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competition between folding and aggregation
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Failure in maintaining protein solubility in vivo impairs protein homeostasis and results in protein

misfolding and aggregation, which are often associated with severe neurodegenerative and

systemic disorders that include Alzheimer’s and Parkinson’s diseases and type II diabetes.

In this work we formulate a model of the competition between folding and aggregation, and

derive a condition on the solubility of proteins in terms of the stability of their folded states, their

aggregation propensities and their degradation rates. From our model, the bistability between

folding and aggregation emerges as an intrinsic aspect of protein homeostasis. The analysis of the

conditions that determine such a bistability provides a rationalization of the recently observed

relationship between the cellular abundance and the aggregation propensity of proteins. We then

discuss how the solubility condition that we derive can help rationalise the correlation that has

been reported between evolutionary rates and expression levels or proteins, as well as in vivo

protein solubility and expression level measurements, and recently elucidated trends of proteome

evolution.

Introduction

The myriad biochemical reactions that take place in a cell rely

on its ability to maintain proteins in a soluble state through a

variety of different processes, which are often collectively

referred to as ‘‘protein homeostasis’’.1–3 Failure in protein

homeostasis is linked to several severe protein misfolding

conditions that include Alzheimer’s and Parkinson’s diseases.4,5

Among the mechanisms that prevent protein aggregation, a

particularly important role is played by the stability of the

native fold, which helps protect aggregation-prone regions of

the amino acid sequences from becoming available for forming

dysregulated inter-molecular interactions.6–9 In this sense,

protein folding and aggregation are in close competition,5,7,10

and tight quality control mechanisms are present in the cell to

guarantee that proteins fold correctly. The presence of abnormal

protein aggregates is usually the result of failed clearance,11

and by the failure of other control mechanisms, such as the

heat shock response12 or the unfolded protein response.13

Since these safety mechanisms require a significant amount

of energy, however, one might expect the amino acid sequences

of proteins to have evolved to minimize their dependence

on them, at least under normal conditions. Indeed, cellular

protein levels appear to have been tuned by evolution for

optimal functioning;14,15 in turn such levels provide also a

good predictor of the rate of protein sequence evolution,16–18

which is itself particularly constrained by the need to avoid

protein aggregation and maintain solubility.19

In this work we formulate a model of the competition

between protein folding and aggregation in the cell, and derive

a relationship between protein solubility, aggregation and

degradation. According to this solubility condition, the

amount of soluble proteins is proportional to the stability and

degradation capacity of proteins, and inversely proportional

to their propensity to aggregate. These results complement

those obtained by Rieger et al.20 by showing that the presence

of bistability in protein homeostasis is a general feature of the

competition between protein folding and aggregation, which is

not limited to chaperone-assisted folding. As a major result of

our analysis we show that the solubility condition provides a

rationalization of the recently observed relationship between

the cellular abundance and the aggregation propensity of

proteins.

Results

Bistability between the folded and aggregated states

In this work we study the competition between protein folding

and aggregation within a model that describes the inter-

conversion of proteins between the folded, unfolded, and

aggregated states (Fig. 1). We denote by F the number of

protein molecules in the folded state, by A the number in the

aggregated state, and by U the number in all the states that can

give rise to aggregation, which include folding intermediates,

as well as partially unstructured, unstructured and misfolded

states.20 In this sense, the near-native conformations that can

sometimes give rise to aggregation9 are considered as a part of

the unfolded state, rather than the folded state.

Our analysis is based on a master equation approach, which

has been used to describe various types of biological processes,

including biochemical,21 and metabolic22 networks, protein

aggregation,23 and protein homeostasis.2,20 The master

equation that we consider here describes the fluxes between

F, U and A, including the clearance of aggregated proteins,
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which give a description of the competition between protein

folding and aggregation in the cell:

dF

dt
¼ ff � fu ¼ kfU � kuF

dA

dt
¼ fa � fd ¼ LAU ��fd

Ptot ¼ F þU þ A

ð1Þ

The third equation expresses the requirement that the total

number of proteins Ptot in the cell must be the sum of all the

proteins in the folded, unfolded and aggregated states. We

assume this protein abundance to be at the steady state level

under non-stress conditions; this level is considered to be

stable otherwise it would be immediately subject to selection.24

Thus, the production and degradation of new proteins in the

unfolded state can be considered constant and is omitted from

the model. The first equation states that the net flux to the

folded state is given by the difference of the fluxes between the

folded and unfolded states, with constant folding and unfolding

rates kf and ku. The second equation specifies that A depends

on the fluxes of aggregation, fa, and degradation, fd. In the

following we make specific assumptions about the form of fa

and fd. Since the aggregation kinetics can be approximated as

exhibiting exponential growth over time,23 we assume that the

aggregation rate increases linearly with the number of already

aggregated proteins, so that the aggregation flux can be

expressed as fa = LAU; where we introduced the aggregation

propensity factor L, and we absorbed the rate of disaggregation

into the aggregation rate. In order to define the degradation

flux fd, we considered that protein degradation refers to a

series of complex pathways that eliminate from the cell

unfolded, misfolded and aggregated proteins with high

specificity.25 We thus considered three cases: unlimited first

order degradation with the rate constant d (I), first order

degradation up to a limited capacity Q, then zeroth

order degradation (II), and impaired degradation beyond the

capacity (III), where d0 o d

fI
d ¼ dA

fII
d ¼

dA if AoQ

dQ if A � Q

(

fIII
d ¼

dA if AoQ

d0Q if A � Q

( ð2Þ

From the master equation (eqn (1)), we derive the steady

state conditions by setting the ‘nullcline conditions’ dF/dt =

dA/dt = 0. Examples of steady state solution for different

degradation fluxes (eqn (2)) are illustrated in Fig. 2. For

unlimited first order clearance of aggregated proteins, fI
d, only

one stable steady state is possible (I) (Fig. 2B). Since, however,

the cell has only limited capacity to remove aberrant

aggregates,2,26,27 we consider in addition two other models

of protein degradation that exhibit first order kinetics within

the capacity of the degradation machinery,28 and zeroth order

kinetics if the number of proteins to be degraded exceeds the

capacity29 (II). High concentrations of aggregated proteins can

furthermore directly disrupt and impair the homeostasis and

degradation system30,31 (III). For a limited degradation capacity,

we found that the system can be bistable (Fig. 2D and F).

Bistability and homeostasis

In our description, proteins are bistable as they can be found

either in a soluble functional state or in an insoluble aggregated

one, which are separated by an unstable state (Fig. 3). This

description implies the presence of a threshold behaviour,

which has been suggested to increase robustness32,33 and has

been used to explain the occurrence of aggregation in chaperone-

assisted folding both in vitro and in vivo.20 Threshold phenomena

are crucial for evolutionary robustness by favoring strong

purifying selection, which is necessary for preventing protein

aggregation, and have also been consistently observed in

protein evolution.34,35 In Fig. 3, filled circles denote stable

and open circles unstable steady states at the intersections of

the dF/dt = dA/dt = 0 lines for protein folding (straight solid

line) and aggregation (other solid line). The three different

possible scenarios for biologically relevant parameters are: (A)

one stable steady state at high concentration of folded and low

concentration of aggregated proteins, (B) two stable steady

states, and (C) one stable steady state at low concentration of

folded and high concentration of aggregated proteins. Selective

evolutionary pressures acting on protein stability and aggregation

propensity and against the random evolutionary drift towards

less soluble proteins are necessary to make sure only scenario

(A) is realized and aggregation avoided.

Derivation of the solubility condition

By starting from the basic observation that in order to avoid

uncontrolled aggregation proteins should remain soluble, we

derive a condition on the cellular abundance of proteins by

requiring that the master equation (eqn (1)) should have only

Fig. 1 Model of the competition between folding and aggregation.

F, U and A denote, respectively, the number of proteins in the

folded, unfolded and aggregated states. The unfolded state U, as

defined here, comprises all aggregation-prone species, which include

locally unfolded proteins (f*), folding or misfolding intermediates

(i), and unfolded proteins (u). Synthesis and degradation of

proteins are assumed to be at steady state, and aggregated

proteins are degraded at rate fd. The disaggregation reaction,

which is assumed to be slow, is absorbed into an effective aggregation

rate fa.
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the solution in which there is a high concentration of folded

and a low concentration of aggregated proteins (see Methods)

Po
Sd

L
ð3Þ

where P = Ptot � Q is the cellular abundance of proteins that

is not immediately covered by the degradation capacity Q.

According to this relationship, P is proportional to protein

stability, S = 1 � kf/ku (where kf and ku are the folding and

unfolding rates), and degradation rate, d, and inversely

proportional to the propensity to aggregate L. We found

that this relationship, which in this work we call ‘the

solubility condition’, is independent of the choice of the

specific degradation function (see Methods). The solubility

condition links the cellular abundance of proteins P to their

stability S, degradation rate d, and aggregation propensity L
(see Methods), as it states that the number P of proteins that

are not directly covered by the degradation machinery must be

smaller than the fraction d of the ratio of stability and

aggregation propensity. If the solubility condition is fulfilled,

then no uncontrolled aggregation takes place and protein

solubility and homeostasis are maintained.

Bifurcation diagrams for fII
a and fII

a illustrate the steady

states as a function of the aggregation propensity (Fig. 4).

If degradation is impaired beyond capacity (Fig. 4B), the

folded and the aggregated states are more separated than for

Fig. 2 Examples of steady state solutions (B, D, F) for, respectively, the three types of degradation fluxes that we considered, fI
d (A), fII

d (C), and

fIII
d (E), for folding (straight solid line) and aggregation (other solid line). A limited degradation capacity (II, III) can give rise to bistability; the

absence (solid line) or presence (dashed line) of bistability depends on the system parameters (D). The use of Hill functions allows a smoother

transition to be modeled across the degradation capacity (F, thin line).
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non-impaired degradation beyond capacity (Fig. 4A), which

increases robustness. In both cases, several proteins would

have to aggregate before the system becomes bistable. This

result is in agreement with the finding of a distinct degradation

capacity of refoldable aggregates,36 and the observation of

aggresomes.37 The time evolution of the number of aggregated

proteins is simulated numerically, and for parameters that

satisfy the solubility condition the system always settles in a

folded steady state at low numbers of aggregated proteins.

However, if the number of aggregated proteins exceeds the

degradation capacity, then homeostasis fails (Fig. 4C).

To explore whether the sharp cut-offs in the degradation

rates of type II and III play a significant role, we explored the

use of Hill functions to provide an alternative representation

of the transition from first to zeroth order degradation (see

Methods). A systematic study of the critical aggregation

propensity as a function of the Hill coefficient n reveals that

the solubility condition appears to depend in a continuous and

strictly monotonically decreasing function on the Hill coefficient,

and thus can be accounted for by a constant (Fig. 4D).

Stochasticity reduces protein solubility

Stochasticity, which is often an important feature of bio-

chemical reactions in living systems, is caused primarily by

the fact that sometimes very small numbers of molecules of a

certain type are available in a cell. Fluctuations have been

found to play prominent roles in many processes vital for cell

function and development, for example in gene expression,38

signaling39,40 and differentiation.41 Although noise can be

deleterious for example by disrupting signaling pathways or

perturbing a system from an optimal steady state,42 it can also

increase adaptability to changing environments43 or pheno-

typic variety of a population,44 and as such be beneficial.

In the context of the present discussion we consider the

observation that noise can induce bistability.39 To study the

effect of noise on protein homeostasis, we carried out stochastic

simulations with the Gillespie algorithm45 (see Methods). In these

simulations, we used a two-component noise generator that

explicitly models transcription and translation42 to mimic protein

synthesis and degradation as the dominant source of variability in

cellular protein levels. We used the Fano factor Z= s2/P, defined
as the ratio of the variance over the mean of the protein

abundance P, to describe the noise strength. For the same

parameters, protein abundance noise increases the likelihood that

protein homeostasis fails, and thus on average decreases protein

solubility (Fig. 5A). To compensate for this effect, evolutionary

selection has to either down-regulate the cellular abundance

or increase the fitness S/L, so that the likelihood of failed homeo-

stasis remains low. A major factor determining the susceptibility

to noise is the strong non-reversibility of protein aggregation. If

the fluctuations are sufficiently large to perturb the system out of

the folded steady state and exhaust the degradation capacity, then

aggregation will take place.

Proteasomal degradation is subject to fluctuations itself

because of the varying degree of availability of proteasomes,46

while autophagy, which also play an important role in the

degradation of protein aggregates,47 encapsulates and sequesters

whole aggregates at once, making it more robust against noise.

Variations in the levels of proteasome-constituent proteins also

contribute to overall noise.48 Stochastic simulations that

model independent sources of noise for protein levels and

degradation capacity reveal that uncorrelated noise that impairs

the degradation capacity can dramatically amplify the burden

that noise in protein abundance imposes on solubility. Indeed, all

simulations resulted in failed homeostasis with additional

degradation capacity noise (Fig. 5B). Proteasomal proteins are

among the proteins with the smallest fluctuations in their cellular

concentrations,49 a situation that may originate from the need of

eliminating the amplification of noise in protein levels, which

would lead to failed protein homeostasis and loss of solubility.

Fig. 3 (A) Phase plane analysis reveals a general possibility for bistability in the competition between protein folding and aggregation. Filled

circles denote stable and open circles unstable steady states at the intersections of the nullclines for protein folding (straight solid line) and

aggregation (other solid line). The three different possible scenarios for biologically relevant parameters are: (left panel) one stable steady state at

high concentration of folded and low concentration of aggregated proteins, (right panel) one stable steady state at low concentration of folded and

high concentration of aggregated proteins, and (central panel) both stable steady states are present. Evolutionary pressure acting on protein

stability and against aggregation propensity and the random evolutionary drift make sure that the scenario in the left panel is realized and

aggregation avoided.
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Consequences of the solubility condition

According to the solubility condition (eqn (3)), the soluble

cellular abundance of a protein depends on its stability and

aggregation propensity, as well as the degradation and quality

control capacity. To test the validity of this relationship, and

establish whether aggregation propensity and stability can be

used to better understand the determinants of in vivo protein

solubility, we discuss the application to experimental observations

both at the levels of single proteins and of proteomes.

(1) Correlation between protein abundance and aggregation

rates. The solubility condition (eqn (3)) enables a rationalization

of the recently proposed ‘life on the edge’ hypothesis.50 According

Fig. 4 Bifurcation analysis and numerical verification of the solubility condition. (A, B) Bifurcation diagrams for fII
d (A) and fIII

d (B), indicating

the steady states as a function of the bifurcation parameter aggregation propensity. Stable steady states are indicated by solid lines, unstable states

by dashed lines; folded steady states are found on the left of the unstable states and aggregated steady states on the right. Alterations of Hill

coefficients have only little effect (B). (C) The numerical integration of the differential equations provides the time evolution of the system. For

initial conditions within the degradation capacity, the system settles on a steady state characterized by a low number of aggregated proteins as long

as the solubility condition is met (family of four curves). If the degradation capacity is exceeded, then uncontrolled aggregation takes place (other

line). (D) Aggregation propensity at the bifurcation point, just avoiding the bistable regime, as a function of the Hill coefficient n.

Fig. 5 The presence of noise increases the pressure on protein homeostasis and effectively reduces protein solubility. We report the percentage of

stochastic simulations that yielded high numbers of aggregated proteins as a function of noise. (A) An increase in the protein abundance noise (Zp)
enhances the likelihood of aggregation and failed homeostasis. (B) Uncorrelated noise that limits the capacity of the degradation machinery (Zq)
amplifies protein abundance noise and dramatically promotes aggregation.
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to this condition, highly expressed proteins should be particularly

stable and have a low aggregation propensity in order to remain

soluble and avoid aggregation. Indeed, the solubility condition,

rewritten in logarithmic form, becomes

log(P) o �log(L) + log(Sd) (4)

This relationship is consistent with the strong anti-correlation

that has been observed between protein expression levels and

aggregation rates on a proteome-wide scale.50,51 In fact,

because protein copy numbers in the cell can vary between a

very few proteins up to more than 106, an anticorrelation

between expression levels and aggregation rates is a particularly

effective way to guarantee protein homeostasis and control

balanced fluxes to and from the misfolded and aggregated

states. In addition, recent experimental studies have reported

that indeed more highly expressed proteins are more stable.52,53

(2) Solubility of maltose-binding protein mutants. The

maltose-binding protein (MBP) of E. coli is a component of

the transport system for maltose sugars. The experimentally

measured in vivo solubilities of MBP and of three of its mutants

were extracted from the literature.54,55 Relative stabilities DDG
were predicted from the amino acid sequence56 and are in

accordance with experimental findings.55 The solubility of the

mutants correlates with the relative protein stability upon

mutation: the higher the loss in stability through the mutation,

the higher the loss in solubility. Additionally, the destabilizing

mutations increase the aggregation propensity (Fig. 6A) and

reduce the overall protein solubility. Intrinsic aggregation

propensities were predicted with the Zyggregator method.7

Two high quantitative linear correlations between solubility

and stability (correlation coefficient 0.99) and solubility and

aggregation propensity (correlation coefficient �0.86) support
the hypothesis that protein solubility in the cell can be

rationalized by the solubility condition, under the assumption

that the mutations do not disrupt specific degradation signals

and thus alter degradation pathways and capacity.

(3) HIV integrase heterologous expression. It is well

established that in order to enhance the yields in the hetero-

logous expression of HIV integrase in E. coli, an effective

strategy is to optimize the solubility of the protein by mutating

exposed surface residues.57 By using the available data, we

found that for this protein and its mutants the solubility

correlates with the predicted intrinsic aggregation propensity7

(Fig. 6B), and that the mutations do not change the stability

significantly (Fig. 6B). Mutant PDB structures (starting from

PDB 1BIZ, chain A) were optimized with MODELLER,58

and stability differences DDG were calculated with FoldX.59

The small changes in stability are in agreement with the fact

that fully exposed surface residue mutations have generally

only a small effect on the stability.60 As predicted by the

solubility condition, we found a correlation between solubility

and aggregation propensity together with an approximately

constant stability of the HIV integrase mutants.

Discussion

In this work we have derived a solubility condition (eqn (3)),

which defines protein solubility in the cell in terms of the

competition between the folding, aggregation and degradation

processes. This solubility condition provides a conceptual

framework that provides insight into the following observations.

Correlation between protein expression levels and rates of

protein sequence evolution

This correlation, which was observed recently,17 can be

rationalized in the following way. While the amino acid

sequences of proteins are maintained at a mutation-selection

equilibrium,61 the majority of mutations, and thus the random

genetic drift, on average decrease protein stability52 and

increase the aggregation propensity.62 Thus, an increase in

protein stability, or a reduction of the aggregation propensity,

should be directly proportional to the strength of the evolutionary

pressure. To maintain homeostasis, the ratio of protein stability

and aggregation propensity should scale proportionally with

the cellular protein concentration (eqn (3)). As a result, a

higher protein abundance implies higher evolutionary pressure,

and as a result a lower rate of protein sequence evolution in

order to avoid aggregation.17

In addition, the mistranslation-induced misfolding hypo-

thesis63 suggests that mRNA sequences have a translational

robustness proportional to their level of expression in order to

avoid misfolding and aggregation of the products. Further,

since after synthesis in the ribosome, nascent chains are

particularly vulnerable to misfolding and aggregation,64

additional safety mechanisms are in place. For example, the

presence of rare codons forces the translation process to slow

down, giving long polypeptide chains time to fold,65 and if a

mistake is detected after peptide bond formation abortive

termination is initiated.66 It is also known that structural

and functional constraints have a comparable effect on the

rate of protein sequence evolution than the rate of expression,67

or kinetic evolutionary constraints.68 Consistent with these

observations, the solubility condition indicates that the avoidance

of aggregation is indeed a major constraint on the evolutionary

design of protein sequences.50,69

Fig. 6 Cellular protein solubility as a function of protein aggregation

propensity (circles) and stability (squares); we compare the relative

solubility of the wild type over changes of stability upon mutation

DDG in kcal mol�1, and predicted intrinsic aggregation propensity. (A)

Mutations that decrease the stability and increase the aggregation

propensity decrease in vivo solubility of the abundant maltose-binding

protein. (B) Surface residue mutations that only marginally change the

stability, but clearly decrease the aggregation propensity of the core

domain of the enzyme HIV integrase, heterologously expressed in

E. coli, increase the in vivo solubility.
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Heterologous protein expression

The failure to obtain soluble products from heterologous

expression is a major bottleneck in structural studies and

biotechnology. An often successful strategy to increase yield

of recombinant protein production is the co-expression with

chaperones.70,71 This option is consistent with the solubility

condition (eqn (3)), as increasing the capacity Q of the protein

homeostasis network enhances the concentration of soluble

proteins.

Role of molecular chaperones

As these molecules assist protein folding and help the

degradation of misfolded proteins by the ubiquitin–proteasome

system,27 they contribute significantly to the overall protein

homeostasis capacity. Chaperone substrates tend to have low

expression,72 low propensity to fold73 and low solubility.74

Furthermore, chaperone substrates display low noise at the

transcript level,72 but unusually high noise levels at the protein

level.2 By enhancing the capacity Q, molecular chaperones can

buffer this noise by lowering the solubility condition (eqn (3)),

for example to facilitate protein evolvability.75

Conclusions

Wehave addressed the problem of understanding the consequence

of the competition between folding and aggregation, and have

shown that it is possible to derive an expression, which we call

the ‘solubility condition’, defining a close relationship between

the abundance of proteins in the cell and their folding stability,

aggregation propensity and degradation rates. These results

provide directly testable hypotheses and offer a rationalization

of the recent ‘life on the edge’ observation, according to which

protein abundance and aggregation are strongly correlated.

Methods

Derivation of the solubility condition

To avoid aggregation and maintain solubility, the system

parameters (folding, unfolding and degradation rates, aggregation

propensity and degradation capacity) must be selected so that

the aggregated state is avoided and that only the folded state is

present. From the steady state conditions, dF/dt=dA/dt= 0,

we obtain

F ¼ kf=ku
1þ kf=ku

ðPtot � AÞ

F ¼ ðPtot � AÞ � fd

LA

ð5Þ

Stationary solutions (steady states or fixed points) are calculated

by finding the intersections of the nullclines (eqn (5)). Steady

states are stable if the real parts of all eigenvalues of the

Jacobian, evaluated at steady state, are negative.

In the case of unlimited first order degradation fI
d, under the

assumption that no aggregation takes place (A = 0), the only

stable steady state is given by

P ¼ Sd

L

Under the assumption of a limited degradation capacity the

system can have only 1 or 3 steady states. Protein homeostasis

is guaranteed, if (i) the folded steady state exists, and (ii) the

aggregated steady state as well as the unstable steady state that

destabilizes the system and separates the stable steady states

do not exist.

The solution of eqn (5) for A o Q is P � A = Sd/L, and
hence

P�Qo
Sd

L

which is the condition that the folded state exists as the stable

one. A similar solution of eqn (5) is obtained for the non-

existence of the aggregated steady state for A Z Q and fII
d .

For fIII
d one has instead

P�Qo
Sd0

L

The solutions for fII
d and fIII

d differ only by a constant. To

model a more realistic transition from first order to zeroth

order degradation kinetics, the degradation flux is expressed

with decreasing and increasing Hill functions as pre-factors,

where the Hill coefficient n describe the sharpness of the

transition

fd ¼
1

1þ
�
A

Q

�n dAþ
1

1þ
�
Q

A

�n dQ

Bifurcation analysis

The software packages AUTO and Mathematica were used to

perform bifurcation analyses. Qualitative or topological

changes in the systems behavior were analyzed in dependence

on the aggregation propensity as bifurcation parameter by

mapping the steady states as a function of the aggregation

propensity. Numerical integration of the set of ordinary

differential equations was performed in MATLAB with

standard solvers.

Stochastic simulations

Because the underlying reaction mechanism of the competition

between protein folding and aggregation is formulated in

terms of elementary fluxes described by the law of mass action,

stochastic simulations can be implemented without further

modifications by the Gillespie algorithm.45 Aggregation and

degradation rates are updated after every time step as a

function of the number of proteins in the aggregated state.

Noise is modeled explicitly by implementing a two-component

noise generator that simulates transcription and translation, as

described in ref. 42. Independent simulations were run to

verify that the generated levels of noise fell within a normal

distribution with a standard deviation of 1 around the desired

mean noise level. The simulations were repeated 1000 times for

each setting and the percentage recorded that ended in high

numbers of aggregated proteins, far exceeding the initial

steady state concentration as well as the quality-control

capacity.
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