
BootJacker: Compromising Computers using Forced
Restarts

Ellick M. Chan, Jeffrey C. Carlyle, Francis M. David, Reza Farivar, Roy H. Campbell
Department of Computer Science

University of Illinois at Urbana-Champaign
201 N Goodwin Ave

Urbana, IL 61801-2302
{emchan,jcarlyle,fdavid,farivar2,rhc}@illinois.edu

ABSTRACT

BootJacker is a proof-of-concept attack tool which demonstrates
that authentication mechanisms employed by an operating system
can be bypassed by obtaining physical access and simply forcing
a restart. The key insight that enables this attack is that the con-
tents of memory on some machines are fully preserved across a
warm boot. Upon a reboot, BootJacker uses this residual memory
state to revive the original host operating system environment and
run malicious payloads. Using BootJacker, an attacker can break
into a locked user session and gain access to open encrypted disks,
web browser sessions or other secure network connections. Boot-
Jacker’s non-persistent design makes it possible for an attacker to
leave no traces on the victim machine.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security

General Terms

Security

Keywords

Security, attacks, memory remanence

1. INTRODUCTION
A plethora of security schemes have been deployed to protect

information on computer systems that are vulnerable to physical
theft or unauthorized access. Most systems minimally employ an
authentication system that requires the user to enter a password be-
fore granting access to the system. Many systems also employ con-
sole or screen saver locks that require re-authentication if the user
session has been idle for some period of time. Modern systems
are capable of encrypting network connections and the contents of
secondary storage for additional protection. To ensure secrecy, en-
cryption keys used in such systems are typically not generated until
after the user has successfully logged in. Once created, these keys

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

are stored in volatile memory as part of the user’s session state un-
til the user logs out. It is commonly believed that if a computer is
physically stolen, these encryption and authentication mechanisms
will significantly hinder attackers from readily accessing stored se-
crets. In this paper, we demonstrate that this assumption is flawed
and present a tool that allows attackers to bypass the system’s au-
thentication defenses and gain instant access to user sessions on a
live system.

BootJacker is a proof-of-concept attack tool that utilizes an un-
conventional attack vector to break into the system: a forced restart.
This attack exploits the observation that, on many computers, the
contents of memory are preserved even after a restart. In fact, re-
searchers have shown that the contents of memory are preserved
to a great extent for several minutes after machines physically lose
power [18, 19].

An attacker using BootJacker forces an immediate restart on the
victim computer and then boots from an alternate device such as a
CD or USB drive containing the malware. The sudden restart en-
sures that the normal shutdown procedure of the victim machine is
circumvented, thus preventing security applications from clearing
vital keys, and preserving the system’s operational state in mem-
ory. BootJacker then patches the residual contents of memory with
malware payloads and restores the state of the original system.

Although gaining superuser privileges on a victim computer by
simply booting an alternate operating system from a peripheral de-
vice is trivial, BootJacker is more insidious because it allows an
attacker to break into live user sessions. BootJacker thus provides
access to open encrypted disks, VPN sessions, secure web browser
sessions and other active applications.

In addition to providing unauthorized access to the victim com-
puter, BootJacker’s design also allows it to operate in a covert non-
persistent mode, which protects the attack tool from discovery by
host based intrusion detection systems. This is important if the in-
tent of the attacker is to compromise a machine in place without
raising suspicions. It is possible to use BootJacker in such a way
that no changes are made to any non-volatile storage in the system.
This ensures that minimal evidence of an intrusion remains after an
attack.

BootJacker supports the execution of arbitrary malicious soft-
ware payloads. The core of BootJacker operates like a small boot-
strap environment that resuscitates the state of the core system hard-
ware and software environment, while an extensibility framework
allows the creation of custom malware payloads and device drivers.
We highlight the threat posed by BootJacker by discussing the im-
plications of two specific malicious payloads: one grants the at-
tacker a command shell with superuser privileges and the other
terminates security programs such as event logging services or in-
trusion detection systems. Similar to BootJacker, the payloads we

have developed are designed to be stealthy, and are therefore also
non-persistent.

Researchers have shown that encryption keys can be recovered
from memory chips several minutes after power is disconnected [19].
Firewire ports on computers can also be used to directly access
memory and obtain sensitive information [4, 29]. Such attacks are
also possible even in the presence of technologies such as TPM [38]
that provide secure key storage when the machine is powered down.
These applications trust the operating system’s ability to protect the
in-memory plain-text keys when the system is active. While key re-
trieval attacks can locate secrets in memory, using the keys to gain
access to secured information requires further work and may in-
volve substantial effort in cases such as hijacking secure network
connections. Unlike key retrieval attacks, BootJacker is able to pro-
vide the attacker with full access to the live victim operating envi-
ronment within a matter of seconds. Additionally, BootJacker does
not have to address the problem of locating keys in memory. This
is especially helpful when dealing with arbitrary applications and
security mechanisms whose key storage locations and formats are
unknown.

The characteristics of many architectures and operating systems
make them susceptible to the attack illustrated by BootJacker; how-
ever, it should be noted that the attack is very machine and operat-
ing system specific. This is primarily due to the assembly language
and low level operating system resuscitation code required. In this
paper, we will describe a version of BootJacker designed to target
a uniprocessor Linux 2.6 kernel running on the popular x86 archi-
tecture.

BootJacker represents a new class of ephemeral malware that tar-
gets machines which leave residual memory state when restarted.
Our motivation for creating BootJacker is to study vulnerabilities
in systems by analyzing them from an attacker’s perspective. Boot-
Jacker is similar in spirit to work by other security researchers [24,
10, 21].

The Computer Security Institute reported average losses of hun-
dreds of thousands of dollars for cases of data and computer theft in
a recent survey [16]. Currently, the losses from such incidents are
limited by the use of technologies such as encrypted disks and se-
cure network connections to private organizational networks. The
monetary impact and frequency of these incidents may increase
significantly if the vulnerabilities exposed by BootJacker are not
sufficiently addressed.

Our contributions in this work show that:

1. Resuscitation of a complete system from preserved memory is
possible after a forced restart.

2. Security programs continue to run correctly after resuscitation.
3. Mitigation of such attacks requires destruction of secrets upon

reboot or the use of secure boot paths.

The rest of this paper is organized as follows. First, we present a
detailed analysis of post-reboot memory properties in Section 2 and
follow with a description of the attack process and vulnerabilities
in Section 3. We present the technical details of recovering the
host hardware and software environment in Section 4, and discuss
the accompanying payloads in Section 5. Section 6 evaluates our
design followed by a discussion of mitigation in Section 7. Finally,
we explore related work and similar attacks in Section 8 before
concluding in Section 9.

0x00000000

Conventional Memory

0x000A0000

0x00100000

VGA/BIOS

Extended Memory

Mem Size

Figure 1: Physical memory on a PC

2. MEMORY REMANENCE ON RESTART
It is a well known fact that, on many machines, data in mem-

ory is preserved across a reboot or a brief power outage [18, 19,
9, 33, 1, 17, 27]. As far back as in 1978, researchers have shown
that if DRAM is cooled with liquid nitrogen, its data retention pe-
riod could last up to a week [27]! This property is central to the
operation of BootJacker. In this section, we explore the memory
remanence properties of PCs.

Our experiments indicate that machines which use ECC memory
do not retain software-accessible memory contents after a restart.
All reads from ECC memory after a reset always return 0 because
ECC memory has parity bits that must be initialized by the BIOS at
boot time [19]. Thus, computers that use ECC memory are not vul-
nerable to reboot-based attacks. We observed that disabling ECC
functionality on ECC memory modules using BIOS settings makes
these modules behave like non-ECC memory modules. The reader
is referred to [19] for a more detailed analysis of memory rema-
nence effects in DRAM chips. In this section, we will describe our
study of post-bootup memory remanence characteristics on several
x86-based systems.

Even if a system’s complete memory image is preserved at the
instance that a computer is restarted, portions of the image are clob-
bered when the BIOS executes. When a PC is booted, the pro-
cessor begins the initialization sequence by executing startup code
from the BIOS. The BIOS is responsible for initializing the core
hardware, performing any required selection of boot devices, and
loading the boot loader or operating system from the selected boot
device.

On a PC, there are two boot modes: cold and warm. A cold
boot is performed when the machine is initially powered on. Cold
boots perform significant hardware initialization and memory test-
ing, which usually overwrites most of physical memory. Warm
boots can be triggered by the reset button (if available) or by a re-
boot instruction from the running operating system. On a warm
boot, there is no interruption in power and memory is usually left
intact. In particular, a reboot initiated by the Linux kernel sets a
CMOS flag that instructs the BIOS to bypass memory tests.

When booting, the processor starts running in x86 real mode and
can initially address up to one megabyte of memory. Only the
first 640 kilobytes of addressable memory is RAM. The remain-
der of the one megabyte addressable region is reserved for memory
mapped I/O devices such as the display and other peripherals. This

Table 1: Regions of extended memory overwritten or not recoverable after BIOS execution

Computer Type Memory size Overwritten or unrecoverable extended memory

HP/Compaq 8510w Laptop 2 GB 1 MB @ 0x200000, 128 bytes @ 0x300000
HP/Compaq Presario 2800T Laptop 392 MB 170 KB @ 0x100000
Lenovo Thinkpad T61p Laptop 2 GB 3 MB @ 0x100000, 84 bytes @ various locations
IBM Thinkpad T41p Laptop 2 GB 3 MB @ 0x100000, 84 bytes @ various locations
Dell Inspiron 600M Laptop 512 MB 512 MB - completely reset
Dell Inspiron 8600 Laptop 1 GB 1 GB - completely reset
IBM IntelliStation M Pro Desktop 512 MB 3 MB @ 0x100000, 856 bytes @ various locations (ECC off)
Bochs [7] Emulator 128 MB none
QEMU [3] Emulator 128 MB none

limitation is a consequence of the history and evolution of the PC
architecture. Figure 1 shows the physical memory layout of a typ-
ical PC. The first 640 kilobytes of memory (up to 0x000A0000)
is generally referred to as “Conventional Memory”, while memory
above the 1 MB mark is known as “Extended Memory”. When the
BIOS executes, it runs in conventional memory while it performs
initialization and loads the boot sector from a disk.

On some machines, the system and peripheral BIOSes also ac-
cess and overwrite select portions of extended memory. In order to
perform a more detailed analysis of this issue, we have developed
a RAM tester tool that analyzes the memory preservation charac-
teristics of a computer. The tester is a stand alone program that
is loaded off a CD and uses only conventional memory to oper-
ate. The tester fills extended memory with a bit pattern, reboots
the computer and checks for regions that have been overwritten or
are unrecoverable. Table 1 presents the results of running our tool
on several machines without ECC. These results show that vari-
ous machines which differ in age and origin only overwrite a few
megabytes of memory and are thus vulnerable to memory preser-
vation attacks. The characteristic clobbering behavior of various
machines is possibly a consequence of different BIOS implemen-
tations or hardware configuration discrepancies. We have not at-
tempted to reverse engineer the BIOSes on these machines to de-
termine the exact reasons for these differences; however, we have
noticed that on test machines, the absence or presence of various
PCI expansion cards helps to determine the clobber signature of
memory. Therefore, we believe that part of this effect can be at-
tributed to the actions of expansion card firmware.

Another important characteristic to consider is the behavior of
the processor cache during a soft restart. This concern is signifi-
cant in the context of a write-back cache, since uncommitted data
may be lost across a reboot. Our experiments on hardware indicate
that the cache is disabled by the processor and transparently recov-
ered after a reset. We believe that when caching is re-enabled, the
contents of the cache are preserved and remain intact for the fi-
nal restoration to the original executing environment. When Boot-
Jacker re-enables virtual memory and caching, special care is taken
to avoid clearing or invalidating cache lines.

3. ATTACK AND VULNERABILITIES
To illustrate how BootJacker can be used, we describe an attack

involving a perpetrator, a victim machine, and a bootable storage
device such as a CD or a USB drive with BootJacker installed.

The attack progresses as follows:

1. Physical access to the victim machine is obtained.
2. The victim is forced to immediately restart.
3. The bootable device is connected to the victim.

4. BootJacker is booted instead of the host operating system.
5. BootJacker revives the host software environment and allows the

attacker to break into the system and run arbitrary payloads.
6. Optionally, the machine can be returned to the unsuspecting owner

to avoid raising theft alarms.

To avoid detection, the attacker must execute these actions in a
specific order. If the attacker inserts the device with BootJacker
before forcing a reboot, the victim’s OS or intrusion detection soft-
ware may log this suspicious event. Figure 2 shows how an attacker
using BootJacker diverts the normal bootup control flow.

The specific vulnerabilities exploited by this attack are:

Physical Access: An attacker requires physical access to the ma-
chine in order to carry out this attack. This may be accomplished
by either theft or by temporarily accessing an unattended victim
computer.

Secrets in Memory: BootJacker is designed to quickly bypass
authentication mechanisms and gain access to secrets in volatile
memory. This requires the victim machine to be active at the time
of the attack. If the attacker needs to physically relocate a desktop
computer, techniques such as HotPlug [39] can be used to keep a
running system live while it is in transit.

Forced Immediate Restart: The attacker should be able to force
the victim to immediately restart in order to ensure that the OS state
is preserved when starting BootJacker. This may be accomplished
via activation of the reset button or a momentary loss of power. Al-
ternatively, operating system level emergency restart key sequences
may be used. The Linux kernel, for example, supports a set of de-
bug hotkeys called the Magic SysRq (System Request) keys, one of
which (Alt-SysRq-B) forces the computer to reboot immediately.
This immediate reboot does not invoke any code that is normally
executed during a clean shutdown of the machine. Thus, the pris-
tine software environment is preserved in memory. The SysRq de-
bug keys are enabled by default in many Linux distributions, and
can be triggered with ease by an attacker with physical access.

OSBIOS Bootloader

BootJacker Revived OS

Resuscitation

Normal Boot

Attacker Boot

Figure 2: Boot control flow for normal and altered boot paths

Alternate Boot Path: A successful attack depends on the abil-
ity of the victim computer to start from an external boot device.
While this functionality can be disabled or password protected in
the BIOS, many machines still have this ability enabled by default
to allow the use of recovery CDs by technical support personnel.
Even if the BIOS policy restricts booting from an alternate device,
it is possible that a boot loader installed on the host system can be
used to circumvent the system policy to load BootJacker from an
external device if the loader isn’t properly configured for security.
All Linux distributions use a boot loader and we have verified that
one of the most popular boot loaders, GRUB can be instructed (at
runtime) to boot from a different device irrespective of the BIOS
boot policy.

Memory Preservation: Ideally, all of physical memory would be
preserved after a reboot, but in reality, as described in Section 2,
some portions of memory are overwritten by the victim’s BIOS
and this limitation needs to be addressed by BootJacker. Unre-
coverable memory can make it difficult for BootJacker to revive
the host software environment, especially if any critical kernel re-
gions are corrupted. By running our RAM tester and analyzing the
source code of Linux, we have determined that the contents of con-
ventional memory have no operational effect on the system, even
if the values are completely clobbered. This is because memory is
not contiguous, and contains several holes around the 1 MB and
16 MB regions that are reserved for various devices such as expan-
sion ROMs, legacy video cards, DMA regions and BIOSes. Since
Linux primarily uses extended memory, any corrupted kernel re-
gions in this memory presents a significant problem for BootJacker.
In some cases where portions of kernel code are overwritten, Boot-
Jacker can reload the kernel code section from the disk; however,
when kernel data is corrupted, complete system recovery is non-
trivial and we do not attempt to address this problem. Thus, our
experiments assume that vital kernel data remains intact.

4. SYSTEM RESUSCITATION
BootJacker is designed to revive a system’s software environ-

ment and hardware devices through resuscitation. After a machine
is forcefully rebooted, the attacker reconfigures the victim’s BIOS,
if necessary, to load BootJacker. BootJacker is loaded into con-
ventional memory and only uses memory below the 640 kilobyte
limit in order to avoid inflicting further damage to the preserved
memory above 1 megabyte. BootJacker currently uses a two stage
loading process. The first stage uses a slightly modified version of
the GRUB boot loader [15] to load any required support files off
the disk and the rest of BootJacker into memory. This modified
boot loader is part of BootJacker and resides on the attacker’s boot
media; it should not be confused with the boot loader on the victim
machine. The second stage boot process executes the core system
resuscitation code and attack payloads.

4.1 Software Resuscitation
In this section, we describe the process of resuscitating a Linux

environment on a victim machine. BootJacker requires in-depth
knowledge of kernel data structures and their layout (symbol table)
in the target Linux kernel in order to successfully revive a system.
For example, in order to restore the correct virtual memory map-
pings for Linux, BootJacker needs to discover the address of the
page tables of the interrupted task. Such information is incorpo-
rated into BootJacker by building it with Linux kernel header files
and using symbol information from the linked kernel. A compiled
version of BootJacker is therefore only effective against a specific
kernel version and configuration. This is not a significant limitation

because most major Linux distributions do not update kernels fre-
quently and few people build and run custom kernels. BootJacker
can generally accommodate changes in the kernel when it is recom-
piled, however, major Linux structural changes may require some
additional engineering effort to support.

The objective of software resuscitation is to fabricate a proces-
sor context (register state) that can be used to resume execution of
the host system environment. We present a scheme that fabricates
a valid resume context for the Alt-SysRq-B reboot method (as dis-
cussed in Section 3). The key idea is to load the processor registers
with values that cause the SysRq handler in Linux to mimic a re-
turn from the reboot function, as if it had no operational effect. This
allows execution to continue in spite of an actual reboot. The ad-
vantage of using this approach to revive the kernel, as opposed to
reviving the kernel from some other entry point, is that the logical
control flow in the host system is preserved and the semantics of
constructs such as locks and semaphores are respected.

In order to construct a valid resume context, it is necessary to
understand the operation of the Linux Magic SysRq debug sys-
tem. The SysRq system in Linux is hooked into the keyboard driver
and called when the driver detects the Alt-SysRq hotkey sequence.
When the SysRq handler is executed, it acquires a spin lock and dis-
ables interrupts. In this context, the system is guaranteed to have
a very predictable register state and call chain. We rely on these
salient characteristics to construct a resume context safely.

Table 2 lists the various x86 registers and describes the data
sources used to reconstruct the values in each register. BootJacker
first locates the stack that was in use at the time of restart. Depend-
ing on the kernel configuration, this can be one of several known
stacks. Figure 3 shows a glimpse of the stack contents just prior
to restart. A number of known frames exist on this stack prior to
executing the reboot code. These stack frames are scanned by Boot-
Jacker to recover register values to build a plausible resume context.
Restore values for ESP and EBP are obtained by locating the frame
for the sysrq_handle_reboot() function on the stack. Then, EIP is
set to the return address of the emergency_restart() frame. Now,
the execution context is prepared to synthesize a return from the
reboot function as if the restart had been magically rolled back.

do_IRQ

sysrq_handle_reboot

emergency_restart

machine_emergency_restart

native_machine_emergency_restart

.

.

.

ESP,EBP

Bottom

Top

 Stack

Direction

EIP

Figure 3: Stack layout at the time of reboot

Table 2: Recovering register state

Register Description Source

EAX,EBX,ECX,EDX General Purpose Restored from stack
ESI,EDI General Purpose Restored from stack
ESP,EBP Stack, Frame Pointer SysRq handler stack
EIP Instruction Pointer SysRq handler stack
EFL Flags Restored from stack
CPL Privilege Level Kernel privilege level
CS,DS,SS Code, Data, Stack Segments Static value in kernel
ES,FS,GS Segment Registers Current task data structure
LDT,GDT Descriptor Tables Static value in kernel
TR Task Pointer Static value in kernel
CR0 Processor Settings Static known value
CR2 Page Fault Address Recovery not required
CR3 Page Table Pointer Current task data structure
CR4 Advanced Control Flags Static known value

The emergency_restart() function does not have a return value
and BootJacker does not have to worry about restoring any of the
general purpose registers or processor flags. Once the resume con-
text is restored onto the processor, the return code in the function
sysrq_handle_reboot() restores the values of these registers from
the stack where they were saved in the function call preamble.

The values of the CS, DS and SS segment registers are constant
within the kernel and these constants are statically compiled into
BootJacker, while the values of the ES, FS, and GS registers are
derived from the currently running task. Linux maintains a pointer
to the data structure representing the currently running task in a
global variable. BootJacker examines this variable and restores the
ES, FS and GS registers with the values found in this data structure.

LDT and GDT always maintain a constant value independent of
the executing thread. The task register, TR, holds relevant informa-
tion about the current task. Linux uses software context switching,
so there is only one TR per CPU, and its constant value is loaded
by the kernel. All of these constant values are determined at build
time and statically compiled into BootJacker. CR2 holds the fault
address, which does not need to be recovered, and CR3 is the page
table pointer, which can be inferred from the current task’s virtual
memory data structures. This information is required to activate
the task’s virtual memory mappings in the MMU. The virtual ad-
dress space is constructed by consulting the page tables of CR3 and
the values of the segment registers selected in the GDT and LDT
tables.

Once BootJacker has constructed a valid resume context, it must
load this context into the processor and enable the new page tables.
This poses an interesting problem because the code that reprograms
the MMU to use the new set of page tables needs ensure that the
next prefetched instruction is available in the old and new address
spaces, otherwise the processor would generate an instruction fetch
fault upon access. Unfortunately, BootJacker is loaded into con-
ventional memory, which is not available in the standard kernel
virtual memory map. BootJacker circumvents this problem by cre-
ating a common trampoline memory area that is available in both
address spaces. It copies the code that completes the context restore
process into an unused portion of the Linux kernel’s log message
buffer. When BootJacker returns to the host environment, it exe-
cutes this code to atomically switch the virtual address space and
return to the original host environment.

There are some limitations on the types of functions that can be
called by BootJacker before it returns control to the kernel. Inter-
rupts are disabled while BootJacker is running and it is essentially

running in an atomic interrupt context; therefore, as with a real ker-
nel interrupt handler, no functions that might sleep or otherwise
invoke schedule() can be called. To work around this limitation,
a standard Linux kernel API may be used to schedule an asyn-
chronous callback to be run once interrupts are re-enabled; how-
ever, since BootJacker will no longer be mapped into memory, the
actual machine code for the callback must be copied into an area
accessible from the kernel address space in the same way that the
trampoline code does. This technique is used by the RootShell pay-
load discussed in Section 5.

4.2 Hardware Resuscitation
Upon reboot, system hardware may be reinitialized to a state

that is desynchronized with the expectations of the host Linux ker-
nel. BootJacker needs to ensure that hardware devices such as key-
boards, disk controllers and Ethernet devices continue to work after
the software environment is revived. Surprisingly, BootJacker can
rely on Linux to revive certain devices automatically. In order to
handle some classes of buggy or unresponsive hardware, Linux in-
cludes code to retry operations or reinitialize devices upon an error.
BootJacker takes advantage of such support if it is available. For
cases where Linux is unable to revive hardware on its own, Boot-
Jacker incorporates custom code to assist resuscitation.

BootJacker’s hardware resuscitation process is similar to the ac-
tions performed by the system when resuming from sleep or sus-
pend mode. Normally, the operating system saves resume structure
state to a disk or memory area upon a suspend. These resume struc-
tures describe the exact state of the machine at the time of suspend.
Hardware devices and the CPU are then shut down and their tran-
sient state is subsequently lost. The process of rebooting incurs a
similar loss of state. When the machine is resumed, the hardware
and processor state are restored from a resume image. BootJacker
does not have the luxury to save any state before the reboot and
instead must fabricate an analogous restore state by scanning for
clues in the residual memory image.

In this section, we describe the process of resuscitating the core
hardware on a uniprocessor PC such as the keyboard, mouse, VGA
graphics chip, interrupt controller, system timer and Ethernet chip.
Most modern PCs have core hardware that is similar and backwards
compatible with older revisions [30]. We describe restoration sup-
port for basic peripherals; this configuration is generally sufficient
for system recovery. Each hardware device has its own peculiari-
ties, and the recovery process is tailored to device semantics. We
detail specific restoration challenges on a case by case basis.

Interrupt Controller: x86 PCs use an i8259-compatible inter-
rupt controller. This controller is responsible for arbitrating inter-
rupts from various peripherals such as the keyboard, disk and net-
work interface to the CPU. The i8259 controller supports interrupt
masking and prioritization. On a PC, the highest priority interrupt
is the system timer, followed by the keyboard. Other peripherals
are usually assigned a dynamic interrupt number and priority by
the PCI or plug and play (PNP) controller.

Upon reboot, the system BIOS completely resets the i8259 con-
troller. All interrupts are masked and disabled. During recovery,
we re-enable interrupts of active devices upon resuscitation. The
i8259 also supports interrupt renumbering, which allows the con-
troller to shift interrupt numbers by a base offset. Linux uses this
facility to remap i8259 interrupts number 0-7 to Linux interrupts
32-39. Linux combines interrupts and processor exceptions (such
as page faults) into a common linear exception table for fast lookup.
BootJacker must restore this offset, otherwise Linux misinterprets
the interrupt number read from the controller as a different proces-
sor interrupt, and causes a kernel panic by running the incorrect
handler.

Some modern computers, especially those with multiple proces-
sors, use a newer interrupt controller called the Advanced Pro-
grammable Interrupt Controller (APIC). This controller is back-
ward compatible with the i8259, and its semantics are similar. The
code for resuscitating an APIC on a uniprocessor machine is similar
to that of an i8259. At this time, we do not support multiprocessor
machines.

System timer: PCs have three i8253 programmable interrupt
timers (PIT). Each timer can be configured for periodic or one-shot
interrupts in accordance to a countdown value. The Linux kernel
only uses the first timer as the system timer. The default setting
for Linux is to configure a 100 Hz timer to periodically activate the
scheduler. The other two timers are used by various drivers and
applications.

Upon reboot, these timers are left intact. We do not need to
reinitialize any of them. Although these timers do not need to be
restored, their semantics are inconsistent when the system is resus-
citated. For example, the system timer interrupt is not received by
the kernel for the duration of the reboot, and hence the Linux jiffies

software timer is suspended. Therefore, system time lags behind
wall clock time. In order to preserve the semantics of software that
relies on the correct time, we restore the system’s time by read-
ing the wall clock time from the hardware clock, which is always
running (powered by a battery) even when the computer is turned
off.

Starting with the Pentium, newer x86 processors include a mono-
tonically increasing 64-bit CPU cycle time-stamp counter which is
reset to zero whenever the processor is reset. The value of this
counter can be read using the rdtsc instruction. Since this counter
will be reset when the system is hijacked, code watching this counter
for unexpected changes may be able to detect a discrepancy. In or-
der to thwart detection, we estimate the value of the counter based
on the system uptime and write this calculated value back to the
counter using the wrmsr instruction.

PS/2 Keyboard/Mouse: PS/2 keyboards and mice are driven
by an i8042 controller. This controller is responsible for receiving
keystrokes, mouse movements, and mouse clicks as well as setting
keyboard LEDs. The controller itself is reinitialized by the BIOS at
boot time. When GRUB runs, it initializes the controller and since
Linux uses the same keyboard settings, no special re-initialization
is required.

By default, the mouse is disabled by the BIOS at boot time.
BootJacker sends the i8042 controller a command to re-enable the
mouse port. Some PS/2 mice have settings for the scroll wheel
and extra buttons. These settings are reinitialized by BootJacker to
conform to the protocol of a standard scroll wheel mouse. Custom
mouse protocols and advanced settings are vendor-dependent, and
are thus not restored.

Display: Although there are a myriad of video chips and drivers
in the market, most chipsets support the standard VGA and VESA
video modes. In Linux, the X server provides the graphics console
and directly controls the hardware. When BootJacker reinitializes
the device, it sets the video chip back to a safe state in text mode.
Once the system is revived, the attacker can manually switch back
to the X graphics console. The X server will perform the neces-
sary re-initialization of the video device when switching back to
the graphics mode.

Disk: The IDE controller connects peripherals such as hard drives
and optical disks to the system. Upon reboot, the BIOS reinitializes
the disks and disables their corresponding interrupts on the i8259.

BootJacker eschews re-initialization of the disk controller, and
instead relies on Linux’s error recovery routines. IDE drives are
accessed using a request/response command interface. If any com-
mand fails to respond due to disk or bus communication errors,
Linux will retry the command or reinitialize the disk controller.
This facility is used to deal with buggy IDE controllers and disks,
which may hang under certain errant conditions.

When a disk is first accessed after BootJacker is run, there is an
initial three second lag while the initial IDE command times out
and Linux resets the controller. Linux reports this disk error as a
lost IDE interrupt, and transparently retries the command. Since
the access is successful upon retry, no data read errors are reported,
and the disk continues to operate smoothly without error.

Coprocessor units: The Intel architecture has support for var-
ious coprocessors that are directly attached to the main CPU. The
most popular unit is the i387-compatible math coprocessor or float-
ing point unit (FPU). Since this coprocessor has become a funda-
mental part of the architecture, the kernel and user space C libraries
expect it to be present and functional. Whenever the kernel per-
forms a context switch, it saves the current process’s FPU state and
restores the FPU state of the process to be switched in. The user
space GNU C library also initializes the floating point unit during C
program startup to ensure a predictable FPU state for C programs.

Upon reboot, the FPU is disabled by the system firmware. Boot-
Jacker must reset the FPU and re-enable it in order to clear any
pending exceptions. Otherwise, the kernel’s context switch code
will fail when it suddenly discovers that the floating point unit is
off, and the FPU state cannot be saved or restored. The user space
FPU settings are restored by the kernel’s context switch code, so
that applications do not mysteriously fail.

Network: Upon reboot, the BIOS probes network devices and
runs each device’s respective firmware. This supports functional-
ity such as network booting. We have found that many network
chips are non-functional after resuscitation, so we must perform
some re-initialization. Luckily, the Linux network driver model al-
lows ethernet devices to specify a transmit timeout function. This
functionality allows a network interface to run a recovery routine
if a transmission is held up in the send buffer, and does not get
sent within a requisite timeout period. As part of the resuscita-
tion process, BootJacker uses the Linux network device API to it-
erate through all network interfaces and calls each transmit timeout

function. In many cases, this primes the network chip, and restores
functionality. Since this API is part of the kernel’s generic net-
work device interface API, it does not depend on the card vendor,
so many chipsets are supported without additional effort. We have
confirmed that this approach works with the Intel PRO/100 and In-
tel PRO/1000 Ethernet adapters.

Typically, an Ethernet chip contains send and receive buffers.
These buffers act as holding areas to queue outgoing packets when
the Ethernet line is busy, and receive buffers to temporarily store
unprocessed packets. Although BootJacker is able to recover the
functionality of the Ethernet interface, there is the issue of packet
loss while the computer is rebooting. These transient faults are
always handled at higher network layers such as TCP and network
connections do not usually experience any adverse affects. Since
the reboot process requires less than half a minute, applications do
not time out and subsequently close their connections.

5. PAYLOADS
BootJacker is designed to host a whole new class of malware

which relies on patching residual memory images. As such, Boot-
Jacker provides a mini-environment for malware writers to cus-
tomize payload code. BootJacker provides a customizable hook
point right before the system resumes. At this point, kernel data
structures may be accessed, and many kernel functions can be called
directly. Malware payloads using the BootJacker framework can
look up data structures and function pointers exported by the spe-
cial ksymtab symbol table in the kernel. They can search for run-
ning processes, files or socket resources and modify them, if re-
quired.

In order to illustrate the range of attacks possible with Boot-
Jacker, we have developed several malicious payload applications.
In this section, we will delve into the specifics of two of these
payloads: RootShell, which provides the attacker with a superuser
command shell and Terminator, which kills screen savers, system
loggers, and other security utilities. Both payloads were relatively
straightforward to write and they employ standard kernel features
such as spawning processes and sending signals. Though we do not
elaborate in this paper, BootJacker can also be used to install other
generic malware such as rootkits and spyware.

5.1 RootShell
RootShell is a superuser shell spawned by BootJacker. Attack-

ers can use this shell to interactively explore the system or run cus-
tomized payloads, including loading other kernel modules or rootk-
its. At the point that RootShell runs, Terminator has already cleared
the system of security software.

When the RootShell payload is invoked by BootJacker, it starts
a new thread in the host kernel which invokes the kernel_execve()

function to load and run the shell program on the host computer
with superuser privileges.

The shell is spawned on one of the unused text mode virtual con-
soles (accessed by special keyboard sequences) of the Linux sys-
tem. Like BootJacker, this payload is non-persistent and does not
leave any trace in the system; however, the effective stealthiness of
this payload also depends on the operations that the attacker per-
forms using the shell. This is because RootShell does not provide
any support for roll-backs of persistent operations performed by the
attacker. It is up to the attacker to ensure that malicious actions do
not leave any persistent traces such as shell command histories on
the victim machine.

5.2 Terminator
The Terminator payload assists a wide variety of attacks by de-

feating security and logging software on the system. It kills the
system logger daemon, antivirus software, intrusion detection tools
and other security software. Terminator accomplishes this task by
scanning the process list in the kernel and sending appropriate ter-
mination signals to the victim processes.

Once Terminator completes, the attacker can run other attack
tools unencumbered by security tools and without worry that ac-
tions may be logged. Since the screen saver and other authentica-
tion tools are killed, locked desktop sessions become fully accessi-
ble to the attacker. Session-based applications such as web browser
SSL connections can then be accessed by the attacker directly from
the user interface.

6. EVALUATION
To show that BootJacker is able to successfully hijack comput-

ers, we evaluate its correctness and ability to circumvent various
security measures. Correctness is assessed by comparing the output
of several applications in a non-hijacked environment against cor-
responding output in a hijacked environment. Effectiveness against
security programs is demonstrated by circumventing several en-
cryption utilities. In each case, BootJacker is able to compromise
the system without breaking the semantics of running applications.

Please note that the actual encryption algorithms are not under-
stood by BootJacker, and that the security mechanism defeated here
is the screensaver or console lock. These tests merely demonstrate
that the security applications are not sensitive to a mediated reboot.

6.1 Effectiveness
BootJacker has been tested on all of the machines in Table 1 that

do not reset memory completely; however, we use an IBM Intel-
liStation M Pro computer with a 2 GHz Intel Pentium 4 processor,
512 MB RAM, IDE disk, and an Intel PRO/100 network card for
all of the experiments in this section. The generic hardware resus-
citation support described in Section 4 is able to completely revive
the software environment in this computer after a restart.

To confirm that BootJacker is able to correctly resuscitate the
system without corrupting any memory or the processor cache, we
run a standard memory tester called memtester [6], and reboot the
machine during several test runs. The tests we selected create pat-
terns in two separate memory areas by either writing random values
or performing some simple computations such as multiplication or
division. It then compares the two areas to ensure that no memory
errors have occurred. We ran over 10 trials of these tests on our
evaluation system while restarting the system in the middle of the
test. In all of these cases, memtester does not report any errors.

In order to verify the correctness of the system after resuscita-
tion, we force a restart in the middle of several different tasks and
examine if the tasks complete correctly after the resuscitation.

The tasks performed are:

1. gcc: Compilation of the C source file containing the H.264/MPEG-
4 AVC video compression codec in the MPlayer [37] media pro-
gram.

2. gzip: File compression using the deflate compression algorithm.
3. wget: File download.
4. convert: JPEG image encoding.
5. aespipe: AES file encryption.

For the last four tasks, we use a 100 MB TIFF image file as the in-
put. For each task, we compare MD5 hashes of the output file gen-
erated without a BootJacker interruption against results obtained

from a test with a restart in the middle of task execution. We have
run each experiment at least 10 times and have not encountered any
errors.

The primary goal of BootJacker is to provide the attacker with
access to protected data on a live system transparently. In order
to demonstrate that this goal has been attained, we selectively test
several applications and kernel-level subsystems that provide se-
cure access to data and network resources. All of these programs
store temporary keys in volatile memory.

The applications we test are:

1. SSH secure shell connection between the victim and another host.
2. SSL web browser session to a secure web server.
3. PPTP [20] VPN connection to a secure university network.
4. dm-crypt [12] encrypted file system.
5. Loop-AES [5] encrypted file system.

In the first two cases, the secret keys are located in user space. In
the remaining cases, the keys are stored in kernel memory. We
perform each attack on a machine that is locked by a user (using a
console locking program) with these programs running in the back-
ground. In each case, the Terminator payload was used to terminate
the lock program after resuscitation.

Our SSH tests use OpenSSH version 4.6 as the client and server.
OpenSSH supports various modes of the AES, DES, Blowfish and
ARC4 ciphers. In each case, BootJacker was able to allow an at-
tacker to access the secure shell irrespective of the underlying en-
cryption scheme or key size that was used. The SSL test consists of
a web browser session connected to a popular web e-mail service
using TLS 1.0 and AES encryption. After restarting, we were still
able to browse mail folders, read messages, and send e-mail using
the hijacked session. The VPN client we used was based on the
Point-to-Point Tunneling Protocol (PPTP) [20] with 128 bit keys.
VPN connections and application sessions remained operable af-
ter a successful attack, and new connections could be established
over the open tunnel. This implies that enterprise level perimeter
defenses can be successfully penetrated using BootJacker. We also
tested BootJacker against two popular Linux file system encryption
systems: dm-crypt and Loop-AES. Both systems were configured
to use 256 AES CBC encryption. We were able to access the con-
tents of the file system successfully after an attack.

These experiments demonstrate the significance of our attack.
Other published key retrieval attacks [19, 29, 36, 23, 28, 22] must
be tailored to specific key types, sizes, applications or kernel com-
ponents. Such attacks require extra support to use the retrieved keys
to gain access to secure sessions. BootJacker allows the attacker to
access the live system and immediately explore or manipulate pro-
tected data.

6.2 Size
BootJacker is written in a mixture of C and x86 assembly code.

Table 3 shows that BootJacker is a very small program. The lines
of code reported in the table are from the output of the sloccount

program. We break down the size of each component into core C
and assembly code, hardware-specific resuscitation code and pay-
load code. To minimize its size, BootJacker reuses existing kernel
code to reinitialize the disk and network by calling into function
pointers; the size of this kernel code is device-specific and there-
fore excluded from the table, since these components are not part
of BootJacker. The small compiled size of BootJacker and its pay-
loads implies that a minimal amount of host memory is overwritten
and lost when BootJacker is loaded onto the system. The current
version of BootJacker depends on the GRUB boot loader for disk

support. Because this increases the memory footprint, we are work-
ing on eliminating the dependency on GRUB by directly including
disk support code within BootJacker. Also, we have not attempted
to aggressively optimize the code in BootJacker for size.

Table 3: Sizes of BootJacker and payloads

Component Lines of Code Compiled Size
(bytes)

BootJacker (C) 998 11,633
BootJacker (Assembly) 135 431
BootJacker (Hardware) 305 1,502
Terminator 34 285
RootShell 52 332
Grub 14 (modified) 101,266

6.3 Time
On all evaluation machines, we were able to execute this attack in

less than one minute, and on many of them were able to open a su-
peruser shell in less than 30 seconds. Most of this time is consumed
by the BIOS boot sequence. Once loaded, BootJacker takes a negli-
gible amount of time to revive the software environment. Although
most of the hardware in the system is revived quickly, it takes a
few seconds for the Linux recovery routines to reset the hard disk.
Ethernet connections resume nearly instantaneously, as BootJacker
proactively calls the transmit timeout routine for the ethernet driver
to initiate chip recovery. Since many Internet protocols gracefully
handle dropped or lost packets, sessions tend to survive the short
reboot process.

7. MITIGATION
The threats posed by BootJacker can be countered by reconfig-

uring systems so that they do not satisfy the required preconditions
of the attack. The most effective defense against such an attack
is to avoid any memory remanence issues by ensuring that secrets
are not present in volatile memory whenever a computer is vul-
nerable to unauthorized access. This approach would require ex-
tensive operating system and application support. For example,
if a computer is locked using a screen saver, all secure connec-
tions should be dropped and secrets should be erased from mem-
ory. The connections should be reestablished only after the user
has re-authenticated. All applications that depend on secure de-
vices or connections would have to be suspended so that they don’t
fail when trying to access the corresponding device (such as an en-
crypted disk). An OS-level solution would be to stop all computa-
tion and encrypt memory until the user has authenticated. Unfortu-
nately, these approaches may not always be desirable or convenient.

There are several other mitigation techniques that can signifi-
cantly impede and deter an attacker. One option is to require pass-
word authentication in the BIOS before booting the system. The
pre-boot authentication supported by some machines with a TPM
chip also provides similar protection. An alternative to requiring
boot time authentication is to ensure that the boot path is com-
pletely protected from possible redirection by requiring authenti-
cation at the BIOS and boot loader level for any changes to the
boot configuration. This approach is only effective if the config-
ured boot order first attempts to boot the operating system from a
trusted disk. The Aegis [2] system ensures the security of the boot
path and therefore prevents unauthenticated booting. An alternate
option is to zero out memory at boot time before loading the OS.
This ensures that all secrets in volatile memory are erased and con-

sequently prevents BootJacker from reviving the system. To im-
pede Terminator, the operating system can also attempt to respawn
the screensaver or security applications if they are improperly ter-
minated. Finally, the use of ECC memory starves BootJacker of the
requisite remenance property.

These solutions for protecting secrets in memory are not com-
pletely effective because many memory imaging techniques can
be used to save and restore memory. This includes attacks via
FireWire [11] as well as physical removal of the memory mod-
ules [19]. If the memory can be dumped, BIOS and boot loader
authentication can be bypassed by simply reviving the system on a
different computer without BIOS protection.

BootJacker does not faithfully restore all hardware state; there-
fore it is possible that a task running on the resuscitated system
could detect BootJacker by watching for unexpected changes in the
hardware state. If it is known that such a process is running, de-
tection can be avoided by using the Terminator payload to stop the
detection process before resuscitating Linux.

8. RELATED WORK
Until recently, only a few simple software-based attacks were

feasible with physical access. An attacker could directly access
data on storage devices or install malicious software such as key-
loggers or trojans. These classic attacks have spurred the adoption
of storage encryption technologies and malware detection tools.
Unfortunately, such defenses do not provide complete protection
in many cases. Several researchers have explored directly retriev-
ing secret keys from memory. One such attack exploits memory
remanence [19] and the other attack exploits the FireWire protocol
to access arbitrary physical memory [29, 11]. Unlike these simplis-
tic memory and key acquisition tools, BootJacker is more sophis-
ticated and allows attackers to bypass authentication in the victim
machine’s OS to access the full software environment directly. A
similar attack employs a FireWire port on the victim to bypass pass-
word authentication on Windows [4]; however, unlike this attack,
BootJacker does not require the presence of a FireWire port.

Recovering information from a system after a restart has been in-
vestigated by researchers working on system reliability techniques.
A locked up operating system can be been recovered after an ARM
processor reset is triggered by a watchdog timer [9]. BootJacker
can be enhanced with similar recovery techniques in order to re-
cover the host system from arbitrary restart locations. This ap-
proach would be required if the Alt-SysRq-B reboot method is
unavailable and a restart can only be forced through a power in-
terruption. BootJacker builds upon this early work on ARM-based
mobile phones, but expands on the technique in much greater detail
due to the higher complexity of the x86 architecture.

Vbootkit [26] and eEye BootRoot [34] also use an alternate boot
path to install malware in the system; however, unlike BootJacker,
these systems only install code that is executed upon the next boot
cycle and do not attempt to recover information from memory and
revive the live system.

BootJacker is similar in spirit to other non-persistent malware [31,
13], and it is also designed to avoid leaving any evidence of a break-
in. The payloads we discussed are capable of ensuring that secu-
rity programs such as intrusion detection and logging systems are
stopped or terminated when the attack is in progress.

There are many published techniques that address operating system-
level attacks [32, 14, 8, 25]. These projects primarily address code-
injection and data-injection type attacks and they can be extremely
effective for thwarting various attack classes. The attack illustrated
by BootJacker is not prevented by such defensive techniques be-
cause it uses an unconventional entry point into the system.

9. CONCLUDING REMARKS
BootJacker demonstrates that memory remanence attacks can be

used to bypass most modern security mechanisms and that such at-
tacks represent a significant threat which needs to be addressed by
the security community. Although we have discussed some possi-
ble mitigation techniques in this paper, we believe that this issue
requires further investigation and study.

Is this attack possible with other operating systems? While ac-
cess to the Linux kernel source code catalyzed the development of
BootJacker, we believe that similar attack tools could also be de-
veloped for various closed source operating systems, albeit with
significantly more effort.

BootJacker is not a generic attack tool that can be directly ap-
plied to arbitrary Linux kernel versions and hardware; however,
since most corporations and organizations tend to roll out a stan-
dardized software configuration for many of their machines, diver-
sity is less of an issue. Nevertheless, in most cases, a simple recom-
pilation of BootJacker is sufficient to retarget a different kernel ver-
sion or configuration. Resuscitating arbitrary hardware devices is a
more significant problem. Our design does ameliorate this problem
by taking advantage of the host Linux kernel’s support to recover
some classes of devices. However, this is still a challenging prob-
lem and may limit adoption of this attack approach by all but the
most determined attackers.

Attack tools such as BootJacker exploit one of many security
gaps at the boundary between systems software and architecture.
BootJacker and other such attacks [31, 35, 19] are possible because
the assumptions made by security services in system software do
not necessarily match the functionality or behavior of the under-
lying architecture. We hope that our work encourages researchers
and system developers to study this aspect in greater detail.

Although BootJacker has been presented as an attack tool, the
techniques developed have tremendous potential for legitimate foren-
sic analysts who need to swiftly recover information. Coupled with
memory dump and virtual machine technologies, this tool can be
greatly enhanced to increase recovery rates even with diverse hard-
ware and software configurations. Cooperation from proprietary
operating system vendors can help foster the development of Boot-
Jacker into an indispensible forensics tool.

To help users determine if their machines are vulnerable to the
flaws exposed by BootJacker, we plan to release a limited testing
and diagnostics tool on our website at http://srgsec.cs.uiuc.edu.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable
feedback. The following people (in alphabetical order) contributed
to beneficial discussions during the development and writing pro-
cess: Rob Adams, Ray Essick, Michael LeMay, Jason Lowe and
Dale Rahn. This research was supported by grants from DoCoMo
Labs USA, Motorola and a Siebel Fellowship. The views expressed
are those of the authors only.

10. REFERENCES
[1] R. Anderson. Security Engineering: A Guide to Building Dependable

Distributed Systems. Wiley, First edition, January 2001.

[2] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure and Reliable
Bootstrap Architecture. In Proceedings of the IEEE Symposium on

Security and Privacy, pages 65–71, Washington, DC, USA, 1997.
IEEE Computer Society.

[3] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference, FREENIX Track, 2005.

[4] A. Boileau. Hit By A Bus: Physical Access Attacks with Firewire. In
RUXCON, Sydney, Australia, Sep 2006.

[5] D. Bryson. The Linux CryptoAPI A User’s Perspective, May 2001.

[6] C. Cazabon. MemTester. http://pyropus.ca/software/
memtester/.

[7] O. S. Community. Bochs IA-32 Emulator Project. http://www.
gnu.org/software/grub/.

[8] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure Virtual
Architecture: A Safe Execution Environment for Commodity
Operating Systems. In SOSP ’07: Proceedings of the Twenty First

ACM Symposium on Operating Systems Principles, October 2007.

[9] F. M. David, J. C. Carlyle, and R. H. Campbell. Exploring Recovery
from Operating System Lockups. In USENIX Annual Technical

Conference, Santa Clara, CA, June 2007.

[10] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell. Cloaker:
Hardware Supported Rootkit Concealment. In Proceedings of the

IEEE Symposium on Security and Privacy, Oakland, CA, May 2008.

[11] M. Dornseif. 0wned by an iPod. In PacSec, 2004.

[12] C. Fruhwirth. New Methods in Hard Disk Encryption. Technical
report, Vienna University of Technology, June 2005.

[13] Fuzen Op. The FU rootkit. http://www.rootkit.com/
project.php?id=12.

[14] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the

Network and Distributed Systems Security Symposium, February
2003.

[15] GNU. GRand Unified Bootloader. http://www.gnu.org/
software/grub/.

[16] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson. CSI/FBI
Computer Crime and Security Survey. Computer Security Institute,
2005.

[17] P. Gutmann. Secure Deletion of Data from Magnetic and Solid-State
Memory. In Proceedings of the 6th USENIX Security Symposium,
pages 77–90, July 1996.

[18] P. Gutmann. Data Remanence in Semiconductor Devices. In
Proceedings of the 10th USENIX Security Symposium, pages 39–54,
Berkeley, CA, USA, 2001. USENIX Association.

[19] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
and J. A. Calandrino. Lest We Remember: Cold Boot Attacks on
Encryption Keys. In Proceedings of the 17th USENIX Security

Symposium, San Jose, CA, July 2008.

[20] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn.
Point-to-Point Tunneling Protocol (PPTP). RFC 2637
(Informational), July 1999.

[21] J. Heasman. Implementing and Detecting a PCI Rootkit. Technical
report, Next Generation Security Software Ltd, November 2006.

[22] S. Jarecki, N. Saxena, and J. H. Yi. An attack on the proactive RSA
signature scheme in the URSA ad hoc network access control
protocol. In SASN ’04: Proceedings of the 2nd ACM workshop on

Security of ad hoc and sensor networks, pages 1–9, New York, NY,
USA, 2004. ACM.

[23] J. Kelsey, B. Schneier, and D. Wagner. Related-key cryptanalysis of
3-way, biham-des, cast, des-x, newdes, rc2, and tea. In ICICS ’97:

Proceedings of the First International Conference on Information

and Communication Security, pages 233–246, London, UK, 1997.
Springer-Verlag.

[24] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and
J. R. Lorch. SubVirt: Implementing malware with virtual machines.
In Proceedings of the IEEE Symposium on Security and Privacy,
pages 314–327, Washington, DC, USA, 2006. IEEE Computer
Society.

[25] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution
via Program Shepherding. In Proceedings of the 11th USENIX

Security Symposium, pages 191–206, August 2002.

[26] N. Kumar and V. Kumar. Vbootkit: Compromising Windows Vista
Security. In Black Hat Europe, Amsterdam, March 2007.

[27] W. Link and H. May. Eigenshaften von
MOS-Ein-Transistorspeicherzellen bei tieften Temperaturen. In
Archiv fur Elektronik und Ubertragungstechnik, pages 33–229–235,
June 1979.

[28] J. Loughran and T. Dowling. A java implemented key collision attack
on the data encryption standard (des). In PPPJ ’03: Proceedings of

the 2nd international conference on Principles and practice of

programming in Java, pages 155–157, New York, NY, USA, 2003.
Computer Science Press, Inc.

[29] J. Mäkinen. Automated OS X Macintosh password retrieval via
firewire. http://blog.juhonkoti.net/2008/02/29/
automated-os-x-macintosh-password-retrieval-

via-firewire, 2008.

[30] M. A. Mazidi and J. G. Mazidi. 80x86 IBM PC and Compatible

Computers: Assembly Language, Design, and Interfacing; Volume I

and II. Prentice Hall PTR, Upper Saddle River, NJ, USA, fourth
edition, 2002.

[31] J. Rutkowska. Subverting Vista Kernel For Fun And Profit. In SyScan

2006, Singapore, July 2006.

[32] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for
Commodity OSes. In Proceedings of the twenty-first Symposium on

Operating Systems Principles, pages 335–350, New York, NY, USA,
2007. ACM.

[33] S. Skorobogatov. Low-Temperature Data Remanence in Static RAM.
Technical report, University of Cambridge Computer Laboratory
technical report No. 536, June 2002.

[34] D. Soeder and R. Permeh. eEye BootRoot. In Black Hat USA, Las
Vegas, July 2005.

[35] S. Sparks and J. Butler. Raising The Bar for Windows Rootkit
Detection. Phrack, 11(63), August 2005.

[36] A. Stubblefield, J. Ioannidis, and A. D. Rubin. A key recovery attack
on the 802.11b wired equivalent privacy protocol (wep). ACM

Transactions on Information Systems Security, 7(2):319–332, 2004.

[37] M. team. MPlayer. http://www.mplayerhq.hu/.

[38] Trusted Computing Group. Trusted Platform Module version 1.2.
http://www.trustedcomputinggroup.org/specs/

TPM/.

[39] WiebeTech. HotPlug: Transport a live computer without shutting it
down. http://www.wiebetech.com/products/
HotPlug.php, 2008.

http://pyropus.ca/software/memtester/
http://pyropus.ca/software/memtester/
http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/
http://www.rootkit.com/project.php?id=12
http://www.rootkit.com/project.php?id=12
http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/
http://blog.juhonkoti.net/2008/02/29/automated-os-x-macintosh-password-retrieval-via-firewire
http://blog.juhonkoti.net/2008/02/29/automated-os-x-macintosh-password-retrieval-via-firewire
http://blog.juhonkoti.net/2008/02/29/automated-os-x-macintosh-password-retrieval-via-firewire
http://www.mplayerhq.hu/
http://www.trustedcomputinggroup.org/specs/TPM/
http://www.trustedcomputinggroup.org/specs/TPM/
http://www.wiebetech.com/products/HotPlug.php
http://www.wiebetech.com/products/HotPlug.php

