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Yang—Mills theory over surfaces and the
Atiyah—Segal theorem

DANIEL A. RAMRAS

In this paper we explain how Morse theory for the Yang—Milsmdtional can
be used to prove an analogue, for surface groups, of the litlyagal theorem.
Classically, the Atiyah—Segal theorem relates the reptatien ring R(I') of a
compact Lie groupl’ to the complexK—theory of the classifying spacerl".
For infinite discrete groups, it is necessary to take intcoamnt deformations
of representations, and with this in mind we replace theasgmtation ring by
Carlsson’s deformatiodK —theory spectrunkf(I") (the homotopy-theoretical
analogue ofR(I")). Our main theorem provides an isomorphism in homotopy
Kdef(r1X) = K—*(X) for all compact, aspherical surfac&s and all + > 0.
Combining this result with work of Tyler Lawson, we obtaimheotopy theoretical
information about the stable moduli space of flat unitaryraantions over surfaces.

55N15, 58E15; 58D27, 19L41

1 Introduction

In this paper we present evidence of two newly emerging pimena involving the
representation spaces Hdm{(n)), for finitely generated discrete groupsadmitting
compact classifying spaces. The first phenomenon is akiretolassical Atiyah—Segal
theorem, and relates Carlsson’s deformatioatheory spectrunk9f(I") (an object
built from the representation spaces) to the topologi€atheory of the classifying
spaceBI'. Second is that in dimensions higher than the cohomologiicaénsion of
I, the homotopy groups of the coarse moduli spadg(I’) = Hom(, U(n))/U(n)
appear to vanish after an appropriate stabilization. Inescases, including the surface
groups considered here, this stabilization simply amotmtsrming the colimit

M(I) = colim My(I) = Hom(T', U)/U.

If I is the fundamental group of a compact maniftd this space may also be viewed
as the stable moduli space of flat connections (or Hermitiandles) oveM .

The link between these phenomena is provided by recent wiofkler Lawson B2,
33], which shows thatM(T") is closely related to the cofiber of the Bott map in
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deformationK —theory (see Sectiofl). Lawson applied his theorems to prove that
for finitely generated free grougdsx, one has a weak equivalence (af—algebras)
K9f(Fy) ~ Map@BFk,ku), and that the stable moduli spacel(Fy) = UX/U is
homotopy equivalent to the toruSi{K. Lawson’s work also provides analogous
statements for free abelian groups (note though th&&Z¥) may be computed by
hand, using the fact that commuting matrices are simultasigaliagonalizable). In
this paper we use Morse theory for the Yang—Mills functiciogbrove:

Theorem5.1 LetM be a compact, aspherical surface. Thenfor O,

K% (r1(M)) 2 K=*(M).

Bott periodicity provides an isomorphisk™*(X) = K*(X) for any spaceX, but the
isomorphism constructed in this paper more naturally lands.Map(M,Z x BU) =
K—*(M). This result yields a complete computation K§¢f(x;M) (Corollary 5.2).
The isomorphism is natural for smooth maps between surfaoesis in particular
equivariant with respect to the mapping class group of tilese. For non-orientable
surfaces, there is actually an isomorphismmgras well; this is just a re-interpretation
of the results of Ho and Liu24, 26]. WhenM = St x S, Theoremb. 1 follows from
T. Lawson’s product formuld<9ei(I"; x I'y) ~ K9(T) A, K9S(T,) [32] together
with his calculation 0K 9f(Z) as aku—module B3]. As we will explain, Theorens.1
provides evidence that the homotopy groups\d{=1Y:) vanish above dimension 2 in
the orientable case and above dimension 1 in the non-oblentase; it also allows us
to compute the non-zero groups (Coroll&np and Propositiors.6).

Theorenb.lis closely related to the classical theorem of Atiyah andaBgyg 7]. For

a compact Lie groufs, the topologicalk —theory of the infinite compleBI" is the
limit of the K—theories of the skelet®I'™ , and hence has the structure of a complete
ring (this follows most readily from a lilmcalculation). The Atiyah—-Segal theorem
states that this ring is isomorphic to the completion of #gresentation ringr(I") at

its augmentation ideal (the virtual representations dfigirdimension zero).

For groupsl” with BI' compact,K*(BI") is no longer complete and one might hope
to relateK(BI') directly to R(I"). DeformationK —theory may be viewed as the direct
homotopical analogue dR(I") (see Sectior2.1), so Theorenb.1 should be viewed
as a direct homotopical analogue of the Atiyah—Segal tmeor&his suggests that
deformationK —theory is the proper setting in which to study Atiyah—Sedenomena
for groups with compact classifying spaces, and we expeattfth many such groups
I", the deformatiorK -groups ofI" will agree with K=*(BI") for x greater than the
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cohomological dimension of' minus one. The author’s excision result for free
products #3] and Lawson’s product formul&p] indicate that this phenomenon should
be stable under both free and direct products of discretapgto In particular, an
Atiyah—Segal theorem for free products of surface groufisvis immediately from
Theoremb.1 together with the main result fromi1§] (or can be deduced from the
proof of Theorem5.1). The extent of this relationship is at yet unclear. In all
known examples, deformatidd—theory eventually becomes 2—periodic, but there are
examples in which these periodic groups fail to agree Wititheory of the classifying
space (see Sectidhl).

Extensions and analogues of the Atiyah—Segal theorem (oz gemerally, the relation
between representations akd-theory) have been studied extensively. For infinite
discrete group$’ satisfying appropriate finiteness conditions, Ad&jrejnd Lick [34]
have studied the relationship between #etheory of the classifying spadgl” and
the representation rings of the finite subgroup$ ol tick and Oliver B5] considered
the case of an infinite discrete grolipacting properly, i.e. with finite stabilizers, on a
spaceX. They showed that thE—equivarianiK —theory ofX, completed appropriately,
agrees with the topologicd{ —theory of the homotopy orbit spadd’ xr X. When

X is a point, properness forcésto be finite, and the lick—Oliver theorem reduces to
the Atiyah—Segal theorem. For finite groups Chris Dwyer has recently established
a twisted version of the classical Atiyah—Segal theoremafirgy twistedK —theory of
BI' to the completion of a twisted version &{I"). DeformationK—-theory should
also prove useful in studying Atiyah—Segal phenomena fougg with non-compact
classifying spaces, and in this context, Carlsson’s démaempletion L0] should play
the role of the completed representation ring. This apprsaould lead to a spectrum-
level version of the Atiyah—Segal theorem itself, and map glield spectrum-level
versions of these various extensions.

In a different direction, the Baum-Connes conjecture eslan analytical version of
the representation ring of a grodp (namely the reducec*—algebra ofl') to the
equivariantK -homology of the classifying space for proper actions. ilttisresting to
note that for a non-orientable surfate deformatiorK —theory recovers the topological
K—theory ofX, whereas thé& —theory ofC,(I') is the K—homology ofBI'. A direct
relationship between deformatidf-theory and theC*—algebras, at least for groups

with no torsion in their (co)homology, would be extremelyeiresting.

The failure of Theorerb.lin degree zero (and the failure in higher degrees for 83)[
is an important feature of deformatidd—theory, and reflects its close ties to the
topology of representation spaces. WHiletheory is a stable homotopy invariant@f
(i.e. depends only on the stable homotopy typB@&), the representation spaces carry a
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great deal more information about the gra@pand some of this information is captured
by the low-dimensional deformatidd—groups. Hence deformatidf—theory should
be viewed as a subtler invariant Gf, and its relationship to the topologickl-theory
of BG should be viewed as an important computational tool.

As an application of Theorerh.1 (and a justification of the preceding paragraph),
we obtain homotopy-theoretical information about the Istaboduli spaceM (m1M)

of flat unitary connections over a compact, aspherical sarfd. Ho and Liu R7,

25] computed the components of this moduli space before statidn (for general
structure groups). In Sectid) we combine our work with T. Lawson’s results on the
Bott map in deformatiork —theory B3] to study these moduli spaces after stabilizing
with respect to the rank. In particular, we prove:

Corollary 1.1 LetM be a compact, aspherical surface. Then the fundamentgb grou
of the stable moduli spac#1(r1M) is isomorphic toK ~1(X) = K¢(713), and ifM
is orientable thenro M(m1M) = 7Z.

Lawson’s results naturally lead to a conjectural desaipof the homotopy type of
M(m1M) (for a compact, aspherical surfackl) . For an orientable surfadd?, we
expect thatM(mM9) ~ Synt°(M9); for a non-orientable surfacE we expect a
homotopy equivalencé (1Y) ~ (SH*JJ(SH*, wherek is the rankH(Z; Z).

Theoremb.1 relies on Morse theory for the Yang—Mills functional, as ojg®d by
Atiyah and Bott p], Daskalopoulos 11], and Fade B2]; the key analytical input
comes from Uhlenbeck’s compactness theorB@ $1]. The non-orientable case uses
recent work of Ho and Liud7, 26] regarding representation spaces and Yang—Mills
theory for non-orientable surfaces. Deformatkdrtheory and Yang—Mills theory are
connected by the well-known fact that representationseofiihdamental group induce
flat connections, which form a critical set for the Yang—BMlilinctional. In Sectiof.1,

we motivate our arguments by giving a proof along these linatk 9¢7(Z) =~ K—*(Sh).

This paper is organized as follows. In Sect®mwe introduce and motivate deformation
K—theory, and explain how the McDuff—Segal group complettegorem provides a
convenient model for the zeroth space of thespectrumK®f(7;M). In Section3,

we discuss the precise relationship between represamtaiieties and spaces of flat
connections. In Sectiod we discuss the Harder-Narasimhan stratification on the
space of holomorphic structures and its relation to Morserh for the Yang—Mills
functional. The main theorem is proven in Sectrusing the results of Sectiorzs

3, and4. Section6 discusses T. Lawson’s work on the Bott map and its implicetio
for the stable moduli space of flat connections. In Seclipwe explain how the
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failure of Theorem5.1 in degree zero leads to a failure of excision for connected
sum decompositions of Riemann surfaces. Finally, we hagkided an appendix
discussing the holonomy representation associated to @oftaection.
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2 Deformation K-theory

In this section, we motivate and introduce Carlsson’s motd deformationK—
theory P] and discuss its basic properties. Deformatknatheory is a contravariant
functor from discrete groups to spectra, and is meant taicaptomotopy-theoretical
information about the representation spaces of the grogpestion. As first observed
by T. Lawson B1], this spectrum may be constructed as #etheory spectrum as-
sociated to a topological permutative category of reprasiens (for details seelB,
Section 2]). Here we will take a more naive, but essentiallyiealent, approach. The
present viewpoint makes clear the precise analogy betwefenndationK —theory and
the classical representation ring.

2.1 Deformations of representations and the Atiyah—Segahtorem

Associated to any group', one has the (unitary) representation riR{l"), which
consists of “virtual isomorphism classes" of represeotsti Each representation
p: I' — U(n) induces a vector bundlg, = EI' xp C" (whereI" acts onEI" by
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deck transformations and af" via the representatiop) over the classifying space
BI", and this provides a maR(I') = K9BI'). WhenT is a compact Lie group, the
Atiyah—Segal theorem states thatbecomes an isomorphism after completiR@")
at its augmentation ideal.

Now consider the simplest infinite discrete group, naniely Z. Representations &t
are simply unitary matrices, and isomorphism classes oésgmtations are conjugacy
classes inJ(n). By the spectral theorem, these conjugacy classes comdgp points
in the symmetric product Sy¥s'), and the natural map[, Syn’'(S') — R(Z) is
injective. So the discrete representation rin@ds quite large, and bears little relation
to K—theory ofBZ = S': every complex vector bundle ovét is trivial, and sok°(Sh)

is just the integers.

In this setting, deformations of representations play gooirant role. A deformation

of a representationy: I' — U(n) is simply a representatiop; and a continuous
path of representationg; connectingpg to p1. The pathp; now induces a bundle
homotopyE,, betweenE,, andE,, . Hence the bundle associatedgpis isomorphic

to the bundle associated to each of its deformations, anch#pefrom representations
to K—theory factors through deformation clas$eReturning to the exampl€ = Z,

we observe that sindd(n) is path connected, the natural map from deformation ckasse
of representations t& —theory ofBZ group completes to an isomorphism.

With this situation understood, one is inclined to look far @nalogue of the rep-
resentation ring which captures deformations of represients, i.e. the topology of
representation spaces. The most naive approach fails tettily: the monoid of defor-
mation classe$|,, moHom(", U(n)) admits a well-defined map #6°(BI"), but (despite
the casd” = Z) this map does not usually group-complete to an isomorphiberep-
resentation spaces HomU(n)) are compact CW-complexes, so have finitely many
components, but there can be infinitely many isomorphisnegyg n—dimensional
bundles oveBI'. In the case of Riemann surfaces (i.e. complex cur¥egshe spaces
Hom(r13, U(n)) are always connected (see discussion at the end of Set8prso
the monoid of deformation classes is justand its group completion i&; on the
other hand bundles over a Riemann surface are determinéaipylimension and first
Chern class (and all Chern classes are realized%®) = Z & Z. Note here that
> = B(m1X) except in the case of the Riemann sphere.

! For finite groups, this discussion is moot: any deformaticar@presentatiop is actually
isomorphic top, because the trace of a representation gives a continuonnplete invariant
of the isomorphism type, and on representations of a fixe@&dgion, the trace takes on only
finitely many values. Hence whea is finite, deformations are already taken into account by
the construction oR(G).
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The deformation-theoretical approach is not doomed tar@ilthough. Let Rep)
denote the topological monoid of unitary representaticacsp, and let Gdenote the
Grothendieck group functor. Carlsson’s deformatiortheory spectrunk9¢'(I") [9] is
alifting of the functor Gr{gRep(")) to the category of spectra, or in faktj—algebras,
in the sense that

moK%®(I") = Gr (moRep(")

The isomorphismK2&f(r1(M)) = K—*(M) for « > 0 in Theorenmb5.1 may be seen as
a correction to the fact that GrdRep(r1X)) — KO(X) fails to be an isomorphism
when¥ is a compact, aspherical Riemann surface.

We conclude this section by noting two cases in which deftion& -theory fails to
agree with topologicaK -theory, even in high dimensions. Lawson showgd [Ex-
ample 34] that the deformatidk—theory of the integral Heisenberg grohi3, whose
classifying space is a 3—manifold, is 2—periodic startimgimension 1. However, its
homotopy groups are infinitely generated. As pointed out éolayi lan Leary, there
also exist groupg” which have no finite dimensional unitary representations,do
have non-trivialK —theory. Leary’s examples arise from Higman’s groRf [

H=(ab,cd|a’=a% b*=b? c=c? d®=d?,

which has no finite quotients, and hence no finite-dimension#ary representa-
tions (a representation would give a linear quotient, andahyell-known theorem
of Malceyv, finitely generated linear groups are residualhité). Now, Higman's
group has the (co)homology of a pofso can now build a Kan-Thurston group for
& by amalgamating two copies ¢f along the infinite cyclic subgroups generated,
say, bya € H. The resulting grougG still admits no unitary representations but
now has the integral (co)homology, hence tetheory, of a 2—sphere. In this case
KIef(G) = Kef({1}) = ku.

2.2 The construction of deformation K-theory

For the rest of this section, we fix a discrete grollp The construction of the
(unitary) representation rinB(I') may be broken down into several steps: one begins
with the setsHom(", U(n)), which form a monoid under direct sum; next, one takes

2This can be proven using the Mayer—Vietoris sequence fortaineamalgamation decom-
position of H [8], or from the fact that the presentation 2-complex fbris a model forBH
(with 4 one-cells and 4 two-cells). The latter fact followsrh Higman'’s proof thaH # {1}.
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isomorphism classes by modding out the actions of the grduieg on the sets
Hom(',U(n)). The monoid structure descends to the quotient, and intéaxsor

product now induces the structure of a semi-ring. Finallg,farm the Grothendieck
ring R(I") of this semi-ring ofisomorphism classes. Deformatiortheory (additively,

at least) may be constructed simply by replacing each stéisrconstruction by its
homotopy theoretical analogue. To be precise, we begintivithpace

Rep() = [ ] Hom(, u(n)).
n=0
which is a topological monoid under block sum. Rather thassipeg toU (n)—orbit
spaces, we now form the homotopy quotient

Rep()nu = [ [ EU(M) xum Hom(@, U(n)).
n=0
Block sum of unitary matrices induces map&J(n) x EU(m) — EU(nh + m), and
together with the monoid structure on REpthese give Ref()ny the structure of
a topological monoid (for associativity to hold, we must as&inctorial model for
EU(n), as opposed to the infinite Stiefel manifolds; see Rer@dk Finally, we apply
the homotopical version of the Grothendieck constructmthis topological monoid
and call the resulting spad€“s'(I"), the (unitary) deformatiofk —theory ofT".

Definition 2.1 The deformatiorK —theory of a discrete group is the space
KYI(T) := QB (Repl)nv) ,
whose homotopy groups we denote§F (I') = =, K9 e(T).

Here B denotes the simplicial bar construction, namely the digisgj space of the
topological category with one object and with REp{ as its space of morphisms.
Note thatk%f(I") is a contravariant functor from discrete groups to spaces.

It was shown in 43, Section 2] that the above spak&@®e/(I") is weakly equivalent to
the zeroth space of the connectié¥e-spectrum associated to T. Lawson’s topological
permutative category of unitary representations; in paldi the homotopy groups of
this spectrum agree with the homotopy groups of the spe§I"). We note that
constructing a ring structure in deformati&-theory requires a subtler approach, and
this has been carried out by T. Laws@2].

The first two homotopy groups oKf(I") have rather direct meaningsk$e(T)
is the Grothendieck group of virtual connected componehteresentations, i.e.



Yang—Mills theory and the Atiyah—Segal theorem 9

Gr (moRep()) [43, Section 2]. It follows from work of Lawson3p] that the group
KZe(T) is a stable version of the groupiHom(T", U(n))/U(n); a precise discussion
will be given in Sectiorb.

Remark 2.2 In [43], the simplicial modelESU(n) for EU(n) is used; in this paper
we will need to use universal bundles for Sobolev gauge gompere the simplicial
model may not give an actual universal bundle. Hence it isenconvenient to use
Milnor’s infinite join constructionE’U(n) [37], which is functorial and applies to
all topological groups. These two constructions are rdldte the “mixed model"
BMU(n) = (ESU(n) x E?U(n)) /U(n), which maps by weak equivalences to both
versions oBU(n).

2.3 Group completion in deformation K-theory

The starting point for our work on surface groups is an anglykthe consequences of
McDuff—Segal Group Completion theorerdg] for deformationK —theory, as carried
out in [43]. Here we recall that result and explain its consequenaesuidace groups.
Given a topological monoidM and an elemenm € M, we say thatM is stably
group-like with respect tom if the submonoid ofrgM generated by the component
containingm is cofinal (inmgM). Explicitly, M is stably-group-like with respect tm

if for every x € M, there exists an elemert! € M such thatx - x 1 is connected by
a path tom” for somen € N. We then have:

Theorem 2.3 ([43]) LetI be afinitely generated discrete group such Bep(’) is
stably group-like with respect to € Hom([', U(k)). Then there is a weak equivalence

KIe(T) ~ teIescope(Rep(F)hU P, Repl)ny 22 > ’

wheredp denotes block sum with the poifi, p] € EU(K) xyg Hom(@', U(K).

Here, and throughout this article, telescope refers to thppimg telescope of a
sequence of maps. The novel aspect of this result is thakkeuglsewhere in algebraic
K—theory, Quillen’s +-construction does not appear. Thidus to the fact that the
fundamental group on the right-hand side is already abedidact which (in general)
depends on rather special properties of the unitary grolipdow dimensions, this
result has the following manifestation:
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Corollary 2.4 Let M be either the circle or an aspherical compact surface. Then
there is a weak equivalence betwe€#'(r1(M)) and the space

telescopéRep(riM)ny) = teIescope(ReperlM)hU L ReprM)ny )
o1
where®1 denotes the map induced by block sum with the identity mdtrixU (1).

There are at least two ways to show that ReM) is stably group-like with respect to
1 € Hom(riM, U(1)). In Corollaries4.11and4.12we use Yang—Mills theory to show
that Repf1M) is stably group-like for any compact, aspherical surfdte (In the
orientable case, this amounts to showing that the reprats@mspaces are all connected,
which is a well-known folk theorem.) This argument is quitese to Ho and Liu’s
proof of connectivity for the moduli space of flat connectid@7, Theorem 5.4]. For
most surfaces, other work of Ho and LRf] gives an alternative method, depending on
Alekseev, Malkin, and Meinrenken’s theory of quasi-Haariian moment map4.

A version of that argument, adapted to the present situaéippears in the author’s
thesis f44, Chapter 6].

3 Representations and flat connections

Let M denote am—dimensional, compact, connected manifold, with a fixe@pamt
mo € M. Let G be a compact Lie group, ai®l > M be a smooth principaB—bundle,
with a fixed basepoinpy € 7 1(mg) € P. Our principal bundles will always have
a right action of the structure grou@. In this section we explain how to pass from
G-representation spacesmf(M) to spaces of flat connections on princi@tbundles
over M, which form critical sets for the Yang—Mills functional. &main result of this
section is the following proposition, which we state infailiy for the moment.

Proposition 3.9 For anyn—-manifoldM and any compact, connected Lie groBp
holonomy induces &—equivariant homeomorphism

[T Ata(P)/Go(P) 5 Hom(ry(M), G),

[Pi]
where the disjoint union is taken over some set of repregegsarfor the (unbased)
isomorphism classes of princip@—bundles oveM . (Note that to definé{ we
choose, arbitrarily, a base point in each representatinelbip; .)

Here Go(P) denotes the based gauge group, and consists of all priritipdle auto-
morphisms ofP that restrict to the identity on the fiber ovep € M.
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3.1 The one-dimensional case

Before beginning the proof of Propositi@m, we explain how this result immediately
leads to an analogue of the Atiyah—Segal theorem for thateioyclic groupZ. This
argument will motivate our approach for surface groups.

By Corollary 2.4, deformationK —theory ofZ is built from the homotopy orbit spaces
UM Dhum = EUM) xym Hom(z, U(n)),

and the homotopy groups bBU(n) = Map(St, BU(n)) are just the compleK -groups
of St = BZ (in dimensions O< * < 2n). Thus the well-known homotopy equivalence

1) UM hum =~ LBU(N)

may be interpreted as an Atiyah—Segal theorem for the gfauand upon taking col-
imits (1) yields an isomorphisniK9¢'(Z) =~ K—*(S!) for any « > 0. (The equivalence
(2) is well-known for any grougs, but the only general reference of which | am aware
is the elegant proof given by K. Gruher in her thedig]].)

Proposition3.9 actually leads to a proof oflf for any compact, connected Lie group
G. ConnectionsA over the circle are always flat, and tidg(P) acts freely, so by
Proposition3.9 and a basic fact about homotopy orbit spaces we have

Hom(Z, G)he = (A(S' x G)/Map,(S',G)), . ~ (AS' x G))

hMap(St,G) *
But connections form a contractible (affine) space, so tgatrhand side is the
classifying space of the full gauge group. By Atiyah and Bt Section 2],

Map(St, BG) = LBG is a model forBMap(St, G), so G*%)¢ ~ LBG as desired.

WhenZ is replaced by the fundamental group of a two-dimensiondhse, one can
try to mimic this argument. Not all connections are flat isttése, but flat connections
do form a critical set for the Yang—Mills functional: A — R. In Sectiord, we will
use Morse theory fok to prove a connectivity result for the space of flat connestio

3.2 Sobolev spaces of connections and the holonomy map

In order to give a precise statement and proof of Proposgi®ywe need to introduce
the relevant Sobolev spaces of connections and gaugedrarafons. Our notation
and discussion follow Atiyah—Bot6[ Section 14], and another excellent reference is
the appendix to Wehrheinb]].
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We use the notatiohE to denote functions witk weak (i.e. distributional) derivatives,
each in the Sobolev spat®. We will record the necessary assumptionskoand p
as they arise. The reader interested only in the applicatiomleformatiork —theory
may safely ignore these issues, noting only that all theltesii this section hold in
the Hilbert spaceLﬁ for large enoughkk. Whenn = 2, our main case of interest, we
just needk > 2.

Definition 3.1 Letk > 1 be an integer, and ldt < p < oo. We denote the space
of all connections on the bundk of Sobolev clas$_E by AXP(P). This is an affine
space, modeled on the Banach spacEEoEections of the vector bunde*M ® adP
(hereadP = P xg g, andg is the Lie algebra o6 equipped with the adjoint action).
Hence A%P(P) acquires a canonical topology, making it homeomorphic écBanach
space on which it is modeled. Flaf connections are defined to be those with zero
curvature. The subspace of flat connections is denoted'f‘,lft)(/P).

We let G<+LP(P) denote the gauge group of all bundle automorphismB of class

LE 41, and (when(k + 1)p > n) we let gg“’p(P) denote the subgroup of based
automorphisms (those which are the identity on the fiber avee M ). These gauge
groups are Banach Lie groups, and act smoothlAbP(P). We will always use the left
action, meaning that we let gauge transformations act onemiions by pushforward.
We denote the group of all continuous gauge transformatigng(P). Note that so
long as(k + 1)p > n, the Sobolev Embedding Theorem gives a continuous ingiusio
GktLP(P) — G(P), and hence in this ranggs™P(P) is well-defined. We denote the
smooth versions of these objects (By)>°(P).

The following lemma is well-known.

Lemma3.2 For(k+1)p > n, the inclusiong**1P(P) — G(P) is a weak equivalence.

Proof Gauge transformations are simply sections of the adjointlalP x g Ad(G)
(see B, Section 2]). Hence this result follows from general appr@tion results for
sections of smooth fiber bundles. O

The continuous inclusiorg**P(P) — G(P) implies that there is a well-defined,
continuous homomorphism: G¥t1P(P) — G given by restricting a gauge transfor-
mation to the fiber over the basepoimy € M. To be precisef(¢) is defined by
Po - r(¢) = ¢(po), and hence depends on our choice of basepmira P.
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Lemma 3.3 AssumeG is connected an¢k + 1)p > n. Then the restriction map
r: GKLP(P) — G induces a homeomorphism GKtP(P)/GE™P(P) = G. The
same statements hold for the smooth gauge groups.

Proof Thinking of gauge transformations as sections of the atdmimdle, we may
deform the identity maj® — P over a neighborhood afy so that it takes any desired
value atpg (here we use connectivity @). Hencer andr are surjective.

By a similar argument, we may construct continuous locdisess: U — G>°(P) of
the mapr, whereU C G is any chart. Ifr: G>(P) — G(P)>°/G5°(P) is the quotient
map, then the maps o s are inverse t@ on U. Hencer—! is continuous. The same
argument applies tg<*LP(P). O

I do not know whether Lemma.3holds for non-connected groups; certainly the proof
shows that the image of the restriction map is always a uni@@mponents.

Flat connections are related to representations, bf via the holonomy map. Our next
goal is to analyze this map carefully in the current conté8abolev connections. The
holonomy of a smooth connection is defined via parallel parts given a smooth loop
~ based atng € M, there is a uniqué—horizontal lifty of v with 4(0) = pg, and the
holonomy representatiol (A) = pa is then defined by the equatioil)- pa([Y]) = po-
(Since flat connections are locally trivial, a standard caatipess argument shows that
this definition depends only on the homotopy clagksdf ~.) It is important to note
here that the holonomy map depends on the chosen basgpainP. Further details
on holonomy appear in the Appendix.

Lemma 3.4 The holonomy mapA'f‘,;ﬂ(P) — Hom(mM, G) is continuous ifk > 2
and(k — 1)p > n.

Proof The assumptions ok and p guarantee a continuous embeddih‘gM) —
CY(M). Hence ifA € AE’;(P) is a sequence of connections converging,(liﬁft(P))

to A, thenA, — A in C! as well. We must show that for any such sequence, the
holonomies of thé; converge to the holonomy .

It suffices to check that for each loop the holonomies aroune converge. These
holonomies are defined (continuously) in terms of the irgtbguirves of the vector fields
V(A)) on v*P arising from the connectiong;. Since these vector fields converge in
the C! norm, we may assume that the sequeieéA;) — V(A)||c: is decreasing and
less than 1. By interpolating linearly between téA), we obtain a vector field on
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~*P x | which at timet; is justV(A;), and at time 0 i8/(A). This is a Lipschitz vector
field and hence its integral curves vary continuously in thigal point (Lang BO,
Chapter 1V]) completing the proof. O

Remark 3.5 With a bit more care, one can prove Lemi8a under the weaker
assumptionk > 1 andkp > n. The basic point is that these assumptions give an
embeddingLi(M) — CO(M), and by compactness®(M) — LY(M) (and similarly
after restricting to a smooth curvelih). Working in local coordinates, one can deduce
continuity of the holonomy map from the fact that limits couome with integrals in
LY([0, 1]).

Lemma 3.6 Assumep > n/2 (and ifn = 2, assume > 4/3). If G is connected,
then eachgy P (P)—orbit in AXP(P) contains a uniqugg® (P)—orbit of smooth con-
nections.

Proof By Wehrheim b1, Theorem 9.4], the assumptions krand p guarantee that
eachG*t1P(n) orbitin kl’aﬁ(n) contains a smooth connection. Now, s&\A is smooth

for some¢ € GKtLP(P). By Lemma3.3, there exists a smooth gauge transformation
W such that (v) = r(¢)~*. The composition) o ¢ is based, and sincg is smooth we
know that ¢ o ¢) - A is smooth. This proves existence. For uniquenessgpsay and

4 - A are both smooth, where, ¢ € G&™P(P). Thengy 1 is smooth by §, Lemma

14.9], so these connections lie in the sagge—orbit. D

The following elementary lemma provides some of the commess we will need.

Lemma 3.7 If G is acompact Lie group, then only finitely many isomorphisasses
of principal G—bundles oveM admit flat connections.

Proof As described in the Appendix, any bundieadmitting a flat connectio’ is
isomorphic to the bundle induced by holonomy represemtaijg 1M — G. If two
bundlesky and E; arise from representations and p; in the same path component
of Hom(r1M, G), then choose a pathy of representations connecting to p1. The
bundle

E= (I\7I X [07 l] X G)/(fﬁ7t7 g) ~ (rAﬁ 77t7pt(7)_1g)

is a principal G—bundle overM x [0, 1] and provides a bundle homotopy between
Eo and Ez; by the Bundle Homotopy Theorem we conclulg = E;. Hence the
number of isomorphism classes admitting flat connectioret imost the number of
path components of Hom{M, G).
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Now recall that any compact Lie group is in fact algebrais:ifihage under a faithful
representationn: G — GLC is Zariski closed (see Sepanskg[ Excercise 7.35, p.
186] for a short proof using the Stone-Weierstrass TheorairHaar measure). Since
1M is finitely generated (bk elements, say), Hom{M, G) is the subvariety of5¥

cut out by the relations im1M. So this space is a real algebraic variety as well, hence
triangulable (see Hironak&2]). Since compact CW complexes have finitely many
path components, the proof is complete. O

Remark 3.8 We note that the previous lemma also holds for non-compgetasic
Lie groups, by a result of Whitneg] regarding components of varieties.

We can now prove the result connecting representationsrig-¥dills theory.

Proposition 3.9 Assumep > n/2 (and ifn = 2, assumeg > 4/3), k > 1, and
kp > n. Then for anyn—manifoldM and any compact, connected Lie groBp the
holonomy map induces @—equivariant homeomorphism

H
[T AsRP) /G5 PP 5 Hom(ri(M), G),
[Pi]
where the disjoint union is taken over some set of repregegsafor the (unbased)
isomorphism classes of princip@—bundles oveM. (Note that to definé{ we
choose, arbitrarily, a base point in each representatinelbip; .)

The G-action on the left is induced by the actions @f"1P(P;) together with the
homeomorphismg*+1-P(P;) /g('§+1’p(Pi) =~ G, which again depends on the chosen
basepoints in the bundlé.

Proof The assumptions ok and p allow us to employ all previous results in this
section (note Remar&.5). It is well-known that the holonomy map

H: ] Af(P) — Hom(ry(M), G)
[Pi]
is invariant under the action of the based gauge group angc@sdan equivariant
bijection
H: T A(P)/G5°(P)) — Hom(my(M), G).

[Pi]
For completeness we have included a proof of this result @ Appendix. By
Lemma3.6, the left hand side is unchanged (set-theoretically) if wpelace Ags,
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andgg® by |at *and gk“ P, and hence Lemma@.4tells us that we have a continuous
equivariant bijection

H: [T Ar(P)/G5 " P(P;) — Hom(ri(M), G).
[Pi]

We will show that for eacltP, Aﬂat(P)/g'gJrl P(P) is sequentially compact. Since, by
Lemmaa3.7, only finitely many isomorphism types of princip@—bundle admit flat
connections, this implies that

[T AtRP) /g5 P)

[P
is sequentially compact. A continuous bijection from a sgdjially compact space to
a Hausdorff space is a homeomorphism, so this will completgtoof.

The Strong Uhlenbeck Compactness Theoréit] [see also Daskalopoulosl],
Proposition 4.1]) states that the spadﬁ (P)/g'“rl P(P) is sequentially compact.
Given a sequencéA;} in Aﬂat(P) there exists a sub-sequenf; } and a sequence
¢j € G<T1P(n) such that;-Aj, converges ind*P to a flat connectior. Letgj = r(¢).
Since G is compact, passing to a sub-sequence if necessary we mayessat the
g; converge to somg < G. The proof of Lemmé&3.3 shows that we may choose
a convergent sequenag € GKFLP(P) with r(yy) = g we let ¢ = lim ¢y, so
r(y) = g~*. By continuity of the action, the sequenag @qu) -Aj; converges ta) - A.
Sincej o ¢ € gg“’p(P), this completes the proof. O

Remark 3.10 SinceHom(m1M, G) is compact, PropositioB.9implies compactness
of Aﬂat(P) /g('frl p(P) However, point-set considerations alone show that seiglien
compactness ofélﬂat(P) /gg“ P(P) suffices to prove its compactness: specifically,
ﬂat(P) is second countable, since it is a subspace of a separabéziBapace. The
quotient map of a group action is open, g{ﬁat(P) /Q'SJrl P(P) is second countable
as well. Now, any second countably, sequentially compaatesms compact. (The
necessary point-set topology can be found in Wilan&ids $.3.2, 7.3.1, 5.4.1].)

More interesting is that Propositidh9implies that the based gauge orbitsAﬁ;ﬂ(P)
are closed (the quotient embedsHom(mM, G)). SinceG is compact, one also
concludes that the full gauge orbits are closed.



Yang—Mills theory and the Atiyah—Segal theorem 17

4 The Harder-Narasimhan stratification and Morse theory
for the Yang—Mills Functional

In Section3, we explained how to pass from spaces of representationpaices
of flat connections. We now focus on the case whrés a compact surface and
G = U(n). We wish to compare the space of flat connections du(a)—bundle
P over M to the contractible space of all connections oR, and in particular we
want to understand what happens as the ranR &nds to infinity. Atiyah and Bott
made such a comparison (for a fixed bun@ using computations in equivariant
cohomology. We will work directly with homotopy groups, mgi Smale’s infinite
dimensional transversality theorem. A (co)homologicgbrapch could be used in
the orientable case (details may be found4#f]], but there are difficulties, related to
equivariant Thom isomorphisms, in extending such an argtitoethe non-orientable
case. These issues are the focus of ongoing work with Ho and Li

The main result of this section is the following connecyivgstimate.

Proposition 4.9 Let M = M9 denote a compact Riemann surface of geguand

let n > 1 be an integer. Then the spao@jat(n) of flat connections on a trivial
rank n bundle ovemM is 2g(n — 1)—connected, and if is a non-orientable surface
with oriented double coveM9, then the space of flat connections on any principal
U(n)—bundle over: is (g(n — 1) — 1)—connected.

In the orientable case this result is in fact sharp; in the-oentable case it can be
improved significantly 45].

We will work in the Hilbert space of_ﬁ connections, and we assurke> 2 so that
the results of SectioB.2apply. We suppresp = 2 from the notation, writing simply
AKX, GX, and so on. Over a Riemann surface, any princlpéi)—bundle admitting a
flat connection is trivial (see Corollad;.11), and hence we restrict our attention to the
caseP = M x U(n) and write.4%(n) = AX(M x U(n)), etc.

For any smooth principdl (n)—bundleP — M, the Yang—Mills functional
L: AP) >R
is defined by the formula

L(A) = /M ||IF(A)||?dvol
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whereF(A) denotes the curvature form of the connectidrand the volume oM is
normalized to be 1. The spacé,(n) of flat connections forms a critical set for the
L [6, Proposition 4.6], and so one hopes to employ Morse-thiedrktas to compare
the topology of this critical set to the topology @f(P). In particular, the gradient flow
of L should allow one to define stable manifolds associated ticarsets ofM, which
should deformation retract to those critical subsets. duessary analytical work has
been done by Daskalopoulokl] and Rade B2], and furthermore Daskalopoulos has
explicitly identified the Morse stratification ofi(P) (proving a conjecture of Atiyah
and Bott). We now explain this situation.

We now recall (seed, Sections 5, 7]) that there is a bijective correspondentsdan
connections on a principal (n)—bundleP and Hermitian connections on the associated
Hermitian vector bundl& = PxynC". Whenthe base manifold is a Riemann surface,
the latter space may in fact be viewed as the space of holdmwospructures ore:
first, there is a bijective correspondence between holomorgtructures and (@)—
connection): Q9 (E) — Q%(E), provided by the fact that each, () —connection ona
complex curve is integrable (see Donaldson—Kronheirh&r$ection 2.2.2]), together
with the fact that a holomorphic structure is determinedtbysheaf of holomorphic
sections (sections: M — E with ds = 0). Now, each Hermitian connection d&h
has an associated ,(@-connection, and by Griffiths—Harri4q, p. 73] this in fact
induces an isomorphism of affine spaces.

From now on we will view holomorphic structures in terms daditrassociated (A)—
connections. Since the space of {p-connectionsis an affine space modeled the vector
space of (smooth) sections of the vector burfaﬁ#(End(E)) of endomorphism-valued

(0, 1)—forms, we may define Sobolev spa@®$E) = CK2(E) of (0, 1)—connections
simply by takingLﬁ—sections of this bundle. Whevi is a Riemann surface, the above
isomorphism of affine spaces extends to an isomorphig®) = ck(P xum C").

There is a natural algebraic stratification@{E) called the Harder-Narasimhan strat-
ification, which turns out to agree with the Morse stratifimatof .AX(P). We now
describe this stratification in the caBe= M x C".

Definition 4.1 Let E be a holomorphic bundle ovéd. Let degE) denote its first
Chern number and lek(E) denote its dimension. We cdll semi-stable if for every
proper holomorphic sub-bund C E, one has

degE) _ deg)
tk(E) ~ rk(E)
Replacing the< by < in this definition, one has the definition ostablebundle.
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Given a holomorphic structur€ on the bundleM x C", there is a unique filtration
(the Harder-Narasimhan filtratiod9)])

O0=&Ccé&E & =€&

of £ by holomorphic sub-bundles with the property that eachigndbD; = & /&1
is semi-stablei(= 1,...,r) and u(D1) > u(D2) > --- > w(Dy), where u(D;) =
gi?(((%i)), and degD;) is the first Chern number of the vector bundbe. Letting nj =
rank©;) andk; = deg(;), we call the sequence

p=((n1,k1), ..., (N, k)

thetypeof £. Since ranks and degrees add in exact sequences, wedhawe= n
and) ;k = 0. By [6, Section 14], each orbit of theomplexgauge group ortX(E)
contains a unique isomorphism type of smoothl§e-connections (i.e. holomorphic
structures), so we may defir® = Cx(n) C C*(n) to be the subspace of all (0)—
connections gauge-equivalent to a smooth connection ef jiy@and theC}j partition
CX(n). Note that the semi-stable stratum corresponds o ((n, 0)).

It is a basic fact that every flat connection Bncorresponds to a semi-stable bundle:
the Narasimhan-Seshardri Theoref) [8.1)] says that irreducible representations
inducestablebundles. By Propositiol3.9, every flat connection comes from some
unitary representation, which is a sum of irreducible repngations, and hence the
holomorphic bundle associated to any representationamngflat connection, is a sum
of stable bundles. Finally, an extension of stable bundi¢seosame degree is always
semi-stable.

We can now state the result we will need.

Theorem 4.2 (Daskalopoulos, Rade) Let M be a compact Riemann surface. Then
the gradient flow of the Yang—Mills functional is well-defahtor all positive time, and
defines continuous deformation retractions from the HalN#asimhan stratéfb to
their critical subsets. Moreover, these strata are loadtlged submanifolds af*(n)

of complex codimension

c(p) = Znikj—njki +(g-1) Zninj

i>] i>]

In particular, there is a continuous deformation retracfwefined by the gradient flow
of L) from the spacefgn) of all semi-stabld_ﬁ (0, 1)—connections oM x C" to the
subspaceélﬁat(n) of flat (unitary) connections.
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Remark 4.3 This result holds for anyC* vector bundle. Daskalopoulos proved
convergence of the Yang—Mills flow modulo gauge transfoiomat and established
continuity in the limit on (the gauge quotient of) each Hararasimhan stratum
(which he proved to be submanifolds).aé later proved the full convergence result
stated above. We will discuss the analogue of this situatiothe non-orientable
case in the proof of Propositioh9. One could ask for a result slightly stronger than
Theoremy.2: since the gradient flow df converges at time-oco to give a continuous
retraction from eacla?}j to its critical set, this stratum is a disjoint union of Morse
strata. However, | do not know in general Whetﬁgris connected. Hence the Morse
stratification may be finer than the Harder-Narasimhanigtation.

The following definition will be useful.

Definition 4.4 Consider a sequence of pairs of integ€rs, ki), ..., (n, k). We

call such a sequena@missibleof total rankn (and total Chern clas3) if n; > 0O for
eachi, > ni =n, >k = 0, and ] kl > > "f . Hence admissible sequences of
total rankn and total Chern clad3 are pre(:/sely those describing Harder-Narasimhan
strata inC(n). We denote the collection of all admissible sequences aftahkn and
total Chern clas$® by Z(n).

We now compute the minimum codimension of a non semi-statatus. In particular,
this computation shows that this minimum tends to infinityhwi, so long as the genus
g is positive. This result has been extended to the case ofrivaal-bundles in §5].

Lemma4.5 The minimum (real) codimension of a non semi-stable stratué¥(n)
(n> 1) is precisely2n + 2(n — 1)(g — 1) = 2g(n — 1) + 2.

Proof Let = ((ny,ky), ..., (N, k)) € Z(n) be any admissible sequence with- 1.
Then from Theorem.2, we see that it will suffice to show that

(2 Znikj—njki>n
>

and

3 > onnp=n-—
>

To prove @), we begin by noting that sincg_ ki = 0 and the ratios‘ﬁi are strictly
decreasing, we must hake > 0 andk, < 0. Moreover, there is somig € R such
thatk, > 1 for | < lg andk < —1 for| > lg. We allowlg to be an integer if and only
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if ki = 0 for somel; then this integet is unique, and in this case we defike:=I.
Sincer > 2, we know that 1< g < r.

Now, if i > 1o > j we havek; > 1 andk; < —1, so,
nik — niki > nj +nj.
If i >lpandj = lg, we havek; = 0 andk; < —1, so
niki, — Niki = 0+ Ny, = ny,.
Finally, if i = lg andj < lg, thenk; = 0 andkJ 1 so we have
Nk — >n,—0=n,.
Now, sincenkj — njki = nin;(kj/n; — ki /m;) and thek /n; are strictly decreasing, we

know that each term in the surEi>j niki — njki is positive. Dropping terms and
applying the above bounds gives

D onk =k = > (kg — k) + >k — ki) ) (kg — nigk)

i>] i>lp>j lo>j i>lo
> i)Y N+ > .
i>1o>] lo>] i>lo

(In the second and third expressions, the latter sums aea takbe empty ilg is not
an integer.) Sincé_ n; = n, to check that the above expression is at Iesisisuffices
to check that eaclm; appears in the final sum. But since<llp < r, eachn; with

| # lo appears in the first term, andl§ € N thenn, appears in both of the latter
terms. This completes the proof &)(

To prove @), we fixr € N (r > 2) and consider partitionE: (p1,...,pr) of n. We
will minimize the functiong,(P) = ij pip;, over all lengthr partitions ofn.

Consider a partitiorﬁ: (p1,---,pr) with pm > p > 1 (I #£ m), and define another

pi, i#1 m
pI/: p|_17 |:|,

partition p’ by setting

It is easily checked that (P) > o (p).

Now, if we start with any partitiorﬁ suchp; > 1 for more than one index the above
argument shows thad cannot minimizeg,. Thus ¢, is minimized by the partition
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Po=(L,...,1,n—r — 1), andé(po) = ("55) + (r = 1)(n—r — 1). The latter is an
increasing function for € (0,n) and hence2i>j pip; is minimized by the partition
(1,n—1). This completes the proof o).

Finally, note that the sequence (13, (n— 1, —1)) has complex codimensiam+ (n —
1@ -1). O

Remark 4.6 It is interesting to note that the results in the next sectiearly fail in
the case wheN has genus 0. From the point of view of homotopy theory, thélera
is thatS is not the classifying space of its fundamental group, anorsoshould not
expect a relationship betweéhtheory of S and representations @S> = 0. But
the only place where our argument breaks down is the preV@nsia, which tells us
that there are strata of complex codimension 1 in the Haxa@easimhan stratification
of CX(S x C(n)), and in particular the minimum codimension does not tendfioity
with the rank.

The main result of this section will be an application of tl@ldwing infinite-
dimensional transversality theorem, due to SmaleTheorem 19.1] (see alsd]).
Recall that a residual set in a topological space is a coleiatersection of open,
dense sets. By the Baire category theorem, any residuagtsaba Banach space is
dense, and since any Banach manifoltbisally a Banach space, any residual subset
of a Banach manifold is dense as well.

Theorem 4.7 (Smale) LetA, X, andY be second countablé’ Banach manifolds,
with X of finite dimensiork. LetW C Y be a (locally closed) submanifold of, of
finite codimensiorny. Assume that > max(Qk — ). Letp: A — C'(X,Y) be a
C"—representation, that is, a function for which the evatmatnapev,: A x X — Y
given byev,(a,x) = p(a)x is of classC'.

Fora c A, let p;: X — Y be the mapa(X) = p(@)x. Then{a € Alpa h W} is
residual inA, provided thaev, i W.

Corollary 4.8 Let Y be a second countable Banach space, ang\ltic, be a
countable collection of (locally closed) submanifoldsYofwith finite codimension.
Then ifU =Y — | J;c; W is a non-empty open set, it has connectivity at lgast 2,
where

w=min{codimW,; : i€ l}.

Proof To begin, consider a continuous map 1 LU, withk—1< uw—2. We
must show thaf is null-homotopic inU; note that our homotopy need not be based.
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First we note that sinc& is open,f may be smoothed, i.e. we may replacby a
C*1 mapf’: 1 — U which is homotopic td insideU (this follows, for example,
from Kurzweil’'s approximation theoren2)).

Choose a smooth function: R — R with the property that(t) = 1 fort > 1/2 and
H(t) = 0 forall t < 1/4. Let DK c RX denote the closed unit disk, gD = S<1.

The formulaH* (x) = ¢(||x||)f (x/||||) now gives aCkt1 mapDX — Y which restricts
to f on each shel{x € D¥| ||x|| = r} with r > 1/2. Gluing two copies oH* now
gives aC*+1 “null-homotopy” of f defined on the closed manifol.

We now define
A={FeC"YSY)| F(X) =0 for xe St c §}.

Note thatA is a Banach space: sin@ is compact, I, Theorem 5.4] implies that
C*1(,Y) is a Banach space, aris a closed subspace 6ft1(SK,Y). (This is the
reason for working witiCkt1 maps rather than smooth ones.)

Next, we defingp: A — CKt1(SX,Y) by settingp(F) = F 4+ H. The evaluation map
ev,: Ax S — Y is given by ey(F,x) = F(X) + H(x). Since both E,x) — F(x) and
(F,X) — X — H(X) are of classC¥*1, so is their sum (the fact that the evaluation map
(F,X) — F(X) is of classC**? follows from [1, Lemma 11.6]).

We are now ready to apply the transversality theorem. $edtin= S, W = W
(for somei € 1) and with A as above, all the hypotheses of Theorémare clearly
satisfied, except for the final requirement thag évW,. But this is easily seen to be
the case. In fact, the derivative of gsurjects ontdlY for eachy in the image of ey,
because given 81 mapF: $ — Y with F(x) = y and a vectow € TyY, we may
adjustF in a small neighborhood of so that the map remair@<+! and its derivative
hits v.

We now conclude thafF € A|pa h Wi} is residual inA, for each stratun. Since
the intersection of countably many residual sets is (by defir) residual, we in fact
see that

{FEA| pr W Viel}

is residual, hence dense, M In particular, sincéA is non-empty, there exists a map
F: & — Y such thatF|«-1 = f and pg = F + H is transverse to eacil. Since

k < = codimM), this implies that the image df + H must be disjoint from each
W;. Hence F + H)(&) c U, andf is zero inm_1U. O

We can now prove the main result of this section. This resdkrels work of Ho
and Liu, who showed that spaces of flat connections overesfare connecte@T,
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Theorem 5.4]. We note, though, that their work applies toegainstructure groups
G. We also note that in the orientable case this result is slaséated to work of
Daskalopoulos and Uhlenbeck, Corollary 2.4], which concerns the less-highly
connected space sfablebundles.

Proposition 4.9 LetM = M9 denote a compact Riemann surface of geguand
letn > 1 be an integer. Then the spa_@éjat(n) of flat connections on a trivial rank
n bundle oveM is 2g(n — 1)—connected, and if: is a non-orientable surface with
double coveM?9, then the space of flat connections on any prindipal) —bundle over
3 is (g(n — 1) — 1)—connected.

Proof We begin by noting that Sobolev spaces (of sections of fibadles) over
compact manifolds are always second countable; this fglfoem Bernstein’s proof of
the Weierstrass theorem since we may approximate any éumioi smooth functions,
and locally we may approximate smooth functions (uniforonbyto thekth derivative
for any k) by Bernstein polynomials. Since the inclusioﬁﬁat(n) — C¥(n) is a
homotopy equivalence (Theore#n?), the orientable case now follows by applying
Corollary4.8 (and Lemmat.5) to the Harder-Narasimhan stratificatidn.

For the non-orientable case, we work in the set-up of noartaible Yang—Mills theory,
as developed by Ho and Li@7]. Let 3 be a non-orientable surface with double cover
M9, and letP be a principalU (n)—bundle oveiX:. Let 7: M9 — 3 be the projection,
and letP = 7*P. Then the deck transformation: M9 — M9 induces an involution

7: P — P, and7 acts on the spaceX(P) by pullback. Connections oR pull back

to connections orP, and in fact, the image of the pullback map is precisely the se
of fixed points ofr (see, for example, H®[B]). Hence we have a homeomorphism
AK(P) 2 A¥(P)™, which we treat as an identification. The Yang—Mills funn#bL is
invariant undefr, and hence its gradient flow restricts to a flow.di(P).

Assume for the moment that,(P) # 0. The flat connections oR pull back to flat
connections orP, and again the image ofl§,,(P) in A(P) is precisely A%, (P)". If

*Note thatCk(n) is in fact open. This is a slightly subtle point. Atiyah andtBprovide
an ordering on the Harder—Narasimhan strata in which thé-stile stratum is the minimum
stratum, and the closure of any stratum lies in the union eflénger strata. Hence the
complement oCX(n) is the union of the closures of the other strata. The Haidarasimhan
stratification is actually locally finite, so this union ofosked sets is closed. Local finiteness
can be deduced from convergence of the Yang—Mills flow andhitiehat the critical values of
the Yang-Mills functional form a discrete subset®f(see Fide B2]), but also follows from
the more elementary methods of Atiyah and Bott, as explaimgth|.)
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we let C¥(P) denote the fixed set(P)7, then the gradient flow of restricts to give
a deformation retraction frorG%{(P) to A% ,(P). The complement ofX(P) in AX(P)
may be stratified as follows: for each Harder-Narasimhaatigtm C,'j(P) c AXP) =

ck (f’ X U(n) (Crl) , we consider the fixed s&k(P) := (C,'j(l?’))T. By Ho and Liu P7,
Proposition 5.1]C':L(P) is a real submanifold of4¥(P), and if it is non-empty then its
real codimension in4%(P) is half the real codimension atX(P) in .A(P). It now
follows from Lemmad4.5 that the codimensions of the non semi-stable sté%l(@)

are at leasg(n — 1) + 1 (this is a rather poor bound; se&5]). It now follows from
Corollary4.8that A}‘lat(P) has the desired connectivity.

To complete the proof, we must show that all bundResver ¥ actually admit flat
connections. This was originally proven by Ho and L26,[ Theorem 5.2], and in the
current context may be seen as follows. There are preciselysomorphism types of
principal U(n)—bundles over any non-orientable surface. (A map fidrmto BU(n)
may be homotoped to a cellular map, and since the 3-skelétBtU() is a 2-sphere,
the classification ofJ(n)—bundles is independent of Hence it suffices to note that
the relativeK —group Ko(X) has order 2.) We have just shown that the space of flat
connections on each bundle is either empty or connectedygams$ition 3.9 gives a
bijection between connected components of Herl( U(n)) and bundles admitting
a flat connection. So it suffices to show that the representaace has at least two
components. This follows easily from the obstruction defibg Ho and Liu R6]. O

Remark 4.10 In the non-orientable case, some improvement to Thedr&is pos-
sible. The results of Ho and Liu show that many of the HarderaSimhan strata
for the double cover of non-orientable surface contain nedfigoints, and hence the
above lower bound on the minimal codimension of the Morsaatis not tight in the
non-orientable case. In the orientable case, the tightoEkemmad4.5 shows that
the bound on connectivity aﬂhat(n) is tight. This can be proven using the Hurewicz
theorem and a homological calculatict].

As discussed in Sectidh 3, the following results are quite close to the work of Ho and
Liu.

Corollary 4.11  For any compact Riemann surfabé and anyn > 1, the repre-
sentation spacélom(r1(M),U(n)) is connected. In particulaRepgr1M) is stably
group-like.

Proof The genus O case is trivial. Whem= 1, U(1) = S is abelian and all
representations factor through the abelianizatiomrdfl. Hence Hom{:M, U(1)) is
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a product of circles. Whewg,n > 1 we have 8(n — 1) > 0, so Propositior4.9
implies thatAF,at(n) is connected. Connectivity of Hom{(M), U(n)) follows from
Proposition3.9, because anyJ(n) bundle over a Riemann surface which admits a flat
connection is isomorphic t™M x U(n) (for a nice, elementary, and easy proof of this
fact, see Thaddeud9, pp. 78-79]). O

Corollary 4.12 LetY be a compact, non-orientable, aspherical surface. Themfor

n > 1, the representation spae®m(r13:, U(n)) has two connected components, and
if p € Hom(r1X, U(n)) andy € Hom(r1X:, U(m)) lie in the non-identity components,
then p ® v lies in the identity component diom(r1X, U(n + m)). In particular,
Rep(r1Y) is stably group-like.

Proof First we consider connected components. The case 1 follows as in
Corollary 4.11 Whenn > 1, it follows immediately from PropositioA.9 that the
space of flat connections on any principéln)—bundle overy is connected.

As discussed in the proof of PropositidtB, there are precisely two bundles over
classified by their first Chern classes, and there is a bjedietween components of
the representation space and isomorphism classes of Burtdénce the components
of Hom(r1X:, U(n)) are classified by the Chern classes of their induced bandied
since Chern classes are additive, the sum of two represergan the non-identity
components of Hom(; X, U(—)) lies in the identity component. O

5 Proof of the main theorem

We can now prove our analogue of the Atiyah—Segal theorem.

Theorem5.1 LetM be a compact, aspherical surface (in other wovtls: 2, RP?).
Then for« > 0,
K€ (ra(M)) = K™ (M),

whereK*(M) denotes the complek —theory ofM. In the non-orientable case, this in
fact holds in degre@ as well; in the orientable case, we ha(@ef(m(M)) =7.

We note that the isomorphism in Theoré&ni is functorial forsmoothmaps between
surfaces, as will be apparent from the proof. In particuta,isomorphism is equiv-
ariant with respect to the mapping class groupMof The K-theory of surfaces is
easily computed (using the Mayer-Vietoris sequence or thgA-Hirzebruch spectral
sequence), so Theorésrlgives a complete computation of the deformatiorgroups.
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Corollary 5.2 Let MY be a compact Riemann surface of gegus 0. Then
Z, *=0
K9 (r,M9) = { 72, « odd
Z?, xeven x> 0.

Let ¥ be a compact, non-orientable surface of the faim= M9N; (g > 0), where
j =1o0r2andN; = RP?, N, = RP?#RP? (so N, is the Klein bottle). Then if
¥ # RP?, we have:

Z®L]2Z, = even
def OHNL) )
K M) = { 721« odd
Proof of Theorem5.1 |I. The orientable case:Let M = M9 be a Riemann surface
of genusg > 0. We will exhibit a zig-zag of weak equivalences betwdel (7, M)
andZ x Map®(M, BU)), where Maf denotes the connected component of the constant
map.

By Corollary2.4and Propositior3.9 (and the fact that any bundle over a Riemann sur-
face admitting a flat connection is trivial), the zeroth spatthe spectruniK 9(r;M)
is weakly equivalent to

(4)  telescop®ep(riM)ny = telescopq_[ EUMN) xum (Ala(n)/G6™(n)

ol elr] N
where the maps are induced by direct sum with the trivial ectian 7 on the trivial
line bundle. Since the based gauge gro@éél(n) act freely on.4%(n), and (by
Mitter—Viallet [38] or Fine—Kirk—Klassen 16]) the projection maps are locally trivial
principal gg“(n)—bundles, a basic result about homotopy orbit spag,ek3. 1] shows
that we have a weak equivalence

(5) EGHTH(n) X gieramy Affar(n) —— EU(N) xu@y (Afa(n)/G6M)) -
It now follows from () that the mapping telescopé) (s weakly equivalent to

teleisﬁcopq_[ (Afiae) sy = Z % teleicopeél'f‘lat(n)hgkﬂ(n).

o7 n o7

Proposition4.9 shows that the connectivity of the projectiom#}at(n)hgk+1(n) —
BG*+1(n) tends to infinity, and since the homotopy groups of a mappétescope
may be described as colimits, these maps induce a weak &qnaoea
(6) 7, x telescope4}‘|at(n)hgk+1(n) — 7 x telescop®G*“ti(n).

nN—o0 nN—oo

By Lemma3.2, the inclusionGkt1(n) — G(n) is a weak equivalence, so we may
replaceGkt1(n) with G(n) on the right.
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We have been using Milnor’s functorial modgf(—) — B(—) for universal bundles
(see RemarR.2). Atiyah and Bott have showr®[ Section 2] that the natural map

Map(M, EU(n)) — Map’(M, BU(n))

is a universal principal Map{, U(n)) = G(n) bundle, where again M&pdenotes the
connected component of the constant map. As in Re@arkhe “mixed model" for
BG(n) gives a zig-zag of weak equivalences

BG(n) «— (EG(n) x Map(M, EU(n))) /MapM, U(n)) — Map’(M, BU(n)),
which are natural im and hence induce weak equivalences on mapping telescopes
(formed using the standard inclusiobgn) — U(n -+ 1)). The projection
telescopdap’(M, BU(n)) — colim Map’(M, BU(n)) = Map®(M, BU)

n—oo
is a weak equivalence, since maps from compact sets intaraitkand in some finite
piece. This completes the desired zig-zag.

Il. The non-orientable case: Let > # RP? be a non-orientable surface. Once again,
Propositior2.4and Propositior.9tell us that the zeroth space f€'(7,X) is weakly
equivalent to

teleisﬂcopq_l (Ahat(Pi))hng(pi) )

&7 [Pi]

where the disjoint union is taken over alland over all isomorphism types of principal
U(n)-bundles. By Propositiod.9 we know thatAhat(Pi) is (g(i)(ni -1 -1)-
connected, where; = dim(P;) and g(i) denotes the genus of the orientable double
cover of 2. Since we have assumétl# RP?, we know thatg(i) > 0, and hence the
connectivity ofA}‘lat(Pi) tends to infinity withn;. Hence the natural map

7) telescopq | (Afa(P)) g py — telescopq | BG“*(P))
or [Pl 1 [Pl

is a weak equivalence (on the right hand side, 1 denotes #hitiyl element in
GK¥t1(1)). Asin the orientable case, we may now switch to the Atitt models for
BG(P;), obtaining the space
telescopd | Map™ (2, BU(m)),
o1 [P
where Map' denotes the component of the mapping space consisting sé tnaps

f: ¥ — BU(n) with f*(EU(n;)) isomorphic toP;. But since the union is taken over
all isomorphism classes, this space is homotopy equivalent to

7 x telescopdMap(X, BU(n)) ~ Z x Map(X, BU) = Map(®, Z x BU).

nN—oo
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We briefly discuss the spectrum-level version of Thedben The space level construc-
tions used in the proof of Theoreml can be lifted to spectrum-level constructions.
This involves constructing a variety of spectra (and mapgs/éen them) including,
for instance, a spectrum arising from a topological categdrflat connections and
gauge transformations. Each spectrum involved can bercatest from al'—space

in the sense of SegadT], and the space-level constructions above essentiallgrbec
weak equivalences between the group completions of the i®mumderlying these
I"'—spaces. Since these group completions are weakly equivtaléhe zeroth spaces
of these(2-spectra, the space-level weak equivalences lift to weplvalences of
spectra. In the non-orientable case, one conclude&®#fitr1M) is weakly equivalent

to the function spectrurik(M, ku). The end result in the orientable case is somewhat
uglier, due to the failure of TheoreBi1on 7. In this case K% (71M) is weakly
equivalent to a subspectrum BfM, ku), essentially consisting of those maps homo-
topic to a constant map. One may ask whether the intermespatgra aré&ku—algebra
spectra and whether the maps between them preserve thatustru More basically,
one may ask whether the isomorphisms in Theoketrtome from a homomorphism
of graded rings. Recall that T. Lawso82 has constructed &u—algebra structure
on the spectrunkK9f(G). Constructing a compatible ring structure for the speutru
arising from flat connections appears to be a subtle probl€his problem, and the
full details of the spectrum-level constructions, will kensidered elsewhere.

We now make the following conjecture regarding the homotiypg of the spectrum
K9f(r,M), as a algebra over the connectilfe-theory spectrunku. Note that it is
easy to check (using Theorésril) that the homotopy groups of the proposed spectrum
are the same a§%'(mr,(M)).

Conjecture 5.3 For any Riemann surfadel9, the spectrumK9€f(z1M) is weakly
equivalent, as &u-algebra, tdku v (\/29 Eku) Vv Y2ku.

6 The stable moduli space of flat connections

In this section we study the coarse moduli space of flat ynitennections over a
surface, after stabilizing with respect to rank. By defomtithe moduli space of flat
connections over a compact manifold, with structure gr@yjs the space

]_[Afklgi(P) /GKLP =~ Hom(m M, G) /G,
[Pi]
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where the disjoint union is taken over isomorphism clas$g®incipal G—bundles.
This homeomorphism follows immediately from Propositf (so long as, p, and
G satisfy the hypotheses of that result). In particular, tleelofi space of flat unitary
connections is simply Hom¢M, U(n))/U(n), and the inclusiondJ(n) — U(n+ 1)
allow us to stabilize with respect to rank. The colinditt (7:M) of these spaces is
just Hom¢riM, U) /U, whereU = colimU(n) is the infinite unitary group. We call
this space the stable moduli space of flat (unitary) conoesti (This rather simple
stabilization suffices for surface groups, but in generastnine replaced by a subtler
construction; see Rematk3))

T. Lawson B3] has exhibited a surprising connection between deformdietheory
and this stable moduli space. His results suggest that foryroampact, aspherical
manifolds, only finitely many homotopy groups of this stableduli space are non-
zero, and in fact each component of this space should havadam®topy type of
a finite product of Eilenberg-MacLane spaces (see Corobady This situation is
closely tied to Atiyah—Segal phenomena in deformatcstheory: we expect that the
homotopy groups oK%f(M) will agree withK—*(M) for « at least one less than the
cohomological dimension of the group, and after this pdiet homotopy groups of
the stable moduli space should vanish. We now explain Laiwsesults and how they
play out for surface groups.

For the remainder of this section, we think Kf€(I') as the connective spectrum
described in SectioB. Lawson’s theorem states that for any finitely generatedgro
I", there is a homotopy cofiber sequence of spectra

@) $2KeE(r) - KOI(r) — RE),
and a corresponding long exact sequence in homotopy
©) s KI) 5 KE(r) — R —

Here 22K 9{(I") denotes the second suspensiorkdf(I") and RE(I") denotes the
“deformation representation ring" @f, defined below. Note that for any spectrifm
one hasr,(XX) = m,_1X, hence the degree shift in the long exact sequeéce (

As we will explain, the cofibeiRI{(I") is quite closely linked to the stable moduli
space M(I"). The first mapg in the cofibration sequencé)(is the Bott map in
deformationK —theory, and is obtained from the Bott map in connectisetheory
ku by smashing withK9€(I"): this requires th&ku—module structure in deformation
K—theory constructed by Lawso87].

Lawson’s construction of the Bott map relies on the modeeoith of structured
ring spectra. In particular, his results require the moddegories of module and



Yang—Mills theory and the Atiyah—Segal theorem 31

algebra spectra studied by Elmendorf, Kriz, Mandell, and/ ia], Elmendorf and
Mandell [15], and Hovey, Shipley, and Smit2§].

His work makes rigorous the following purely heuristic ctvastion (which we include
simply to provide some intuition). We may consider the Btgteent3 € m,BU(n) =
Z as a family of representations via the map/(n) — EU(n) xyr Hom(', U(n))
given by x — [X, 5] where X € EU(n) is any lift of x; this is well-defined since,
is fixed under conjugation. IF is stably group-like, Theorer®.3 allows us to think
of homotopy classes iKZ*(I") as families of representations S™ — EU(n) XU(n)
Hom(,U(n)). Now tensoring withg gives a new familyp @ 5: S¥ 2 A & =
S" — Hom(", U(n))nu(n) , Via the formulap ® B(zw) = p(2) ® B(w). Of course some
care needs to be taken in defining this tensor product, si@eand 5(w) lie in the
homotopy orbit spacesather than simply in the representation spaces (and we hav
also ignored questions of basepoints and well-definegnkasvson’s construction of
the Bott map B2 is in practice quite different from this hands-on apprqaahd it
would interesting to have a rigorous proof that the two agree

Since K9€Y(T") is connective,mpX2K (T and 71 22K 9%(T") are zero, and hence the
long exact sequenc®)(immediately gives isomorphisms

(10) K1) =~ = ReE(D)

fori =0, 1, as well as an exact sequence

(11) KEe!(r) - KI(r) — R — 0

(is is not known whether the first map is injective in general)

If KIe(T") agrees with the periodic cohomology thedty *(BT") for large %, then one
should expect the Bott map to be an isomorphism after thistoertainly this would
follow from a sufficiently natural correspondence betweeformationK —theory ofl’
and topologicalK —theory of BI'). From the long exact sequen@®,(one would then
conclude, as mentioned above, thatRe*(I")) vanishes in high degrees.

Remark 6.1 In Sectior2, we described%¢'(T") as the connective spectrum associated
to a permutative category of representations, and we cadptg homotopy groups
in Theorem5.1 Lawson works with a different model, built from thHé—space
[1,V(n) xym Hom(,U(n)) [32]. HereV(n) denotes the infinite Stiefel manifold of
n—frames inC>. One may interpolate between the two models by using a spectr
built from theH —space

(EU(n) x V(n) xy(m Hom(, U(n)),
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and hence Theorer.1 computes the homotopy groups of Lawson’s deformation
K —theory spectrum as well.

We now describe the deformation representation ring amel@tion to the stable moduli
space. Given any topological abelian mongi¢for which the inclusion of the identity

is a cofibration), one may apply Segal’s infinite loop spacehimee 7] to produce a
connectivefQ—spectrum; equivalently the bar constructiBA (the realization of the
simplicial spacer] — A", with face maps given by multiplication and degeneracies
given by insertion of the identitydl]) is again an abelian topological monoid and one
may iterate. In particular, the zeroth space of this spatief2BA. The deformation
representation rin(I") is the spectrum associated to the abelian topological idono

Rep() = [ [ Hom@, U(n)/U(n),
n=0
so we have
™. RE() = 7,0B (Rep(D)) -

Itis in general rather easy to identify the group completithA whenA is an abelian
monoid.

Proposition 6.2 LetI" be afinitely generated discrete group, and assuméisat’)
is stably group-like with respect to the trivial represe¢iorm 1l ¢ Hom(", U(1)) (e.g.
I' = mM with M a compact, aspherical surface). Then the zeroth spalRee¢F’) is
weakly equivalent t& x Hom(l', U)/U. Hence for« > 0 we have

m.Hom(, U)/U = 7, Ree(D),
and it follows from (0) that mHom(", U)/U = K‘fef(F).

Proof If Rep() is stably group-like with respect to the trivial represdiun 1 ¢
Hom(', U(1)), then the same is true for the monoid of isomorphismselsRep().
As in Section2.3, we can now apply Ramrad3, Theorem 3.6]. (That result has one
additional hypothesis — the representation 1 must be “aedie- but this is trivially
satisfied for abelian monoids.) Hence

OB (Rep()) ~ telescop®ep(’) ~ Z x telescopéiom(l’, U(n))/U(n),

n—oo
o1
and to complete the proof it suffices to check that the prigect

telescopeHom(", U(n))/U(n) — %cl!g Hom(", U(n))/U(n)

n—oo
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is a weak equivalence. But this follows from the fact that athbspaces, compact
sets land in some finite piece (for the colimit, this requitiest points are closed in
Hom(", U(n))/U(n); this space is in fact Hausdorff because the orbitdJ@f) are
compact, hence closed in HomU(n)), which is a metric space, hence normal)a

Remark 6.3 WhenRep(') is not stably group-like with respect to the trivial rep-
resentation, a more complicated stabilization processearsed to obtain a concrete
model for the zeroth space BF'(T'). Of course ifRep(’) is stably group-like with
respect to some other representatigrwe can simply replace block sum with by
block sum withp. If there is no such representatipn then we proceed by means of
a rank filtration: the submonoidRep,(I') C Rep(’) generated by representations of
dimension at most are finitely generated (by any set of representatives fofitfite
setsmgHom(G, U(n)) ) hence stably group-like with respect to the sdm of all the
generators. One now obtains a weak equivalence betweeetthign space oR (")
and the collmltcollmn_,oo(collmﬁ? Rep,(T)). The proof is similar to the arguments

in [43, Section 5], and will not be needed here.

We can now show, as promised above, that when Rejg( stably group-like, each
component of the stable moduli space of flat connectionshe®bhdmotopy type of a
product of Eilenberg-MacLane spaces.

Corollary 6.4 LetI be a finitely generated discrete group, and assumetaat’)
stably group-like with respect to the trivial represemtati Then the stable moduli
spaceM(I") = Hom(",U)/U is homotopy equivalent to

moM(L) x [ [ K(mM(T),i)
i=0
whereK(m,i) denotes an Eilenberg-MacLane space.

Proof By Proposition6.2, each component of Hoi(U)/U is homotopy equiva-
lent to a path component of the zeroth spaceR#f(I'). As discussed above, this
zeroth space is the loop space on the abelian topologicabichd@{Rep(’)). Recall
that any connected abelian topological monoid is weaklyivedgnt to a product of
Eilenberg-MacLane spaces (Hatch2,[Corollary 4K.7]). Using the abelian monoid
structure on the loop space derived from point-wise mudition of loops (rather than
concatenation) one now sees that the identity componefB¢Rep(’) is a product
of Eilenberg-MacLane spaces. BB(Rep() is a group-likeH—space, so each of
its path components is homotopy equivalent to the identitpmonent, completing the
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proof. (Note that each space in question has the homotomy df/m CW-complex;
Hom(", U(n))/U(n) is a CW-complex by Park and Su1].) O

Combining Propositio.2with (10) and Theorenb.1yields:

Corollary 6.5 For any compact, aspherical surfade the fundamental group of the
stable moduli space of flat unitary connectionsnis isomorphic to the complex
K —groupK—1(M). Equivalently, ifM9 is a Riemann surface of gengs

m1 (Hom(rM9,U)/U) = 729,
and in the non-orientable cases (lettigdenote the Klein bottle) we have

m1 (Hom@mM9%RP? U)/U) = 2% and m; (Hom(r;M9%K,U)/U) = 729,

When M is orientable we can also calculate the second homotopypgrbthe stable
moduli space.

Proposition 6.6 Let M9 be a Riemann surface of gengs> 1. Then

Uy (Hom(wlMg, U)) /U =7.

Proof In light of the exact sequencé&) and Propositior6.2, it suffices to compute
the cokernel of the Bott magdef(m;M9) — K$®'(r;M9). Recall that in 82], the
Bott map arises as multiplication by the elemeyitb), whereq: T' — {1} is the
projection andb € m,K% {1} = m.ku is the canonical generator (we will see below
that the computation 0k%'{1} follows from Corollary2.4). SinceKg®(r;M9) = 7
is generated by the unit of the ring9'(r;M9), it follows that 3(K$&(m1M9)) C
KSe(r1M9) is generated by([1]) = g*(b) - [1] = g*(b). Hence we simply need to
understand the image of the canonical generbtar moku under the mapy*. The
inclusionn: {1} — 7MY induces a splitting ofy*, and sinceK$®(r;M9) = Z ¢ Z
and moku = 7, the proposition now follows from the elementary fact thatany
diagram
S
ZOLS1

with po s=1d, the cokernel ok is Z (briefly, if S(1) = (s1, ), then 1= p(s1, ) =
p(1,0)s; + p(0,1)s; sos; ands, are relatively prime, and it follows that coksy (s
torsion-free). O
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In the non-orientable case, an analogous argument showshthaokernel of the

map K3¢f(r1) LA KSe'(r1¥2) is either 0 orZ/2 (recall that both of these groups are
isomorphic toZ @ Z/2), and hence byl@), R$(; ) is either 0 orZ/2. We expect
that 3 is in fact an isomorphism in degree zero, and henceR¥{r;Y) is zero.

For orientable surfaced? (g > 0), it would follow from Conjecturés.3that the Bott
map is an isomorphism above degree zero, and consequenti(r1M%) = 0 for

x > 3. Our computation ofri M(71M?) (i = 0,1,2), together with Corollang.4,
would then imply thatM(71M9) is homotopy equivalent to the infinite symmetric
product Sym°(M9). In the casey = 1, this is a well-known fact, and follows easily
from simultaneous diagonalizability of commuting matsce

In the non-orientable case the situation appears to be sbatalifferent. There, the
isomorphism with compleX —theory begins in dimension zero, and hence we expect
that the Bott map is always an isomorphism. Hence we expattite homotopy groups

of Hom(r13, U)/U vanish above dimension 1, i.e. this space has the homotpgy ty
of a product of circles. The precise meaning of the homotepygs.Hom(", U)/U

thus seems rather mysterious. The reader should note thiargynbetween these
calculations and the main result of Lawson’s pag@],[which states that*/U, the
space of isomorphism classes of representationsreégroup, has the homotopy type

of Synt°(SHX = Syn™B(Fy). (Of course this space is homotopy equivalent3b.)

7 Connected sum decompositions

In this section we consider the behavior of deformationtheory on connected sum
decompositions of Riemann surfaces. Given an amalgamdtagram of groups,

applying deformatiork —theory results in a pull-back diagram of spectra. An eraisi
theorem states that the natural map

®: KI(G x« H) — holim (K%®(G) — KU®(K) «— K*'(H))
is an isomorphism, where holim denotes the homotopy putlbac

Associated to a homotopy cartesian diagram of spaces
f
(12) W —= X

f

Y ——
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there is a long exact “Mayer—Vietoris” sequence of homotgmups
f. 0. h.—k. d
(13) . — W) = ) @ mlY) " m(2) -5 mea(W) —

(this follows from Hatcher20, p. 159], together with the fact that the homotopy fibers
of the vertical maps in a homotopy cartesian square are weajdivalent). If the
diagram (2) is a diagram in the category of group-liké—spaces (i.eH—spaces for
which mq is a group), then all of the maps in the sequeri@ (including the boundary
map) are homomorphisms in dimension zero. Hence whenef@mnagtion K—theory

is excisive on an amalgamation diagram, one obtains a lzagtsequence iK%’

DeformationK —theory can fail to satisfy excision in low dimensions, am@articular
the failure of Theorend.1in degree zero leads to a failure of excision for connected
sum decompositions of Riemann surfaces. We briefly desthibesituation.

Letting M = M9%+% denote the surface of gengs + g, and Fy the free group ork
generators, if we think oM as a connected sum then the Van Kampen Theorem gives
us an amalgamation diagram fefM. The long exact sequence coming from excision
would end with
def def def def
K1 (Fag,) @ K1~ (Fag,) — Ki(Z) — Kg=(m1M)
— KE(Fag,) © K§*(F2g,) — KE'(2).
The groups in this sequence are known, and so the sequende lveve the form
K®(Fag,) @ K$¥'(Fag,) — K(2) =2 —Z —Z0Z - Z.

We claim, however, that the mapg®(Fo,) — K{€(Z) are zero. This leads immedi-
ately to a contradiction, meaning that no such exact seguegit exist and excision is
not satisfied in degree zero.

If we write the generators df,q asaj, b}, ..., a;, by, then the mam;: Z — Fyq is

the multiple-commutator map, sending=1Z to ]_[J-g‘zl[a]!, bj]. Since the representation
spaces ofF¢ are always connected, Répj is stably group-like with respect to
1 € Hom(Fk,U(1)). Hence (using Theorer®.3) one finds that the induced map

' KU®(Fpq) — KU®(Z) may be identified with the map

To(Z x (UP)hy) — m(Z x Unu)
induced by the multiple commutator m& U2 — U (here the actions df are via
conjugation). The induced map, on homotopy is always zero, and from the diagram
of fibrations

U2 — EU xy U% ——BU

o

Uu——EU ><UU—>BU
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one now concludes (using Bott Periodicity) theit is zero forx odd. This shows
that deformatiorK —theory is not excisive omrg for connected sum decompositions.
However, based on Theorémril we expect that excision will hold in all higher degrees.

8 Appendix: Holonomy of flat connections

We now discuss the holonomy representation associateddbafinection on a prin-
cipal G-bundle G a Lie group) over a smooth, connected maniftild We show
that holonomy induces a bijection from the set of all suchdgti) connections to
Hom(m M, G), after taking the action of the based gauge group into atc@ropo-
sition 8.3). This is well-known, but there does not appear to be a campéference.
Some of the results to follow appear in Morita’s book6,[39], and a close relative of
the main result is stated in the introduction to Fine—Kirkag&en 16].

Most proofs are left to the reader; these are generally tisdimut straightforward
unwindings of the definitions. Usually a good picture camsaihe necessary ideas.
Many choices must be made in the subsequent discussiaingtaith a choice of left
versus right principal bundles. Itis quite easy to makemmgatible choices, especially
because these may cancel out later in the argument. We hafalgamade consistent
and correct choices.

Our principal bundles will always be equipped withight action of the structure group
G. A connection orP is a G—equivariant splitting of the natural mafP — #*TM.

The gauge groug(P) is the group of all equivariant mapﬁ’s& P suchthatro¢ = 7;
the gauge group acts on the left.d{P) via pushforward:$,A = D¢ o Ao ¢~ 1.

Given a smooth curve/: [0,1] — M we may define a parallel transport operator
T,: Pyo) — P+ by following A-horizontal lifts of the pathy. An A—horizontal lift
of v is a curvey® [0, 1] — P satisfying

mof =~ and T =A(0),5®),

and is uniquely determined by its starting poi0); we denote the lift starting at
p € Py(0) by 4p. Parallel transport is now defined @y (p) = 7p(1).

Parallel transport i$s—equivariant and behaves appropriately with respect tgpoem
sition and reversal of paths. Arilat connectionA is locally trivial (see Donaldson—
Kronheimer L3, Theorem 2.2.1]), and a standard compactness argumens ghatv
parallel transport is homotopy invariant for such conrmeti
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Definition 8.1 LetP be aprincipalG—bundle oveM , and choose basepointg € M,
Po € Pm,. Associated to any flat connectignon P, theholonomy representation

pa: m1(M,mo) — G
is defined by settinga([]) to be the unique element @& satisfyingpy = Tﬁ(po) .
oa([7]) . Herey: | — M isasmooth loop baseda and[~] is its class inty (M, my).

We now assume thatl is equipped with a basepoimy € M, and we equip all
principal bundlesP with basepointgg € Pn,. We denote the set of all (smooth) flat
connections on a principal bundeby Afai(P).

Proposition 8.2 For anyA € Aqa1(P) and anyp € G(P) we have

Po.A = OroPADm

where¢m, € G is the unique element such that- ¢m, = ¢(po). (Note thatp — ¢m,
is a homomorphisng(P) — G.)

Proposition8.2 shows that we have a diagram

[]5[] Afiat(P) H Hom(r1(M, mp), G)

~.

[1 Afiat(P)/Go(P),
[P]

whereH(A) = pa. The disjoint unions range over some chosen set of repesers
for theunbasedsomorphism classes of (based) princi@atbundles. (In other words,
we choose a set of representatives for the unbased isoraorptiasses, and then
choose, arbitrarily, a basepoint in each representativehiah we compute holonomy.)
We now explain the equivariance properties of this diagr&ifhen G is connected,
Lemma3.3shows thaiG acts on the spack];p; Ariai(P)/Go(P). The action ofg € G
on an equivalence clas#\|[ € Afai(P)/Go(P) is given byg - [A] = [(¢9).A], where
¢9 € G(P) is any gauge transformation satisfying®fm, = 9. We can now state the
main result of this appendix.

Proposition 8.3 The holonomy map defines a (continuous) bijection
H: ] Aat(P)/Go(P) — Hom(wiM, G).
[P]
If G is connected, this map (S—equivariant with respect to the aboe-action.
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Proof We begin by noting that equivariance is immediate from Psifmm 8.2, and
continuity of the holonomy map is immediate from its defimitiin terms of integral
curves of vector fields (here we are thinking of t8& —topology onAs:(P)). In order

to prove bijectivity of 7, we will need to introduce the mixed bundles associated to
representationg: mM — G. This will provide a proof of surjectivity. Injectivity
requires the idea that maps between bundles with the samedmy can be described

in terms of parallel transport.

Let p: mM — G be arepresentation. We define thexed bundle E by
E, =M x,G=(MxG) /(0 ~ (x-7.0() "9

Here M ™ M is the universal cover oM, equipped with a basepoirify € M
lying over mp € M. It is easy to check thaE, is a principalG—-bundle onM, with
projection [N, g)] — m(M). We denote this map by,: E, — M. Note that since
we have chosen basepointg € M andmy € M, E, acquires a canonical basepoint
[(Mo, €)] € E, makingE, a based principaG—bundle € € G denotes the identity.)

The trivial bundleM x G has a natural horizontal connection, which descends to a
canonical flat connectioi , on the bundleE,. This connection is given by

iy (1%, V) = D ((Demyg) ~* (v, 0g)

Onthe left,x € M, Vi€ TM, X € 7r,\:/|1(x) C M, andg € G. On the right,aﬁ T4G
denotes the zero vecta, denotes the quotient mag x G — M x,G=E,, and
Dgry; is invertible becausey;: M — M is a covering map. We leave it to the reader
to check that the connectiod, is flat, with holonomy representatiol(A,) = p.
This proves surjectivity of the holonomy map. Injectivityivollow from:

Proposition 8.4 Let (P, pp) and(Q, qo) be based principab—bundles oveM with
flat connectionsAp andAq, respectively. IfH(Ap) = H(Ag), then there is a based
isomorphism¢: P — Q such thatp.Ap = Aq.

The proof will in fact show that the assumption of flatness no@®sition 8.4 is
unnecessary. For non-flat connections, however, the holgralong a loopy no
longer depends only on the homotopy classyofso the conditior(Ap) = H(Ag)
should be interpreted as saying that for every smooth tpap M, the holonomies of
Ap and Aq around-y coincide.

The map¢ is defined by settings(po - g) = Qo - g and then extending via parallel
transport:

3(p) = Th% 0 ¢ o TZ¥,
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wherev: [0,1] — M is any path withy(0) = my and~(1) = =(p). Using the fact
that H(Ap) = H(Ag), one may check thap is well-defined.

To prove thatp,.Ap = Ag, we consider the lifts of a particular vectore TM under
these twoéconnections. Let: [0,1] — M be a smooth path with(0) = mg and
7/(1/2) =v . By definition of » we haveg(p,) = 74, and henced¢ (7, (1)) = 54, (1)
foranyt € [0, 1]. We now have
(6:Ap)(30(1/2), V) = D¢ (Ap(6~Ha(1/2),7/(1/2)))
= D¢ (Ap(3p(1/2),7'(1/2))) = D¢ (3p(1/2)) = 30(1/2)
= Aq(io(1/2).7'(1/2)) = Aq(3(1/2). V)
and byG—equivariance it follows thatg(. Ap)(q, 7) = Ao(q, 7) for everyq € Qn.

This completes the proof of Propositi@m3. O

As an easy consequence of this result, one obtains the mdk&neg/n bijection
between (unbased) isomorphism classes of flat connectimhsanjugacy classes of
homomorphisms. A proof of the latter result is given by Mai89, Theorem 2.9];
however, Morita does not prove an analogue of Proposgidrand consequently his
argument does not make the injectivity portions of theselteslear.
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