is guaranteed to be far away from the primary cache line. Due to memory spatial
locality, it is unlikely that the program will access these two memory locations si-
multaneously. Simulation results in section 3.3.4 demonstrate this scheme is quite

effective.
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Joint Performance Improvement and Error Tolerance

The proposed soft indexing technique exploits runtime memory behaviors to improve
access performance and error tolerance. For cache lines in the no-checking mode, the
program does not have enough confidence in hit or miss occurrence. This implies
that the access performance is unstable for these cache lines. Instead of trashing the
previously accessed data during a miss, we save these data in the redundant cache
lines for possible future use (see steps 4, 5 and 10 in Fig. 3.10). In response to the
subsequent memory accesses, if the redundant cache lines have the requested data,
the data can be retrieved instead of fetching from the lower level memory. Indeed,
by holding the previously accessed data in the redundant cache lines, conflict misses
are reduced due to an equivalent increase in set associativity.

For cache lines in the error-checking mode, the program provides enough confi-
dence in hit occurrence. These cache lines are hit frequently and presumably contain
important data. Therefore, the redundant cache lines are assigned to these cache
lines for error control (see steps 6—8 in Fig. 3.10). During data read-out, there is an
additional comparison between the two data copies in the cache line pair. This com-
parison can be performed in parallel with the tag address comparison. Mismatches
between the two copies indicate errors and hence call for cancelation of the data read-
out. A memory miss is generated as a result and the new data will be fetched from
the lower level memory. The redundant cache lines are generated dynamically and

provide an effective means for error tolerance.

Design Considerations

The overheads of the proposed microarchitecture are manageable. Our technique does
not require extra ports for the cache. Actually, only a small write buffer is needed.
Other hardware overheads include a few bits per cache line for the status table and
the XOR re-indexing function. Also, the latency of the additional data comparison
is masked by the tag address comparison, thereby not involving any timing penalty
on the critical paths.

The operations in the idle mode remain the same as those in traditional cache.
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On the other hand, if the accessed cache line is in the no-checking mode, the original
tag and data in the primary cache line are forwarded to the write buffer, while the
tags from both the primary cache line and the redundant cache line are compared at
the same time. If either cache line contains the requested address, a hit is generated
and the requested data is delivered to the execution unit (for a read) or written to
the primary cache line (for a write). Otherwise, a miss is generated and the requested
data are fetched from the lower level memory (for a read) or written to the primary
cache line (for a write). Thereafter, the previous data in the primary cache line stored
in the write buffer will be written to the redundant cache line. This write operation
is performed off-line and thus does not affect other memory operations that might be
timing-critical.

Similarly, if the accessed cache line is in the error-checking mode, an additional
data comparison between the cache line pair is needed during a read access for error
detection. As mentioned before, this comparison can be conducted in parallel with
tag comparison, thereby not affecting memory timing. For a write access, the write
buffer is able to hide the write latency by scheduling the access to the redundant

cache line at a later time.

3.3.3 Statistical Analysis of Error Tolerance

In this section, we perform a statistical analysis to quantify the error tolerance
achieved by the proposed soft indexing technique.

In traditional memory systems, soft errors are typically modeled as single-bit
upsets (SBU). As the feature size of semiconductor process being scaled into the
nanometer domain, a single partial strike may potentially corrupt multiple memory
bits, resulting in multiple-bit upsets (MBU). In addition, timing noise tends to cause
MBU as well. Among the existing solutions, parity checking code is considered as the
most effective for detecting SBU, whereas Hamming code provides error detection for
up to two bits of errors. Error-control codes for more than two bits of errors are quite
complicated and thus are seldom used in memory systems.

Consider a cache line with n bits each entry, i.e., each access can obtain n bits in
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total. A single soft error corruption may lead to either a SBU or a MBU. In [119], the
rates of SBU and MBU are different from one order to three orders of magnitude based
on the operating conditions such as supply voltages. According to this observation,

we use two orders of magnitude of difference between the SBU and MBU rates, i.e.,

Ps :6a (38)
P, =(-1072, (3.9)

where (3 is the soft error rate (SER). The soft errors are assumed to be independently
and identically distributed (i.i.d.) events.

For SBU dominant cases, we denote P, s s and Py s qr as the probabilities of
undetected errors (PUE) in the proposed technique and that in the parity checking

code, respectively. We can derive

ue S_8T Z CZ Pl s r)n_ia (310)
n/2

Pue,s,par = Z CZzPSQl(l - Ps)nizia (311>
=1

where C* = #)w and P, = P? is the probability of a single-bit error that cannot
be detected by the proposed technique. This occurs rarely only when the same bits of
the original data and the redundant copy are both corrupted. On the other hand, the
undetectable errors in parity checking schemes occur when the number of corrupted
bits are even. Numerical results from (3.10) and (3.11) demonstrate 10X improvement
in error detection capability over the parity checking code, as shown in Table 3.4 where
the number of bits is n = 16, i.e., each memory access fetches a 16-bit word.

The proposed technique is also able to detect multiple errors occurred in any
bits. This is a significant improvement over the existing error-control techniques such
as parity checking code and single-error-correction double-error-detection Hamming

code. The probability of undetected errors (PUE) in the MBU cases can be derived
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Table 3.4: Probability of Undetected SBU (PUS).
SER PUS PUS
parity checking | proposed technique
10~ 1.20 x 107° 1.60 x 1077
1077 1.20 x 107° 1.60 x 1079
10°° 1.20 x 10717 1.60 x 10711
1077 1.20 x 10712 1.60 x 10713
1078 1.20 x 10~ 1.60 x 1071
as
uemsr _ZCZ PZ - mr)niia (312>
ue m_ham — Z CZ Pl )n—i’ (313)
where P, . = P2 denotes the probability of a double-bit error (the dominant MBU)

that cannot be detected by the proposed technique. Similar to the SBU cases, this
happens rarely only when the same two bits are corrupted in both the original data
and the redundant copy. On the other hand, the undetectable errors in Hamming
code occur when more than two memory bits are corrupted. Again, numerical results
from (3.12) and (3.13) demonstrate 10X improvement in error detection capability

over the Hamming code, as shown in Table 3.5 where the number of bits is n = 16.

Table 3.5: Probability of Undetected MBU (PUM).

SER PUM PUM
Hamming code | proposed technique

10~* 1.20 x 1071 1.60 x 1071

107° 1.20 x 10712 1.60 x 10713

107° 1.20 x 10~ 1.60 x 10715

107 1.20 x 10716 1.60 x 10~17

10-8 1.20 x 10718 1.60 x 1019




CHAPTER 3. SOFT REDUNDANCY FOR MEMORY DESIGN 40

Unlike parity checking and Hamming code that provide static error-control cov-
erage to all the cache lines, the proposed technique relies upon a dynamic mapping
strategy that enables error protection only when necessary while releasing the un-
used memory resources for other critical tasks such as improving access performance.
In fact, this approach leads to a joint optimization for efficient memory access and
effective error tolerance. Since memory operation mode is dynamically switching in
accordance with runtime memory requirements, the cache lines are not always under
the error protection. Specifically, when a cache line is in the no-checking mode, the
data is not protected as this cache line undergoes an unstable access pattern. The

error-control coverage ratio, denoted as R, can be calculated by

MAerrorfcheckmg
MAtotal

R, = , (3.14)
where M Aerror—checking and M Ayoq are the number of memory accesses when the
cache line is in the error-checking mode and the total number of memory accesses,
respectively. The error-control coverage ratio R, reflects the effectiveness of the pro-
posed technique in dealing with soft errors. Obviously, the switching frequency of

memory allocation modes affects the error-control coverage ratio.

3.3.4 Simulation Results

Table 3.6: Configuration of Simulation Environment.

] Parameter \ Value ‘
Cache Size 32KB
Line Size 32B
Associativity Direct Mapped
States number of initial mode 1
States number of no-checking mode 2
States number of error-checking mode 2

In this section, we study the performance of memory access and error tolerance
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Figure 3.12: Reduction of miss rate compared to conventional direct mapped cache.

achieved by the proposed technique.

Our simulation results were obtained from a trace-driven simulator based on
Dinero IV [113], which is a uniprocessor cache simulator for memory reference. The
cache model in this simulator is modified to support the proposed soft indexing mi-
croarchitecture. Table 3.6 shows the configuration of the simulation environment.
All the simulations were running on the SPEC CPU2000 [10] trace files collected
from the Stream-Based Trace Compression (SBC) [114], where traces of 23 bench-
marks are available. In these simulations, we use direct mapped cache for the purpose
of demonstration. We expect to extend the proposed memory microarchitecture to
set-associative cache in our future work.

As shown in Fig. 3.12, our technique achieves an average of 23.2% reduction in
miss rate for the 23 benchmarks as compared to the conventional cache design. These
results demonstrate that our technique is very effective in improving memory access
performance. Note that the XOR code for the re-indexing function is a pre-determined
value for all the 23 benchmarks. This XOR code introduces three-bit inversion from
the index of the primary cache line to that of the redundant cache line. Future work
needs to exploit dynamic code generation for re-indexing function to further improve

the adaptability.
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Table 3.7: Error-Control Coverage Ratio.

’ Workloads \ Coverage \ Workloads \ Coverage ‘

l.ammp 97.6 % | 13.lucas 99.8 %
2.applu 99.8 % 14.mcf 26.6 %
3.apsi 91.9 % | 15.mesa 99.9 %
4.art 84.2 % 16.mgrid 93.4 %
5.crafty 97.2 % | 17.parser 98.7 %
6.eon 99.9 % 18.perlbmk 99.7 %
7.equake 99.9 % | 19.sixtrack 99.7 %
8.fma3d 99.8 % | 20.swim 99.8 %
9.galgel 99.6 % | 21.twolf 98.9 %
10.gap 99.9 % | 22.vortex 99.8 %
11.gce 96.1 % | 23.wupwise 99.7 %
12.g7ip 97.7 % | Average 94.9 %

Evaluating error tolerance using architecture simulators requires realistic error
models and error injection mechanisms. Many existing works [120]— [122] on soft
errors usually assume certain conditions or target specific architectures. Instead of
simulating errors directly, we evaluate the error-control coverage ratio as defined in
(3.14). A higher error protection coverage ratio along with the improved error detec-
tion capability implies better tolerance to memory errors. Table 3.7 shows the results
of error-control coverage ratio of the 23 workloads. These results are obtained from
(3.14) using statistical results reported by the simulator. The average error-control
coverage ratio of all the 23 benchmarks is measured at 94.9%. These results along
with the theoretical analysis on error detection capability in section 3.3.3 demonstrate
the significant advantage of the proposed technique in error tolerance. Moreover, the
proposed technique induces very small design overheads as described in section 3.3.2.
Future work to improve the proposed error-control technique could be a combination
of the soft indexing and error checking codes, thereby providing error checking to

cover all the data and meanwhile improve error detection.
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3.4 Soft Redundancy at Thread Level

3.4.1 Introduction

Semiconductor process scaling leads to explosive silicon capacity for higher chip den-
sity, faster speed, and better opportunities of reducing power dissipation. Fueled by
these technological advances, research in computer architecture has been successful
to boost the microprocessor performance beyond that achievable by process scaling
alone. There is a clear trend towards chip multithreaded processing [11], [14] to exploit
the performance benefits rendered by future nanometer billion-transistor integration.
Chip multithreading imposes new challenges to reliable computing, but it also creates
opportunities for design space exploration across many not well-investigated dimen-
sions. Existing reliability-enhancing techniques in general induce large performance
and hardware overheads, and are increasingly difficult to support the architecture
trend towards future multithreaded computing.

Similar to soft redundancy at cache subline level and cache line level, non-overlapped
access patterns that generate transient (soft) redundancy can also be observed and
exploited at thread level. This approach, referred to as the inter-thread redundancy,
is built upon the observation that cache sets in multithreaded microprocessors exhibit
non-uniform access activities from different threads. This generates inter-thread tran-
sient redundancy in memory spaces concurrently accessed by multiple threads. By
releasing soft-redundant spaces to store the copy of more frequently accessed data,
effective error tolerance can be achieved. In contrast to conventional redundancy-
based solutions, inter-thread redundancy does not introduce extra hardware redun-
dancy. Rather, it naturally resides in the multithreaded computing process and thus
can be utilized deliberately to compensate for unpredictable performance variations
and low-level physical effects. Different from the past work [116] on register files,
we target unique inter-thread redundancy for cache memory in multithreaded sys-
tems. In addition, the proposed error detection mechanism is able to detect and
recover multiple-bit upsets (MBU). Trace driven simulations on the SPEC CPU2000
benchmarks demonstrate the proposed technique in improving error tolerance for

multithreaded computing.
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In section 3.4.2, we review our past work on thread-associative cache. In sec-
tion 3.4.3, we propose an adaptive memory microarchitecture exploiting inter-thread
redundancy for error tolerance. Simulation results are presented in section 3.4.4 for

evaluation of the proposed technique.

3.4.2 Thread-Associative Memory Microarchitecture

Most of the present-day multithreaded microprocessors employ conventional mem-
ory microarchitecture developed originally for single-threaded architectures. This
memory microarchitecture does not distinguish the access requests from concurrent
threads, and thus is vulnerable to inter-thread interferences that inevitably hurt the
overall performance.

Thread-aware memory microarchitecture effectively addresses this issue by man-
aging memory resources in a different way to compensate for inter-thread contentions.
In [26], we proposed a thread-associative cache by introducing a new concept, referred
to as the rail, to regulate memory accesses by different threads. In a thread-associative
cache, each way within a set is grouped into several rails sharing the same address. If
there are m rails in a set, it is called m-rail thread-associative cache. The number of
rails within a set is equal to the number of concurrent threads supported by the mi-
croprocessor. Memory access requests will be directed to multiple memory rails with
the same address. The thread information will then determine which rail to access.
In contrast to traditional memory design, cache replacements for concurrent threads
are decoupled, thereby removing inter-thread conflicts. Furthermore, intra-thread
conflicts could be managed as well by interleaving the thread associativity with set
associativity.

Figure 3.13 shows an example of thread-associative memory microarchitecture.
The cache is two-rail thread-associative supporting two concurrent threads, and each
set is four-way set-associative. Different from conventional caches, the cache address
is composed of four components: tag, index, offset, and thread ID. When the in-
structions from different threads are scheduled, the thread ID of each thread can

be attached to the original memory request in order to determine which rail in the
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Figure 3.13: The microarchitecture of thread-associative cache.

desired set should be actually accessed. Note that the proposed microarchitecture
does not increase the memory size but instead allocates the same amount of memory

resources in a different way as compared to conventional cache.

3.4.3 Exploiting Inter-Thread Redundancy

for Error Tolerance

Thread-associative mapping achieves significant improvement in both memory access
performance and energy efficiency as compared to conventional cache [26]. Since
memory accesses from concurrent threads are confined within the designated rails,
non-uniform access activities from different threads create inter-thread transient (soft)
redundancy that can be exploited for improving error tolerance in multithreaded
microprocessors. In this section, we will introduce a microarchitecture technique
for identifying and allocating inter-thread redundancy and then discuss some design

issues related to the implementation.
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Adaptive Microarchitecture for Inter-Thread Redundancy

The soft redundancy among simultaneously executed threads is generated dynami-
cally by the multithreaded computing process. This is evident in the thread-associative
memory, where memory rails assigned to the concurrent threads exhibit non-uniform
access activities due to runtime program variations. Within a certain time period,
one of the cache rails might be accessed more frequently by the corresponding thread,
while the other rails are accessed less frequently and may even remain idle over time.
We denote this phenomenon as inter-thread redundancy to distinguish it from other
soft redundancy phenomena [22] due to different mechanisms in conventional single-
threaded microprocessors.

To utilize the inter-thread redundancy for error tolerance, we develop an adap-
tive microarchitecture technique to identify and allocate the soft-redundant memory
resources across the thread boundary. In general, each thread is expected to exhibit
certain locality characteristics, but these characteristics are most likely different for
the concurrent threads. By keeping track of the access history of thread-related rails
within a set, we can predict inter-thread access patterns and allocate soft-redundant
memory resources accordingly for error-control purpose.

In the proposed microarchitecture, each cache set incorporates counters to monitor
the hit/miss in the rails. The counters are employed to detect whether a rail is
experiencing hits more frequently than the other rails. If the hit count exceeds a
certain level, we can make the following observations to the corresponding rail: (1) the
data in this rail have been unreplaced for a relatively long time, thus error protection
is needed (necessary to protect); (2) the data in this rail are very likely to be accessed
again in the near future, i.e., the data are presumably important (worthy to protect);
and (3) other rails accessed less frequently provide inter-thread redundancy because
of their low activities (feasible to protect). Based on these observations, an arbitrator
will then select one way (according to certain policy, e.g., LRU) in the most hit-
intensive (MHI) rail and store a redundant copy of it to a least hit-intensive (LHI)
rail. When one rail has a hit, its counter will be increased by one while all the other
counters are decreased by one. This allows the counters to keep the relative hit counts.

If any rail has a miss, it indicates that either the data in the MHI rail would be replaced
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in near future by another miss, or the data in the LHI rail should be maintained for a
while in case the program calls the data again. Thus, all the counters will be decreased
by one, preventing from allocating inter-thread redundancy prematurely. Updating
the counters in each set according to the relative hit/miss results will automatically
determine the MHI and LHI rails. Note that the MHI and LHI rails are not fixed
but dynamically changing during the course of multithreaded execution. Once the
counter value of the MHI rail exceeds a threshold, the arbitrator will make a copy of
one way from the MHI rail and store it to another way in the LHI rail. Note that
more aggressive strategies such as copying the whole MHI rail can also be enforced
according to the error-control requirements and access behaviors of the concurrent
threads. After inter-thread redundancy allocation, the counters of those involved rails

are reset to the initial value for future allocation.
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Figure 3.14: An example of inter-thread redundancy allocation.

Figure 3.14 gives an example of this microarchitecture implementation. Here, the
cache is four-rail thread-associative (supporting four concurrent threads) and eight-
way set-associative for the purpose of demonstration. All the four counters are set
to an initial value (shown in stage 1). If rail 1 (assigned to thread 1) has a hit, the
counter 1 will be increased by one, while the other three counters are decreased by

one (stage 2). Likewise, a hit in rail 2 increases counter 2 and decreases other counters
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(stage 3), but a miss in rail 2 results in decrease of all the four counters (stage 4). As
this process continues, counter 2 reaches the threshold value after a certain period
(stage 5), implying that thread 2 is the most hit-intensive. The arbitrator detects
this event and initiates the inter-thread redundancy allocation within the set. Since
at this time rail 3 is the LHI rail, the arbitrator decides to copy data from one way
in rail 2 to one way in rail 3. The selection of these two ways can be based on the
LRU replacement policy, i.e., the most recently accessed way in rail 2 and the least
recently accessed way in rail 3. After this operation, rail 3 will keep a copy of the
data originally in rail 2 for error tolerance, and counters 2 and 3 will be reset to the

initial values (stage 6).
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Figure 3.15: Implementation of the proposed technique.

Figure 3.15 shows the block diagram of the proposed memory microarchitecture for
a cache set with four-rail thread-associative and eight-way set-associative. Hit/miss
information is gathered by the four counters for access updating. Based on the values

of these counters, the arbitrator will determine the status of inter-thread redundancy
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and assign soft-redundant memory resources to the MHI rails for error tolerance. A
dedicated memory buffer, namely write delay buffer as shown in Fig. 3.15, is noti-
fied to store the tags and data of the selected ways in the MHI rails. A delayed
write is performed to write the tags and data to the assigned soft-redundant space.
These write operations are offloaded from the critical timing path, i.e., they will be
performed when there is no other pending write operations.

During read accesses, redundant data copies are detected if the desired tag address
matches tags of multiple cache lines. An additional comparison is performed between
the original data and its redundant copy. If soft errors are detected, the corrupted
read-out data will be canceled. Since data can be read out in parallel with this
additional comparison, there is no performance degradation on timing-critical read
operations.

The hardware overheads of this technique include: (1) additional storage for the
rail indication bits, as shown in Fig. 3.13, which are log,m bits per cache block for
an m-rail cache, (2) an additional comparator shared by all the data accesses for
bit-wise comparison to detect possible errors, which needs £ XOR-gates if the width
of each access is k bits (usually smaller than the cache block size), and (3) some
other components, such as m counters per set for an m-rail cache (each of which only
needs a small number of bits to predict inter-thread redundancy) and the arbitrators
(including pointers and control logic for determining the MHI and LHI rails, and
necessary circuitry for directing the write delay buffer to make redundant copies).
Note that by bit-wise comparison between two data copies, a variety of error pat-
terns can be detected. In contrast, commonly used error correcting codes (ECC)
can only detect certain error patterns (e.g., single error correction and double error
detection). To provide equivalent capability of detecting multiple-bit upsets (MBU),
very complicated ECC circuits such as finite field multipliers need to be implemented.
This would lead to more hardware overheads than the proposed technique. Further-
more, the proposed technique does not aim at providing static error protection as

conventional ECC, as explained in the next section.
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3.4.4 Simulation Results

In this section, we evaluate the proposed error-tolerant memory microarchitecture.
Specifically, we determine the error-control coverage ratio, defined as the ratio of
protected accesses over all accesses. This measure reflects the effectiveness of the
proposed technique in dealing with soft errors. A higher error-control coverage ratio
indicates better tolerance to soft errors.

Our simulation results were obtained from a trace-driven simulator based on the
Dinero IV [113] for memory reference. The cache model is modified to support the
proposed error-tolerant and thread-associative cache microarchitecture. In these sim-
ulations we only evaluate the L1 data cache, but the trends observed are likely to
repeat in other memory systems. The total memory size and block size of the cache
are set to 32KB and 64B, respectively. The L1 data cache is configured as two-rail
thread-associative and four-way set-associative cache in a dual-threaded processor,
and four-rail thread-associative and eight-way set-associative in a four-threaded pro-
cessor. The initial and threshold values of allocation counters are 0 and 5, respectively.
All the simulations were running on the SPEC CPU2000 [10] trace files collected from
the Stream-Based Trace Compression (SBC) [114].

Table 3.8: Error-control coverage ratio in dual-threaded simulation.

’ Index \ Workloads \ Error-Control Coverage ‘
1 ammp & crafty 88.9%
2 apsi & twolf 90.3%
3 eon & gzip 95.3%
4 equake & gap 96.7%
5 fma3d & swim 81.9%
6 galgel & gcec 85.8%
7 lucas & mgrid 76.0%
8 mesa & parser 93.7%
9 perlbmk & sixtrack 99.1%
10 vortex & wupwise 94.5%

Average 90.2%
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Table 3.9: Error-control coverage ratio in four-threaded simulation.

’ Index \ Workloads \ Coverage ‘
1 eon & gzip & equake & gap 87.8%
2 eon & gzip & mesa & parser 86.7%
3 eon & equake & mesa & perlbmk 89.5%
4 equake & gap & perlbmk & sixtrack 88.5%
5 mesa & parser & perlbmk & sixtrack 89.2%
6 apsi & twolf & eon & gzip 84.7%
7 perlbmk & sixtrack & vortex & wupwise 89.3%
8 gap & gzip & parser & sixtrack 85.3%
9 equake & parser & perlbmk & wupwise 90.1%
10 gzip & mesa & sixtrack & vortex 85.1%

Average 87.6%

Tables 3.8 and 3.9 show the results of error-control coverage ratio from dual-
threaded and four-threaded simulations, respectively. Combinations of workloads are
randomly selected from the available benchmarks. The average error-control coverage
ratio is measured at 90.2% in the dual-threaded simulation and 87.6% in the four-
threaded simulation. Interestingly, our technique does not provide 100% coverage to
all the memory data. As a matter of fact, this exactly reflects the unique feature of
the proposed technique. Traditional solutions (e.g., error correcting coding) provide
a full but static coverage where many irrelative or to be trashed data are also under
the protection. In contrast, our technique exploits inter-thread redundancy for error
tolerance only when necessary (e.g., stable hits indicating that the corresponding data
are important and necessary to protect), thereby allowing a balanced approach for

effectiveness and efficiency of error tolerance.



Chapter 4

Hybrid Redundancy for

Nanomemory

4.1 Introduction

The design of integrated circuits has witnessed a dramatic improvement in integration
density and performance due to process scaling as well as advances in design method-
ologies. However, conventional CMOS is approaching the end of roadmap, making
Moore’s law difficult to continue. This compels researchers to investigate nanoelec-
tronic devices including carbon nanotubes [2], silicon nanowires [3], quantum-dot
cellular automata [4, 98], resonant tunneling devices [5], and single electron transis-
tors [99]. Many nanoelectronic-based systems have been proposed in some work such
as programmable logic arrays [100], application-specific integrated circuits [101], and
memories [102, 103, 104]. Although these systems hold the promise to orders of mag-
nitude improvement in performance, the underlying nanosubstrates also introduce
some new challenges that may have a profound impact on system design and opti-
mization. One of the fundamental obstacles for robust computing at nanoscale is the
likely wide range of variations and uncertainties in a bottom-up fabrication method
such as self-assembly. It is expected that defect/fault rates in nanoelectronic devices
will reach several orders of magnitude higher than conventional CMOS. Memory sys-

tems, which are the primary application targeted by the emerging nanotechnologies,
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are particularly exposed to this problem due to the ultra-high integration density and
elevated error sensitivity.

To deal with defects/faults in nanoscale systems, most existing techniques rely on
certain types of redundancy at various levels of design hierarchy. At the device/circuit
level, defect mapping techniques [105, 6] are proposed to identify defective devices
and utilize spare defect-free devices. A similar idea is also adopted in nanoelectronic
crossbar memory [103, 104], where redundant rows and columns are introduced as
hardware redundancy to replace defective cells. However, these per-chip based test-
then-reconfigure approaches are usually expensive and time-consuming. When defect
rates are high, the amount of hardware redundancy necessary for reconfiguration may
become unaffordable. As shown in [104] for example, when the bit defect rate is 5%,
it is difficult to construct even a small 32 x 32 nanoelectronic crossbar memory unless
a significant amount of hardware redundancy (i.e., 15x overhead) is introduced. Fur-
thermore, even if defects are diagnosed and mapped out prior to the normal operation,
new defects and transient faults may still sneak into the system over the life time. To
address this problem, error-control coding (ECC) has been employed to provide fault
tolerance for nanoelectronic crossbar memory [106]. However, simple ECC schemes
may not be adequate to correct all errors and faults, while complex ECC schemes
in general lead to large overhead in encoding and decoding circuits, which could be
exposed to similar reliability problems. At a higher system level, redundancy-based
techniques such as N-modular redundancy [9, 84] can effectively detect and correct
logic errors, but they also involve large integer factor overhead.

Existing techniques relying on hardware redundancy for defect/fault tolerance,
while adequate in the past, would be difficult to scale at high defect/fault rates. In
this chapter, we propose a new approach where defect/fault tolerance is achieved by
exploiting hybrid redundancy, which is a combination of hardware redundancy (here-
inafter referred to as hard redundancy) and transient (soft) redundancy generated by
runtime utilization of spatial/temporal locality in memory accesses. Soft redundancy
exists because of the mismatches between fixed memory size and varying workload
activities. Certain memory locations may become idle or to-be-replaced during the

course of computation, and thus can be released as soft redundancy. In chapter 3, we
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have demonstrated the use of soft redundancy in CMOS-based memory systems. This
approach does not increase memory size (e.g., no extra memory cells for redundancy
as in N-modular redundancy) but exploits the inherent transient redundancy for im-
provement in memory error tolerance and access efficiency. Note that soft redundancy
is a common phenomenon in computing applications including those performed by
nanoelectronic-based systems. However, it was shown that soft redundancy may be
less predicable in certain applications. In this chapter, we exploit a seamless inte-
gration of soft redundancy and hard redundancy. The proposed technique leads to
new performance-reliability tradeoffs that are critical to effective and scalable error
management for nanoelectronic memory systems.

The preliminary idea of hybrid redundancy allocation was reported in [33]. Here,
we extend our past work by developing a design framework to address the critical
issues such as nanoelectronic memory organization and overhead management. We
also conduct a statistical analysis on the error correction capability of the proposed
technique. This analysis shows that hybrid redundancy allocation can achieve better
error tolerance than many complicated ECC codes at a reduced cost. A comprehensive
evaluation is performed with new results covering the probability of uncorrectable
errors, overhead, and scalability under various system settings.

The rest of the chapter is organized as follows. In section 4.2, we review the
basic structures of nanoelectronic memory systems built from nanowire crossbars.
In section 4.3, we present the proposed hybrid redundancy allocation for tolerance
of memory errors caused by defects and faults. Simulation results are discussed in

section 4.4.

4.2 Nanoelectronic Crossbar Memory

Most nanoelectronic memory systems employ an architecture as shown in Fig. 4.1 [102].
The crossbar array consists of a number of vertical and horizontal nanowires on two
parallel planes. Each crosspoint is a Pt/rotaxane/Ti junction, the resistance of which
can be configured to a low resistance (between 10° and 5 x 10%Q2) or a high resistance

(> 4x10%92) to represent ‘0’ and ‘1’ states, respectively. Thus, not only logic functions
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but also memory cells can be realized. The column and row selection circuits address
the specific memory cells (crosspoints) in the memory array. Upon a memory access,
the selected memory cells are applied with bias voltages to configure the resistances
on a write or to measure the currents flowing through the wires on a read.

Various defects may occur during bottom-up (self-assembly) fabrication. It is pro-
jected that defect rates in the range of 5% — 10% will pose a significant challenge for
constructing complex logic functions and memory systems. Most defects in nano-
electronic crossbars can be grouped into: (1) crosspoint stuck-open, (2) crosspoint
stuck-close, (3) nanowire open, and (4) nanowire short. The two short defects (types
(2) and (4)) are equivalent in the way that both are detrimental to all the crosspoints
located on the two shorted orthogonal wires. Hence, the involved nanowires along
with the affected crosspoints should be mapped out through a reconfiguration step.
Indeed, short defects can be easily detected because the resistances are as low as those

of nanowires (e.g., < 105Q), which stand out clearly from valid logic states.
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Figure 4.1: A generic organization of nanoelectronic crossbar memory.

Open defects (types (1) and (3)), on the other hand, keep the resistances high
(e.g., > 10°Q) at the affected crosspoints. Therefore, the memory bits are read as
‘1’ regardless of their stored values. This leads to an interesting observation, i.e.,

whether an open defect can develop into bit errors is data-dependent. Specifically,
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when the defective memory cell stores a ‘1’, the bit can still be read out correctly. An
error occurs only when the memory cell stores a ‘0’. This fact has been used in [107]
to reduce the complexity of ECC for nanoelectronic crossbar memory. In [33], we also
employ this fact to directly correct memory bit errors using bitwise AND logic.

In addition to defects, transient faults will continue to be a problem in nanoelec-
tronic memory, causing erroneous behaviors that are difficult to model and predict.
Note that defects and faults may also occur in other components (e.g., decoders and
encoders, microscale-to-nanoscale interfaces), as studied in [108, 109, 110, 111]. In

the following sections, we will focus our study on crossbar arrays.

4.3 Hybrid Redundancy Allocation for Defect /Fault

Tolerance

In this section, we present a nanoelectronic memory system exploiting hybrid redun-
dancy for tolerance of memory errors caused by defects and faults. We first discuss
the memory organization and then develop a general method for hybrid redundancy
allocation. The effectiveness of the proposed approach and the incurred overhead are

also evaluated.

4.3.1 Memory Organization

To build nanoelectronic memory, many design concepts applied to CMOS memory
are still viable. For example, it is generally easy to ensure functional correctness
in small memory. Hence, nanoelectronic memory systems, especially the large ones,
need to be organized into banks [103]. Each bank is a small sub-memory that avoids
excessively large shared rows/columns and variations. Furthermore, banks can be
divided into blocks/sub-blocks to accelerate data access. Due to the spatial locality
of memory access, when one memory cell is accessed, its neighboring cells are likely
to be accessed as well. Operating at the granularity of blocks/sub-blocks, multiple
bits can be read/written in parallel to achieve high access efficiency. In the pro-

posed technique, we apply both bank organization and block/sub-block partitioning
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as shown in Fig. 4.2. We denote the total size of the nanoelectronic crossbar memory
as N x N (N columns and N rows). The number of banks in this memory and the
number of blocks in each bank are Ny, and Ny, respectively. Thus, the size of each
block is B = #JQVM bits. The memory physical address is divided into three fields:
bank ID, block ID, and offset, referring to a specific bank, block and bit location,
respectively. Conventional CMOS circuitry may be utilized to implement the mul-
tiplexing and decoding logic for interbank connectivity. As this chapter focuses on
the reliability issues in crossbar arrays, we assume the same nano/CMOS interface as
studied in [103], [111].

To deal with a large number of defects, spare cells (i.e., hardware redundancy)
are introduced to most nanoelectronic memory systems. Different from existing de-
fect /fault tolerance techniques, we exploit the hardware redundancy in combination
with soft redundancy generated at runtime for new ways of managing memory errors
caused by defects and faults. To exploit hybrid redundancy, we divide each user block
into N, sub-blocks, each containing B /Ny, bits. Spare cells are grouped into Ny
sub-blocks (of the same sub-block size) as hardware redundancy. As shown in Fig. 4.2
for example, each block has N, = 4 sub-blocks (the IDs are “000”, “001”, “010”,
and “011”). In addition, Ny = 2 sub-blocks (i.e., sub-block “100” and “101")
are built-in hardware redundancy. As the size of memory block is fixed, runtime
variations in memory access locality may cause some sub-blocks to be under-utilized
or occupied by irrelevant data. It will be shown in the next subsection that these
sub-blocks can be identified as soft redundancy by tracking memory access history at

the granularity of sub-blocks.

4.3.2 Hybrid Redundancy Allocation

Soft redundancy inherent in memory access can be released to store a copy of useful
data for error tolerance. However, depending on the access patterns of workloads
at runtime, the availability of soft redundancy might not be stable enough to pro-

vide adequate error-control coverage. On the other hand, techniques relying solely
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Figure 4.2: Memory architecture for hybrid redundancy allocation.

on hardware redundancy for error tolerance induce large overhead and thus are dif-
ficult to scale at high defect/fault rates. Our approach exploits hybrid redundancy
to complement and enhance each other for significant improvement of effectiveness,
efficiency, and scalability of error tolerance for nanoelectronic memory systems.

To facilitate hybrid redundancy allocation, a look-up table (LUT) is introduced
to monitor sub-block access activities. Each entry in the LUT maintains the redun-
dancy mapping information of one block (containing Ny, 4+ Nspare sub-blocks) in the
nanoelectronic memory. As shown in Fig. 4.2) a LUT entry is composed of three
fields: mode field, indicating the operation mode of each block; history field, storing
the IDs of the sub-blocks that are considered useful for computation and hence need
to be protected (e.g., the most recently replaced sub-blocks are useful as they are
likely to be accessed again according to access locality); and redundancy field, storing
the IDs of the redundant sub-blocks, including those considered as soft redundancy

as well as built-in hardware redundancy. Note that this does not necessarily lead to
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a large LUT; in fact, the LUT can be organized to serve for the active blocks only.
When some blocks become inactive during the course of computation, the assigned
LUT entries can be released for other active blocks. As the LUT is critical to hybrid
redundancy allocation, it may be implemented in conventional CMOS to improve its
robustness. The involved overhead is discussed in section 4.3-D.

According to the value of the mode field, a block can operate in either hard-
redundancy allocation mode (mode=0) or hybrid-redundancy allocation mode (mode=1).
To assess the difference between these two modes, we define the error-control cover-
age ratio R as the possibility that a sub-block is protected by the proposed technique
when it is accessed. During the hard-redundancy allocation mode, only hardware
redundancy will be allocated to store data copies for error tolerance. Thus, the
Ngpare sub-blocks grouped by the spare crosspoints will store the redundant copies
for Ngpare of the Ny, user sub-blocks. The error-control coverage ratio is thus equal
to R = %, which is less than 100% for small hardware overhead. During the
hybrid-redundancy allocation mode, all the useful sub-blocks listed in the history
field will be protected by a combination of soft redundancy and hardware redun-
dancy, i.e., R = 100%. Apparently, if the memory block can frequently stay in the
hybrid-redundancy allocation mode, the average error-control coverage ratio would be
closer to 100%, even when a relatively small Ny, is available (i.e., a small amount
of hardware redundancy). The decision on which allocation mode to operate in is
based on whether the access pattern is stable enough to predict soft redundancy from
the access history. Hard-redundancy allocation mode is taken when the access pat-
tern is not stable, whereas hybrid-redundancy allocation mode is activated when the
LUT can sufficiently identify soft redundancy. A confidence level ¢ is used to direct
mode switching; if the LUT correctly (or incorrectly) predicts the access pattern for
consecutively ¢ times, the allocation mode will switch to the hybrid-redundancy (or
hard-redundancy) allocation mode. The rationale for using this metric is that mem-
ory access history can be used as a viable indicator to predict future accesses because
of the inherent temporal/spatial locality. It is shown in section 4.4 that by utilizing
the proposed technique, the nanoelectronic memory can achieve a very high average

error-control coverage even with a small hardware redundancy. Detailed procedure
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on allocation mode assignment will be discussed with an illustration example after
we describe the history field and redundancy field in the LUT.

The history and redundancy fields store the IDs of useful and inactive sub-blocks,
respectively, where the latter ones are released as soft redundancy. Each of the two
fields holds the IDs of half of the N+ Ngpare sub-blocks. Depending on the allocation
mode of the block, a sub-block may keep a redundant copy in another sub-block
within the same block. These two sub-blocks maintain a redundancy mapping pair.
During the hybrid-redundancy allocation mode, each sub-block with the ID listed in
the history field is assigned a redundancy mapping pair, as specified by the order of
the sub-block IDs in the history and redundancy fields. Specifically, the sub-block
with the ID listed in the i** location of the history field will be assigned a redundant
copy on the sub-block with the ID listed in the same location of the redundancy
field. During the hard-redundancy allocation mode, not all the sub-blocks listed in
the history field are assigned the redundancy mapping pairs. Due to the limited
hardware redundancy, only the first Ngp,,. sub-blocks listed in the history field will
be protected by hardware redundancy.

The redundancy mapping pairs are not predetermined or fixed but are adjusted at
runtime based on data replacement in sub-blocks. In addition, sub-blocks allocated as
soft redundancy can be released for functional usage if necessary; i.e., all crosspoints
are accessible and there is no increase of memory size when using soft redundancy. We
use an example as shown in Fig. 4.3 to illustrate the procedure of hybrid redundancy
allocation. Only one memory block is shown where Ny, = 4 and Ngpere = 2. The
four user sub-blocks have IDs “000”, “001”, “010”, and “011”, and the hardware
redundancy are indexed as sub-blocks “100” and “101”. The confidence level is set
to ¢ = 2 for the purpose of demonstration. Initially, this memory block is in the
hybrid-redundancy allocation mode by default (mode=1). Each sub-block listed in
the history field has a redundancy mapping pair as indicated by the sub-block ID
in the redundancy field. For example, sub-block IDs “000” and “011” are the first
in the history field and the redundancy field, respectively. Therefore, they form a
redundancy mapping pair and both store the same data. The content of this data is
denoted as A, and A’ is the redundant copy of A. Here, sub-block “011” is utilized
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User sub-blocks Hardware redundancy LUT
(Noun=4) (Nspare=2) (c=2)
Sub‘ynxk‘IDs mode history redundancy
000 001 010 011 100 101 VN SN

[a]lB]c|a] [»]c]| oot
Event 1: sub-block 001 needs to sub-block 001 is listed in the
be replaced with new data D history field
[a]p]c]a] [p]c] 0011000:010]1007011101]
Event 2: sub-block 011 needs to sub-block 011 is not listed in the
be replaced with new data E history field, 1st time misprediction
[ o] c|Ee]| | ] c]| [Oomoomimoooom
Event 3: sub-block 000 needs to sub-block 000 is not listed in the
be replaced with new data F history field, 2nd time misprediction

l l allocation mode needs to switch to 0
[F o] c|Ee] [p]r]| [Eooomomlioiomio]
Event 4: sub-block 011 needs to sub-block 011 is listed in the history
be replaced with new data G l field, 1st time correct prediction
[F ] p]cle] [P ]e | nomcoiimismg
Event 5: sub-block 000 needs to sub-block 000 is listed in the history
be replaced with new data H field, 2nd time correct prediction

l allocation mode needs to switch to 1
[l o[ ]| 6] [ w] e | [ooomoliosmmg
Event 6: the entire block needs to
be replaced with new data allocation mode needs to be reset to 1
[t ]y ]y ] [ r]r] [ooooilooiorom

Figure 4.3: An illustration example of allocating hybrid redundancy.

as soft redundancy. Likewise, sub-blocks “001” and “100”, “010” and “101”, are
redundancy mapping pairs as well, where sub-blocks “100” and “101” are actually
hardware redundancy.

The redundancy allocation is explained using several access events for the purpose
of demonstration. In access event 1, sub-block “001” is replaced with new data
(denoted as D in Fig. 4.3). As sub-block “001” is already listed in the history field,
the LUT predicts this access pattern correctly. The orders of sub-block IDs in the
history and redundancy fields need to be updated in response to this access. Sub-
block ID “001” is moved to the first position in the history field because it is the
most recently accessed sub-block. According to memory spatial/temporal locality,
sub-block “001” stores the data that is most likely to be accessed again in the near
future. This predication, however, could be wrong as discussed in access event 2. The
ID of sub-block “100”, which is the redundancy mapping pair of sub-block “001”, is
also moved to the first position in the redundancy field. The content of sub-block

“100” is updated to D’ to store a redundant copy of sub-block “001”. The IDs of
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other sub-block will either shift to the right within the corresponding field or remain
at the same location. Hence, the history and redundancy fields are updated to “001-
000-010” and “100-011-1017, respectively. This will maintain the same redundancy
mapping pairs between the two fields without reshuffling the data in the sub-blocks.

Assume that in access event 2, sub-block “011” is updated with new data F.
Note that sub-block “011” is not listed in the history field. This indicates that
the LUT fails to predict this access. As the confidence level is set at ¢ = 2, this
misprediction does not enable mode switching. The history and redundancy fields are
updated to “011-001-010" and “000-100-101", respectively, to maintain the current
redundancy mapping pairs. Next, access event 3 needs to replace sub-block “000”
with new data F'. This sub-block is again not listed in the history field; i.e., the
LUT fails twice consecutively. With the confidence level ¢ = 2, the access pattern
is considered to become unstable. The allocation mode is switched to the hard-
redundancy allocation mode (mode=0). Because it is now impossible to predict soft
redundancy and maintain the redundancy mapping pairs, the history and redundancy
fields need to be updated in a different way. Sub-block “000” is replaced with new
data F', and sub-block “100”, which is first hardware redundancy sub-block listed
in the redundancy field, will store a copy of sub-block “000”. Meanwhile, sub-block
“1017, which is the second hardware redundancy sub-block (and also the last one as
Nypare = 2), will store a copy of sub-block “0117.

During the next two access events 4 and 5, the LUT correctly predicts the accesses
as the IDs of the accessed sub-lines are all found in the history field. This indicates
that the access pattern might have returned to stable (with confidence level ¢ = 2).
Thus, the allocation mode is switched back to the hybrid-redundancy allocation mode
(mode=1). Finally, if the next access needs to replace the entire block as shown in
event 6, the allocation mode will be reset to the hybrid-redundancy allocation mode
(in this example it is already in this mode and thus no operation is needed). Since
the access pattern might be changed completely after the replacement of the entire

block, hybrid redundancy is utilized to exploit this effect for error tolerance.
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4.3.3 Analysis of Error Tolerance

The effectiveness of the proposed technique can be measured by the probability of
uncorrectable errors. Denote the bit error rate as f and assume a uniform error
distribution. Exploiting redundancy allocation can detect and correct errors in any
bits unless the same bits in both the user sub-block and its redundancy mapping pair
are corrupted (the possibility of this case is f?). The probability of uncorrectable

errors, Pprotected; can be calculated for the hybrid-redundancy allocation mode as
k
Pprotected = Z C%(fQ)l(l - fQ)k_za (41>
i=1

is the bit-width of the sub-block and C’ =

Nsub Z)' ’
hybrid-redundancy allocation mode, the error-control coverage ratio is always 1 and

where k£ = Note that in the

thus Ppotected 1 achievable. However, a memory block may not always operate in the
hybrid-redundancy allocation mode. When it is in the hard-redundancy allocation
mode, the error-control coverage ratio is A][VL:’: < 1. Thus, some sub-blocks are
not protected and the corresponding probability of uncorrectable errors, P,,, can be

expressed as

N

Z Wi - (4.2)

From (4.1) and (4.2), we obtain the overall probability of uncorrectable errors
Prybria as
Phybrid = Rpprotected + (1 - R)an (43)

where R is the effective error-control coverage ratio by averaging over the hybrid- and
hard-redundancy allocation modes.

In comparison, ECC-based error tolerance needs n — k extra memory bits to build
the error checking bits for a sub-block of length k bits. This ECC code, if exists, will
be a (n, k) code that can correct up to t bit errors. According to the Sphere-Packing



CHAPTER 4. HYBRID REDUNDANCY FOR NANOMEMORY 64

bound [112], the following condition should hold
t
d c <ot (4.4)
i=0

where (4.4) is a necessary but not sufficient condition. The probability of uncor-

rectable errors for ECC, P,.., can be calculated as

Pue=Y_ Cifi(1—f)" " (4.5)

i=t+1
Simulation results in section 4.4 show that the proposed hybrid redundancy allo-
cation achieves better error tolerance than the ECC-based techniques under a range

of error rates.

4.3.4 Managing Overhead

The overhead of the proposed technique comes from two parts: one is the spare
memory cells used as hardware redundancy (same as most nanoelectronic memory
systems), and the other is the LUT. Hardware redundancy in each block can be
quantified by Ngpere X k crosspoints, where % is the bit-width of each sub-block.
As shown in section 4.4, this overhead is much lower than ECC-based techniques.
Therefore, we will focus on the LUT overhead next.

As discussed before, each LUT entry stores one bit of mode field and the IDs of
Nsub~+ Npare sub-blocks, each ID requiring [logy(Nsup+ Nspare) | bits. Thus, each LUT
entry would need (14 (Ngup+Nspare) - [108o (Nsub+ Nspare) | ) bits in total. This overhead
needs to be managed carefully when a large number of sub-blocks are implemented
in each block.

Usually, not all the memory blocks/banks are active at the same time. This implies
that a rather small number of LUT entries need to be maintained for the active blocks
only. When these blocks become inactive, the corresponding LUT entries can be
released to store the information of the new active blocks. Some existing policies, such
as LRU or FIFO, can be employed to manage LUT context switch. Thus, the overhead
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of the LUT can be made significantly lower than the ECC encoding/decoding circuits,
which typically require complicated finite field operations. Furthermore, the tradeoffs
between error-control overhead and access performance can be adjusted based on the
activities of specific workloads and system requirements. This enhances the flexibility

and scalability of the proposed technique.

4.4 Evaluation and Discussion

In this section, we apply the proposed hybrid-redundancy allocation for error man-
agement in nanoelectronic crossbar memory. We will compare the error tolerance
performance and induced overhead with existing techniques. The scalability of the

proposed technique is also evaluated under different system settings.

4.4.1 System Configurations

For evaluation, we consider a specific nanoelectronic crossbar memory with total size
N x N bits. The memory is divided into N, banks. Within each bank, there are

Ny blocks and the size of each block is B = #ﬁw To exploit hybrid redundancy,

we further divide each block into N, user sub-blocks and assume N, sub-blocks

built by the spare crosspoints as hardware redundancy. All the sub-blocks have the

B
Nsub

and allocate hybrid redundancy. The mode transition is directed by the confidence

same size of k = bits. An LUT is introduced to monitor memory access activities
level ¢ on access pattern prediction. Based on our experiments, ¢ = 2 is a reasonable
setting that allows good tradeoffs between error tolerance and control complexity.
The values of other parameters are listed in Table 4.1. We will initially use this
system for comparison and then evaluate different settings and their impacts on error
tolerance.

Without loss of generality, we consider the memory system for general purpose
applications such as SPEC CPU2000 benchmarks [10]. Note that the proposed mem-
ory technique can be used in other applications with little or no modification. The

simulations are performed on a simulator based on the trace-driven Dinero IV [113].
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The memory access activities are captured by the memory trace files, which are col-
lected from the Stream-Based Trace Compression (SBC) [114], where trace files of 23

benchmarks are available.

Table 4.1: Simulation setup.

N Nlmk: Nblk B Nsub Nspare k|c
512 | 64 64 | 64| 16 12 4|2

4.4.2 FError Tolerance

We first determine the error-control coverage ratio R, which is a system-level mea-
sure for evaluating error tolerance. Table 4.2 shows the results obtained from the 23
benchmarks. The average error-control ratio is observed at 98.5%. In some bench-
marks, such as mcf, lucas, art and applu, nearly all memory accesses are protected
by the proposed technique. As discussed before, we would like to maximize R but a
full coverage is not necessary. This is because many sub-blocks may contain irrelevant
data and thus do not need error protection.

To perform a comparison with ECC-based techniques, we first determine the ECC
codeword width n using (4.4) for the sub-block width k& = 4 with an error correction
capability t. Table 4.3 shows the resulted ECC codes. Note that (4.4) is only a
necessary condition. In other words, the ECC codes shown in Table 4.3 may not
exist in practice. Thus, the results obtained for the ECC-based error tolerance (see
Fig. 4.4) are optimistic, which makes our comparison conservative.

Substituting the average error-control coverage ratio R into (4.3), we can deter-
mine the probability of uncorrectable errors for the proposed technique. The probabil-
ity of uncorrectable errors for ECCs with different values of ¢ can also be determined
using (4.5). We compare these results under a range of bit error rates f € [0.01, 0.25]
and different ECC capabilities ¢ € [1,4]. Figure 4.4 shows the results of error tolerance
measured by the probability of uncorrectable errors. It is observed that the proposed

technique achieves comparable error tolerance performance when the bit error rate
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Table 4.2: Error-control coverage ratio R.

’ Workloads \ Coverage \ Workloads \ Coverage ‘

l.ammp 98.9 % | 13.lucas 100.0 %
2.applu 100.0 % | 14.mcf 100.0 %
3.apsi 99.7 % | 15.mesa 90.8 %
4.art 100.0 % | 16.mgrid 99.9 %
5.crafty 97.8 % | 17.parser 99.6 %
6.eon 96.3 % | 18.perlbmk 93.2 %
7.equake 99.6 % | 19.sixtrack 97.5 %
8.fma3d 99.5 % | 20.swim 99.9 %
9.galgel 99.9 % | 21.twolf 99.9 %
10.gap 97.9 % | 22.vortex 97.3 %
11.gce 99.9 % | 23.wupwise 99.8 %
12.g7ip 98.5 % | Average 98.5 %

Table 4.3: Possible ECC codes at different ¢’s with information bits k£ = 4)

t | n | ECC code (if exists)
1|7 (7, 4)
210 (10, 4)
313 (13, 1)
115 (15, 4)

f is relatively low (f < 0.08). When f is higher than 0.08, the proposed technique
achieves better error tolerance than the ECC code with ¢ = 2. For bit error rates
0.15 < f < 0.2, the proposed technique shows even better performance than the ECC
code with ¢t = 3, indicating our technique is more effective to correct 3 bit errors in
k = 4 memory bits. These trends clearly favor the proposed technique in dealing with
a large number of errors caused by high defect/fault rates in nanoelectronic crossbar

memory.
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Figure 4.4: Comparison of the probability of uncorrectable errors.

4.4.3 Overhead

Table 4.4 compares the overhead of the proposed technique with ECCs. In our tech-
nique, the number of extra memory bits required for hard-redundancy allocation is
kE X Ngpare = 48 bits per block, whereas the error checking bits needed for imple-
menting ECC codes at ¢t = 2 and ¢t = 3 are 96 and 144 bits per block, respectively.
Furthermore, the proposed technique employs bit-wise XOR/AND logic to perform
error correction between the sub-blocks in a redundancy mapping pair. The LUT
overhead can be minimized by applying the methods as discussed in section 4.3-D.
For example, when LUT entries maintain the most active bank in the N, = 64
banks, the hardware overhead can be reduced to less than 3 bits per block on average
(i.e., [1 + (16 4+ 12) x [log,(16 4 12)]])/64 = 2.2 bits). In contrast, ECC codes need
complicated encoding and decoding circuits and even finite field operations, which in
general incur large hardware overhead. Hence, the overhead of the proposed technique

is much smaller than that of the existing techniques.
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4.4.4 Scalability

To assess the scalability of the proposed technique, we use different settings for Ngpqye,
Ny, Ny, and Ny,i, and measure the corresponding error-control coverage ratio R.
As shown in Table 4.2, benchmark mesa has the lowest error-control coverage ratio, in-
dicating its access pattern is relatively difficult to predict. We will use this benchmark
as a worst case study. On the other hand, benchmark mcf shows 100% error-control
coverage ratio. This benchmark is studied as well for comparison. In addition, the

average coverage ratio of all the 23 available benchmarks is also evaluated.

Table 4.4: Comparison of hardware overhead

ECC
error correction capability | no. of parity check bits
t per block: (n — k) X Ngyu
1 3x16 =148
2 6 x 16 =96
3 9x16 =144
4 11 x 16 =176

hybrid redundancy architecture
hardware redundant bits Nepare X k
per block 12 x4 =48

Figure 4.5 shows the results obtained from the different values of Ngper.. When
Ngpare = 0, no hardware redundancy is available and only soft redundancy is exploited.
The proposed technique still achieves 99.2% error-control coverage for benchmark mcf
and 86.7% on average for all the 23 benchmarks. However, benchmark mesa sees a
rather low error-control coverage at 41.9%. Fortunately, the error-control coverage
ratio improves significantly with the increase in Ngpqre. This indicates that hardware
redundancy and soft redundancy indeed complement and enhance each other. Ex-
ploiting these observations, we can effectively manage hardware overhead for specific
applications. For example, with Ny, = 2, 17 benchmarks achieve error-control

coverage higher than 90%, among which 9 benchmarks achieve coverage higher than
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Figure 4.5: Error-control coverage ratio measured at different Ng,4..’s. Other settings
are: N = 512, ank = Nblk = 64, Nsub = 16.

95%. Thus, we can select a small Ny, for these benchmarks to achieve satisfactory

error tolerance.
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Figure 4.6: Error-control coverage ratio measured at different Ng,;’s. Other settings
are: N = 5127 ank - Nblk - 64) Nspa’/‘e - Nsub X 3/4 <1f Nsub - 47 Nspare = 21s
selected).

As soft redundancy manifests at the sub-block level, we vary N, from 4 to 32

to evaluate the significance of this parameter on error tolerance. To allow a fair
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comparison with the baseline system, Ngpure = (3/4)Nsy is employed for all the
simulations except for N, = 4, where Ny = 2 is used. From the results in
Fig. 4.6, we observe that the error-control coverage increases with Ng,,. This is
because a large N, leads to fine-grained partitioning of memory blocks. Hence, the
proposed hybrid redundancy allocation can be more effective in predicting memory
access patterns. However, increasing N, also leads to a large LUT and hence a
tradeoff must be considered for this parameter. In this case study, both Ny, = 8
and 16 can achieve approximately 90% error-control coverage ratio for the worst case
benchmark. However, Ny, = 8 might be more favorable due to its smaller LUT

overhead.

M mesa O mcf O average

0.9 —

Error-control coverage ratio R

0.8

32 64 128 256
Nblk & Nbnk

Figure 4.7: Error-control coverage ratio measured at different Ny;’s and Ny,;’s. Other
settings are: N = 512, Ny = Nk, Nsup = 16, Ngpare = 12.

Figure 4.7 shows the results of using different vales of Ny and Ny, in the nano-
electronic memory. In general, when smaller Ny, and Ny, (e.g., smaller sub-memory)
are used, the nanoelectronic memory will see improved robustness. Again, this will
involve a careful design tradeoff as smaller banks/blocks may incur larger overhead

in interbank connectivity.



Chapter 5

Dynamic Redundancy Allocation

for Nanocomputing

5.1 Introduction

Since the invention of CMOS-based integrated circuits (IC), computer system de-
sign has reaped a dramatic improvement in computational performance. The key
enabling technologies are a combination of advances in semiconductor process and de-
sign methodology, and innovations in computer architecture. As conventional CMOS
technology quickly approaches the end of roadmap, many novel nanoelectronic de-
vices have emerged as the potential computational substrate for nanoscale integration.
However, the emerging nanoelectronic technology is accompanied by some new chal-
lenges that may have a profound impact on architecture-level design and optimization.

It is widely acknowledged that nanoscale integration will no longer enjoy high reli-
ability as the conventional CMOS technology. At the system level, redundancy-based
fault-tolerance techniques, such as N-modular redundancy and multiplexing logic [9],
were proposed to use hardware redundancy for recovering from the faults. Recently,
NAND multiplexing is extended to a rather low degree of redundancy [84] and new
models are presented in [85, 86] to study the multiplexing systems. Redundancy
based fault tolerance is considered very effective for nanocomputing systems due to

the abundant device resources offered by nanoscale integration. Most existing work
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uses fixed modular redundancy, which lacks adaptivity to different reliability require-
ments at runtime. An improved strategy [87, 88] was developed to frugally allocate
redundancy so as to avoid the resource usage from exponentially increasing.

In nanocomputing systems, the problem of fault tolerance is closely related to
high-performance parallel execution. Traditionally, architectural level research for
performance improvement has been directed toward exploiting various levels of paral-
lelism. This trend is clearly reflected in simultaneous multithreading (SMT) [11, 12]
and chip multiprocessors (CMP) [13, 14]. Nanocomputing systems show great poten-
tial to support this trend of parallelism exploitation due to the ultra-high integration
density. However, with high defect/error rates, the benefit of parallelism may be lim-
ited by the redundant computation necessary for defect/error detection and recovery.
Massive parallelism does not necessarily lead to high performance unless the system
can effectively recover from unpredictable upsets. Furthermore, the unpredictable
upsets also lead to performance unpredictability. This is especially a problem for
real-time applications that require stable and predictable execution performance, e.g.,
multimedia communications that have tight protocol timing specifications. Thus, it
is critical to balance the often conflicting requirements on performance and reliability.

The interplay between performance and reliability gives rise to a challenging prob-
lem on resource management that is critical to nanocomputing systems. This com-
pels us to explore nanoarchitecture solutions in order to unfold the full potential of
nanocomputing paradigm. In [34, 28], we propose a dynamic redundancy allocation
technique that enables reliable and scalable parallelism. The proposed technique
manages the parallelism at an optimal level so that both fault tolerance and perfor-
mance enhancement can be achieved in a coherent manner. Different from the existing
redundancy management strategies [87, 88, 9], the proposed technique explicitly con-
siders the availability of the computational resources and the varying requirements
on reliability and performance, and therefore is more flexible in redundancy alloca-
tion across the instructions at runtime. As the proposed approach can be applied to
address both permanent defects and transient errors, we do not differentiate between
them and refer the general term fault to both.

The rest of the chapter is organized as follows. In section 5.2, we present the



CHAPTER 5. DYNAMIC REDUNDANCY ALLOCATION FOR NANOCOMPUTINGT4

nanoarchitecture model and control mechanism as the platform for dynamic redun-
dancy allocation. In section 5.3, we provide the details of the proposed dynamic
redundancy allocation. Simulation results are discussed in section 5.4 to evaluate the

effectiveness of the proposed technique.

5.2 Nanoarchitecture Model

Nanocomputing systems feature highly regular, locally connected, and data parallel
architectures that match well to the ultra-high speed and integration density offered
by nanoelectronics [91, 92]. As shown in Fig. 5.1, the underlying nanoarchitecture
may be multiclustered [93, 94, 20], where each cluster consists of multiple functional
units that can be tuned specifically for a certain category of applications. The work-
load is dispatched to the individual clusters using predefined metrics (e.g., slack [95],
deadline [96], and mean response time [97]) to achieve overall performance optimiza-
tion.

While specific nanocomputing systems may be constructed with various config-
urations, in this chapter we consider a generic nanoarchitecture model where each
cluster contains a pool of three basic functional units: computation elements (CE),
memory units (MEM), and voters, as shown in Fig. 5.1(b). The CEs and voters can
be implemented by programmable nanoelectronic logic arrays (e.g., nanowire cross-
bars) according to the defined functions, as shown in [100, 20]. Memory units can also
be implemented in a similar way [102]. As the computation is inherently fault-prone,
it is necessary to execute multiple copies by exploiting the spatial and temporal re-
dundancy in the CEs. The results are then compared by the voters to detect and
correct errors based on majority voting. The voters also provide localized control
within the cluster by allocating and managing CEs and MEMs according to certain
allocation strategies such as the one proposed in section 3. As the control and redun-
dancy allocation are performed distributively, the implementation can be simplified
to LUT, as shown in section 3.4. Same as most redundancy-based architectures, the
above nanoarchitecture model relies upon the correct voter operation. A complete

characterization of reliability issues relevant to voter design needs to be done before
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Figure 5.1: A conceptual illustration of nanoarchitecture model: (a) top-level view
and (b) cluster configuration.

the application of the proposed technique. We assume the operation of voters to be

correct by using reliability enhancing design techniques. Thus, faults occurred in the
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voters have a much lower rate than that in the CEs and hence are ignored in the
following discussion. In addition, other techniques, e.g., error correcting codes, are
effective to deal with faults in interconnect and memory.

To exploit parallel processing, pipelined architecture is implemented in the clus-
ters. For the purpose of demonstration, we consider a prototype pipeline including
four stages: issue, evecute, compare, and complete. Note that we do not lose any
generality with this architecture as further split of stages into more complex pipeline
is possible depending on the requirement of specific implementations. In the issue
stage, voters will be invoked to manage the instruction processing. To facilitate fault
tolerance, each voter will initially allocate a number of CEs (spatial redundancy) to
perform redundant computation. In the execute stage, the selected CEs execute the
instruction and return the results to the voters. After the execution is finished, the
CEs will be released to standby. In the compare stage, the voters evaluate the re-
turned results and determine the correctness by majority voting. If majority voting is
unable to resolve the disputed results, the initially allocated CEs fail to achieve fault
tolerance. The voters will store the unconfirmed results to MEMs and then allocate
additional CEs to execute the same instruction (temporal and spatial redundancy)
until the results eventually get confirmed. In the complete stage, incorrect results
and related speculations are pruned leaving the correct results for future use. Note
that to avoid resources being depleted by redundant computing, a dedicated resource
management is needed to balance redundant computing and parallel processing. We
will elaborate this point in section 3.

Figure 5.2 shows an example of the localized control in the four-stage pipeline.
In the issue stage, a voter issues the instruction to its neighboring CEs. To provide
fault tolerance for instruction execution, the voter will first determine the amount
of redundancy (i.e., CEs) as denoted by R. Figure 5.2(a) shows two cases where

= 3 and R = 4, respectively. The details of the redundancy allocation policy
will be discussed in section 3. To improve the efficiency, the voter will first try to
allocate redundancy using the nearest CEs, as shown in the first case of Fig. 5.2(a).
If failed, the voter will collaborate with other voters to collect enough CEs, as shown

in the second case of Fig. 5.2(a). The latency of voter bypass is considered as a
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Figure 5.2: An example of localized pipeline control: (a) issue stage, (b) execute
stage, (c) compare stage, and (d) complete stage.

timing component in the issue stage. If more CEs need to be collected that might

cause long and nondeterministic latency, the voter will wait for the neighboring CEs

to become available after they finish the execute stage (which may take additional

1-2 cycles). This is a type of structural hazard. In the execute stage, CEs finish

the execution and return the results to the voter in charge of this instruction (see

Fig. 5.2(b)). Next, in the compare stage, the comparison logic determines whether
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the results are correct or not. Meanwhile, the results are stored temporarily in the
MEM for future reference. It is possible that the results cannot achieve agreement
due to the faults in the execution (as the second case shown in Fig. 5.2(c)). Thus, the
completion for this instruction has to be postponed and the voter will need to allocate
additional redundancy to recover the faults. Eventually, when the execution results
are confirmed, the voter will process in the complete stage (as shown in Fig. 5.2(d)).
The incorrect results and the associated speculative execution paths are nullified and
pruned by the voter, while the correct results are propagated by the voter. For other
types of faults with relatively deterministic nature (e.g., the clustered faults), the
affected voters may be masked out to minimize the performance degradation.

As the instruction execution is fault-prone, subsequent instructions are issued
using unconfirmed results of the precedent instructions to solve data dependencies
for high performance. Thus, the execution of instructions is inherently speculative.
As shown in Fig. 5.3, the unconfirmed results of the precedent instructions propa-
gate to provide the operands for speculative execution of the subsequent instructions
(Fig. 5.3(a)). Again, if the voter is unable to allocate enough redundancy using the
nearest CEs, it will cooperate with neighboring voters to issue speculative executions
to other CEs, as shown in the second case in Fig. 5.3(a). After these results get con-
firmed, the wrong paths of the execution will be pruned while the right paths remain,

thereby forming a tree (Fig. 5.3(b)) to complete the instruction execution.

5.3 Dynamic Redundancy for Reliable and Scal-

able Parallelism

In this section, we will apply the above nanoarchitecture model to investigate the
intrinsic relationship between redundant computation and massive parallelism in
nanocomputing systems. We will then develop a dynamic redundancy allocation

technique that enables reliable and scalable performance in a coherent manner.
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Figure 5.3: Speculative execution for high performance: (a) propagating speculative
results and (b) a tree formed after result confirmation.

5.3.1 The Underlying Problem

Nanocomputing systems feature massive parallelism that can be exploited for high
performance. However, massive parallelism does not necessarily lead to high perfor-
mance given the high fault rates and fault recovery penalties. Although in theory

fault tolerance can be achieved by redundant computation, this approach inevitably



CHAPTER 5. DYNAMIC REDUNDANCY ALLOCATION FOR NANOCOMPUTINGS80

competes with parallel processing for hardware resources. How to cooperatively man-
age and utilize massive parallelism for reliable and scalable performance is critical for
realizing the potential of nanoscale integration.

We illustrate this problem in Fig. 5.4. At a given time, all the pending instructions
will fall into two categories according to the dependency relations: some instructions
have to be executed in series, as they closely depend on the results of their precedent
instructions; and some instructions can be executed in parallel, as they are loosely
coupled (e.g., they may come from different threads or become relatively independent
after dependency is safely removed). Therefore, based upon these dependency rela-
tions, the instructions can be partitioned into multiple chains, where in each chain
the instructions are sequentially executed (e.g., instructions 1 through L in chain 1,
as shown in Fig. 5.4, have to be executed one by one). Meanwhile, instructions in
the different chains can be executed in parallel as a group (e.g., the instruction 2 in
all the chains as shown in Fig. 5.4 can be organized as group 2 and executed simul-
taneously). On one hand, it is generally desired to execute as many instructions in
parallel as possible for maximal throughput. On the other hand, in nanocomputing
systems each instruction requires multiple execution copies for fault tolerance. Thus,
the need of providing redundancy for fault tolerance conflicts with the motivation for
high performance. When the subsequent instructions in a chain are issued to avoid
performance slowdown, their precedent instructions might not have got their results
confirmed yet. Thus, the subsequent instructions have to be speculatively issued with
multiple unconfirmed results. Consequently, how to optimally allocate the available
hardware resources (the number N of CEs as shown in Fig. 5.4) is complex. Specif-
ically, the hardware resources need to be allocated to each parallel executed group
(e.g, R; of CEs allocated to the j instruction group). Meanwhile, within each group
the hardware resources need to be further distributed to the individual instructions
belonging to multiple chains and the redundant execution of each instruction as well.

It can be observed that the requirement for parallel processing and the need for
reliable computation are competing against each other for hardware resources. When
the fault rate is high, all the instructions including the precedent instructions are

difficult to complete with confirmed results. To maintain speculative execution for
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Figure 5.4: The underlying problem of redundancy allocation.

high parallelism, the utilization of redundancy will exponentially increase and may
eventually deplete all the available resources, causing frequent structural hazards.
Consequently, the course of execution will be stalled frequently because the uncon-
firmed instructions cannot get enough redundancy to complete the processing, and
speculative execution of the subsequent instructions cannot have resources either to
continue exploiting parallelism. This problem will be exacerbated if there are mul-
tiple simultaneous threads, where each group will contain many instructions due to
the relatively weak dependency. Therefore, how to optimally allocate resources for
reliable and scalable performance is a fundamental problem that must be addressed
in nanocomputing systems. Furthermore, it is also critical to adjust the redundancy
allocation at runtime according to different requirements on reliability and perfor-

mance, which may vary during the course of program execution.

5.3.2 Parallelism Level and the Implications to Reliable Per-
formance
As shown in Fig. 5.4, there are two ways to improve performance: one is to break

the instructions into more chains so that more instructions can be simultaneously

processed in each group; the other is to execute more groups concurrently while they
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are possibly in different pipeline stages. The first approach is largely determined
by the nature of dependency inherent in specific programs, which is beyond control
of nanocomputing architecture design. On the other hand, the number of groups
executed in parallel can be increased by performing speculative execution. In this
chapter, we define the parallelism level as the number of instruction groups that can
be processed concurrently. Note that the parallelism level is defined for an entire
cluster, not just for a single voter or CE. As an example, a conservative design may
execute an instruction only when all the dependent instructions are completed and
confirmed with no faults. The instruction level in this case is 1. Another example is an
aggressive design, where the system may speculatively issue and execute instructions
even when the operands from precedent instructions are still not confirmed yet. As a
result, there are more instruction groups being processed at the same time (possibly
in different pipeline stages), which increases the parallelism level (denoted as L as
shown in Fig. 5.4). In fault-free systems, the relationship between parallelism level and
performance is straightforward: a higher parallelism level leads to better performance.
In fault-prone systems, the complete stage in the pipeline may take an unpredictable
number of cycles, depending on how quickly the faulty results can be recovered. This
complicates the relationship between parallelism level and performance. It is likely
that, while many instructions can be executed in parallel, they cannot obtain enough
hardware resources to confirm their results quickly via redundant execution. As a
result, instructions are frequently stalled in the pipeline, leading to a superficially
“high” parallelism level which does not deliver high performance. Hence, the actual
parallelism level needs to be determined carefully.

We now examine the relationship between the parallelism level and reliable perfor-
mance. We assume that there are totally M instructions in the program, which can
be partitioned into multiple chains and organized into totally K groups. Assume that
the parallelism level is always L as shown in Fig. 5.4, which implies that the cluster
can always process L groups of instructions simultaneously. The pipeline depth is
assumed to be D and the pipelined execution may be performed distributively on
multiple CEs. The total time T for processing the M instructions specifies the ex-

ecution performance. It consists of two components: regular execution time 7, (the
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time spent on the regular processing in all the pipeline stages, excluding stalls due
to faults) and fault recovery penalty T (the time spent on the re-execution when

uncorrectable faults are detected), expressed as
TZTe-‘r-Tf. (51)

In the regular execution time T,, D cycles are needed for the very first group
of instructions to go through the pipeline and complete. As the parallelism level is
assumed to be L, the pipeline can only filled to the extent of %. After the pipeline is
initially filled by the first L instructions, ideally the cluster can start processing the
following groups one after another. This procedure only needs K — 1 cycles if the
parallelism level is equal to the pipeline depth (i.e., L = D). However, if L < D, there
are always some “bubbles” in the pipeline (which can be considered as having (£ —1)
NOP groups inserted immediately after each instruction group without delivering
any performance). Thus, in fault-free systems, the parallelism level is upper-bounded
by the pipeline depth, i.e., L < D. The fault-free systems can achieve the optimal
performance when L = D. On the other hand, in fault-prone systems, the parallelism
level L is no longer bounded by the pipeline depth D. If the faulty results cannot
be quickly recovered, the compare stage may take an unpredictable number of cycles
to finish. As a result, there might exist L > D instruction groups being processed
concurrently. However, this does not deliver high performance as the regular execution
time 7, will not be reduced. In fact, this case indicates the existence of stalls, and
hence the non-zero fault recovery penalties T, as will be discussed later. The regular

execution time 7T, can be derived as

D+(K-1)2 0<L<D,
T, = ( )L (5.2)
D+ K —1, L>D.

From (5.2), the optimal parallelism level should be L = D for both fault-free
and fault-prone systems. Note that in ideal fault-free systems the actual parallelism
level is always smaller than L°P*. This is because not all the opportunities of parallel

execution can be detected and exploited in practice, especially considering pipeline
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bubbles due to control and structural hazards. When L is much less than L
the utilization of parallelism tends to be over-conservative. As a result, execution
takes a longer time according to (5.2), leading to performance slowdown even when
there is no penalty Ty. On the other hand, faults in real systems may drive the
parallelism level away from the optimal L°?*. Once uncorrectable faults occur, the
comparison fails to resolve the disputed results, thereby the system has to allocate
additional redundancy (temporal and/or spatial) for re-execution. Hence, stalls occur
frequently that hold more instructions than expected. This may increase L beyond
L' especially if the parallelism is over-aggressively utilized. However, this increase
in L only leads to performance degradation. Thus, both over-conservative and over-
aggressive utilization of parallelism will cause performance slowdown. An optimal
nanoarchitecture solution should aim at closing the gap between L and L° as much

as possible.

5.3.3 Scalable Parallelism via Dynamic Redundancy Alloca-
tion

We now present the dynamic redundancy allocation technique that optimizes the
resource management under high fault rates, thereby enabling scalable parallelism
for jointly achieving reliable and high-performance nanocomputing.

Assume that the redundancy allocated for parallel execution of the instructions in
group j is R; of CEs and the total number of available CEs is N. The central idea of
our approach is to adjust R; dynamically so that the parallelism level L is maintained
at L°Pt. There is a constraint regarding the availability of redundancy, expressed as

follows
L
> R;<N. (5.3)
j=1

If the requests for redundancy are more than that available, unsatisfied requests
combined with new requests during the following cycles will be accumulated quickly

and eventually push the parallelism away from the optimal level. Simulation results
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in section 4 clearly show that techniques unaware of (5.3) lead to performance degra-
dation.

Consider the fact that the available redundancy N may vary over time due to
the runtime variations of instruction processing. Instead of trying to find the specific
amount of redundancy allocated to each instruction, we focus on the relative ratios
that are more stable for allocating the available redundancy. Thus, the constraint

(5.3) can be recast as

L
d ;< (5.4)
j=1

where o = % defines the ratio between R; and IV, both of which are time-varying
in general.

As discussed before, when the actual parallelism level is greater than the optimal
L°Pt stalls due to uncorrectable faults occur, which hurts the overall performance.
Since speculative execution based on the faulty results of the precedent instructions
has already consumed too many resources at this time, it does not make sense to
continue allocating redundancy for further speculation. Therefore, we only need to

allocate redundancy for the instructions in groups from 1 up to L°P" at runtime, i.e.,

o, i 1<) < L
Q; = (55)
0, if 5 > Lot

opt}LOPt
J Ji=1

group j and Z]L:f ag’ * = 1 so that (5.4) can be always satisfied. Doing so avoids

where {« are the optimal ratios of assigning R; of CEs to the instructions in

over-aggressive speculative processing that may potentially deplete the resources.

In order to determine the optimal ratios " s we consider the fault recovery
penalty Ty in (5.1). It is determined by the number of re-executions as well as the
penalty associated with these re-executions. Note that the instructions have different

probabilities of being re-executed. Thus, we consider the mean value ¢y, which is the
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statistical measure of T}, expressed for group 1 through L as
ty=Y_ P, (5.6)

where P; is the probability of re-execution of instructions in group j and 0 is the
average penalty of each re-execution.

To calculate the re-execution probability P;, we need to consider the probability
of having uncorrectable faults. Assume that due to faults a CE will generate wrong
results with a probability f, referred to as the fault rate of the CEs. If an instruction
is executed with redundancy R, faults cannot be resolved when the number of correct
results is less than two, as the majority voting cannot select the correct results out
of the incorrect ones. Note that the majority voting may make wrong decisions
under certain fault patterns. This is a limitation of majority voting, which will
affect all fault-tolerant techniques using majority voting or similar schemes for fault
detection. However, fault tolerance can be achieved at a confident level when assigning
enough amount of redundancy R for a given fault rate f. The probability of having

uncorrectable faults due to lack of correct results is given by ¢(f, R) as follows

o(f,R) = fT+R(1— f) (5.7)

If the redundancy for the instructions in group 1 is R;, these instructions will
have a re-execution probability P, = ¢(f, Ry). Since the instructions in group 2
with redundancy R, are executed speculatively when their precedent instructions in

group 1 have not been confirmed yet, each of the R; copies of instructions in group

Ry
R

executing the corresponding instructions in group 2. The re-execution probability of

1 is assigned with redundancy on average (assuming R; is a factor of Ry) when
the instructions in group 2 is thus expressed as P, = P, + (1 — Py)q( ,g—f). This is
obtained based on the following observations. If the instructions in group 1 need to be
re-executed (with probability P;), the corresponding instructions in group 2, which
are speculatively executed based on the instructions in group 1, should definitely be

re-executed as well. On the other hand, even if the instructions in group 1 do not
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need re-execution (with probability 1 — P;), the instructions in group 2 may still have
to be re-executed (with probability ¢(f, & 7)) due to their faulty CEs. Proceeding in
the same fashion, we obtain the re-execution probability for the instructions in group
7 as

Pp= Pt (1= Palf, 5 e ), (5.8)

jfl

where j > 1 and P, = q(f, R1).

From (5.7) and (5.8), the re-execution probability of all the instructions can be
calculated in a recursive way. Thus, the fault recovery penalty ¢; can be evaluated
according to (5.6). Since a;’s determine the redundancy allocation, the optimal ratios

opt 9

s should satisfy

Lopt
minimize: Z P, (5.9)
j=1

Lopt
subject to: Zozj =1 (5.10)
j=1

opt

It is in general very difficult to analytically determine the values of o/ ’s. However,

the following guidelines can be applied to estimate aOp bs.

(i) From (5.7), fault tolerance is possible if R > 1, which is very much in line with
the well-prevalent notion of redundancy-based execution. Thus, —2 in (5.8) should

R]'71
be greater than 1, implying o; > «;_;. Thus, we should increase the values of aOp g

from the precedent instructions to the subsequent instructions.

(i) From (5.8), the re-execution probability (and hence the recovery penalty) are
accumulated from the precedent instructions to the subsequent instructions. This
implies that quick confirmation of the precedent instructions is important. Given
this observation, more resources should be made available for fault tolerance in each
copy of the precedent instructions. According to (5 8), a practical way to achieve this

O[opt
. This requires a{f;tl < Opt , where the increase in the ratios

J -1
of’p “s needs to be slowed down from the precedent instructions to the subsequent

RJ+1 < RJ

is to make 7, o
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instructions.

By minimizing the fault recovery penalty, the proposed dynamic redundancy allo-
cation technique is able to improve not only the performance but also the predictabil-
ity of performance. This will be shown in section 4.

Note that the above analysis can be easily extended to the general case where

R}?jl may not be an integer. Assume that R],%jl = r 4+ Ar, where we define r =

3= E

| R}.%le and Ar = R}?jl — 7. When the average redundancy for each speculative
J— 7

) . R,
execution 1s 7

L (where R;_; is the total redundancy of the precedent group of
instructions), we should allocate r and r + 1 redundancy for speculative executions
based on the R;_;(1 — Ar) and R;_iAr unconfirmed results, respectively, of the

precedent instructions. Therefore, (5.7) can be extended to

By R(1—f)f5 Y, ReZ,
q(f. R) = ! 4=7 © (5.11)
(1 —=Anr)q(f,7)+ Ar q(f,r+1), otherwise,

where r = |R| and Ar = R —r.

Table 5.1: An example of selecting optimal redundancy allocation ratios.

opt opt opt opt
N|f | o Qg og 0y

201 0.1 0.10 | 0.20 | 0.30 | 0.40
20102] 0.15 | 0.25 | 0.25 | 0.35
20[031] 0.15 | 0.25 | 0.25 | 0.35
201 041] 020 | 025 | 0.25 | 0.30
201 05| 0.20 | 0.25 | 0.25 | 0.30
40 | 0.1 | 0.075 | 0.150 | 0.300 | 0.475
40 1 0.2 | 0.075 | 0.200 | 0.350 | 0.375
40 | 0.3 | 0.100 | 0.275 | 0.300 | 0.325
40 | 0.4 | 0.100 | 0.275 | 0.300 | 0.325
40 1 0.5 ] 0.125 | 0.275 | 0.275 | 0.325

We use an example to show the selection of the optimal allocation ratios. In this
example, L°?" = D = 4 is assumed. The total number of available CEs is N = 20

and N = 40 for demonstration purpose. We vary the fault rate in the range of
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f €10.1,0.5] and search for o’ "’s to minimize the fault recovery penalty. The search
is done in the space where af” s are rounded to the closest 1/N so that N g’ b
are integers. As shown in Table 5.1, when N increases, for the same f we should
allocate relatively more redundancy for the subsequent instructions. This is because
the precedent instructions can obtain enough redundancy for quick confirmation even
with the smaller ratios. If f increases but N is fixed, more redundancy should be
allocated to the precedent instructions to minimize the re-execution probabilities.
Note that the Oé?p “s can be determined in the design phase based on availability
of N and estimated f from the physical systems. These ratios can be employed

thereafter to guide the dynamic redundancy allocation at runtime.

5.3.4 Dynamic Redundancy Allocation Algorithm

The general procedure of dynamic redundancy allocation is summarized in Algo-
rithm 2. Assume that the instruction being processed is in group 7, and there are
totally k voters in this group. The goal of this algorithm is to determine when to
allocate redundancy and how much redundancy should be allocated.

If the parent voters notify the current voter that the operands the current voter is
using have been proved to be invalid, the current voter should nullify all the involved
results and propagate the information to the involved voters. Otherwise, the current
voter needs to check whether the execution has achieved majority agreement. If the
results are not confirmed yet, the current voter will try to allocate more redundancy.

Next, the amount of redundancy is determined according to the proposed dynamic

redundancy allocation strategy. This function is generalized in Algorithm 3. It is es-

t
NafP

sentially performing —/—. By doing so, the redundancy can be distributed evenly to

each instructions in this group for the sake of fairness. Note that prioritized alloca-

tion in favor of specific instructions is also feasible. The complexity of redundancy
allocation consists mainly of LUT, as the voters just perform LUT-based operations
to allocate redundancy as shown in Algorithm 2 and Algorithm 3. Furthermore, some
operations shown in Algorithm 3 do not need to be performed every cycle. For ex-

ample, the operation for getting Oé]O-p " is not necessary if the group number j remains
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Algorithm 2: The general procedure of dynamic redundancy allocation.
Input:
status_parent (status of the parent voter),
con firmation (confirmation status of the current voter),
N (total availability),
J (group index),
k (number of voters simultaneously processing in the same group)
begin
while the voter is active do
if status_parent is Invalid then
nullify all the execution under control of this voter
propagate info. to the subsequent voters
end
Ise if con firmation is False then
R = calculate_redundancy(N, j, k)
allocate R redundant computation from neighboring CEs
end

@

end

end

Algorithm 3: calculate_redundancy(N, j, k).

Input: N, j, k
Output: R
begin

if j is changed then
L read o’ * from LUT indexed by j

if N is changed then
L LUT-based calculation for N a?p t

LUT-based calculation for R = N oz;p t%

return R
end

the same. Thus, the algorithm can come up with a timely decision. In addition,
the timing efficiency can be further improved by separating the issue stage into two

stages.
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5.4 FEvaluation and Discussion

In this section, we evaluate the proposed dynamic redundancy allocation technique.

We first explain the evaluation methodology and then discuss the simulation results.

5.4.1 Methodology

The simulations are implemented in C program based on the proposed dynamic re-
dundancy allocation technique. Here we are interested in architecture-level abstracted
behaviors instead of implementation or program details. To evaluate the effectiveness
of the proposed technique, we compare our work with two existing techniques: one
uses fixed dual-modular redundancy, where speculative execution always takes two
computation units; and the other is an improved technique [87, 88|, which assigns
either one processing unit if the previous instruction can still be confirmed, or two if
the previous instruction is not confirmable. In order to ensure a fair comparison, all
the settings are equivalent to the two existing techniques except for the redundancy
allocation algorithm. In particular, we compare the performance of our technique
with the two existing techniques under the same number of CEs. We also make the
same assumption on the utilization of MEMs. The focus of this work is on how to
efficiently utilize available computational hardware resources (CEs) to jointly achieve
fault tolerance and high performance under a range of fault rates. In the simulations,
all the instructions are dependent on their immediate precedent instructions. In such
an example, instructions are speculatively executed based on unconfirmed results.
Other programs of different dependencies can be considered as a combination of mul-
tiple copies of this specific example but with different numbers of instructions and
appearing at different phases in the program. There are totally 40 CE’s in the cluster
and L7 = D = 4. The optimal ratios a;" s for dynamic redundancy allocation are
selected according to the method described in section 3.

In these simulations, we deliberately introduce faults into the execution results
of CEs and evaluate the performance in terms of cycle per instruction (CPI). These
faults represent the possible upsets during CE execution as well as in the associ-

ated interconnects and MEM units. We evaluate our technique using abstracted
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instructions, which do not depend on specific applications but do represent many key
computational activities in real tasks. Note that only the correctness of execution,
rather than the actual execution results, matters to this evaluation. Thus, abstracted
instructions not targeting program details are sufficient for this study. The voters are
assumed to be reliable as explained in section 2. Each time when a CE is process-
ing an instruction, the result may go wrong at a certain rate, which is contributed
by both permanent defects and transient errors. Without a general fault model for
nanoscale systems, we may assume for the purpose of demonstration that faults occur
independently. Note that the fault rate of CEs is generally higher than the fault rate
of individual nanoelectronic devices. Thus, a large range of fault rates are evaluated
for the proposed technique to account for the effect of increase in failure probability

at the coarse granularity.

5.4.2 Average Performance

Figure 5.5 compares the average CPI for fault rates ranging from 0 to 0.5. The fault
rates here are the possibility that the execution results of CEs go wrong. As we
consider in-order execution, the minimum CPI is close to 1. Employing the proposed
technique, the average CPI can approach this bound even at rather high fault rates.
In addition, our technique achieves approximately 20% — 30% improvement on the

average CPI as compared to the two fixed redundancy allocation techniques.

CE#=40

fixed redundancy EJ enhanced fixed redundancy B dynamic redundancy

=

average CPI
S SO
OCNRRN® RO
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15 0.2 025 03 035 0.4 045 0.5

fault rate

Figure 5.5: Comparison of average CPI.
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An interesting result is that when the fault rate increases, the proposed dynamic
redundancy technique maintains a very stable performance as compared with the
other two techniques. Using the two fixed redundancy techniques, the average CPI
first reduces then increases as the fault rate increases. This is because the fixed
redundancy techniques utilize redundancy rigidly neglecting the changing demands
of fault tolerance and high performance. When the fault rate is low, the execution
results are easily confirmed. However, the fixed redundancy schemes still utilize the
same amount of redundancy for fault tolerance, thereby wasting resources that could
otherwise be used for enhancing the performance. As the fault rate starts to increase,
some speculative executions are corrupted and the incorrect paths are pruned. This
effectively releases some resources for performance improvement. As a result, we
observe a reduction in average CPI when the fault rate increases from 0 to around 0.25
in fixed redundancy allocation schemes. When the fault rate continues to increase,
the fixed redundancy techniques show disadvantages manifested as the performance
slowdown. While the executions are corrupted at a higher rate, these schemes only
provide a fixed amount of redundancy for each allocation, which is unlikely to be
sufficient to confirm the instructions quickly. As a result, although some efforts can
be saved from the pruned incorrect branches, the overall performance can hardly be
satisfactory due to the lagging instruction confirmation and frequent re-execution for

fault recovery.

5.4.3 Performance Predictability

Performance predictability is an important metric, especially for real-time applica-
tions which typically require stable and predictable system performance. Similar to
the simulations described above, we study the standard deviation of CPI under dif-
ferent fault rates. The results are shown in Fig. 5.6. As indicated, the performance
of the fixed redundancy techniques shows large variations. When the fault rate is
around 0.5, the CPI deviation is more than 12%. In contrast, the proposed dynamic
redundancy technique significantly reduces the CPI deviation, e.g., only at 1.5% when

the fault rate is 0.5, and almost zero when the fault rate is smaller.
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Figure 5.6: Comparison of CPI deviation.

It can be observed that the proposed technique is able to deliver stable perfor-
mance over a range of fault rates. The reason is that dynamic redundancy allocation
is flexible and can allocate more redundancy to the precedent instructions, thereby
not only preventing resources from being depleted by over-aggressive speculative ex-
ecution but also accelerating the confirmation of precedent instructions. This is im-
portant to reduce re-execution, especially when the fault rate is high. Therefore, the
proposed technique enables high performance with a predictable manner. This is also

beneficial for synchronizing with other nanocomputing subsystems.

5.4.4 Scalability
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Figure 5.7: The impact of available CEs on average CPL.
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Figure 5.8: The impact of available CEs on CPI deviation.

We also study the scalability of the proposed technique. Figures 5.7 and 5.8 show
the results of average CPI and the deviations with different numbers of CEs under a
range of fault rates. We can easily see that the average performance of the proposed
technique is very stable for different numbers of CEs when the fault rate is below
0.3. When the system is experiencing a rather high fault rate at around 0.5, the
dynamic redundancy allocation can still achieve an average CPI at around 1.2 with
only 20 CEs. This result is even better than the fixed redundancy techniques with 40
CEs (see Fig. 5.5). Thus, the proposed technique can reduce the hardware resources
needed for fault tolerance and performance. In addition, the dynamic redundancy
allocation maintains performance predictability at different numbers of CEs, as shown

in Fig. 5.8. Thus, the results in Fig. 5.7 and 5.8 justify the good scalability of the

proposed technique.



Chapter 6

Defect-Insensitive Signal

Processing

6.1 Introduction

As discussed earlier, it is important to achieve reliable computation out of defect-prone
devices. In chapter 5, we have investigated solutions for nanocomputing systems. In
this chapter, we address the defect tolerance in nanoelectronic implementation of DSP
systems by developing a new algorithmic design framework enabling defect-insensitive
signal processing.

The underlying idea is based on the fact that most DSP applications do not re-
quire absolute correctness in hardware operations. An example is frequency-selective
filtering where the input signals always contain a significant amount of channel noise
and out-of-band interferences, which lead to signaling errors at the output. The re-
liable performance of these DSP applications is typically determined by a desired
level of signal-to-nose ratio (SNR) or bit-error rate (BER), whereas the absolute cor-
rectness on a per-symbol basis is not necessary. Exploiting this fact, we conduct a
theoretical analysis on algorithmic enhancements for defect-insensitive signal process-
ing with unreliable nanoelectronics. It is worth notice that in [56], [57], algorithmic
approaches are developed to jointly improve energy efficiency and soft-error tolerance

by minimizing energy overhead while satisfying performance constraint specified by
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SNR. Different from that work, we aim at cost-efficient and low-complexity solution
for addressing the excessive permanent defects in nanoelectronics. We also develop
a heuristic design approach to achieve reliable signal processing while reducing the
complexity and cost related to post-fabrication testing and defect diagnosis. Simula-
tion results on crossbar-based finite impulse response (FIR) filters demonstrate the
effectiveness and scalability of our approach under a large range of defect rates.
This chapter is organized as follows. In section 6.2, we discuss the major defects in
nanowire crossbars and their impact on system-level performance of DSP applications.
In section 6.3, we propose the algorithmic design framework for defect-insensitive
signal processing. Simulation results of frequency selective filtering are provided in

section 6.4 for demonstration of the proposed approach.

6.2 Defects in Crossbar-Based Nanoelectronics

In this section, we will show how excessive defects in crossbar-based nanoelectronics
can affect signal processing systems at the algorithm level.

Most defects from the self-assembly fabrication of nanoelectronics can be placed
into three broad categories [58]: (1) crosspoint stuck-at-open, caused by a miss-
ing switch at the crosspoint, (2) crosspoint stuck-at-closed, where two orthogonal
nanowires are shorted together at the crosspoint, and (3) nanowire open, indicating
a broken nanowire.

Due to the different physical mechanisms, these defects may manifest as various
logic errors at the circuit level. Consider an AND gate array shown in Fig. 6.1
(the associated pull-up and pull-down arrays [101] are omitted for simplicity). If the
crosspoint J; has a stuck-at-open fault, the output column Y; cannot be pulled down
by the input due to the missing switch. Thus, the output Y; will give an incorrect
result when AB = 01 (see Fig. 6.1(b)). On the other hand, stuck-at-closed and
nanowire open defects generate undermined output values (see Fig. 6.1(c) and (d)),
e.g., the output can be read as either logic “1” or “0” depending on the resistance
ratio and the receiving circuits. An important observation here is that, while the

defects are permanent, the induced logic errors may not be constant but show strong
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dependency on the input. For most digital logic where the input can be modeled as

a random signal, the defect-induced errors behave more or less randomly.
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Figure 6.1: Defects in nanowire crossbars: (a) defect-free implementation and (b)-(d)
three major types of defects.

It is expected that in a signal processing integrated system containing complex
logic networks, the defect-induced errors will show extremely complicated relationship
with the input statistics, circuit topology, and algorithm specifications. Consider a
crossbar-based implementation of a low-pass FIR filter with 40-taps and bandwidth
w; = 0.37. A wideband signal is applied as the input to this filter. For the purpose
of illustration, we randomly choose defective crosspoints with defect rates of 0.01 and
0.1, where defects are assumed to be uniformly distributed. Figures 6.2(a) and (b)
show the defect-induced errors measured at the filter output under the two defect
rates. Apparently, the magnitude of defect-induced errors increases with the defect
rate. In addition, the output errors show strong randomness, which is consistent with
our discussion regarding Fig. 6.1.

Dealing with defect-induced errors at device and circuit levels requires exhaustive
testing and diagnosis on a per-chip basis. In general, this approach is very time-
consuming and becomes less effective as the integration complexity scales up. On
the other hand, defect-induced errors behave like an additive noise-like signal at
the system level. Since digital filters are designed to mitigate signaling noise, it is
possible to deliberately compensate for the defect-induced errors through algorithm

enhancements, as discussed in the next section.
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Figure 6.2: Defect-induced errors at a filter output different defect rate (P; =
0.01, P;=0.1).

6.3 Defect-Insensitive Signal Processing with Na-

noelectronics

In this section, we propose an algorithmic design framework enabling new opportu-
nities of defect-insensitive signal processing using unreliable nanoelectronics.

Different from general-purpose computing, signal processing applications such as
digital filtering usually do not require absolute correctness in the symbol-by-symbol
execution. In fact, channel noise and out-of-band interferences inevitably generate
residual signaling noise at the system output. Thus, the reliable performance of signal
processing is usually measured by a desired level of signal-to-nose ratio (SNR). This
opens up an opportunity to developing algorithmic enhancements that not only ensure
the overall reliable signal processing performance but also reduce the complexity of
defect tolerance.

In what follows, we will use frequency selective filtering to illustrate our approach
of defect-insensitive signal processing. Frequency selective filtering is a basic signal
processing module in various DSP systems. Conventional algorithm design concerns
with a performance specification given in terms of the output SNR by assuming the
availability of error-free hardware substrates. As shown in Fig. 6.3(a), the input of
an ideal defect-free filter H;(e’*) includes signal x(n) and noise 7(n), and the output
contains the desired signal y;(n) and residual noise 7;(n). The SNR of this filter can

be calculated as )
o
o

2
m
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Figure 6.3: Modeling of (a) ideal defect-free filter in direct implementation and (b)
defect-insensitive filter.

2

where o,

and 07271 are the variances (energy) of the signal and noise at the output,
respectively.

Due to excessive defects in nanoelectronics, the output will contain defect-induced
noise-like errors. Thus, the SNR might be reduced below the required level. Con-
ventional techniques on defect tolerance rely upon per-chip based testing to locate
all the defective crosspoints. In this chapter, we propose a new approach where al-
gorithm design explicitly addresses the defect-induced errors at the system level so
that defect tolerance becomes self-enabled. Specifically, we look for an over-designed
filter Hy(e’?) that deliberately introduces extra performance margins for the purpose
of offsetting the defect-induced errors. A defect-prone implementation can be mod-
eled as the sum in frequency response of Hy(e/) with another “filter” H,(e’*) as
shown in Fig. 2(b), where H.(e’*) actually reflects the statistics of defect-induced
errors in Hy(e??). For a given implementation of H(e’*), the defect-induced errors
are input-dependent and thus can be modeled as the output of H.(e?*). The goal is
to design Hy(e?*) such that the output SNR in the presence of defect-induced errors
(i.e., output of H.(e’*)) will be at least equal to (6.1) to match the ideal defect-free
filter H,(e/¥).

To meet the performance requirement, the proposed defect-insensitive filter should
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satisfy
o2
SNR, = 10lo = > SNR;. 6.2
? S10 op, +o2 +oZ |~ ! (6.2)
Yy n
where o, < 07 as Hy(e’*) is over-designed, and o? and o7 are the variances of
y n

defect-induced output errors depending upon the inputs z(n) and n(n), respectively.

Because Hi(e?*) and H,(e?*) have the same input signal component x(n), we can

2

.1 1-e., the output signal components of the two filters are also nearly

expect o, X 0
equal. Comparing (6.1) and (6.2), defect-insensitive signal processing can be achieved

if the following condition is satisfied

2 2 2 2
o, to. <o, —0,, (6.3)

Assume that the input noise 7(n) is zero-mean with variance 2. The RHS of

n
(6.3) can be obtained as [59]
Ni-1 Na—1
o2 — 02 =02 (Z HOEDY h%(k)) : (6.4)
k=0 k=0

where Ny and Ny are the numbers of taps of Hi(e?*) and Ho(e?*), respectively.
A

Denote the autocorrelation of input signal x(n) as ¢,.(l) = E(x(n)x(n —1)). The
LHS of (6.3) can be obtained as

No—1 No—1

ol 40l = (02400 Y h2(k)+2 ) daa(D)cnn. (D), (6.5)
k=0 =1
where
No—1-—1
Chene(D) = Y he(k)he(l + k), VI > 0. (6.6)
k=0

Note that h.(k) # 0 when the k' tap in Ho(e’*) contain defects. Substituting
(6.4)—(6.6) back into (6.3), we can verify whether the defect-insensitive design could
achieve the specified performance in terms of the output SNR. Furthermore, due to

the extra performance margin, we can allow some taps in Hy(e?*) to bear defects
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while still satisfying the specified output SNR. Actually, only a few taps need to be
configured as defect-free (see the heuristic design algorithm given below). As shown in
section 6.3, the proposed defect-insensitive design is able to reduce the complexity and
cost related to per-chip testing while achieving reliable signal processing. In addition,
the hardware overheads in H(e/*) are manageable as nanoelectronics provide abun-
dant device resources and redundancy. Note that a closed-form expression of H,(e’*)
is not necessary in the proposed heuristic algorithm design of defect-insensitive signal
processing, as summarized next.

(i) To provide performance margin in Ho(e/) for defect tolerance, (6.4) should be
positive and large enough. The design procedure can start from a relatively conserva-
tive design Ho(e’*) that provides a small margin, and then check the number of taps
needed to be defect-free under a certain defect rate and distribution, as explained in
the following steps.

(ii) For a given Hy(e’*), the defect-free taps should be those with large algorithmic
weights. As ¢, (1) in (6.5) is a decreasing function of [ for [ > 0 and Cj,_, (1)’s may
cancel out from each other, it is reasonable to assume that the first term in the RHS
of (6.5) is a dominant factor when offsetting defect-induced output errors. Therefore,
we will primarily consider the first term and use the second term only for verification.
This leads to the following adjustments.

(iii) We first group the taps ho(k)’s of Hy(e’*) based on their effective bit-width
My’s. If ho(k) has a bit-width My, the defect-induced errors from this tap is propor-
tional to h%(k) (see (6.5)) with a maximum value of max{h3(k), (2™ — 1 — |ha(k)|)?},
which is less than 22, Tt is easy to see that for hy(k) with large bit-width M (i.e.,
large coefficient value), h%(k) is also large thereby resulting in large defect-induced
output errors. These taps have large algorithmic weights and thus need to be config-
ured as defect-free (through testing and replacing the defective crosspoints). Thus,
design effort needs to be directed towards ensuring defect-free computation in taps
with large coefficients only. This is reasonable because these taps contribute more to
the output. We can start with protecting the coefficient with the largest value and
continue until (6.2) is just met. Note that this algorithm design step can be performed

through simulation under certain defect rates and distributions that match the actual
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implementation. Eventually we can determine a few taps that need to be defect-free.
Thus, the complexity and cost related to post-fabrication testing and diagnosis are
reduced significantly .

(iv) Repeating the above steps until an optimal Hy(e’*) is obtained. The optimal
H3P'(e7*) is the one that can afford the minimum number of defect-free taps while
still satisfying the performance requirement (6.3). This optimal H5" (/) is the final
algorithm design of defect-insensitive signal processing.

The above design procedure is summarized in Algorithm 4 Note that this design
procedure indicates that defect-induced errors should only be allowed from the taps
in Hy(e’*) with smaller coefficients. This, however, does not imply that these taps
have no algorithmic contribution at all and thus can be removed from the implemen-
tation. It only shows that the defect-induced errors in these taps have a minor impact
on the algorithmic performance (e.g., the induced SNR degradation is acceptable).
Furthermore, this design procedure does not depend on specific defect distribution
in the implementation (i.e., clustered or non-clustered). As long as the performance
requirement (6.3) can be satisfied after applying the design procedure, the system is

able to tolerate the existing defects.

6.4 Evaluation and Discussion

In this section, we evaluate the proposed algorithm design methodology for defect-
insensitive signal processing.

Figure 6.4 shows the block diagram of the defect-insensitive filter. The spectrum
of the input signal z(n) consists of a primary signal z1(n) occupying the [0,w;] and a
bandpass signal z5(n) in [w;+0.17, 7]. A white Gaussian noise is added into the input
signal. The performance requirement of the filter is to extract the primary signal x1(n)
with 22dB output SNR, i.e., SNRy,.. = 22dB. For defect-insensitive implementation,
we design the filter with 24dB output SNR. This performance margin is then utilized
to adjust the configuration of defect-bearing taps. All the filters are designed using
the Parks-McClellan method [60].

We simulate the defect-induced errors by adding defects at crosspoints with a
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Algorithm 4: The general algorithm of design procedure.
Input:

® Wy, Opi, Wsi, 05 (filter design specification)
® 0y, ¢u (noise and signal statistics in typical applications)

® Ny (mazimum filter order affordable)

Output:
o {hg(k)"pt},ivzgt (the optimal defect-tolerant filter)

o {T(k)}]kvjogt (indicating whether hy(k)’s must be defect-free)

begin
design {hy(k)}", according to specification
calculate 072] )
for Ny «— Ny +1 to N,,,4, do
design {ha(k)}%, subject to 02 — 02, >0
group hy(k)’s according to My — Gy = {ha(ki), ha(k}), ...},
Gy = {ha(k3), halK3), -},
Gmaz = {hQ(k}nax)? h2<k72nax)7 }
for £k — 0 to Ny do
| T(k) =1 (start with a filter with only defect-free taps)
agy + azn =0
=0
repeat
j=7+1
allow taps in group G; to be defect-bearing by letting T(k:;) =0
calculate o2 + o2,
until 0} +o0? <o) —or,
| record Sp(Ng) = ]kvigl T (k), the number of defect-free taps
determine the optimal design by finding the minimum Sz (N,)
end

range of defect rates. In addition, we assume that the defects are uniformly dis-
tributed across the nanowire crossbar. For stuck-at-closed and nanowire open de-

fects, we assume the affected outputs are fixed at either logic “1” or “0” with equal
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Table 6.1: Results of defect rates, bandwidth, and the number of taps needed to be
defect-free in defect-insensitive filter implementation.

Defect Rate
Bandwidth (X7) | Nspee | Nover—designed | 0.01 0.02  0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.3 40 45 23 24 26 29 30 30 31 32 32 33
0.4 40 45 19 19 20 22 24 25 27 28 29 30
0.5 40 45 17 18 22 25 26 26 27 27 28 29
0.6 40 45 16 17 17 18 20 21 21 23 23 24
Noise
Iy T2
(- Y Defect—insensitive
W wi+0Inr i - y(n) +ns(n)
b GIn 2 - + J - Low—pass Filter . ] -
x(n) Rt (Molecular Crossbar)

Figure 6.4: The low-pass FIR filter for simulation.

probabilities. In order to evaluate the effectiveness of the proposed technique, we
vary the bandwidth w; from 0.37 to 0.77. Table 6.1 shows the relationship of filter
bandwidths, defect rates, and the configuration of defect-insensitive filters. Note that
the values under the defect rates are the number of taps needed to be defect-free when
the output SNR of defect-insensitive filters degrades to 22dB.

For a given filter bandwidth, the number of defect-free taps needed in the defect-
insensitive filter increases with the defect rate. This is expected as more crosspoints
could become defective and thus potentially contribute to the increase in defect-
induced errors at the output. However, the proposed defect-insensitive design signifi-
cantly relaxes the need for post-fabrication defect testing and diagnosis. For example,
at w; = 0.37, the number of taps needed to be defect-free increases from only 23 to 33
as defect rate increases from 1% to 10%, while in the direct implementation all of the
40 taps need to be defect-free. This reflects 40% to 19% savings in defect tolerance.

As shown in Table 6.1, this benefit is consistent (thus scalable) across a wide range
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of bandwidths and defect rates.

Another important observation is that the proposed technique achieves better
trade-offs of defect tolerance as the filter bandwidth increases, i.e., our technique is
well-suited for broadband signal processing. The reason is that as the bandwidth
increases, fewer taps will have coefficients with large magnitude. As explained in
section 6.3, the taps with small coefficients can bear defects without degrading output
SNR beyond the design target. Again, this does not imply that these taps have
no algorithmic contribution and thus can be removed from the implementation. It
only shows that the defect-induced errors in these taps have a minor impact on the
algorithmic performance. As expected, the over-designed defect-insensitive filters
introduce some hardware overheads in terms of more filter taps. However, these
overheads are practically acceptable as nanoscale integration offers abundant device

resources and redundancy.



Chapter 7

Power Equilibrium for Register

File Security

7.1 Introduction

Recently, security has become an important issue in the design of reliable computer
systems. The security of cryptographic algorithms such as block ciphers and public-
key algorithms relies on the secrecy of the key.

Traditionally, cryptanalysists break a cryptographic algorithm by finding the weak-
ness in the algorithm that can be exploited with a complexity less than brute force.
However, a real computing device not only performs tasks specified by the crypto-
graphic algorithm but also inevitably produces some other information such as timing,
power, and electromagnetic leak. These types of information, called side-channel in-
formation, can be exploited in side-channel attacks to retrieve secret keys much more
easily. Side-channel attacks have successfully broken many algorithms that are se-
cure under traditional attacks [64, 65]. Mobile devices and sensor nodes that work
in the field, not protected by physical security mechanisms, are more vulnerable to
side-channel attacks.

Among all side channel attacks, power analysis, which exploits the power con-
sumption of a cryptographic system, can be carried out easily. It is very effective in

breaking cryptographic algorithms [64, 65]. In this type of attacks, adversaries learn
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what operations are performed and what data are processed by analyzing the power
traces of computations. They can then figure out part or all of the bits in the secret
key.

A lot of work has been done on the countermeasures against power analysis at-
tacks. Many countermeasures studied software implementations, trying to make
the power consumption of a crypto-system either random or identical for different
keys [72]. The software countermeasures usually work only for specific algorithms
and have large performance overhead. Very often, the countermeasures are found
vulnerable to more advanced attacks..

There are some hardware countermeasures on the circuit level [73, 69, 70]. The
use of self-timed dual-rail logics is proposed in [69] to provide protection to power
analysis attacks. Dynamic and differential logic is also employed in [73]. Both the
logic styles can make the power consumption of logic gates independent of the data
values. One of the drawbacks of these methods is large area and power overhead.
The method described in [70] compensates the power consumption of the system
with voltage and frequency scaling techniques and an analog current injection circuit.
However, frequency scaling affects the performance of software and may make the
system vulnerable to timing attacks, another type of side-channel attacks. It should be
pointed out that memory security is not the primary focus of these above techniques.

Some other hardware countermeasures are proposed at the architectural level [67,
68]. They randomize either the register renaming [67] or the issue of instructions
in the instruction window [68] to make the power analysis attacks more difficult.
However, these methods may not fit well with low-end processors, which typically do
not have the register renaming mechanism or large instruction window to support
out-of-order execution.

Despite the previous work, it is still desirable to study an effective, low-cost,
algorithm-independent countermeasure for general-purpose processors, especially for
low-end processors used in mobile devices or sensor nodes. Considering the fact that
memory and register files contribute a significant part to the power consumption and
hence are vulnerable to many power attacks [61, 71], we study how to make register

files resistant to power analysis attacks in this work. Although register files are only
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one of many possible targets of power analysis attacks, it is expected that the work on
register files will help identify the effective mechanisms that mitigate power analysis
attacks and hence can be extended to other components in the system as well.

Different from existing countermeasures, we propose a new register file architec-
ture, referred to as the Secured Power-Equilibrium Register File (SPERF' ), which
is an algorithm-independent countermeasure. In SPERF, the original data and its
redundant flipped copy are maintained in two register banks to achieve an equilib-
rium state of power consumption, where power is always balanced and independent
of data values. Thus, security information is withhold from power leaks. Some
preliminary work is reported in [29]. In this chapter, we extend our past work by
making the following contributions. First, the design space of SPERF is exploited
and tradeoffs between different requirements are investigated. Second, architectural
supports including a register allocation algorithm are developed to facilitate the hard-
ware/software co-design addressing tradeoffs in SPERF. Third, a comprehensive suite
of simulations and board experiments is performed covering the resistance to power
analysis attacks, energy overhead, and performance-area tradeoffs.

The organization of this chapter is as follows. Section 7.2 studies the vulner-
ability of conventional register file to power analysis attacks. Section 7.3 presents
the proposed technique and why it can protect register file from power analysis at-
tacks. Section 7.4 exploits the design space and section 7.5 evaluates our method

with simulations and board experiments.

7.2 Vulnerability of Register Files to Power Anal-
ysis Attacks

On-chip memory is a major source of power information leakage that can be exploited
in power analysis attacks. In particular, the register file, the most frequently accessed
memory, contributes a significant part to the power traces of computation.

Figure 7.1 shows the generic architecture of a conventional register file. For illus-

tration purpose we consider the register file to comprise of 32 registers with 32 bits
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Figure 7.1: An example of a 32 x 32 register file.

in each. The address decoder selects the target register cells according to the register
address and asserts the corresponding wordlines. Each register cell is an SRAM cell
with multiple read/write ports [63] (2r/1w in this example). During a read opera-
tion, the wordline W L_r_1_Rx or W L_r_2_Rx is asserted, and the data stored in the
selected register Rx are evaluated by the read bitlines. Upon a write operation, data
can be written from the write bitlines into the register Ry selected by W L_w_Ry.
Typically, read logic is implemented in dynamic CMOS circuits that are precharged
in the first half of the clock cycle and evaluated and sensed in the second half of the
cycle, whereas write logic is in static circuits that are activated in the first half of the
cycle. Thus, this register file supports back-to-back read and write operations with
single-cycle latency.

While the average power consumption of a register file is usually small, its fre-
quent activities can generate substantial transient responses that contribute to data-
dependent power traces. To illustrate, we consider the power consumption on register
bitlines, a dominant component in the power profile of register file as bitlines typically
have much larger parasitic capacitance than bit cells. We will also consider capacitive
power consumption due to the high switching activities and the small size of register

files where the leakage power is relatively small.
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We investigate how power consumption reveals data values in register file based
on switching distance model [66] and Hamming distance model [65]. A data of m-bit
is coded as X = Z;Z)l x;2¢, where z; = 0 or 1. Its Hamming weight is the number of
Us, ie., H(X) ="

We assume that power consumption is a linear function of 0 — 1 and 1 — 0
switches. This simplification, although has its limitation, allows us to focus on the
major source of power leaks and identify the vulnerability of register file to power
analysis attacks. Generally, the two types of switches consume different amount of
power. We denote § = % as the normalized difference of power consumption
for each switch between the two types, where Fy_,; and P;_,y are the power consumed

in a single 0 — 1 switch and a single 1 — 0 switch, respectively. Thus, power

consumption when data is changing from X to Y can be calculated as

P(Xa Y) = a[N0—>1(X7 Y) + (1 - 5)N1—>0(Xv Y)]
+b
— G[H(XY) + (1 — §)H(XT)] +b, (7.1)

where Ny_1(X,Y) and Ny_o(X,Y) are the numbers of the two types of switches,
respectively, during the X-to-Y transition, a is the scalar gain, and b is the static
power that is independent of the switching. Notation X refers to the complement of
X.

During a register read, all read bitlines are precharged to the supply voltage V4 in
the first half of a clock cycle. This indicates a data transition from X}, (the data on
the read bitlines due to the previous read operation) to All_1 (m bits of ‘1"). Thus,
power consumption can be modeled as

precharge
B, read

P AlLL)
= a;[m— H(X},)] + b, (7.2)

where a, and b, are the scalar gain and static power component in read circuitry,

respectively.
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During the second half of the cycle, some read bitlines will be discharged if 0’s (or
1’s depending on the read logic) are stored in the corresponding bit cells. The power
during this evaluation phase where X/, is read out can be calculated as

pevaluate P(All,l,Xr )

read new

= a.(1-0)(m—H(X],,)) + b (7.3)
From (7.2) and (7.3), power consumption during both phases of read operation is
data-dependent.

When the register is written in a new data X to replace the currently stored

old data Xj,;, the power consumption can be calculated as

Pwrite = P<X§l)d7Xw )

new

= a [HXEXE,) + (1 — O H(XS, X))

new new

+by, (7.4)

where a,, and b,, are the corresponding a and b in write circuitry. Again, the power
consumption in write operation is also data-dependent. This state of power consump-
tion for different data is the source of power leaks that are exploited by power analysis
attacks.

It is worth to notice that read and write operations induce different data-dependent
patterns on power traces, as shown in (7.4) compared with (7.2), (7.3). because write
logic is typically implemented in static circuits without a precharge phase. Therefore,
hardware countermeasures against power analysis attacks need to take into account
this effect.

7.3 Secured Power-Equilibrium Register File

As explained in section 7.2, conventional register files are vulnerable to power analysis
attacks as the power consumption is highly data-dependent. In this section, we

propose our method to make register files resistant to this kind of attacks by achieving
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an equilibrium state of power consumption.

7.3.1 Basic Architecture

As power consumption is determined by the patterns of 0 — 1 and 1 — 0 transitions,
one approach to protect register file from power analysis is to make the number of
transitions balanced and independent of the data values accessed during read and
write operations. We propose to exploit this idea by introducing redundant circuitry
and operations in the register file so that each register access will always incur the
same number of transitions on the read and write bitlines. Specifically, data are stored
at two locations in the register file. One location has the normal bit representation of
the value and the other has the complemented bits. Writing to a register updates the
bits at both locations. Reading from the register file also retrieves values from both
locations. This new register file design is referred to as the Secured Power-Equilibrium
Register File (SPERF).

We consider a 32 x 32 original register file for the purpose of illustration. SPERF
is implemented by hardware to introduce Ry, redundant registers (hardware-enabled
redundancy) and/or by software to release Ry redundant registers (software-enabled
redundancy) and then reorganizing the register file into two banks as shown in Fig. 7.2.
Both the original data bank and the redundant data bank have N registers. Details
of the hardware/software co-design and its tradeoffs are discussed in section 7.4.

We define two operation modes for SPERF, the normal mode and the secure mode.
Redundant operations are enabled only when the system is in the secure mode. In
the normal mode, SPERF works in the same way as a conventional register file. The
original data bank and part of the redundant data bank are both used for the original
read_data and write_data. In the secure mode (secure_mode = 0), the redundant
bank performs write and read operations on flipped copies of the data. On a write,
write_data and its flipped bits are simultaneously stored in the original and redundant
banks, respectively. On a read, both banks are accessed. The original and flipped
read_data are read out from the register file, where the corresponding read bitlines

are evaluated by these data. Both the original data and the flipped copy are written
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to the pipeline registers, which are placed between pipeline stages, although only
the original data is used in the functional units for further computations. Thus, the
capacitive load of the two read ports can match each other in order to avoid power
information leakage. Note that the flipped copy could potentially be used in logic
operations in order to enhance the security of ALU and other processor components

as well, which may lead to a comprehensive solution to power analysis attacks.

(32-R)x32

Releasing Rs
redundant registers ———————
from original regﬁle {

Software efforts i + i

32x32 Software enabled
redundancy
Original Hardware efforts +

Hardware enabled

spare registers

Implementing Rn }

secure_mode

redundancy

Reorganize ~ T T 7T
r--r—r—————~""~""""™""™"™"™"™"™"™"™>"™"™>"™"™>"™"™"™"™"™"™"™"™“"“""™"™"7™7 |
| write_data read_data |
| > > |
: address Nsx32 :
! I
! I
I Original data bank |
: s read_data/ |
. I

' I
' |
' I
! I
' I
' I
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Figure 7.2: Secured Power-Equilibrium Register File. R}, entries of hardware-enabled
redundancy and R, entries of software-enabled redundancy are reorganized into a
redundant data bank to achieve power equilibrium. N, represents the number of
architectural registers in the secure mode. (Ny = 32 — R, = Ry, + R,.) Further details
are discussed in section 7.4.

7.3.2 Power Equilibrium and Circuit Implementation

We now study the mechanisms and circuit implementation to achieve power equilib-

rium.
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Read Operation

During a read operation, power consumption in register file is determined by the
numbers of 1 — 0 transitions during the evaluate phase and 0 — 1 transitions during
the precharge phase on read bitlines. It can be shown that in the secure mode, the
balanced power consumption is always achieved.

Revisiting (7.2), (7.3) in section II, we can also derive the power consumption
during read operation as follows. During precharge phase, bit lines in the original
bank and the redundant bank experience transitions from X/, and m, respectively,

to All_1. Thus, power in precharge phase can be written as

Prowreat = P(Xgg, A1)+ P(X5, All1)
= ap[m — H(X3,)] + b
+ay[m — H(X3,)] + b
= a,m+ 20b,. (7.5)

Likewise, the power consumption in evaluation phase can be written as

Pevaluate _ P(AllfLXT )+ P(All,l,XT )

new_read new new

= (1 8)m — H(X[,)] +1,

new

+a,(1— 6)[m — H(XT_,)] + b,

new

= a,(1—8)m+2b,. (7.6)

(7.5) and (7.6) both show that a read access in the secure mode indeed results in a bal-
anced and data-independent state of power consumption and thereby being protected

from power analysis attacks.

Write Operation and Circuitry

Write logic in conventional register files is usually implemented in static circuits,
leading to a different pattern of power traces as compared with read operations.

Without a precharge phase, the number of bit transitions during a write operation
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depends not only on the value being written to the register but also on the value
currently stored in the register. Simply writing a redundant copy does not defeat
power analysis attacks. In fact, it exacerbates the power variance among different
data values and makes it easier for adversaries to launch power analysis attacks.
Consider an example where Ry stores 32’"h0000_0000 and will be updated with a
new value 32’h0000_0001. In the normal mode, there is only one 0 — 1 transition
in the original bank. In the secure mode, in addition to this transition, there would
be one more 1 — 0 transition in the redundant bank. In total, there would two bit
transitions. If the original value in Ry is 32’hFFFF_FFFF instead, there would be a total
of 62 (= 2 x 31) transitions. The redundant bank actually could double the number

of transitions, making it easier for adversaries to observe the power differences.

precharge
j:D— precharge_w
secure_mode

Vdd

precharge d H E b t ; p--- precharge_w

WL_t_1
WL_r_2

[

-
Reg cell
------- -4
WL_w l
L\ / l write_data

| Read/write control |

Figure 7.3: Modified write circuitry. (Dotted lines represent the modified write bit-
lines. secure_mode = 0 indicates the secure mode.)

To address this issue, we need to modify the write operation so that its power
consumption cannot be exploited. Inspired by the precharge in read operations,
which makes the discharging power dependent only on the data value currently being
read out, we add a precharge phase in write operations.

Figure 7.3 shows the modified write circuitry. In Fig. 7.3, a signal precharge_w,
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generated from secure_mode and precharge (the precharge control in read opera-
tions), controls the precharge in write operations. In addition, an inverter is added to
prevent the write bitline from being pulled down by a 0 in the cell. If the register file
is in the normal mode (secure_mode = 1), the NMOS in dotted line is open while the
PMOS in dotted line is closed. The register file works in the same way as a conven-
tional implementation. If the register file is in the secure mode (secure_mode = 0),
however, the write bitline will be precharged in the first half of the clock cycle by
the PMOS, where 0 will be written into the register selected by the write wordline,
replacing the old value temporarily. In the second half of the cycle, the PMOS is
closed and the NMOS is open. Actual data will be written into the selected register.

During the precharge phase, data in the original bank and that in the redundant
bank change from X}, and X_;”ld, respectively, to All_0. This causes power consump-

tion expressed by

prrecharge - pxw All0) 4+ P(X®, All0)
= a,(1=0)H(Xj,) +0,
+ay, (1= 0)H(X,) + b,
= d (1= 8)m+ 20, (7.7)

where a], and b), are the scalar gain and static power in the proposed write circuitry.
During evaluation phase, new data X, ~and its inverted copy XY, are actually

written into the two banks, resulting power consumption by

Prdlirie = PAILO, Xj,) + P(AILO, X))
= a,H(X",)+b,

new

+al, H(X®w, )+ b,

new

= a,m+ 2b, (7.8)

Thus, both phases in write operation achieve a balanced and data-independent state
of power consumption.

Note that the additional precharge for write introduces energy overhead, but the
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overhead occurs only in the secure mode. In the normal mode, no precharge is

performed and SPERF behaves as a conventional register file.

7.4 Exploiting Design Space for the New Register
File

In this section, we investigate the design options of SPERF and study the com-

piler/operating system supports that are needed to exploit the design space.

7.4.1 Design Options

There are different ways to implement the original register bank and the redundant
register bank. One design option [29] is to implement both the original register bank
and the redundant register bank with the same size as in conventional register file.
For example, if the number of architectural registers is 32, i.e., Ny = 32 in Fig. 7.2,
the conventional register file comprises 32 registers with 32 bits in each, whereas this
design option of SPERF introduces an additional 32 x 32 registers. Redundancy of
this approach relies purely on hardware efforts (R;, = 32, Ry = 0) and has large area
overhead (2X compared with conventional register file). Thus, we refer to this design
option as SPERF with hardware-enabled redundancy.

Alternatively, with software/compiler support (as discussed in section 7.4-B), the
codes of security programs can be rewritten in a way that the number of architectural
registers is cut to half as the one in the original codes, i.e., Ny = 16. Thus, some
physical registers in the register file can be released by software efforts and serve as
redundancy for the security enhancement. This is referred to as SPERF with software-
enabled redundancy. For example, the security programs can be rewritten to have only
16 architectural registers, if the original ones have 32 architectural registers. Thus, no
additional register entries need to be implemented and SPERF can be implemented
with two 16 x 32 register banks (R, = 0, Ry = 16).

In comparison with conventional register file, hardware-enabled redundancy effec-

tively doubles the size of register file, whereas software-enabled redundancy does not
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introduce additional register entries, but comes at the cost of software efforts and
likely runtime performance overhead for security programs due to the reduced archi-
tectural registers in the secure mode. Note that software-enabled redundancy does
not lead to performance slowdown in the normal mode as both the original register
bank and the redundant register bank are available for the non-security programs.
Besides, software-enabled redundancy is more flexible and scalable compared with
hardware-enabled redundancy.

Hardware-enabled redundancy and software-enabled redundancy both have their
advantages and disadvantages. Hardware/software co-designs can be adopted using a
combination of both forms of redundancy, so that they can complement and enhance
each other for efficiency and scalability of security enhancement. Specifically, redun-
dancy is created via not only hardware enhancements to introduce additional register
entries but also software efforts to reduce the number of architectural registers for
security programs. Careful tradeoffs among the conflicting requirements on perfor-
mance and area will help to decide the optimized design. This is further studied with

board experiments in section 7.5-C.

7.4.2 Hardware/Software Co-Design

To support hardware/software co-designs combining both hardware-enabled redun-
dancy and software-enabled redundancy as discussed in section 7.4-A, compilation
algorithms, especially register allocation algorithms, that are aware of the security
enhancement are needed.

First, the optimal number of architectural registers that should be implemented
(i.e., Ng) can be decided via simulation-based evaluation on the security programs
under performance and area constraints. Then, the designers can compile the security
programs accordingly. Note that programs to be running in the normal mode do not
need this special support from compiler.

To compile the security programs, the available architectural registers in the secure

mode (Ny) are assigned to variables at different program points. This process is called
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register allocation and is an important optimization in the compiler design. Most ex-
isting approaches for register allocation is based on the graph coloring framework [74].
By analyzing the live ranges of each variables in the program, the interference graph
can be constructed. Thus, the register allocation problem is modeled as a graph col-
oring problem: K colors (representing K registers) are to be assigned to the nodes
(representing variables) of the graph so that no two linked nodes (representing inter-
fering variables) are of the same color. If graph coloring fails, some of the variables
have to be spilled to memory.

A number of improvements have been achieved on coloring, spilling, coalescing,
and static single assignment form. Due to the large overheads at compile time, es-
pecially the needs for constructing and reconstructing the interference graph, linear
scan [75, 76] is proposed as an alternative to graph coloring. Compared with graph
coloring, this algorithm scans the live ranges and allocates registers in a single pass,
hence is simple and efficient. As reported in [76], linear scan does not necessarily
sacrifice execution time performance.

In our work, we develop a heuristic register allocation algorithm to support hard-
ware/software co-design to address the performance-overhead tradeoffs in SPERF
design. This algorithm is summarized in Algorithm 5. Due to the simplicity and effi-
ciency of linear scan, our algorithm is based on linear scan with a few improvements.

In step 1 shown in Algorithm 5, the intermediate representation of the code is
preprocessed. When any variable is redefined (i.e., reassigned with a new value), the
variable is renamed and becomes a new variable from the redefinition point. By doing
so, the live interval can be shortened, thereby avoiding unnecessary interference with
other variables. In step 2, the start point and the end point of each variable are
recorded and the variables are ranked in increasing order of their start points. In step
3, registers allocated to expired variables are reclaimed. Then, register allocation is
decided for each variable at its start point according to the following rules: If there
is a free register available, it is allocated to the variable. Otherwise, the variable
whose next use is furthest away is spilled. This is based on the observation that the
variable staying alive but idle for a longer time has a higher possibility, hence higher

performance penalties, of interfering with others. By spilling this variable, its live
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Algorithm 5: The register allocation algorithm for supporting hard-
ware/software co-designs of SPERF.

Input:
IR, the intermediate representation of the code
Regs, the set of available architectural registers determined by the performance-overhead tradeoffs
Output:
MC, the modified code
Algorithm:
1. Preprocess the IR
(a) linearize the code using a specific order (e.g., depth-first) and copy it to MC
(b) when the variables are redefined, rename them, make changes to MC
2. Build the list of variables, Var
(a) initialize: Var := {}
(b) build Var and include live interval info.:
foreach v; in the code do

scan and obtain the start point ¢5_; (at the definition) and end point t._; (at the last use)

Var :=Var + {vi[ts_i, tes]}
end
(c) sort Var in increasing order of the ts_;’s
3. Register allocation and spilling
(a) initialize: FreeRegs := Regs, AllocatedVar := {}
(b) allocate physical registers:
foreach t,_; € Var (in increasing order) do
i. release the expired variables in AllocatedV ar:
while AllocatedV ar not empty do

forall t._; € AllocatedVar do

if ts; > te_j then
AllocatedV ar := AllocatedVar — {v;}
FreeRegs := FreeRegs + {R[v;]}
end

end
end
ii. allocate or spill:
if 3r € FreeRegs then
Rlv;] :=r
FreeRegs := FreeRegs — {r}
AllocatedV ar := AllocatedVar + {v;}
else
find v; € {{v;} + AllocatedVar} whose next use is furthest away
if v; # v; then
Rv;] := R[vy]
AllocateVar := AllocateVar — {v;} + {v;}
end
update ts_; to the next use point of v;
update Var according to this change
add spill code for v; at this point and update MC

end

end

interval is effectively cut short.
In our algorithm, we do not spill the same variable every time it is used. Instead,
after spilling a variable we update the start point of the spilled variable with its next

use point. Thus, it is possible that when the spilled variable is used again, there are
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available registers for it. This can potentially improve the performance. Finally, the

codes are generated to meet the requirements of SPERF.

7.4.3 Operation Modes

As discussed in section 7.3-A, we maintain two operation modes, the normal mode and
the secure mode. In the normal mode, the redundant bank stores original data and
there is no precharge phase on the write bitlines. When it is necessary, the redundant
bank may even be shut down for leakage power saving. This is especially useful when
the redundant bank is purely hardware-enabled redundancy. In the secure mode, the
redundant bank operates on flipped copies and precharging operations are involved.

Thus, we need to add a processor status bit secure_mode to indicate the operation
mode of the register file. In addition, new instructions need to be added to allow the
security applications to enter and leave the secure mode and to allow the operating
system to save and restore the status bit. When an application needs to perform a
cryptographic algorithm, it first enters the secure mode with the new instruction that
sets secure_mode to 0. When the cryptographic operation is done, the application

leaves the secure mode by setting secure_mode to 1.

7.5 Evaluation and Discussion

In this section, we first validate the security enhancement of our register file design.

Then, energy overhead and performance-area tradeoffs are also studied.

7.5.1 Resistance to Power Analysis Attacks

To validate the security enhancement for power analysis attacks, we assume a 32X32
register file that has 4 read ports and 3 write ports. In order to obtain supply current
traces as accurately as possible, we implemented the physical design of the register file
in TSMC 0.18-um process technology [77] and ran simulations at the transistor level,
considering parasitics with Spectre (a SPICE simulation tool from Cadence [62]). The

simulations ran with a clock of 100M H z.
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Figure 7.4: Supply current for conventional register file.

To validate our proposed technique, we first compare SPERF with the conven-
tional approach. Figure 7.4 shows the transient supply current for a conventional
register file. Figure 7.4(a) shows the results for three read operations, each reading
a different register. The data in the three cycles are 32’h0000_0000, 32’h0000_FFFF,
and 32’h0000_5555. The three reads are performed through the same bit lines, which
has the value 32’hFFFF_FFFF before the first read. Figure 7.4(b) shows the results for
three write operations, writing 32’h0000_0000, 32’h0000_FFFF, and 32’h0000_5555
to the same register that holds 32’hFFFF _FFFF originally. The same write bit lines

40
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Figure 7.5: Supply current for SPERF.

were employed for all three write operations. Figure 7.4(c) shows the results of per-
forming two read operations and one write operation per cycle for three cycles. The
operations are on different registers, but the data that are read out or written to
registers are same in each cycle. The data in cycles 1, 2, and 3 are 32’h0000_0000,
32’h0000_FFFF, and 32’h0000_5555, respectively. From the figures, we can see that
the power consumption of the conventional register file is highly data-dependent.

In Fig. 7.5, we present the simulation results for SPERF performing the same

operations. Figures 7.5(a), (b), and (c) show the results for reading one register,
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Figure 7.6: Transient power consumption during a read operation.

writing to one register, and reading two register and writing to one register in the same
cycle, respectively. Figure 7.5(b) clearly shows the precharges for write operations.
It can be seen that the power consumption of each type of operation is similar in
all three scenarios. As the power consumption is balanced and independent of data
value, the proposed SPERF can mitigate power analysis attacks. The access latencies
of SPERF read and write operations are only slightly increased from the conventional
register file. This is in general acceptable for low-end processors vulnerable to power

analysis attacks. Note that although there is an additional precharge phase for the

20
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Figure 7.7: Transient power consumption during a write operation.

write operations, performance is not degraded as long as the writes can finish in the

second half of the cycle and the back-to-back write and read accesses are supported

by data forwarding when necessary.

7.5.2 Emnergy Overhead

As mentioned in section 7.3, the improvement in security comes at the cost of en-

ergy overhead. We compare the average power consumption for the following three
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settings: conventional register file, SPERF in the normal mode, and SPERF in the
secure mode. Figures 7.6 and 7.7 compares the transient power consumption for read
and write operations, respectively. In the simulations, we assume that half of the
bits read from a register are 0 and that half of the bit cells are switched during write
operations. From the figures, we can see that in the normal mode, SPERF consumes
almost the same amount of power as the conventional design, for both read and write.
In the secure mode, however, the power consumption of SPERF is roughly doubled
for read operations. Because of the newly added precharge phases, write operations
consumes almost 3.6x power than the conventional design. The overhead is large.
Fortunately, the overhead is only for the secure mode. The overall power overhead
is determined by how often and how long the specific workloads need the system to

stay in the secure mode.

7.5.3 Performance-Area Tradeoffs

Table 7.1: Performance overhead of different design options compared with conven-
tional register file.

Performance overhead
. . 16-reg 20-reg 24-reg 28-reg 32-reg
Security prog. Functions (Rs = 16, (Rs = 12, (Rs = 8, (Rs = 4, (Rs =0,
Ry =0) Rp =8) Rp,=16) | Ry, =24) | Ry =32)
AES-128 all functions 0 0 0 0 0
SHA-1 all functions 0 0 0 0 0
addition 0 0 0 0 0
subtraction 0 0 0 0 0
inversion 0 0 0 0 0
ECC-160 modular reduction 4.8% 2.2% 0 0 0
scalar multiplication 32.6% 17.2% 9.9% 7.4% 0
point addition 4.9% 2.4% 1.2% 0.8% 0
point multiplication 30.5% 16.2% 7.5% 5.7% 0

As discussed in section 7.4, there are different design options for SPERF. Hardware-
enabled redundancy trades off area for performance, whereas software-enabled redun-
dancy minimizes area overhead but generally may cause performance slowdown for
security programs. Thus, a hardware/software co-design using a combination of both

forms of redundancy may lead to better tradeoffs for conflicting requirements on
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performance and area overhead.

To evaluate the performance-area tradeoffs of SPERF, we set up experiments us-
ing an MPC875 board (a member of MPC885 family [79]), which contains a 32-bit
PowerPC processor core with instruction and data caches (both are 8KB size). In
the experiments, we study three widely-used cryptographic algorithms, i.e., Advanced
Encryption Standard (AES) [80, 81], Secure Hash Algorithm (SHA) [82], and Elliptic
Curve Cryptography (ECC) [7, 8, 83] and evaluate the performance of these algo-
rithms during secure mode. The cryptographic algorithms are implemented according
to different design options of SPERF. Specifically, the number of architectural regis-
ters varies from 16, 20, 24, 28, to 32, and assembly codes are generated accordingly
using Algorithm. 1 in section 7.4-B. Then, runtime performance in terms of execu-
tion time is measured in 500 rounds of execution with random inputs. The timebase
register of the processor, which is a 64-bit free-running binary counter clocked by a
1-MHz clock, is accessed to measure runtime performance at a reasonable accuracy.

We compare SPERF implemented in different ways with conventional register file
design. The performance overhead is shown in Table. 7.1. Interestingly, SPERF does
not introduce any performance overhead in many cases, such as all the functions of
AES-128 and SHA-1, as well as addition, subtraction, and inversion of ECC-160. This
observation indicates that for many specific security applications SPERF implemented
with software-enabled redundancy can achieve security enhancement at no cost of
performance or area overheads.

On the other hand, when the system needs to run public-key cryptographic algo-
rithms, such as ECC, SPERF with software-enabled redundancy may not meet the
performance requirements. For example, scalar multiplication and point multiplica-
tion of ECC-160 experience 32.6% and 30.5% slowdown during secure mode, respec-
tively. SPERF with hardware-enabled redundancy can minimize the performance
overhead but doubles the area of register file. Alternatively, hardware/software co-
designs taking advantage of both forms of redundancy may be a better option. For
example, designs using 20 and 24 architectural registers, shown as 20-reg and 24-reg
in Table. 7.1, respectively lead to 17.2% and 9.9% slowdown in scalar multiplica-

tion, 16.2% and 7.5% slowdown in point multiplication, and negligible performance
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overhead in other operations during secure mode. In contrast to hardware-enabled
redundancy, these two designs only introduces 25%-50% area overhead as compared
with conventional design without protection from power analysis attacks. Thus, they
may achieve a better tradeoff. On the other hand, another hardware/software co-
design (28-reg) can further improve performance a bit (only approximately 2% for

the above two operations) but at the cost of 25% more area overhead.



Chapter 8
Conclusions and Further Research

This dissertation summarizes the research that I have done during my PhD study
under my major advisor Lei Wang. In the past years, we have investigated on how to
address the emerging challenges in nanoscale computer systems, such as reliability,
performance, and chip security. These challenges are often conflicting with each other
and require careful tradeoffs and effective resource management. We have proposed
novel techniques to satisfy the different requirements in a unified manner. These
techniques are different from many existing solutions that mainly focus on addressing
one particular challenge. This is expected to be a promising direction of research that
can lead to the advancement of computer systems and my past research has paved
the way for this goal. In my future research, I plan to investigate on various design
requirements and to propose optimal solutions that can achieve better tradeoffs in
the design space spanning over these correlated dimensions. Some of the directions
of my future research are described below.

It is predicted that the number of cores per die will be doubling every two years.
This trend towards multi-core/many-core computing compels us to explore effective
solutions to unfold the full potentials of nanoscale integration. How to utilize the
abundant hardware resources to achieve reliable, high-performance, and low power
computing in the multi-core era is an important research topic. In particular, the
massive computing horsepower rendered by the ultra-high integration density needs

to be effectively converted to high performance. At the same time, the processor cores
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are inevitably facing reliability degradation, power/thermal constraints, and security
challenges, etc. This compels us to find solutions that take into consideration various
design requirements and achieve better tradeoffs.

In my past research, I propose the dynamic redundancy allocation technique to
efficiently manage the abundant computation elements according to the requirements
of reliability and performance in order to address both issues jointly. Besides, in my
proposed soft redundancy techniques, under-utilized memory resources are exploited
dynamically according to the requirements of reliability, performance, and bandwidth
usage. To address the challenges in the multi-core era, the proposed techniques can
be further studied. Design considerations for power, thermal, and security will also
be included in the future research.

Besides, I am also very interested in studying the following questions: (a) How to
dynamically distribute the workloads among the processor cores in order to satisfy
the various requirements in an optimal manner? (b) How should the processor cores
collaborate with each other and achieve self-organizing, like what ant colonies do,
for instance? (c) How to achieve self-assembly, self-repairing, and self-reconfiguration
based on the varying requirements of applications? and (d) How to design memory
architectures and software to provide better support?

Moreover, further studies on chip security against side-channel attacks would be an
interesting topic in the future. Many existing solutions are ad-hoc and only targeting
specific attacks. A major obstacle for this research is the lack of a sound theoretical
framework/model to accurately analyze the side-channel security and to evaluate
attacks/countermeasures. Establishing such a model would have a large impact to

this area.
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