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Abstract

Processing of image sequences has progressed from sim-
ple structure from motion paradigm to the recognition of ac-
tions / interactions as events. Understanding human activi-
ties in video has many potential applications including au-
tomated surveillance, video archival/retrieval, medical di-
agnosis, sports analysis, and human-computer interaction.
Understanding human activities involves various steps of
low-level vision processing such as segmentation, tracking,
pose recovery, and trajectory estimation as well as high-
level processing tasks such as body modeling and represen-
tation of action. While low-level processing has been ac-
tively studied, high-level processing is just beginning to re-
ceive attention. This is partly because high-level processing
depends on the results of low-level processing. However,
high-level processing also requires some independent and
additional approaches and methodologies. In this paper,
we focus on the following aspects of high-level processing:
(1) human body modeling, (2) level of detail needed to un-
derstand human actions, (3) approaches to human action
recognition, and (4) high-level recognition schemes with
domain knowledge. The review is illustrated by examples of
each of the areas discussed, including recent developments
in our work on understanding human activities.

1. Introduction

Processing of image sequences has progressed from sim-
ple structure from motion paradigm to the recognition of
actions / interactions as events. Understanding human ac-
tivities in video has many potential applications including
automated surveillance, video archival/retrieval, medical di-
agnosis, sports analysis, and human-computer interaction.
Processing image and video data in real-time has become
possible due to technological developments. With these de-
velopments, machine understanding of video data contain-
ing human activities is essential to the next generation of

computer applications [13].
Computer vision-based recognition of human activity in-

volves the understanding of human motion. Understanding
human motion is a complex and challenging task in com-
puter vision due to ambiguity caused by nonrigid body ar-
ticulation, loose clothing, and mutual occlusion, as well as
by image noise by shadow and illumination change. For
example, recognition of outdoor activities is significantly
influenced by weather and lighting.

The task of understanding human motion can be ap-
proached from various levels of detail according to the com-
plexity involved in the behavior. Modeling and recognition
of human behavior requires the characterization of motion
understanding problems in terms of taxonomy of motion.
In an early work on machine perception of motion, Nagel
[36] used his taxonomy of “change, event, verb, episode,
history” to reflect different dimensions of the problem. The
different dimensions of the problem are related to the degree
of domain knowledge required to achieve the task.

Bobick [6] used a different taxonomy of human motion:
“movement, activity, action”. In his taxonomy, movements
are atomic primitives, requiring no contextual or sequence
knowledge to be recognized. Activity refers to a sequence of
movements or states, where the only real knowledge is the
statistics of the sequence; much of the recent work in ges-
ture understanding falls into this category of motion under-
standing. Finally, actions are larger scale events which typ-
ically include interaction with the environment and causal
relations; action understanding straddles the gray division
between perception and cognition, computer vision and ar-
tificial intelligence [6].

In this paper we give an overview of the high-level un-
derstanding of human motion: actions and interactions.
High-level understanding of human motion requires var-
ious steps of low-level vision processing including seg-
mentation, tracking, pose recovery, and trajectory estima-
tion. These low-level processing tasks have been exten-
sively studied. (See [2, 1, 17, 34] for review.) In this pa-
per, we will concentrate on recent developments in one area
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of high-level processing: recognition of actions / interac-
tions as events. We will focus on the following aspects of
high-level processing: (1) human body modeling, (2) level
of detail in understanding human action, (3) approaches to
human action recognition, and (4) high-level recognition
schemes with domain knowledge. We will include exam-
ples of recent developments using our work in understand-
ing human activities.

2. Human body modeling

Human motion analysis is a part of motion understand-
ing in computer vision. Aggarwal and Cai [1] reviewed var-
ious studies in motion analysis and classified different types
of motion as rigid or nonrigid motion, based on the degree
of the nonrigidity of the objects. Following Kambhamettu
et al.’s classification scheme [31], human motion is a kind
of articulated motion, a subset of nonrigid motion. Artic-
ulated motion of a human body is composed of piecewise
rigid motions of individual body parts, but the overall mo-
tion of the entire human body is not rigid.

We can classify the studies of articulated human mo-
tion into those methods which use a priori shape mod-
els, called ‘model-based’, and those that do not use shape
models, called ‘appearance-based’ or ‘view-based’ meth-
ods. This classification is based on whether or not well-
defined a priori knowledge of the object shape is employed
in the motion analysis. Both approaches have advantages
and disadvantages. Appearance-based approaches are ap-
plicable to more diverse situations because they don’t re-
quire a specific object model. However, appearance-based
approaches are sensitive to noise in general, because they
lack any mechanism to distinguish noise from signal in vi-
sual input. On the other hand, model-based approaches can
efficiently integrate shape knowledge and visual input, and
are better for high-level understanding of complicated mo-
tions. However, model-based approaches usually require
additional processing steps of model selection and parame-
ter estimation to fit the model to a given visual input. Ad-
dition of a new activity or motion may require significant
complexity to model-based techniques.

Appearance-based approaches build a body representa-
tion in a bottom-up fashion by first detecting appropri-
ate features in an image, whereas model-based approaches
build the body representation by fitting to the image data the
predefined parameter values of a parametric body model. In
model-based approaches, the fitting process involves either
an optimization scheme such as the least square method [18]
or a stochastic sampling scheme such as the particle filtering
method [27].

In each approach, the human body can be represented at
various levels of detail, involving either bounding boxes,
stick figures, 2D contours, or 3D volumes, based on the

complexity of model required in an application. The bound-
ing box representation is one of the simplest models of
the human body. Its representational ability is limited; the
bounding box model is useful when the human body in the
image sequence is so small that it occupies only a few pix-
els. The stick figure representation regards human body as a
composition of sticks and the joints between them, based on
the observation that human motion is essentially the move-
ments of the supporting bones [54, 37, 12]. The 2D contour
representation regards the human body as a projection from
3D space onto the 2D image plane, and approximates the
human body by means of deformable contours, cardboards,
or ribbons, e.g., the silhouette contour model [22, 5], 2D
blob model [55], and cardboard model [23]. 3D volumet-
ric models attempt to describe the detailed human body in
3D space by using polyhedrons such as elliptical cylinders
[21, 41], generalized cones [16], or spheres [40]. As one
moves from bounding boxes to stick figures, to 2D contours
and 3D volumes, the model complexity increases along with
the level of detail. More detailed models can represent more
complex aspects of human activity, but they require more
computational complexity. 3D models may require stereo
information obtained from multiple cameras.

The degree of detail needed in the body representation
depends on the application. For example, some applications
may not need to represent the entire body, or may not need
the details of body parts. In such cases, it is sufficient to use
a simple representation. Intille et al. [26] represented each
player in an American football game as a bounding box, and
tracked each player by maintaining the bounding box across
image frames. Another example of a simple representation
of the human body is Wren et al.’s [55] use of 2D blobs, to
represent the approximate locations of the body parts such
as head, hands, torso, and feet. Color and intensity features
were used to locate and track the body parts across image
frames. Different applications require different degrees of
detail of the human body. The degree of detail is related
to limitations in the physical dimensions of the camera sen-
sors; that is, the less the spatial resolution is, the wider area
is covered, and vice versa. Therefore, a tradeoff exists be-
tween the spatial resolution and the viewing range. One
way to overcome the tradeoff is to use multiple distributed
cameras that cover different parts of the entire site. Cai and
Aggarwal [11] presented a human tracking system that used
distributed cameras mounted at various positions in an in-
door environment to cover the wide area. Another way to
overcome the limitation is to use an active camera with a
panning/tilting head and zooming lens [58].

Various features other than color or intensity have also
been used for the human body representation. For example,
Bobick and Davis [7] used as the feature the binarized fore-
ground portions of the image accumulated across the im-
age sequence (called ‘motion history image’), and classified
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different action types of a person based on the motion his-
tory image. Sato and Aggarwal [51] used pixel velocity to
track humans and recognize their interactions. In their sys-
tem, moving pixels that have similar velocity are grouped to
form moving human blobs. Each person is represented by a
moving bounding box, and the relative translation patterns
of the boxes are classified into different interaction classes.

Some research has used multiple features such as stereo,
edge, sound, color, velocity in optical flow, and/or inten-
sity to enhance performance. For example, Kakusho et al.
[30] combined pixel intensity and beat information in mu-
sic to classify the types of social dancing performed by a
pair of persons. Zhou and Aggarwal [57] combined the mo-
tion, spatial position, shape and color of blobs to represent
humans and vehicles. Their system represents each of the
disjoint humans and vehicles as a single blob on a frame-
by-frame basis and establishes the correspondence between
consecutive frames to track the objects.

Park and Aggarwal [43, 44] exemplify a recent devel-
opment in appearance-based human body modeling by pro-
cessing the image at multiple levels, specifically the pixel,
blob, body part, and sequence levels. Pixels are grouped
into blobs according to color similarity, and multiple blobs
are grouped to form body part regions such as head, upper
body, lower body, face, hair, hands and legs. The body parts
are tracked along the sequence.

3. Level of detail needed to understand actions

A significant amount of research on action recognition
has been conducted on the analysis of single-person activ-
ities. Interaction recognition may involve the recognition
of two-person interactions, group interactions among three
or more persons, human-computer interactions, or the in-
teraction between a human and objects. In general, each of
these tasks requires a different level of image resolution and
a different representation scheme. The more people that are
included in the image, the fewer pixels will be occupied by
each person, resulting in a low-resolution image. Therefore,
different methods are needed for each case. Recognition of
actions and interactions can be achieved at different levels
of detail in the analysis: gross, intermediate, and detailed
level.

At the gross level, individual persons are represented
as distinct moving bounding boxes or ellipses. At this
level, the recognition of human interaction is constrained to
gross-level understanding about the moving patterns of the
boxes/ellipses. Video surveillance applications often em-
ploy gross level recognition. Sato and Aggarwal [51] pre-
sented a system to recognize two-person pedestrian interac-
tions such as meet, depart, follow, etc. Their system tracked
individual persons as distinct moving boxes and classified
the translation patterns of the two bounding boxes. Zhou

and Aggarwal [57] presented a tracking system that dis-
criminated human motion versus vehicle motion. Their sys-
tem analyzed the average of the movements of individual
pixels in the foreground area along the image sequence, but
did not detect specific parts of the human bodies or the vehi-
cles to classify their identity. Analyzing a sequence of peo-
ple playing football, Intille and Bobick [24, 25] represented
each person as a rectangular bounding box, and achieved
recognition by interpreting the interaction types between
the bounding boxes. Knowledge of the rules of American
football was used to interpret the interactions between play-
ers, which required the user-involved construction of a rule-
based network that represented the football rules and the
interrelationships between the rules.

At the intermediate level, individual persons are repre-
sented by their major body parts such as head, torso, arms,
and legs. Some video surveillance applications make use of
intermediate-level recognition. Various methods have been
proposed to segment the human body into the major body
parts. Haritaoglu et al. [19] tracked multiple people using
silhouette images. They applied a background subtraction
method in order to segment the foreground regions of the
image that contain a group of people, and projected a bina-
rized foreground silhouette image onto the horizontal image
axis to detect the head centroid of each person in the group.
However, the goal of their system was to track the group
of people, rather than to recognize interactions among the
people in the group.

At the detailed level, several researchers have worked on
recognition of human activities in terms of a single body
part. This research domain mainly aims at developing the
gesture-based human-computer interfaces (HCI). Recogni-
tion of hand gestures for human-computer interfaces has
been studied by many researchers. Pavlovic et al. [46]
surveyed the literature on visual interpretation of hand ges-
tures in the context of its role in HCI. Hand gesture and
arm motion have been considered to be promising candi-
dates for indexing visual commands to control the com-
puter. In this kind of application, the entire body model
may not be necessary; a high-resolution image of the hand
or arm is more crucial as input. Hand gesture is usually
used to represent the vocabulary such as digits and alpha-
bet letters, whereas arm motion is used to represent cursor
movements and zooming-in/zooming-outaction etc. in con-
trolling the computer. The visual recognition of hand com-
mands is closely related to the recognition of human activity
in general, because both require the computer to ‘classify
and interpret’ human motion types. Using a kinematic hand
model for hand tracking, Rehg and Kanade [49] took a least
squares approach to estimate and compare stored hand mod-
els to input hand-image sequences. Min et al. [33] proposed
a combined approach that uses both a static representation
for hand gesture and a dynamic representation for arm mo-

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04) 
0-7695-2223-8/04 $ 20.00 IEEE 



tion for human-computer interaction.

Recognition of interactions between a human and objects
is also an important issue in visual surveillance, which uses
knowledge about the objects or environment to understand
‘what is going on in the scene’. Bobick and Pinhanez [8]
proposed a system that combines knowledge of the envi-
ronment and view-based vision algorithms. For a TV stu-
dio where a cooking show is broadcast, they developed a
smart TV camera system that autonomously zooms in/out
and selects an important scene. The system is an example
of using contextual as well as visual information for high-
level understanding of human-object interaction. Ayer and
Shah [4] proposed a system that makes context-based deci-
sions about the actions of people in a room. Their system
recognizes behaviors such as entering a room, using a com-
puter terminal, opening a cabinet, and picking up a phone.
The system monitors pre-specified regions of interest (ROI)
to detect the events. An accurate specification of the ROI is
critical in this system.

Normally the interaction between a human and objects
involves a single agent, while the interaction between two
persons involves two independent agents. Therefore, a two-
person interaction is defined by the relative relations be-
tween the two autonomous agents, i.e. the two humans. As
an example of a coarse-level approach, Oliver et al. [39]
proposed a system that models and recognizes human inter-
actions in a visual surveillance task in a pedestrian plaza.
The system classifies two-person interactions such as fol-
lowing another person, altering one’s path to meet another,
approaching and passing by, using Bayesian statistics to
compare a test sequence with stored interaction models.
Their system is a coarse-level recognition system in that it
represents each person as a single, low-resolution blob in
a birds-eye view image of a wide pedestrian plaza. Har-
itaoglu and Davis [23] developed a more detailed system
that tracks each person’s head, torso, hands, and feet, us-
ing a cardboard human body model and tracking each per-
son’s parts by template matching. Since the main goal of
the system was to track individual persons in a scene, the
recognition of interaction patterns between the persons was
not attempted. Kakusho et al. [30] combined audio and
visual information for recognition of social dancing of two
persons. Auditory information from the beat of the dance
music serves as break points that divide motion elements,
called ‘figures’, that comprise different types of dance such
as waltz, tango, and blues, etc. Park and Aggarwal [42]
presented a system that recognizes two-person interactions
at a detailed level. The system achieves the recognition
by applying a K-nearest neighbor classifier to the paramet-
ric human-interaction model which describes the interper-
sonal configuration. The system independently classifies
each frame by estimating the relative poses of the interact-
ing persons, and provides a tool to detect the initiation and

the termination of an interaction with no parsing procedure
for video sequences.

4. Approaches to human action recognition

Human action recognition is carried out by classifying
the video data as one of several types of actions. Tradi-
tionally two different paradigms exist; direct recognition
and recognition by reconstruction. The paradigm of direct
recognition recognizes human actions directly from image
data without the reconstruction of body part poses. Polana
and Nelson [47] proposed a system that recognizes pedes-
trian behavior with or without occlusion such as walking,
running, and passing by another person. Their model-free
approach uses periodicity information in cyclic motion and
does not require a body model. Cyclic motion is charac-
terized by repeated activity caused by arm swing and foot
stepping, etc. They consider an image sequence as a spatio-
temporal solid with two spatial dimensions and a time di-
mension. Repeated activity is indexed by periodic or semi-
periodic bumps in the image solid that generate smoothing
curves. They refer the curves as ‘reference curves’, and
compare them the test curves in order to recognize activity
types. The recognition of pedestrian motion is achieved by
choosing the best matching between the reference curves
and the test curves. Niyogi and Adelson [37] also used
cyclic motion information for analyzing human gait pat-
terns. They built a walking model with body translation
and leg displacement in image sequence by using a sim-
plified body model. In a spatio-temporal image solid, they
extract pedestrians’ different walking paths and track a per-
son’s walking. Baumberg and Hogg [5] track a pedestrian
by tracking the pedestrian’s contour image using an adap-
tive B-spline shape model. Their approach is view-based
in that they do not attempt to locate body parts in the con-
tour. They just fit an adaptive contour to the actual image in
each frame, and track the pedestrian by keeping the adap-
tive contour model updated. The paradigm of recognition
by reconstruction constructs the object poses from image
and then recognize human actions. Park and Aggarwal [42]
developed a system that estimates human body poses using
a stick figure model and recognizes actions and interactions
between two persons. Dever et al. [15] proposed a method
to analyze silhouettes and recognize a classic holdup po-
sition of armed robbery. The recognition is achieved by
first segmenting the skeleton of the silhouette into sepa-
rate pieces of the body, then identifying the positions of the
arms.

Some systems don’t follow one of the two paradigms in
a strict sense; they adopt a hybrid approach. Another useful
distinction among recognition approaches is static vs. dy-
namic recognition. Human motion recognition entails the
analysis of a series of images concatenated in time: the
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video sequence. The video sequence can be analyzed either
by using static representation of individual frames or by us-
ing dynamic representation of the entire sequence [52]. An
approach using static representation analyzes the individ-
ual frames first and then combines the results into the se-
quence, whereas an approach using dynamic representation
treats the entire sequence (or a fixed length of it) as its basic
analysis unit; that is, the analysis unit is the trajectory infor-
mation across the sequence. In an early research, Herman
[20] used the static representation of stick-figures of a given
frame to analyze different poses of a person. He inferred
emotions and actions at a given frame based on the person’s
pose. His stick figure was built by manually locating body
parts, and he analyzed individual frames separately, with-
out considering the interrelations between the frames in a
sequence. Akita [3] used static representation of silhouette
images to recognize different motions of a person in tennis
play. Most of static approaches have applied the method of
template matching in recognition.

Most studies using dynamic representation have applied
the methods of ‘Dynamic Time Warping’(DTW) [50] or
‘Hidden Markov Model’(HMM) [48]. DTW is a method of
sequence comparison used in various applications such as
DNA comparison in microbiology, comparison of strings of
symbols in signal transmission, and analysis of bird songs
and human speech. DTW deals with differences between
sequences by operations of deletion-insertion, compression-
expansion, and substitution, of subsequences. By defining
a metric of how much the sequences differ before and af-
ter these operations, DTW classifies the sequences. DTW
can also be applied to image sequences. DTW lacks, how-
ever, the consideration of interactions between nearby sub-
sequences occurring in time. In many actual situations, a se-
quence has higher correlation between closer subsequences
than between distant subsequences.

HMM considers this correlation between adjacent time
instances by formulating a Markov process. HMM assumes
that the observation sequence is stochastically determined
by a hidden process which is composed of a fixed number
of hidden states. HMM consists of a finite set of hidden
states, a set of observation states, probabilities of state tran-
sition between hidden states, probability of state transition
from hidden to observation states, and initial state probabil-
ities. The success of HMM models in dealing with speech
data motivated vision researchers to apply HMMs to vi-
sual recognition problems. Speech data is represented in
a well-defined modeling unit (e.g. phonemes) of the spo-
ken language. In contrast to speech recognition, computer
vision lacks a general underlying modeling unit, i.e. how
to map the images into symbols. Therefore, in order to rec-
ognize complex actions and interactions, researchers com-
bine various HMM structures to build coupled HMM, ab-
stract HMM, hierarchical HMM etc. [10]. Rabiner [48]

presented a good tutorial for details of HMM. HMM has
been more popular than DTW for dynamic representation
of action because of its ability to handle uncertainty in its
stochastic framework. For example, Bobick et al.[52] used
HMM to classify hand motions. Min et al.[33] used both
static representation and dynamic representation for hand
gesture recognition. Yang et al.[56] applied HMM to clas-
sify human action intent and to learn human skills.

A significant limitation of the HMM is that it cannot han-
dle three or more independent processes efficiently [39]. To
alleviate this problem, researchers have developed dynamic
Bayesian networks (DBNs) as generalization of HMMs
[35]. DBNs are directed graphical models of a stochastic
process, and can generalize HMMs by representing the hid-
den and observed states in terms of state variables, which
can have complex interdependencies. The interdependen-
cies among the state variables can be efficiently represented
by the structure of the directed graphical models. Park and
Aggarwal [44] presented a method for the recognition of
two-person interactions using a hierarchical Bayesian net-
work (BN). In their system the poses of simultaneously
tracked body parts are estimated at the low level of the BN,
and the overall body pose is estimated at the high level of
the BN. The evolution of the poses of the multiple body
parts are processed by a dynamic Bayesian network.

5. High-level recognition schemes with domain
knowledge

In this section, we review interpretation schemes in high-
level understanding of human actions and interactions. In
order to understand ‘what is going on in the scene’, we re-
quire coherence in our interpretation and understanding of
visual input and knowledge about the world. Various inter-
pretation schemes have been proposed including the rule-
based network, physics constraints, causal analysis, syntac-
tic analysis, and finite automata method.

Intille and Bobick [25] developed a rule-based inference
network to interpret American Football games. Their sys-
tem was based on manual construction of the rules which
are application-specific. Mann et al. [32] proposed a
more universal scheme for understanding a scene using con-
straints based on Newtonian physics. They interpreted the
event of moving a hand to manipulate objects in terms of
physical laws such as gravity and friction etc. They ana-
lyzed a moving single arm that handles objects under the
constraints of simple physical laws: contact, attach, body
motor, linear motor, and angular motor, etc. Their system
was to make inference about how a hand lifts a can, how
a hand pushes an object, or how an object is supported by
another object. They showed that physical laws can be used
as effective causal constraints because every object in the
world is situated under the control of some physical laws.
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Their system infers a hypothesized hierarchy of physical
laws that can most likely explain a given visual input. To
solve conflicting explanations, they assumed a ‘priority or-
dering’ of those physics laws based on the hierarchy, and
performed a breadth-first search[14] to effectively generate
a consistent hypothesis. Their system automatically gener-
ates plausible interpretations about kinematic and dynamic
properties of the scenes that contain the simple hand mo-
tions.

Ohno et al. [38] applied mechanical constraints to the
tasks of tracking multiple players under occlusion and es-
timating the 3D position of a fast-moving ball in soccer
games. Occluded players are successfully tracked and iden-
tified by using the position and velocity information of each
player in recent frames. Estimation of the ball position is
facilitated by limiting the search space by constraining the
possible bouncing directions of the ball based on mechan-
ics.

Human-involved scene understanding, however, needs
more abstract and meaningful schemes than purely physi-
cal laws for interpreting ‘what is happening in the scene’.
Brand and Essa [9] interpreted body gestures of a single
person in story telling by means of metaphor of actual mo-
tions in a real situation. They use the constraints of body
kinematics and body dynamics to identify gestures that re-
fer to actual motor plans such as ‘lifting’, ‘pushing’, ‘open-
ing’, and ‘resting’ of arms. They formulate the knowledge
about causal processes of the body kinematics/dynamics in
terms of position, velocity, and acceleration of wrists, el-
bows, and shoulders. Therefore the ‘physical constraints’
of the human body parts change to more meaningful ‘ges-
tures’ of a person. An example of knowledge about causal
processes is that ‘the greatest acceleration of hands occurs at
the beginning of different actions.’ Using these constraints,
they designed filters to detect different motion types. The
filters can be regarded as detectors for individual motion
segments. The filters are combined to produce a prelimi-
nary segmentation of a video sequence into underlying mo-
tor plans. They analyzed the movements of the arms of a
single person in front-view images. It seems that this ap-
proach can be generalized to more diverse situations.

Understanding very long image sequences requires an-
other abstraction scheme: the ‘event’. The event is re-
garded as a sort of summary of the whole sequence, and
the summary is closely related to real world knowledge.
The real world knowledge is efficiently represented in terms
of the syntactic approaches to pattern recognition problem.
Ivanov and Bobick [28] present an automatic surveillance
system that labels events and interactions by using syntac-
tic constraints. Their goal is to label person-vehicle inter-
actions such as ‘pick-up’, ‘drop-off’, ‘exit’, and ‘enter’ in
an open parking lot. In a similar way in Ayer and Shah[4],
they built an environment map and selected ROI’s. Their

system is composed of a tracking module, an event genera-
tor, and a parser. The tracker tracks any moving objects, and
the event generator maps the object tracks onto a set of pre-
determined discrete events. The event generator uses an en-
vironment map (i.e., the scene model of the parking lot) as a
contextual information to assign visual changes to discrete
events in the parking lot. The parser uses an activity gram-
mar to parse the sequence of discrete events into meaning-
ful labels of interactions between the person and the vehi-
cle. This approach seems adequate for grouping into mean-
ingful labels the discrete events distributed sparsely along
a lengthy sequence of visual surveillance data. That is, the
syntactic method makes it possible to extract meaningful
interactions from the heterogeneous sequence that is com-
posed of, and intermingled with, several different processes
to which HMM methods can not be applied.

Iwai et al. [29] proposed a hybrid system that com-
bines HMM and finite automaton to recognize continuous
gestures of Japanese sign language. HMM is not efficient
to recognize concatenated continuous gestures due to the
transition of different gestures. Therefore an automaton is
added and layered up on the HMMs to deal with contextual
information of the gestures. That is, the HMMs deal with
individual differences of gesture models, and the automaton
changes the final output by dealing with the context infor-
mation about what the previous gesture was. The context in-
formation contains as knowledge base the protocol gestures
that a typical gesture often follows a certain gesture. Wada
and Matsuyama [53] also presents a hybrid system com-
posed of HMMs and finite automaton for recognizing the
events of multiple persons’ ‘entering/exiting’ a room. Their
approach is a combination of bottom-up and top-down pro-
cesses in that the image features detected in specific ROI’s
are fed up to the HMM modules in a bottom-up fashion
and constraints on feasible hypotheses about events are con-
trolled by the nondeterministic finite automaton in a top-
down fashion.

Park and Aggarwal [45] proposed an event semantics to
represent and recognize human-human interactions. The
linguistic verb argument structure is used to represent hu-
man action in terms of agent-motion-target triplets. Spatial
and temporal constraints are used for a decision tree to rec-
ognize specific interactions. In this framework, human ac-
tion is automatically represented in terms of verbal descrip-
tion according to subject + verb + object syntax, and hu-
man interaction is represented in terms of cause-and-effect
semantics between the human actions.

6. Conclusions

We have given an overview of past and current develop-
ments in the modeling and recognition of human motion.
Our discussion has focused on (1) human body modeling,

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04) 
0-7695-2223-8/04 $ 20.00 IEEE 



(2) level of detail needed to understand human actions, (3)
approaches to human action recognition, and (4) high-level
recognition schemes with domain knowledge. The methods
of human body modeling range from coarse representation
of the body such as bounding box to fine representation such
as 3D superellipsoids and mesh grids. There is a trade-off
between the degree of fidelity and the computational cost of
the system. The choice of a proper body model depends on
the application. The level of detail in understanding human
action is classified as gross-, intermediate-, and detailed-
level understanding. Usually different levels are related
to different application domains, and require different ap-
proaches and methodologies. Approaches to human action
recognition can be classified as recognition by reconstruc-
tion vs. direct recognition, in which the former is proper
for detailed recognition tasks and the latter is proper for
gross-level recognition. An alternative classification of the
approaches is static vs. dynamic recognition. An ultimate
goal of understanding humanmotion is to know what is hap-
pening in the scene. The goal involves high-level knowl-
edge about the scene and context. We have reviewed vari-
ous high-level recognition schemes that use domain-specific
knowledge such as TV show or universal knowledge such
as language-based semantics. Research on human motion
understanding is in its infancy, and new techniques are ex-
pected to solve related problems and to improve the perfor-
mance of a system. Future directions of human motion un-
derstanding would include activity awareness in computer-
supported environment such as unobtrusive monitoring of
patients in hospitals. Multi-modal integration of video and
audio data would be another promising research direction
for better understanding of human activities.
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