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Recent simulations of Rayleigh-Taylor instability growth rates display
considerable spread. We propose that differences in numerical dissipation
effects (mass diffusion and viscosity) due to algorithmic differences and dif-
ferences in simulation duration are the dominant factors that produce such
different results. Within the simulation size and durations explored here,
we have explained principal discrepancies as due to numerical dispersion
through comparison of simulations using different algorithms. Further-
more, we have tentatively identified viscosity as having the larger role of
these two dissipative effects over the time range examined here.

We present new 3D front tracking simulations that show agreement with
the range of reported experimental values.

We begin an exploration of new physical length scales; that may charac-

terize a transition to a new Rayleigh-Taylor mixing regime.

1. INTRODUCTION
1.1. Purpose and Scope of the Paper
Accurate numerical simulation of multiphase fluid mixing rates is a long standing
challenge for computational fluid dynamics. Only recently has the available hard-
ware allowed significant three dimensional studies. We consider here one of the most
important of this class of problems, Rayleigh-Taylor instability. Rayleigh-Taylor in-
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stability results when a randomly perturbed density contrast interface is subject to
continuous acceleration. A basic characteristic of Rayleigh-Taylor instability is the
constant that describes the acceleration of the mixing zone edge.

A wide range of values for this acceleration constant have been reported on the
basis of simulation studies, some of which fall outside the limits of experimental
error. The purpose of this paper is to begin a systematic analysis of causes of
these discrepancies. To do this, we summarize the results of previous Rayleigh-
Taylor instability studies, identify potential sensitive factors in Rayleigh-Taylor
simulations, and report on new simulation results designed to quantify the effects
of a number of these factors.

There are three main results in this paper. The first is to show that front tracking
simulations using the FronTier code are in agreement with experimental results. To
do this it is necessary to correct for finite compressibility effects and to compensate
for different conventions in the definition of the growth rate.

The second main result is to identify a possible cause for the spread in simulation
results. We compare distinct algorithms, paying special attention to dissipative
effects. Over the simulation time and size considered here, we can duplicate the
observed spread in simulation growth rates through comparison of capturing to
tracking algorithms. Restricting to typical high and low values of the growth rate,
there is approximately a factor of two to be explained. The low values of the growth
rate are time dependent, and about half of this factor of two difference in simulations
occurs during the simulation times reported in this paper. For simulations with
identical gridding, simulation time, and other numerical parameters, we see a 40%
decrease in the growth rate for capturing algorithms with artificial dissipation,
as compared to FronTier, which completely eliminates dissipation for interfacial
vorticity and for density discontinuities. Thus essentially all of this discrepancy, for
the times studied here, can be attributed to interfacial dissipative mechanisms in
capturing algorithms. Moreover, we can tentatively identify viscosity rather than
mass diffusion as the dominant cause through comparison of two capturing codes,
one of which is designed to control mass diffusion while the other is not.

The third main result of this paper is an initial exploration of a possible new
physics regime for Rayleigh-Taylor mixing, through identification of a new length
scale that is independent of the mixing zone width.

All studies in this paper need to be taken to later time, as it is known that the
discrepancies increase strongly with time.

1.2. Background Discussion of Rayleigh-Taylor Instability

An interface between fluids of different densities is unstable when subjected to
an acceleration directed from the heavy fluid to the light fluid [31, 38, 35]. This
instability, known as Rayleigh-Taylor instability, has been a challenge to compu-
tational fluid dynamics since the early days of computers [5]. The instability has
a fingering nature, with bubbles of light fluid rising into the ambient heavy fluid
and spikes of heavy fluid falling into the light fluid. With p; < p2 representing the
light and heavy fluid densities, and the Atwood number A = (ps — p1)/(p2 + p1)
a buoyancy renormalization to gravity g, the outer edges of the mixing zone Z (%)



RAYLEIGH-TAYLOR GROWTH RATES 3

are observed to obey the large time asymptotic scaling law
Zi(t) = (=1)*arAgt® (1)

where oy is a constant. Here, to be consistent with the conventions of laboratory
experiments, the acceleration (gravity) is directed along the negative z axis, so that
bubbles “fall” downward, spikes rise, and Z; < Q.

Rayleigh-Taylor instability arises in a variety of applications, ranging from in-
compressible regimes such as wind shears in thunder shower systems to highly
compressible flows as occur in inertial confinement fusion and in supernovas. For
this reason, the use of two fluid Euler equations to model the fluid flow is appro-
priate. Laboratory experiments are nearly incompressible. There are four principal
numerical difficulties.

1. The sharp interface between the distinct fluids is difficult to maintain for most
Eulerian algorithms;

2. The geometric complexity of the late time unstable interface between the fluids
is a source of difficulty for most Lagrangian algorithms;

3. The requirement for a fully compressible code which can be validated on nearly
incompressible experiments imposes a strain on computational resources and algo-
rithms;

4. The spatial complexity and late time simulations required to observe a well
developed self similar flow regime pose a challenge in terms of simulation resources
and algorithmic efficiency.

1.3. Summary of Rayleigh-Taylor Results

The bubble acceleration constant ap, = ay provides the most basic characteriza-
tion of the mixing zone. However as Table 1 illustrates, simulations show consid-
erable spread in reported values for ap. Results from four independent series of
experiments show a spread (including error bars) of nearly a factor of two. Some-
what over half of this spread is due to systematic differences among the four series
of experiments; the error bars reported for each single experiment account for the
remainder. Theoretical results are generally consistent with the experiments. The
simulation results have a spread of a factor of about six, with the lower values of
ay falling outside the estimates of experimental error. Most of these simulations
give growth rates which lie within a factor of 2.5 of one another. The spread in
simulation values has widened as increased computational resources have allowed
exploration of larger spatial ensembles of random modes, carried to later times.
Plainly, there is a need for an analysis of the simulation results and their algorith-
mic basis which can explain the spread in simulation values. There is also a need
for simulation or other studies of the experiments to explain the spread in experi-
mental values. The present paper is a beginning of such a study, with a focus on
algorithmic issues.

1.4. Outline of Paper
In Sec. 2 we discuss the algorithmic and simulation factors that have been sus-
pected of influencing the simulation values of a;. The dissipative mechanisms of
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TABLE 1

Determination of ap by experiment, theory and simulation

Theory: Bubble Merger Models |

| Sharp/Wheeler [36], Sharp [35] 61 | ap ~0.01-0025 3D |
| Glimm/Sharp [20], Zhang [43] 90 | ap ~ 0.06 2D |
| Alon et al. [3] 94 | ap ~ 0.05 2D |
| Glimm/Sharp [21] '98 | ay ~ 0.045 2D |
| Cheng/Glimm/Sharp [7] 99 | ap ~ 0.06 3D |
| Experiments |
Read/Youngs [32, 40] "84 | ap ~ 0.58 —0.65 2D
oy ~ 0.063 — 0.077 3D
| Kucherenko et al.[24] 91 | ap ~0.07 3D |
| Snider/Andrews [37] 94 | ap ~0.07£0.007 3D |
| Schneider/Dimonte/Remington [34] ’99 | ap > 0.054 3D |
| Dimonte/Schneider [11] 99 | ay ~ 0.05£0.01 3D |
| Simulation |
Youngs [41] 91 | ap ~ 0.04 —0.05 3D
Youngs [42] 99 | ap ~ 0.03 3D
S.-Y. Chen 99 | ap ~ 0.043 3D
Dimits et al.(PPM) [10] 99 | ap ~0.016 3D
Cheng/Glimm/Li/Sharp [7] 99 | ap ~ 0.08 3D
Glimm/Grove/Li/Oh/Sharp (this work) 99 | a; ~ 0.07 3D
Oparin [29] 99 | ap ~ 0.075 3D

mass diffusion and viscosity (vorticity diffusion) are known to be important sources
of numerical errors for flows with material interfaces. To assess and differentiate
between the two dissipative mechanisms of mass and vorticity diffusion, we employ
an artificial compression algorithm, which controls mass diffusion but does not limit
vorticity diffusion. In Sec. 3, we review the front tracking algorithm used in later
sections of this paper. This algorithm is free from interfacial dispersion. Sec. 4
presents and analyzes new simulation studies. The purpose of the simulations and
their analysis is to shed light on the role of potentially sensitive factors discussed
in Sec. 2, and to show that FronTier simulations do in fact agree with experiment.
Conclusions are stated in Sec. 5.

2. PRINCIPAL FACTORS AFFECTING SIMULATION RESULTS
2.1. The Numerical Analysis of Mass and Vorticity Diffusion
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This paper presents evidence suggesting that numerical dissipation, primarily
mass diffusion and viscosity, is the dominant error contributing to the discrepancy
between simulations and experiments. Density contrasts and vorticity are concen-
trated along the interface, and so this is where capturing schemes concentrate their
errors. Numerical dissipation is exacerbated in Rayleigh-Taylor instability simu-
lations by the long time of the simulation, by the dynamically growing interface
length along which the numerical dissipation occurs, and by the dominant role that
the density contrasts and vorticity concentrations along the interface play in the
growth of the mixing zone.

2.1.1. Physical Values of Mass Diffusivity

The influence of diffusion on small amplitude Rayleigh-Taylor exponential growth
rates was analyzed in [13] using an Argon-Helium mixture, with a diffusion constant
D = 0.64 cm?/sec. A reduction of the small amplitude exponential growth rate of
about 20% was observed due to physical diffusivity. For comparison, fluid diffu-
sivities are much smaller, on the order of 10~* ¢m?/sec, and should not influence
experimental Rayleigh-Taylor growth rate values.

2.1.2. FEstimates of Numerical Diffusivity

Numerical diffusion and dispersion are known to be serious issues for Eulerian
finite difference algorithms. In the case of a Rayleigh-Taylor instability, where
the instability is driven by density contrasts, these effects can be expected to be
significant. Some insight into these effects can be gained by an investigation of
the modified partial differential equations [33, 23, 39, 22, 25] for finite difference
schemes for solving the linear advection equation

ut + vu, = 0. (2)

This equation can be regarded as a model of the contact discontinuity mode for
gas dynamics. For simplicity we assume v > 0 and consider schemes using flux
limiting between the Lax-Wendroff method and upwind differencing. Following the
notation of LeVeque [25] these schemes are of the form

At
n+l _ n n n
Uj _uj 75 ( j+% 7fj,%) (3)
where
n 1
Fiva = vug + 501 =)@ (uj — uy), (4)

v = vAt/Az, and the limiter ¢; is given by

(;5]‘ = ¢(9]) and 9]‘ = 71” — ujil.
Uj1 — Uj
Such schemes are second order accurate provided ¢(1) = 1. We also observe that
the CFL condition requires that v < 1.

For the unlimited case ¢(f) = 1, where this scheme reduces to the Lax-Wendroff
method, Richtmyer and Morton [33] state that solutions to the modified partial



6 GLIMM, GROVE, LI, OH, AND SHARP

differential equation
1 2 2 1 3 2
U + vy = fgvA.r (1 — v upgs — gvA.r v(l — v upraa- (5)

are fourth order solutions to the finite difference scheme (3). More generally, for
schemes with smooth ¢(#), a straightforward but tedious computation yields a
modified equation of the form

ur + vuy = Axey (z, ) Uz, + Az (T, t)Upza + Azles (2, t)Upran (6)

where
1
¢ (z,t) = 51}(1 —v)(1—¢(1))

(1) = —go(l - )1 +w(36(1) — 2) - 3¢'(1))

1 2 9
es(z,t) = v(l — y){_d)"(l)Mum _

2
4 u?

9 B ’ 2 _
(,,+,, e ”))umz}

and x = ¢(1) — 1.
For the first order upwind method, where ¢(f) = 0 the modified equation has a
leading order diffusion coefficient equal to

1
D= 51}(1 — V) Azu,,. (7)

As a model for gas dynamics the CFL condition requires that (|v] + ¢)At/Az < 1.
Here ¢ is the sound speed. For the low compressibility flows of concern here, we
can estimate a typical flow velocity as |v| ~ 0.1c¢ so that v is on the order of a
tenth or less. Translating grid units into physical units, with a 1 mm zoning and a
time scale of seconds we find a numerical diffusion on the order of 0.005¢ cm? /sec.
One physical interpretation of this quantity is the viscous diffusion of velocity fluc-
tuations (vorticity) in a fluid with mean velocity v. For materials such as air or
water, the physical values of the viscosity are well know and are available in such
handbooks as the CRC Handbook of Chemistry and Physics. Comparing the ratios
of the numerical to physical viscosities we see that the numerical viscosity of air is
approximately three orders of magnitude greater than the physical viscosity while
the numerical viscosity of water is approximately five orders of magnitude greater
than its physical viscosity at approximately room temperature. Another interpre-
tation is as the physical diffusion of one material into another. Again referring to
the CRC Handbook we see that typical values for diffusivities of gases into liquids
and various solutes into water are on the order of 1075-10~* cm?/sec while the
diffusivities of various gases into air are on the order of 107'-1 ¢cm?/sec. Again
comparing these coefficients to the numerical diffusivities above we see that the
numerical diffusion coefficients are anywhere from six to eight orders of magnitude
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greater than the physical diffusivity for solutes in water and from two to four or-
ders of magnitude greater for the diffusion of gases into air. Reduction of D to its
physical value for any of the above models would require refining the zoning by up
to a factor of 10® in the worst case with a corresponding increase in computational
effort of 100417 for a refinement factor of 107 in d = 1,2, or 3 space dimensions,
a route plainly not feasible for any but the simplest of the above cases.

The estimates described in the previous paragraph are in fact overly pessimistic.
Second order methods, where ¢(1) = 1, eliminate the first order diffusion terms
in the finite difference equations making the above order of magnitude estimates
inappropriate. For such methods, in regions bounded away from spatial extrema
in u(z,t) and for Az sufficiently small, the dominant term in equation (6) is the
linear dispersion term

f%vA.ﬁ(l —v)(14+v—3¢"(1)uzsz- (8)

While these methods are all formally second order accurate, for finite meshes the
limiter will reduce to a locally first order method in regions of strong flow gradients
such as at jumps or at corners. However, near such regions, numerical diffusion will
smooth out the steep gradients and hence decrease the influence of the limiter. It
is important to note that the effect of the dispersion term on the discrete solution
to the second order method is qualitatively different from the effect of diffusion on
the first order method. The former leads to the dispersion of oscillations without
damping their amplitudes, while the latter reduces the amplitude of the oscillations
as they diffuse. The diffusion in the numerical solution arises from the fourth order
terms in (6). It is interesting to note that for a non-trivial limiter these diffusion
terms are nonlinear.

For finite Az, near jumps or corners, the finite difference solution behaves as
a first order equation with a ¢'/? rate of spreading. Once the discrete Laplacian
wj_1 — 2u; +ujiq is O(Az?), the higher order analysis of the limiters is applicable
and the subsequent dispersion scales as t!/3. This scaling is observed in numerical
experiments [26], where the width is observed to be approximately (4/3)t'/3. If this
subdiffusive dissipation is modeled by a grid dependent diffusivity as in Sec. 2.1.2,

then the grid dependent diffusivity D must also be time dependent and scale as
t=1/s.

2.1.83.  Numerical Diffusion Using Artificial Compression

We refer to [26] for a discussion of the flux limited scheme with artificial com-
pression. In this scheme, the numerical mass diffusion is limited to about 2.5 cells,
according to numerical experiments on the linear advection equation conducted in
[26]. The nonlinear fluids simulations of Sec 4.2 show a larger diffusion length of
about 6 — 7 cells.

The scheme has the same conservation form as equation (3), with the flux fivs
is defined as

1
Frey =5 (vuf + vuley + g7 + gy + L)+ Ly — [0+ 0y + X0 (A, 1)

T2
(9)
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and AU;:.; = ujy, —uj. Here the vu terms in f generate a first order central
2

difference scheme, the g¢’s define a total variation diminishing (TVD) [25] anti-
diffusion term, and the L terms are artificial compression anti-diffusion. The terms
proportional to Au;?+ !
to v converts central differencing to upwind differencing. The role of  is to control

the g terms and likewise the A terms regulate the L terms. Thus we define

1 are artificial viscosity terms. The first of these, proportional

Vivr = (95— 97)/Aug s (10)
Ny = (L) = L)/ Aufy s (11)

. n nn .
if Auﬂ_% # 0 and iy = )\j+% = 0 otherwise.
The definitions

o At .

define a TVD scheme if L = 0, where
M = sign uy min{|uq|, - - -, |u,|} (14)

if all u; have the same sign and M = 0 otherwise.
L is the artificial compression anti-diffusion. Let

pAur A )] (15)

n 1 At 2 n

L7 = 5 max (o,s MLy, L2, 1), M(L;g%,nL;;%)) . (16)

Here S = sign L?+% and

‘A’U,nil 6— ‘Au;l+l ’

_ 2 2

n=2 B 7 (17)
‘Au}f% +‘Auj+%

ote that bot ", an v, are r) as Ar — 0, so that the term in
Note that both 7" , and A" , oA A 0 hat th i
2 2

absolute values in equation (9) has the same sign as v for sufficiently small Az.
Thus, in the absence of the artificial compression terms, equation (9) is simply a
generalization of equation (4) that encompasses both cases of v > 0 and v < 0 for
the special choice of the flux limiter

0 <0,
¢(9) = ¢minm0d =40 0<bO< ]., (18)
1 1<6.
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For n =0, L = 0 and the scheme is TVD [25]. For n = 2.5 the diffusion width is
shown [26] numerically to be about 2.5 cells wide, independent of the time ¢.

2.1.4. Transitions to New Flow Regimes

The sensitivity of multiphase flow to change of flow regime is well known [12].
The regime of a single length scale, for which the large scale structures are on the
order of the width of the mixing zone, is known as chunk mix. Transitions to other
flow regimes are characterized by introduction of one or more new length scales, to
describe the probability distribution function (pdf) for the distribution of droplet
and bubble sizes or fluid volume or mass fraction fluctuation length scales.

Additional fluid waves, such as shock waves, can cause shattering of large scale
structures, and a change in flow regimes. They are thus a mechanism to cause a
change of flow structure. The influence of dissipation to cause a change of flow
regime was discussed in Sec. 2.1.2.

Continued acceleration leads to velocities growing without limit. In the presence
of viscosity or compressibility, vorticity will diffuse off the interface to the interior
flow, or will be generated there directly, giving rise to a transition to turbulent flow.
Turbulent flows have an increased effective viscosity that decreases the observed
values of a;. Turbulent flow also drives turbulent effective diffusivity, leading to
a further decrease in aj. This range of issues has been considered by Youngs
et al. in a series of papers, see for example [27, 9]. Numerical emulation of turbulent
diffusion through numerical mass diffusion requires time dependent gridding, as
diffusivity based upon a time increasing Reynolds number cannot otherwise match
the observed ¢t~'/6 diffusivity for the TVD algorithm, as discussed in Sec. 2.1.2.

Experiments show between three and five generations of bubble merger. The
lower bound comes from counting the decrease in the number of ripples or bubbles
in the experimental plates of Read and Youngs. The upper bound five comes from
the theory of most unstable wave length for these experiments. Over the time period
of the experiments, the observed growth rate is very nearly linear in #2. Thus any
transition to a new physical regime has not had an opportunity to influence ay in
this time period. Simulations do not exceed the lower bound of three generations
of bubble merger. For this reason, any significant time dependence for a; or any
transition to a new flow regime that causes a; to decrease in simulations is in
disagreement, with experiment.

2.2. Definition of the Statistical Ensemble

Wavelengths Present in Initial Perturbation. The self similar #* growth
rate for the mixing zone thickness at late time results from the progressive merger of
bubbles [21]. The bubbles individually achieve a terminal velocity due to a balance
between buoyancy and drag, but as bubbles are removed from the edge of the
mixing zone and neighbor bubbles expand to take their place in a merger process,
the size dependent terminal velocity can increase. It is this continued increase in
length scales which allows for continued acceleration.

To observe a universal value for ay, it is desirable not to insert long wave lengths
into the initial data, and thus to avoid contamination of the bubble merger mech-
anism with the growth at long wave lengths initially seeded in the initial data.
A recommended convention is to choose wave lengths (Fourier modes) with wave-
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length A satisfying A € [Amin, Amax) With Amin = Amax/2. Some authors include a
further modulation and decrease the amplitude of the random modes near the edge
of the allowed interval.

The modeling of an actual experiment, which will necessarily contain some level of
unavoidable low frequency noise, gives a reason for simulations which do not follow
the above restrictions on wavelengths A present in the initial random interface. In
[27], a simple analysis is given for the influence of long wave length “noise” as a
small perturbation of a high wave length random surface. This work concludes
that the influence is potentially significant and could increase the experimentally
observed value of ap. This analysis is based on a simple single mode computation.
It would be desirable to repeat this analysis using full scale simulation.

Initial Amplitude of Perturbation. To avoid introduction of a new length
scale into the problem, we want to choose the initial amplitude to be small, within
the limit of accuracy of the small amplitude Rayleigh-Taylor theory. This small am-
plitude theory is then used for initialization, giving in effect a zero or infinitesimal
initial amplitude. Most Eulerian finite difference schemes have trouble with initial-
ization of small amplitude perturbations. Unless several zones are included within
the initial amplitude of the perturbation, an Eulerian simulation with an untracked
interface will have difficulty in observing and responding to the perturbation at all.
This requirement leads to very fine scale zoning per initial wavelength or to use of
large amplitude initial conditions. Front tracking, with its subgrid resolution, does
not suffer from this problem. See Sec. 3.

Size of Statistical Ensemble of Initial Perturbations. The statistical en-
semble converges to an infinite volume limit with surprising speed in two dimen-
sional studies [6]. This issue has not been explored in three dimensions. The size,
i.e., the number of initial bubbles, is more important as a restriction on the dura-
tion of the simulation, since two or three generations of bubble merger reduce the
number of bubbles by factors of 16 or 64, and the number of bubbles at the end
of the simulation must still be enough for statistical significance. The requirement
for two or three generations of bubble merger is to ensure that the simulation has
entered the self similar regime and to explore the influence of numerical dissipation
effects which could force a transition to a new flow regime, as discussed in Sec. 2.1.4.

2.3. Other Factors

Mesh Resolution per Mode. Our simulations use about 7.5 zones per initial
bubble. Many reported simulations are somewhat more coarsely zoned. At these
resolutions, the simulations are under resolved. Additional studies on the influence
of mesh refinement would be desirable. The effect should be to produce a moderate
increase in observed ay, on the basis of experience in two dimensions.

Length of Domain. Waves reflecting from the ends of the computational do-
main can decrease the value of a; according to two dimensional studies, especially
if the domain boundary is too close to the edge of the mixing zone.

Compressibility. Compressibility has been observed to increase a;, moderately
in two dimensional simulations [6]. We introduce the dimensionless parameter
M? = \g/c} where ¢, is the sound speed in the heavy fluid and A is a mean bubble
width, measured at the initial time, to characterize the compressibility of the flow.
We correct for the effect of finite M2 > 0 in Sec. 4.1.
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Definition of Edge of Mixing Zone. The edge Z; of the mixing zone is
defined as the location of the furthest penetrating bubble (k = 1) or spike (k = 2),
or equivalently the location of (fr) = 0. Here f; is a local volume fraction and
(fr) is a transversely averaged volume fraction. This definition is inconvenient for
untracked Eulerian simulation codes, as the mass diffusion extends the location of
Z, unrealistically under this definition. The definition has also been criticized as
being statistically unstable in the limit of large ensemble size, i.e., of many bubbles.
For this reason, many simulations and some experiments report a definition of a;
based on 5% values, (f) = 0.05. The 5% definition leads to a small decrease in ;.
For convenience of comparison, we report 0%, 1%, and 5% definitions of «j.

The simulations based on shock capturing algorithms presented here use a level
set function to determine locally in xz,y, z,t a 50% contour, or zero-level surface to
represent the interface. This contour can be used by any of the above methods to
define global, i.e., transverse averaged 0%, 1%, or 5% contours to determine the
edge 7y of the mixing zone and hence a;. Only the 0% contours are reported for
the capturing simulations.

Plainly these various definitions of Z;, and «y are not identical (We observe about
a 10% difference resulting from different definitions.) a fact which must be kept in
mind when comparing simulations to one another or to experiment. See Sec. 4.1.

3. THE FRONT TRACKING ALGORITHM

The front tracking algorithm is described, in its 3D version, in recent publications
[18, 17, 16]. This algorithm has been developed into a computer code FronTier,
see http://www.ams.sunysb.edu/~shock/FTdoc.FTmain.html. There are two
essential ideas to the front tracking method. The first is the description of a front
or interface as a lower dimensional structure, with supporting data structures and
its own dynamics derived from the differential equation being solved. The second
essential idea is to use (nonlocal) Riemann solvers to define the dynamics of the
front, and ghost cell extrapolation to define a finite difference algorithm to couple
the interior cells to the front.

The construction and redistribution of a three dimensional interface has been
simplified [16] and is similar to but simpler than, Sethian’s Fast Marching Algorithm
[2, 1]. The grid based interface algorithm is narrower than Sethian’s algorithm,
being only one cell in width, and has no need for a supplementary partial differential
equation to ensure isospacing of level contours, as there is only one contour, the
interface itself.

3.1. Propagation of Front Points

The propagation of points on the front uses operator splitting in the directions
normal and tangential to the interface. The latter operation projects the flow
state onto the tangent plane at a point and then uses a finite difference or finite
volume scheme to update the tangential component of Euler’s equations. The
former operation, called normal propagation, was described in [8]. Briefly, the
Euler equations are projected into a one dimensional system along the normal ray
from the point being propagated. A Riemann problem is solved using the two states
at either side of the front as data to predict the front speed and compute a pair of
updated states. One then uses the method of characteristics, tracing back linearly
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from the predicted new front location, and the Rankine-Hugoniot conditions across
the front to compute the time updated states at the front and a time updated front
speed. The final front speed is computed using central differencing in time, i.e.,
the average of the wave speed predicted from the initial Riemann problem and the
value computed from the method of characteristics.

As an illustration of the method we consider the specific example of the propa-
gation of a shock front from time ty to time ¢y + At for Burger’s equation:

ut + (%112)90 =0. (19)

For simplicity we assume ¢, = 0, and that the initial shock is located at x = 0 so
that our initial data is given by:

u(z,0) = {“l($)= r<0

ur(z), O0<z

Let s (t) be the shock location at time ¢, and define u_ (t) = u (s (t) —, 1), wuy (t) =
u(s(t)+,

5(t) = 3

along the characteristics dz/dt = u, we have u_ (t) = w; (s(t) —u_ (¢)t) and

ug (t) = up (s(t) —ug (¢)t). Differentiating these relations with respect to time

t). The Rankine-Hugoniot relations for Burger’s equation imply that
(u_ (t) + uy (t)), and since solutions to Burger’s equation are constant

we easily obtain:
Uy (1) = upy {8 — gt —ug} ‘(s(t) t)
U4 (t) = u;,'l {S — w4t — ui}2 + u'rl {S — gt — 2’[Li} |(s(t) t)

Using the standard notation [a] = a_ — a, and @ = L (a_ + ay), we obtain the
derivatives at time ¢ = 0:

i (0) = £5u5 [u] (0,0

it (0) = Z“”l [u]” F u ( nE % [UI]) [u] ‘(0 0)
$(0) = u |(0,0)
5(0) = *% [“’] [u] |(0 0)
$(0) = g {a" [u] + 3’ [u']} [u] [(0,0)

The numerical solution at time At, as computed by the normal propagate algorithm,
is easily shown to be:

Expanding the numerical solution as a Taylor series in At and comparing this to
the Taylor series for the exact solution we obtain:

At?
|ui (At) — uy (At)‘ = |u;,l (u;,l:I:}1 ) uH 0,0) T+O(At )

|57 (Af) — s (A1) =

a [u]® — 2a' [ ‘ — +0 At4) ,

2
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from which we conclude that the states at the front are correct to first order and the
front position is correct to second order. It is interesting to note that the accuracy
of the algorithm improves as the slopes on either side of the front approach zero with
the states becoming second order accurate in the limit where the first derivatives
vanish at the front.

3.2. Ghost Cell Extrapolation for Interior—Front Coupling

Since its inception, see [19], FronTier has used the ghost cell extrapolation algo-
rithm to provide the coupling between the front and the interior system of states,
and to update irregular cells, those whose regular finite difference stencil overlaps
with the front. For cells with a regular stencil, a standard shock capturing scheme,
such as a higher order Godunov method, is used.

For the cells with an irregular stencil, some cells of which are cut by the front,
FronTier does not join states from different sides of the front with a finite difference
operation. It was just such finite differences in the level set method [28] that were
identified as an error [18]. Recent attempts to cure this error in the level set method
[14] led to the adoption of the ghost cell method for level set propagation. However
the absence of a Riemann solver to couple the states on the two sides of the interface
was identified as a further source of error in this modified level set method [17].

We explain here the role of the Riemann solver for interior-front coupling. The
Riemann solver enters into the front propagation itself and the setting of the front
states, see Section 3.1. Given correctly computed front states, the ghost cell is
extremely simple: extrapolation as a constant. States for each side of the front are
extrapolated, to give locally double valued states near the front. Using these ghost
cell states, and the regular states also, each cell, including the irregular ones, has
a full stencil of states coming from a single side of the interface. The normal finite
difference solver is called with these states, regular ones and the extrapolated ghost
ones.

4. NEW SIMULATION RESULTS

All simulations reported here are performed on a 2 x 2 x 4 computational domain
with a 112 x 112 x 224 grid. The initial interface is a perturbation of a planar
z = 0 interface. The perturbation is defined by a sum of random Fourier modes,
chosen as in Sec. 2 with Apax/Amin = 2 and Fourier modes with between 10 and
20 modes per linear dimension in the initial perturbation. This definition yields an
initial array of about 15 x 15 bubbles in the perturbation and an average initial
bubble width of 0.133. For Fronlier simulations only, the initial velocities and
other state variables are also perturbed, based on an analytic solution for the small
amplitude (linearized) single mode Rayleigh-Taylor instability equations [15]. The
amplitudes and phases are chosen by a random number generator, with independent
normal distributions. The variance determines the overall amplitude of the interface
perturbation, which we set as a multiple 0.0075 of the average initial bubble width.
This amplitude is conservatively within the domain of the linearized Rayleigh-
Taylor theory. Larger initial amplitudes are commonly used, meaning that the
simulations are started in a nonlinear regime with strong transients. For reasons
discussed in Sec. 2, a larger initial amplitude is used for the TVD simulations,
and in this case, the initial amplitude per initial bubble width is approximately
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0.0375. At this amplitude, there will be small but detectable nonlinear transient
effects. Initial amplitudes are often reported in units of the full domain length,
making the assessment of linear vs. nonlinear flow initialization difficult to assess.
All simulations have an Atwood number A = 0.5, and except where varying the
compressibility, an initial compressibility value M? = \g/c3 = 0.038.

The three most important properties characterizing a mixing zone are its overall
width, the distribution of mass or volume fraction across its width, and the degree
of fine scale mixing. Here we analyze the simulations from these points of view.

4.1. FronTier with Small Compressibility

We consider two values, both small, for the compressibility, M2 = 0.019 and
0.038. The purpose of this choice is to allow extrapolation to the incompressible
limit M? = 0 in the determination of ;. Extrapolation to the incompressible limit
gives a reduction of about 10% in ay from the larger of the two (small) values of
compressibility, and results in agreement with experiment, see Tables 1, 2.

The late time interface separating heavy and light fluids is shown in Fig 1. The
increase in a; with compressibility was reported earlier in 2D simulations, [6], with
an increase by up to a factor of 2 for M? = 1.0.

FIG. 1. A late time simulation of the Rayleigh-Taylor instability. The interface between
the two fluids is shown. Here M2 = 0.038.

The 5% contour method for computing «; gives similar values, and a further
reduction of 5% to 10% for a;. The resulting (lower) value of oy for FronTier sim-
ulations probably improves the agreement with experiment. Results are presented
in Table 2. Data for the computation of a; from the simulation of Fig. 1 is given
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TABLE 2
Values for ap as determined by FronTier. Comparison of the effects
of three definitions of ap. Values of ap for compressible
flow and extrapolation to M? = 0.

| M? | Definitions of ay |
| | 0% | 1% | 5% |

0.038 0.083 | 0.078 | 0.070
0.019 0.076 | 0.074 | 0.068
0 (Extrap.) | 0.069 | 0.070 | 0.066

in Fig 2. We assign error bounds of £5% due to data analysis in the numerical
determination of ay. Other possible systematic errors in the simulation, such as
grid resolution, are discussed in Sec. 2.
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FIG. 2.  Height vs. Agt?. Here the solid line is the 0% definition for the FronTier simulation
and the dashed line comes from the TVD simulation. The black circles are the 1% definition, and
the open circles result from the 5% definition, for the Fronlier simulation.

4.2. TVD with and without Artificial Compression
Here we show the influence of dissipative effects, by comparing a FronTier (tracked)
simulation with two TVD (capturing) simulations. We duplicate earlier reported
capturing growth rates for comparable simulation times and ensemble sizes. Of the
factor of two variation in principal simulation values for ay, about half appears at
the simulation times reported here. Our results explain this half quantitatively as
due to the dissipative effects of capturing algorithms. By comparing TVD to Fron
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TABLE 3

Dependence of ap on numerical diffusion and viscosity

Method  Observed Numerical Diffusion Length  «a; (0%; Compressible)

FronTier 0 cells 0.083
AC 6-7 cells 0.053
TVD 11 cells 0.050

Tier, we infer that diffusion of interfacial vorticity and density jumps is significant,
accounting for a 40% decrease in a3, and about half of the total discrepancy with
most capturing simulations. By comparing two different capturing simulations, one
with artificial compression (AC) to limit mass diffusion, we infer that the major
dissipative effect is viscosity. An alternate explanation is that the AC algorithm,
being less effective in its nonlinear application, does not sufficiently control mass
diffusion. For the purpose of this comparison, we keep the compressibility fixed
at M? = 0.038. All inputs and sensitive factors (except as explicitly noted) are
the same as for the FronTier simulations, so the differences which result can be
attributed to dissipative effects of the TVD capturing algorithm. The comparable
incompressible values of a; and the effect of different definitions of «; are shown
in Table 2 and summarized in Table 3. The tabulated numerical diffusion length
is the local width of the numerically defined interface, as determined at a middle
value of £, t = 6, out of a total simulation time of ¢ = 12. Observe that this length
is comparable to the size of the bubbles and spikes in the flow for the two capturing
algorithms. Artificial compression reduces this length by half.

4.3. Fine Scale vs. Chunk Mix
4.3.1.  Numerical Mizing Fraction

We introduce the local volume fraction fi(z,y, z,t) as the fraction of fluid &k at
the space-time location x,y, z,¢. The numerical mixing fraction is defined [41] by
the transverse (and ensemble) averaged correlation

Oz, 1) = M1S2) (20)

(f1)(f2)
Youngs [41] reports mixing fractions 6 = 0.8 for a van Leer advection algorithm, in-
dicating nearly perfect numerical mixing. FronTier, with zero mass diffusion across
a tracked interface, has § = 0. The Dimonte-Schneider experiments, performed
with immiscible fluids, have a mixing fraction 8§ = 0. Youngs’ experiments used
both miscible and immiscible fluids.

4.8.2.  The Coherence Correlation Length

This section presents an initial attempt to compare simulations and experiments
at lengths intermediate between the chunk mix length of the mixing zone itself and
the diffusive length scale of molecular mixing. Such length scales may originate
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from the breakup of large scale structures into smaller ones. See also the turbulence
based analysis of [9]. We start with the observation that the coherence probability,
i.e., the probability to remain within a single phase while moving on a straight line,
satisfies an exponential fall off with distance. The characteristic length A for this
decay is called the coherence length.
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Probability computed on horizontal lines Probability computed on vertical lines

FIG. 3. Exponential rate laws for the probability of an interval of length [ to lie totally
within a specified phase, determined from FronTier simulations reported here. The data are well
fit to an exponential law exp(—I/\) over two orders of magnitude in probability.
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FIG. 4.

Exponential rate laws for the probability of an interval of length [ to lie totally

within a specified phase as determined experimentally [11].

The exponential law for the coherence pdf can be seen in simulations, Fig. 3, and
experiments [11], Fig. 4. The exponential structure for the pdf is equivalent to a
Poisson process for phase boundaries encountered for motion along a straight line,
and thus to a Markov property for the binary random field defined by the two phase
flow. This fact leads to an elegant mathematical description of various transition
probabilities [30].

Table 4 lists coherence lengths as extracted from both simulation and experiment.
The experimental data is generated from the central half of the mixing zone only.
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TABLE 4
Experimental and simulation values for the coherence length scale in
a Markov random field description of the interface statistics.

Experiment Experiment Simulation Simulation
Late Time  Early Time Late Time Early Time

An
Light Fluid 24 12 23 22
Heavy Fluid 19 19 15 24
Av
Light Fluid 17 10 29 5
Heavy Fluid 15 13 6 7

However, due to the narrowness of the simulation mixing zone, a larger central
region was used to construct the simulation data. We note the important fact that
the coherence length does not scale with t? or the width of the mixing zone, that
changes by a factor of 3 between the two experimental times shown in Table 4 and
by a factor of 2 for the simulation times. Thus it must describe a new length scale
and the possible beginning of a new flow regime. The coherence pdf should not
be confused with the bubble size pdf, that also satisfies an exponential law [4] but
obeys a t? scaling.

The experimental and simulation numbers are roughly similar but should not be
compared. The early and late simulation times are both much earlier than the early
experimental time, in terms of mixing zone evolution. Also an initial perturbation
length scale, which might set the length scale for the coherence lengths, is not
measured for the experiment, so units for comparison of lengths are not known.

We note trends for growth of the experimental light fluid but not the heavy
fluid coherence lengths, and a trend for growth of the light fluid vertical simulation
coherence length. Since the observational times for these trends are not comparable,
we draw no conclusions at this time.

5. CONCLUSIONS

We have analyzed the mixing growth rate constant <y in multi-mode (random)
Rayleigh-Taylor instability in a 3D planar geometry. In spite of the large effort
made to obtain values for this quantity, disagreements and inconsistencies have
persisted.

We identified two significant factors which are sufficient to obtain FronTier sim-
ulations that agree with experimental data. The first factor is a correction for
compressibility and the second is a correction for differing definitions of the con-
stant agp.

The numerical dissipation of the capturing algorithms is a significant factor,
sufficient to explain part of the spread in simulation values, and probably all of
the principal discrepancies observed up to the simulation times studied here. See



RAYLEIGH-TAYLOR GROWTH RATES 19

Table 1. For the simulation times and ensemble sizes explored, numerical viscosity
appears to play a larger role than numerical mass diffusion. See Table 3.

We have begun an exploration of new physical length scales, which could signal
a transition to a new flow regime for Rayleigh-Taylor mixing.

Further studies are needed to resolve remaining issues, including refinement of
the mesh per mode, increase in the number of modes, and simulations carried to
later time. The present paper provides a perspective on, but does not definitively
resolve, the causes of the discrepancies concerning the growth rate a;. For this
reason we list some outstanding questions, and propose possible research which
could help to resolve remaining questions.

1. To what extent can long wave length noise in the experiments contribute to
the experimental value of a,? How rigid a restriction on the noise spectrum is the
observed growth of Z;(t) scaling linearly in #? over the experimental time periods?
Experimental characterization of initial conditions would contribute to a resolution
of this issue.

2. The decreasing, time dependent simulation values of «; for capturing algo-
rithms signals a new length scale to break the t? scaling law. We propose here
that this length scale originates in numerical dissipation. The Lattice Boltzmann
algorithm allows a controlled variation of viscosity. Parametric studies with this
algorithm could determine the influence of viscosity upon ay.

3. The 40% difference reported here between the TVD algorithm and FronTier,
when run to identical times, and with identical resolution, indicates that dissipation
is significant, and sufficient to explain the principal discrepancies among simulations
up to the simulation times reported here. We propose to run FronTier simulations
to later time to determine the value of a; which results.
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