
On a Construction Method of Irregular LDPC
Codes Without Small Stopping Sets

G. Richter and A. Hof

University of Ulm
Department of Telecommunications and Applied Information Theory

Albert-Einstein-Allee 43, D-89081 Ulm, Germany
{gerd.richter,axel.hof}@uni-ulm.de

Abstract— In this paper, we present a construction method
based on the progressive edge-growth (PEG) algorithm to design
irregular low-density parity-check (LDPC) codes without small
stopping sets. We show how to choose the connections in the PEG
algorithm when having multiple choices to connect a variable
node with a check node. Since preventing small stopping sets
also prevents a low minimum distance, our construction method
also leads to LDPC codes with a higher minimum distance. Fur-
thermore, we show by simulation that our construction method
improves the performance over the binary erasure channel and
over the additive white Gaussian noise channel for a low erasure
probability and a high signal-to-noise ratio, respectively.

Keywords – Irregular LDPC codes, PEG algorithm,
error ¤oor, stopping sets, minimum distance

I. INTRODUCTION

Low-density parity-check (LDPC) codes were originally
invented by Gallager in 1963 [1]. He showed that LDPC codes
are capable of reaching a performance close to the channel
capacity at low complexity, when they are decoded by an
iterative decoding algorithm, the so-called belief propagation
or sum-product algorithm. After being forgotten for more than
30 years, LDPC codes were rediscovered in 1996 by Mackay
and Neal [2] and also by Wiberg [3]. Because of their good
performance and their comparably low decoding complexity,
they became serious competitors to turbo codes [4].

Gallager considered only regular LDPC codes, i.e., codes
that are represented by a sparse parity-check matrix with a
constant number of ones in each row and in each column.
Later, it was shown that the performance of LDPC codes in
the waterfall region can be improved by using irregular LDPC
codes [5], [6], [7].

The drawback of irregular LDPC codes is that they exhibit
an error ¤oor that is caused by small stopping sets for the
binary erasure channel (BEC) and by codewords with small
Hamming weight and by small trapping sets for the additive
white Gaussian noise (AWGN) channel [8]. Hence, many
different construction methods were introduced to lower the
error ¤oor of irregular LDPC codes, e.g., the progressive-
edge growth (PEG) algorithm [9], maximizing the approximate
cycle extrinsic message degree (ACE) [10], a combination of
these two [11], or an improvement of the ACE algorithm [12].

In this paper, we modify the PEG algorithm to construct
LDPC codes without small stopping sets and with a large
minimum distance. During the PEG algorithm it often happens

that there are multiple choices to connect a variable node with
a check node. In the standard case, one chooses either the one
with the smallest index or just one at random. We modify the
PEG in such a way, that we forbid to connect a variable node
with a check node, that could lead to a small stopping set or
a small minimum distance, and choose another.

The paper is organized as follows: In Section II some basic
de£nitions are given, while Section III recalls the PEG algo-
rithm. After describing, how to choose the check nodes in the
PEG algorithm to prevent small stopping sets in Section IV, we
describe ef£cient algorithms to detect such small stopping sets
in Section V. Section VI compares our construction method
with existing construction algorithms and shows simulation
results. Finally, we conclude our paper in Section VII.

II. DEFINITIONS AND NOTATIONS

Every binary LDPC code of length n and dimension k can
be represented as Tanner graph [13]. This graph consists of
two sets of nodes connected by edges. One set, the variable
nodes, corresponds to the n columns of the parity-check matrix
H and the other set, the check nodes, represents the rows of
the parity-check matrix. The number of rows in H is denoted
by m, where m ≥ n− k. A one in the parity-check matrix in
row j and in column i corresponds to an edge between the i-th
variable node vi and the j-th check node cj . A check node cj

is called a neighbor of a variable node vi, if there exists an
edge between cj and vi. The number of edges incident to vi

is called the variable node degree d(vi), which is equal to the
number of ones in column i. Similarly, the number of edges
connected with cj is called the check node degree d(cj) and
is equal to the number of ones in row j. This is demonstrated
in Example 1.

Example 1 Assume the parity-check matrix H of an LDPC
code of length n = 10 and dimension k = 5 is given by

H =













0 0 1 1 0 0 1 1 0 0
1 0 0 1 0 1 0 0 1 1
1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 1 0 1 0
0 1 0 0 0 0 1 1 1 1













.

The Tanner graph representing this LDPC code is depicted in
Fig. 1.

v10

v9

v8

v7

v6

v5

v4

v3

v2

c2

c3

c4

c5

v1

c1

Fig. 1. An irregular LDPC code

We enumerate the edges of a variable node in an arbitrary
way and call ek

vi
, k = {1, . . . , d(vi)} the k-th edge of vi. We

de£neN l
vi

as the set consisting of all check nodes reached by a
tree spreading from vi within depth l and we de£ne N l

vi
as the

complementary set. Let dvmax
and dcmax

denote the maximum
variable node and check node degree, respectively, and let λi

and ρi represent the fraction of edges emanating from variable
and check nodes of degree i. Then we can de£ne

λ(x) =

dvmax
∑

i=2

λix
i−1 and ρ(x) =

dcmax
∑

i=2

ρix
i−1

as the variable node degree distribution and the check node
degree distribution, respectively.

A cycle in a Tanner graph is de£ned as follows:

De£nition 1 A cycle is a path from a variable node vi back to
itself, if any edge in the path is used only once. The length of
the cycle is the number of edges contained in this cycle.

It is shown in [10] that some cycles are more harmful
than others. To distinguish these cycles the ACE metric is
introduced in [10], which is de£ned as follows:

De£nition 2 The ACE of a length 2` cycle is
∑

i(di − 2),
where di is the degree of the i-th variable node in this cycle. An
LDPC code has ACE property (`ACE, νACE), if all the cycles
whose length are 2`ACE or less have ACE values of at least
νACE.

Di et al. [14] pointed out the crucial role of stopping sets in the
erasure decoding algorithm for LDPC codes [15]. A stopping
set is de£ned as follows:

De£nition 3 A stopping set S is a subset of V , the set of
variable nodes, such that all neighbors of the variable nodes in
S are connected to S at least twice. The size of a stopping set s
is de£ned as the cardinality of S.

It can be seen in Fig. 1 that the set {v2, v6, v9} is a stopping
set. It is shown in [14] that the set of erasures, which remains
when the iterative erasure decoding algorithm stops is equal to

the unique maximum stopping set. Since every codeword with
small Hamming weight is caused by a stopping set with small
size, preventing small stopping sets also helps to increase the
minimum distance of LDPC codes.

Furthermore, we de£ne the check node distance that is
similar to the minimum row distance (MRD) used in [12].

De£nition 4 The check node distance dc(i, j) of the check
nodes ci and cj is de£ned as

dc(i, j) =

{

|i− j| for i, j ≤ n2 + 1

∞ otherwise,
(1)

where n2 is the number of degree-2 variable nodes.

III. PEG ALGORITHM

In this section, we recall the PEG algorithm introduced by
Hu et al. in [9]. Here, we describe the version, where the check
node is chosen randomly from all possible candidates.

Similar as in [9], we summarize the PEG algorithm as
follows:

• Sort the variable nodes such that d(vi) ≤ d(vj) for i < j.
• For i = 1 to n

• For k = 1 to d(vi)

– If k = 1

∗ Connect the £rst edge e1
vi

of vi randomly with
a check node, which has the lowest check
node degree under the current graph setting.

– Else

∗ Expand a tree from vi up to depth l under
the current graph setting such that N l

vi
6= ∅

but N l+1
vi

= ∅, or the cardinality of N l
vi

stops
increasing but is less than m.

∗ Connect the edge ek
vi

randomly with a check
node from the set N l

vi
having the lowest

degree under the current setting.

– End (if...else)

• End (for k = 1 to d(vi))

• End (for i = 1 to n)

Note that sorting the variable nodes in the beginning of the
PEG algorithm prevents having small cycles between variable
nodes with low degree. Thus, the resulting LDPC codes have
automatically a large ACE property.

IV. MODIFICATIONS OF THE PEG ALGORITHM

In this section, we describe our modi£cations of the PEG al-
gorithm. These modi£cations can be applied when the number
of degree-2 variable nodes is smaller than m.

As already mentioned in [9], we connect the degree-2
nodes in a zigzag manner, which is often called the staircase
construction. Thus, we can guarantee that there are no cycles
between degree-2 variable nodes. Note that exactly dc(i, j)
degree-2 variable nodes are needed to connect ci with cj , when
i and j are at most n2 + 1. If i or j is larger than n2 + 1,

then there exists no connection between ci and cj with only
degree-2 variable nodes.

Our observations showed that the most stopping sets with
small size contain two degree-3 variable nodes and degree-
2 variable nodes. Also many stopping sets with small size
contain four degree-3 variable nodes and degree-2 variable
nodes. Hence, we forbid to choose connections to check nodes
that lead to stopping sets of size smaller than the desired
minimum stopping set size ŝ with 4 or less degree-3 variable
nodes.

Thus, if we choose the connection for a degree-3 variable
node, we mark all the check nodes from the set N l

vi
as not

selectable, if the connection probably leads to a small stopping
set. If there are no selectable check nodes in the set N l

vi
, we

choose a check node from the set N l−1
vi

that does probably
not lead to a small stopping set. In the following, we show
how to mark the check nodes as not selectable.

Stopping sets with size smaller than ŝ and only one degree-3
variable node vi1 can only occur, when the sum of the check
node distances dc(j1, j3) = dc(j1, j2) + dc(j2, j3) < ŝ − 1,
where j1 < j2 < j3 and cj1 , cj2 , cj3 are neighbors of vi1 .
This is demonstrated in Fig. 2. The stopping set in this £gure
contains one degree-3 variable node and dc(j1, j3) degree-2
variable nodes.

vi1 cj2

dc(j1, j2)

dc(j2, j3)cj3

cj1

Fig. 2. Stopping set with one degree-3 variable node

Thus, we forbid to choose check nodes, for which the
distances satisfy dc(j1, j2) < d(ŝ − 1)/2e or dc(j2, j3) <
d(ŝ−1)/2e. This prevents also stopping sets with two degree-
3 variable nodes as shown in Fig. 3 and some stopping sets
with more than two degree-3 variable nodes.

vi1 cj2

cj1
dc(j1, j2)

cj3

dc(j5, j6)

cj4

cj5vi2

cj6

dc(j3, j4)

Fig. 3. Stopping set with two degree-3 variable nodes

Furthermore, Fig. 4 shows another stopping set that can
occur with two degree-3 variable nodes.

When connecting the third edge of vi1 we choose only a
check node cj5 , for which the sum of the check node distances
dc(j1, j2)+dc(j3, j4)+dc(j5, j6) in Fig. 4 is not smaller than
ŝ− 2 for the 3 check nodes that are connected with any other
degree-3 variable node.

We prevent the PEG algorithm to produce stopping sets
with three degree-3 variable nodes of size smaller than ŝ by
marking the check nodes as not selectable, for which the sum

cj3

cj2

cj1

cj5

cj6

vi1

vi2

cj4

dc(j5, j6)

dc(j3, j4)

dc(j1, j2)

Fig. 4. Stopping set with two degree-3 variable nodes

of two distances in Fig. 4 is smaller than b(ŝ − 2)/2c. This
also reduces the probability to create small stopping sets with
more than three degree-3 variable nodes.

After marking all the check nodes as not selectable as
described above, the only possible stopping set with four
degree-3 variable nodes of size smaller than ŝ that can occur
is shown in Fig. 5.

cj3

cj2

cj1

cj5

cj6

cj4

dc(j5, j6)

dc(j3, j4)

dc(j1, j2)

vi2

vi1

vi3

vi4

cj7

cj8

cj9

cj10

cj11

cj12

dc(j7, j8)

dc(j9, j10)

dc(j11, j12)

Fig. 5. Stopping set with four degree-3 variable nodes

Hence, when connecting the last edge of any degree-3
variable node vi1 , we forbid to choose a check node cj7 that
leads to a stopping set of size smaller than ŝ. The connection
creates such a stopping set, if the sum of the six distances in
Fig. 5 is smaller than ŝ− 4.

The last change to the original PEG algorithm is how to
choose the connections to the remaining check nodes. Because
most stopping sets with more than four degree-3 variable nodes
contain at least two cycles as depicted in Fig. 6, we choose
only connections to check nodes, where the cycle distance
c = min (dc(j1, j2) + dc(j3, j4) + dc(j5, j6)) > b(ŝ − 5)/2c
between vi1 and any other two degree-3 variable nodes. If
this is not possible, we choose the connections such that c
is maximized. This reduces the probability to produce small
stopping sets with more than four degree-3 variable nodes and
also the probability to produce small trapping sets [8]. If we
have more check nodes with c > b(s−5)/2c or with the same
c (which is usually the case), we just select one check node
randomly having the lowest degree under the current graph
setting. This ensures that the check node degree grows in a
concentrated fashion as in the original PEG algorithm.

cj3

cj2

cj1

cj4

dc(j3, j4)

dc(j1, j2)

cj5

cj6

dc(j5, j6)vi3

vi2

vi1

Fig. 6. Cycle between three degree-3 variable nodes

For any other variable nodes vi with d(vi) > 3, we select
a check node of the set N l

vi
having the lowest check node

degree under the current graph setting. Additionally, we can
take care that the minimum check node distance between the
check node connected with the new edge and all the check
nodes connected with the other edges of this variable node
is not too small. This lowers the probability to create small
stopping sets with variable nodes with d(vi) > 3. It is also
possible to avoid small stopping sets with variable nodes with
d(vi) > 3, but this results in a larger complexity.

V. ALGORITHMS TO DETECT SMALL STOPPING SETS

In this section, we describe ef£cient algorithms, which can
detect, if a connection leads to a stopping set as depicted in
Section IV of size smaller than ŝ. The complexity of all these
algorithms does not depend on the codelength n, but only on
the size of the desired minimal stopping set ŝ. All stopping sets
can be detected by spanning trees and adding some distances.

The stopping sets shown in Fig. 2 and in Fig. 3 can be
easily detected by calculating the check node distances of the
check nodes connected with one variable node.

To detect a stopping set of size smaller than ŝ as shown in
Fig. 4, we span a one-level tree from the degree-3 variable
node vi1 , which is connected to the check nodes cj1 , cj3 , and
cj5 . This tree contains all check nodes cl, for which dc(j1, l) ≤
ŝ−3, dc(j3, l) ≤ ŝ−3, or dc(j5, l) ≤ ŝ−3. Every check node in
this tree is labeled with the check node distance. Furthermore,
all degree-3 variable nodes, which are connected to the check
nodes cl are included in this tree. The variable nodes get the
same labels as the check nodes they are connected to. This is
shown in Fig. 7.

^

^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^

^

^

...

s-3

s-3 s-3 s-3 s-3 s-3

s-3 s-3 s-3 s-3 s-3 s-3

0 1 00

0 0 1 0 1 0 0

1

cj1cj2 cj4 cj5 = cj6

vi1

cj3

vi2 vi2 vi2

dc(j5, j6) = 0dc(j3, j4) = 1dc(j1, j2) = s-3

s-3

Fig. 7. Algorithm to detect stopping sets with two degree-3 variable nodes

This £gure can be divided into three parts. If a variable node
is found in all three parts of the tree and the sum of the labels
is smaller than (ŝ − 2), a stopping set of size smaller than ŝ
as depicted in Fig. 4 is detected. In the example of Fig. 7, a
stopping set of size ŝ is found.

By spanning a two-level tree from vi1 that is connected
with two of its edges to cj1 and cj3 , we can check, if the
cycle distance c from Fig. 6 is smaller than t = b(ŝ− 5)/2c.
The tree consists of all check nodes cl, for which dc(j1, l) ≤ t
or dc(j3, l) ≤ t. Again every check node cl and every degree-3
variable node that is connected to cl is labeled with the check
node distance. This tree can be divided into two parts and can
be seen in Fig. 8.

...

tt2t

0 0 2

2 12

1

1

0

0 1

t

1

1

vi2 vi3

cj5 cj6

t t t tt

0

vi1

dc(j5, j6) = 1

dc(j3, j4) = 1dc(j1, j2) = 2

cj1 cj2 cj3 cj4

Fig. 8. Algorithm to calculate the cycle distance c

For every combination of a variable node of the left part
in the tree and a variable node of the right part of the tree,
for which the sum of the labels is at most t, we calculate
dc(j5, j6) and c = dc(j1, j2) + dc(j3, j4) + dc(j5, j6). In the
example of Fig. 8, a cycle with c = 4 is found.

For the detection of a stopping set with four degree-3
variable nodes as shown in Fig. 5, we £rst determine the
variable nodes, for which the cycle distance c ≤ ŝ− 5, before
we connect the third edge. After connecting the third edge
to the check node cj7 , we span a tree that contains all check
nodes cl with dc(j7, l) ≤ ŝ − 5 and the variables nodes vh

connected to cl. Then we check for every combination of vh

and the variable nodes included in a cycle with c ≤ ŝ− 5, if
a small stopping set is found. This is shown in Fig. 9.

^ ^

^ ^

... ...

s-5 s-5

s-5 s-5

vi1

0

0 1

1

cj7 cj8

vi4

2 1

cj10cj9

2

dc(j9, j10) = 3

1

2 1

dc(j5, j6) = 1

cj6

1 1

cj11

dc(j11, j12) = 2

cj12cj5

dc(j7, j8) = 1

vi2 vi3

dc(j1, j2) = 2 dc(j3, j4) = 1

Fig. 9. Algorithm to detect stopping sets with four degree-3 variable nodes

The sum of the six distances, which is 10 in this £gure, is
equal to the size of the stopping set minus 4.

VI. SIMULATION RESULTS

In this section, we compare LDPC codes constructed with
the modi£ed PEG algorithm described in Section IV with
LDPC codes constructed with the original PEG algorithm

introduced in [9] and with the combination of the PEG
algorithm and the ACE condition investigated in [11]. Since all
these algorithms are pseudorandom, the smallest stopping set
size smin and the minimum distance d can vary a lot for the
same construction. Therefore, we construct 50 LDPC codes
with different random seeds for each algorithm and determine
the number of stopping sets of small size with the two error
impulse algorithm described in [16]. After that we compare the
frame error rates (FERs) of LDPC codes constructed with the
original PEG algorithm and with the modi£ed PEG algorithm
for a transmission over the BEC and the AWGN channel,
respectively. For the transmission over the BEC we used the
ef£cient erasure decoding algorithm described in [15]. For the
AWGN channel all simulations were done with the shuf¤ed
belief propagation decoder described in [17], with a maximum
number of 500 iterations, and with the linear approximation
described in [18].

For the £rst simulations, we used an LDPC code ensemble
with length n = 1000, rate R = 1/2, and variable node degree
distribution λ(x) = 0.283x1 + 0.281x2 + 0.436x8.

Table I shows the number of stopping sets in 50 LDPC
codes and the average minimum distance d of these 50 codes
constructed with the different algorithms. The £rst and the
second row stand for the PEG algorithm and the combination
of PEG and ACE, respectively. The last row represents the
modi£ed PEG algorithm described in Section IV with ŝ = 18.

Size 9 10 11 12 13 14 15 16 17 d

PEG 1 7 15 23 53 93 156 246 448 12.0
P+A - 3 10 18 23 66 122 199 380 12.8
Mod - - - - - 1 5 20 70 16.7

TABLE I

NUMBER OF STOPPING SETS OF LDPC CODES (R = 1/2, n = 1000)

While the improved PEG algorithm investigated in [11] only
shows a slight improvement, the average minimum distance
d is increased from 12.0 to 16.7 by using the modi£ed
PEG algorithm described in Section IV. Also the number of
stopping sets with size smaller than s = 18 is reduced from
1042 to 96. There are no stopping sets of size smaller than
s = 18 that contain less than £ve degree-3 variable nodes
in the 50 LDPC codes constructed with the modi£ed PEG
algorithm. The best code constructed with the original PEG
algorithm and with the combination of PEG and ACE has
smin = d = 15. The best LDPC code constructed with the
modi£ed PEG algorithm has smin = d = 18.

Fig. 10 shows the FERs of the LDPC codes with the smallest
and the largest smin constructed with the PEG algorithm and
with the modi£ed PEG algorithm for a transmission over the
BEC.

We can see that the best LDPC code constructed with
the modi£ed PEG algorithm outperforms the two codes con-
structed with the original PEG algorithm. Even the worst
LDPC code constructed with the modi£ed PEG algorithm

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.30.350.40.450.5

FE
R

Eb/N0 [dB]

Worst original PEG code
Best original PEG code
Worst modified PEG code
Best modified PEG code

Fig. 10. FERs over the BEC (R = 1/2, n = 1000)

shows a slightly better FER than the best LDPC code con-
structed with the original PEG algorithm for the simulated
region.

In Fig. 11, the performance of the same four LDPC codes
for a transmission over the AWGN channel can be seen.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.5 1 1.5 2 2.5 3 3.5 4

FE
R

Eb/N0 [dB]

Worst original PEG code
Best original PEG code
Worst modified PEG code
Best modified PEG code

Fig. 11. FERs over the AWGN channel (R = 1/2, n = 1000)

As for the transmission over the BEC, the two LDPC codes
constructed with the modi£ed PEG algorithm outperform the
two codes constructed with the original PEG algorithm.

Similar to Table I, Table II shows the stopping set size
distribution of 50 LDPC codes with n = 2000, R = 3/4,
and λ(x) = 0.1245x1 + 0.4460x2 + 0.4078x10 + 0.0213x11

constructed with the different algorithms.
Again, we see that the modi£ed PEG algorithm lowers the

number of stopping sets with size smaller than s = 12 and
increases the average minimum distance from d = 6.4 to d =
9.3. The best LDPC code constructed with the original PEG
algorithm has smin = d = 7, while the best code constructed
with the modi£ed PEG algorithm has smin = d = 10.

In Fig. 12 and in Fig. 13, one can see the performance of the

Size 5 6 7 8 9 10 11 d

PEG 2 37 118 322 808 2497 8107 6.4
P+A - - 34 171 553 1698 5563 7.5
Mod - - - 5 49 396 2160 9.3

TABLE II

NUMBER OF STOPPING SETS OF LDPC CODES (R = 3/4, n = 2000)

LDPC codes with the smallest and the largest smin constructed
with the original PEG algorithm and with the modi£ed PEG
algorithm for a transmission over the BEC and the AWGN
channel, respectively.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.10.120.140.160.180.20.220.24

FE
R

Eb/N0 [dB]

Worst original PEG code
Best original PEG code
Worst modified PEG code
Best modified PEG code

Fig. 12. FERs over the BEC (R = 3/4, n = 2000)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1 1.5 2 2.5 3 3.5 4 4.5 5

FE
R

Eb/N0 [dB]

Worst original PEG code
Best original PEG code
Worst modified PEG code
Best modified PEG code

Fig. 13. FERs over the AWGN channel (R = 3/4, n = 2000)

It is observed that even the worst of the 50 LDPC codes
constructed with the modi£ed PEG algorithm shows quite a
large improvement compared to the best of the 50 LDPC codes
constructed with the original PEG algorithm for a low erasure
probability or a high SNR. This is due to the fact that the worst
LDPC code constructed with the modi£ed PEG algorithm has
smin = d = 8, which is larger than the distance and the
smallest stopping set size of the best LDPC code constructed
with the original PEG algorithm.

VII. CONCLUSIONS

In this paper, we constructed irregular LDPC codes with-
out small stopping sets by modifying the PEG algorithm.
Therefore, we showed how to choose the connections to
the check nodes when there are multiple choices. Thus, we
prevent the algorithm to produce stopping sets of small size.
We demonstrated by the number of stopping sets with small
sizes as well as by simulations that LDPC codes constructed
with the modi£ed PEG algorithm outperform LDPC codes
constructed with the original PEG algorithm.

ACKNOWLEDGMENTS

This work was supported by the German research coun-
cil Deutsche Forschungsgemeinschaft (DFG) under Grant
Bo 867/12. The authors would like to acknowledge the DFG
for their support.

REFERENCES

[1] R. G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press,
Cambridge, 1963.

[2] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of
low-density parity-check codes. Electron. Lett., 32:1645–1646, August
1996.

[3] N. Wiberg. Codes and Decoding on General Graphs. PhD thesis,
Linköping University, Sweden, 1996.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: Turbo-codes(1). In IEEE International
Conference on Communications, pages 1064–1070, Geneva, 1993.

[5] D. J. C. MacKay, S. T. Wilson, and M. C. Davey. Comparison of con-
structions of irregular codes. 36th Allerton Conference Communications,
Control, and Computing, September 1998.

[6] T. J. Richardson, M. A. Shokrollahi, and R. Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. IEEE Trans. Inf.
Theory, 47(2):617–637, February 2001.

[7] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman.
Improved low-density parity-check codes using irregular graphs. IEEE
Trans. Inf. Theory, 47(2):585–598, February 2001.

[8] T. Richardson. Error ¤oors of LDPC codes. In 41st Annual Allerton
Conference on Communications, Control, and Computing, Allerton,
England, October 2003.

[9] X. Y. Hu, E. Eleftheriou, and D. M. Arnold. Regular and irregular
progressive edge-growth Tanner graphs. IEEE Trans. Inf. Theory,
51(1):386–398, January 2005.

[10] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel. Selective
avoidance of cycles in irregular LDPC code construction. IEEE Trans.
Inf. Theory, 51(1):386–398, January 2004.

[11] H. Xiao and A. H. Banihashemi. Improved progressive-edge growth
(PEG) construction of irregular codes. IEEE Communication Letters,
8(12):715–717, December 2004.

[12] L. Dinoi, F. Sottile, and S. Benedetto. Design of variable-rate irregular
LDPC codes with low error ¤oor. In IEEE International Conference on
Communications, Seoul, Korea, May 2005.

[13] R. M. Tanner. A recursive approach to low complexity codes. IEEE
Trans. Inf. Theory, IT-27:533–547, September 1981.

[14] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke.
Finite-length analysis of low-density parity-check codes on the binary
erasure channel. IEEE Trans. Inf. Theory, 48(6):1570–1579, June 2002.

[15] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman.
Ef£cient erasure correcting codes. IEEE Trans. Inf. Theory, 47(2):569–
584, February 2001.

[16] G. Richter. Finding small stopping sets in the Tanner graphs of LDPC
codes. In 4th International Symposium on Turbo Codes and Related
Topics, Munich, Germany, April 2006.

[17] J. Zhang and M. P. C. Fossorier. Shuf¤ed iterative decoding. IEEE
Trans. Commun., pages 209–213, February 2005.

[18] G. Richter, G. Schmidt, M. Bossert, and E. Costa. Optimization of
a reduced-complexity decoding algorithm for LDPC codes by density
evolution. In IEEE International Conference on Communications, Seoul,
Korea, May 2005.

