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Abstract—Kernel methods are a class of well established and successful algorithms for pattern analysis due to their mathematical

elegance and good performance. Numerous nonlinear extensions of pattern recognition techniques have been proposed so far based

on the so-called kernel trick. The objective of this paper is twofold. First, we derive an additional kernel tool that is still missing, namely

kernel quadratic discriminant (KQD). We discuss different formulations of KQD based on the regularized kernel Mahalanobis distance

in both complete and class-related subspaces. Second, we propose suitable extensions of kernel linear and quadratic discriminants to

indefinite kernels. We provide classifiers that are applicable to kernels defined by any symmetric similarity measure. This is important

in practice because problem-suited proximity measures often violate the requirement of positive definiteness. As in the traditional case,

KQD can be advantageous for data with unequal class spreads in the kernel-induced spaces, which cannot be well separated by a

linear discriminant. We illustrate this on artificial and real data for both positive definite and indefinite kernels.

Index Terms—Machine learning, pattern recognition, kernel methods, indefinite kernels, discriminant analysis.

Ç

1 INTRODUCTION

KERNEL methods are powerful statistical learning techni-
ques [38], [36], widely applied to various learning

scenarios due to their flexibility and good performance. A
kernel is a (conditionally) positive definite (pd) function
kðx; x0Þ of two variables x and x0, and interpreted as a
generalized inner product, hence natural similarity, in a
reproducing kernel Hilbert space H induced by k [33], [40].
Due to the reproducing property of k, kernel-based classifiers
are indirectly built in H and often expressed as linear
combinations of kernel values. Many traditional learning
methods have been proposed so far in their kernel-based
formulations. These include Support Vector Machines
(SVM), kernel PCA, kernel Fisher discriminant (KFD), kernel
k-means, and so on [36]. An additional tool that is still missing
within the set of simple approaches is the kernel quadratic
discriminant (KQD). In this paper, we derive KQD as a
natural extension of the quadratic discriminant in a Euclidean
space. Three variants are considered in either full or class-
related kernel-induced subspaces.

Although traditional kernel methods have now been

applied to general nonvectorial data descriptions, such as

strings, bags of words, graphs, shapes, probability models

[35], [36], the class of permissible kernels is often, and

frequently wrongly, considered to be limited due to their

requirement of being positive definite. In practice, however,

many non-pd similarity measures arise, e.g., when invariance
or robustness is incorporated into the measure [37], [20], [13].
Further reasons may include suboptimal optimization
procedures for measure derivation [28], partial projections
or occlusions [20], and context-dependent alignments or
object comparisons [6], [30]. Naturally, indefinite (dis)sim-
ilarities arise from non-euclidean or nonmetric dissimilari-
ties, such as modified Hausdorff distances [6], or non-pd
similarities, such as Kullback-Leibler divergence between
probability distributions. Consequently, there is a practical
need to handle these measures properly. In the case of metric
dissimilarity measures, these can be embedded in Banach
spaces where learning algorithms such as large margin
classifiers can be applied [39], [16], [4]. Although these
techniques provide alternatives to certain kernel methods for
metric data, more general approaches are needed.

While many researchers choose to regularize non-pd
kernels to make them pd, a natural extension of Mercer
kernels leads to indefinite or Krein kernels [2], [25], [21], [11],
[26], or dyadic kernels [18]. Both are examples of proximity
representations, i.e., matrices whose elements encode de-
grees of similarity between pairs of objects and optimized
prototypes [26]. Therefore, it is of high interest to develop and
investigate methods that work with indefinite kernels. And
indeed, an additional contribution of this paper is a sound
underpinning of the approaches which extend kernel linear
and quadratic discriminants to deal with indefinite kernels.
Experiments on toy and real-world data show good perfor-
mance of the KQD methods for both positive definite and
indefinite kernels.

The paper is organized as follows: Section 2 starts with
preliminaries on kernels. Section 3 presents the indefinite
kernel Fisher discriminant analysis. Section 4 is the main part
that introduces different formulations of KQD analysis for
both positive definite and indefinite kernels. Section 5
focuses on an experimental study illustrating the perfor-
mance of kernel discriminant analysis on toy and real-world
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data. The final discussion is presented in Section 6. Due to

space restrictions and in order to maintain clarity, the

detailed derivations of the methods are left out from the

main text, but provided as supplementary material in

Appendix A, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2008.290.

2 PRELIMINARIES ON KERNELS

We will first introduce some notation and provide basic facts

on Hilbert spaces and positive definite kernels. We will then

focus on Krein spaces and the related indefinite kernels.

2.1 Positive Definite Kernels

Assume that X is a collection of objects fxg, either an index

set, a set of original objects, or their vector representations in

some input space. Let � : X ! H be a mapping of patterns

from X to a high-dimensional or infinite-dimensional

Hilbert space H with the inner product �; �h iH. Here, we will

use notation that extends matrix-vector multiplications to

Hilbert spaces. For two functions �1; �2 2 H, we will

equivalently write �T
1 �2 :¼ h�1; �2iH. A sequence of m vectors

inH is denoted by �� ¼ ½�1; . . . ; �m�. Given a vector v2 IRm, we

define ��v :¼
Pm

i¼1 vi�i as an abbreviation of linear combina-

tions. Similarly, for a matrix V ¼ ½v1; . . . ;vn�2 IRm�n, ��V :¼
½��v1; . . . ; ��vn� is a sequence of linear combinations defined

by the columns of V . Hence, �vT ¼ ½v1�; . . . ; vm�� for a single

� 2 H and a vector v. For two sequences �� ¼ ½�1; . . . ; �m� and

��0 ¼ ½�01; . . . ; �0n� in H, we will write G :¼ ��T��0 2 IRm�n to

denote a cross-Gram matrix with entries Gij ¼ h�i; �0jiH.
In this paper we address a c-class problem, given by the

training data Xtr ¼ fxigni¼1�X with the corresponding

labels fyigni¼1��, where � :¼ f!1; . . . ; !cg is a set of c target

classes. Let � :¼ ½�ðx1Þ; . . . ; �ðxnÞ� be a sequence of images

of the training data Xtr in H. Without loss of generality, we

assume that the vectors in � are grouped into classes such

that � ¼ ½�½1�;�½2�; . . . ;�½c��, where �½j� :¼ ½�ðxj1Þ; . . . ; �ðxjnjÞ�
represents the jth class !j with nj elements, which impliesPc

j¼1 nj ¼ n.

Given the training data � ¼ ½�ðx1Þ; . . . ; �ðxnÞ�, the

empirical mean is defined as �� :¼ 1
n

Pn
i¼1 �ðxiÞ ¼ 1

n�1n,

where 1n is an n-element vector of all ones. The mapped

training data vectors are centered by subtracting their

mean such that ~�ðxiÞ :¼ �ðxiÞ���, or equivalently, ~� :¼
½ ~�ðx1Þ; . . . ; ~�ðxnÞ� ¼ �� ��1T

n ¼ �� 1
n�1n1

T
n ¼ �H. Here,

H :¼ In � 1
n1n1

T
n is the n� n centering matrix, while In is

the n� n identity matrix. H is symmetric, H ¼ HT, and

idempotent, H ¼ H2. The empirical covariance operator C :

H ! H is a continuous linear map defined by its operation

on �ðxÞ 2 H as C �ðxÞ :¼ 1
n

Pn
i¼1ð�ðxiÞ����Þ h�ðxiÞ � ���;

�ðxÞiH ¼ 1
n

Pn
i¼1

~�ðxiÞð ~�ðxiÞÞT �ðxÞ ¼ 1
n

~�~�T�ðxÞ. We can

therefore interpret 1
n

~�~�T as an operator and identify the

empirical covariance C as

C ¼ 1

n
~�~�T ¼ 1

n
�HH�T:

Given that the empirical covariance operator is invertible
and D2

Mð � ; f��; CgÞ : H ! IR�0 is the empirical square
Mahalanobis distance defined for a vector �ðxÞ 2 H as

D2
Mð�ðxÞ; f��; CgÞ :¼ ð�ðxÞ � ��ÞT C�1ð�ðxÞ � ��Þ: ð1Þ

The transformation � acts as a (usually) nonlinear map to a
high-dimensional space H in which the classification task
can be handled in either a more efficient or more beneficial
way. In practice, we will not necessarily know �, but a kernel
function k : X � X ! IR that encodes the inner product inH,
instead. The kernel k is a positive (semi)definite function
such that kðx; x0Þ ¼ �ðxÞT�ðx0Þ for any x; x0 2 X . Conse-
quently, K :¼ �T� is an n� n kernel matrix derived from
the training data. Moreover, we will also use the centered
kernel matrix ~K :¼ ~�T ~� ¼ H�T�H ¼ HKH. In addition to
the quantities defined for the complete training sequence �,
we can define analogous classwise quantities for �½j�,
j ¼ 1; . . . ; c, which are consequently indicated with the
superscript ½j�. Further on, for an arbitrary x 2 X , kx denotes
an n-element vector of kernel values of x to the training data,
while ~kx is the centered vector:

kx :¼ ½kðx1; xÞ; . . . ; kðxn; xÞ�T ¼ �T�ðxÞ;

~kx :¼ ~�T ~�ðxÞ ¼ H kx �
1

n
K1n

� �
:

ð2Þ

Finally, we will also make use of the self-similarity kxx and
its centered version ~kxx:

kxx :¼ kðx; xÞ ¼ �ðxÞT�ðxÞ;

~kxx :¼ ~�ðxÞT ~�ðxÞ ¼ kxx �
2

n
1T
nkx þ

1

n2
1T
nK1n:

ð3Þ

2.2 Indefinite Kernels

The terminology and notation presented in Section 2.1 can
be extended to Krein spaces (see [1], [5], [31] for details).
Note that, apart from pattern recognition [9], [26], also other
fields such as H1 control [15] make use of linear estimation
in Krein spaces. A Kre��n space over IR is a vector space K
equipped with an indefinite inner product h�; �iK : K�K !
IR such that K admits an orthogonal decomposition as a
direct sum K ¼ Kþ � K�, where ðKþ; h�; �iþÞ and ðK�; h�; �i�Þ
are separable Hilbert spaces with their corresponding
positive definite inner products. The inner product of K,
however, is the difference of h�; �iþ and h�; �i�, i.e., for any
�þ; �

0
þ 2 Kþ and any ��; �

0
� 2 K� holds

h�þ þ ��; �0þ þ �0�iK :¼ h�þ; �0þiþ � h��; �0�i�:

The decomposition is orthogonal with respect to this inner
product, i.e., �þ; ��h iK ¼ 0 for any �þ 2 Kþ and �� 2 K�. In
particular, h�þ; �þiK > 0 and h��; ��iK < 0 for any nonzero
vectors �þ 2 Kþ and �� 2 K�. Therefore, Kþ is a positive
subspace, while K� is a negative subspace.

The orthogonal projectionsPþ ontoKþ andP� ontoK� are
called fundamental projections. Any � 2 K can be represented
as � ¼ Pþ � þ P� �, while IK ¼ Pþ þ P� is the identity
operator. The linear operator J ¼ Pþ � P� is called the
fundamental symmetry and is the basic characteristic of a Krein
spaceK, satisfyingJ ¼ J�1 ¼ J T. The spaceK can be turned
into its associated Hilbert space jKjby using the positive definite
inner product h�; �0ijKj :¼ h�;J �0iK. Countable orthonormal
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bases Bþ for Kþ and B� for K� give rise to a basis B :¼
Bþ [ B� for K. The latter is orthonormal in the sense that
he; e0iK ¼ 0 for all e 6¼ e0 2 B, he; eiK ¼ 1 for all e 2 Bþ, and
he; eiK ¼ �1 for all e 2 B�. Similarly, as in the positive definite
case, we use the “transposition” abbreviation �T�0 :¼ h�; �0ijKj,
and now additionally (motivated by J operating as a sort of
“conjugation”), a “conjugate-transposition” notation
�	�0 :¼ h�; �0iK ¼ hJ �; �0ijKj ¼ ðJ �Þ

T�0 ¼ �TJ �0.
Finite-dimensional Krein spaces with Kþ ¼ IRp and K� ¼

IRq are denoted by IRðp;qÞ and called pseudo-euclidean spaces.
They are characterized by the so-called signatureðp; qÞ 2 IN2.
J becomes the matrix J ¼ diagð1p;�1qÞ with respect to an
orthonormal basis in IRðp;qÞ. Krein spaces are important as
they provide feature-space representations of dissimilarity
data [9] or indefinite kernels. For indefinite kernels, i.e.,
symmetric functions k : X � X ! IR, and finite data X , the
resulting kernel matrix K yields an embedding  :X ! K
into a finite-dimensional Krein space by its eigenvalue
decomposition, such that kðx; x0Þ ¼ h ðxÞ;  ðx0ÞiK. In ana-
logy to the pd case, an indefinite kernel represents an inner
product in an implicitly defined feature space. Hence,
algorithms working with indefinite kernels have a geo-
metric interpretation in these spaces.

Let  : X ! K be a mapping of the data into a Krein space

K and � :¼ ½ ðx1Þ; . . . ;  ðxnÞ� be a sequence of images of Xtr

in K. In the following, we adopt the matrix-vector multi-

plication notation from the previous section. All quantities

derived in Section 2.1 can now be defined analogously, i.e.,

f�;�; ��g are replaced by f ;�;  �g, inner products �; �h iH
are replaced by �; �h iK, transpositions �T are replaced by

conjugate-transpositions �	, but transpositions of vectors v 2
IRn are maintained. In particular, the empirical mean is

defined as  � :¼ 1
n

Pn
i¼1  ðxiÞ ¼ 1

n�1n. The data vectors in K
are centered such that ~ ðxiÞ :¼  ðxiÞ� �; hence, ~� :¼
½ ~ ðx1Þ; . . . ; ~ ðxnÞ� ¼ �� 1

n �1n1
T
n ¼ �H. The empirical cov-

ariance operator C: K ! K is a continuous linear map that

acts on  ðxÞ 2 K as C ðxÞ :¼ 1
n

Pn
i¼1ð ðxiÞ �  �Þ h ðxiÞ �

  �;  ðxÞiK ¼ 1
n

Pn
i¼1

~ ðxiÞh ~ ðxiÞ;  ðxÞiK ¼ 1
n

Pn
i¼1

~ ðxiÞ ~ ðxiÞ	
 ðxÞ ¼ 1

n
~�~�	 ðxÞ. We will therefore identify the empirical

covariance operator as

C ¼ 1

n
~�~�	 ¼ 1

n
~�~�TJ ¼ CjKjJ ;

where CjKj ¼ 1
n

~�~�T is the empirical covariance operator in
jKj. The operator C is not positive definite in the Hilbert
sense, but it is in the Krein sense [1], [31]. It means that
�; C�h iK � 0 for � 6¼ 0, hence in agreement with the inner

product of that space. Assuming C is invertible (which
requires that n > dim ðKÞ), the empirical square Mahalano-
bis distance D2

Mð�; f �; CgÞ : K ! IR�0 of a vector  ðxÞ 2 K
to the data described by the model f �; Cg is defined as

D2
Mð ðxÞ; f �; CgÞ :¼ ð ðxÞ �  �Þ	 C�1ð ðxÞ �  �Þ:

Since K represents the kernel matrix with respect to the
inner product in K, we get K :¼ �	� ¼ �TJ�. Similar to
traditional kernels, the centered kernel matrix is
~K :¼ ~�	 ~� ¼ ~�TJ ~� ¼ HKH. Analogously, definitions (2)

and (3) of kx, ~kx, kxx, and ~kxx can be extended to indefinite
kernels by suitable replacements. Table 1 summarizes these

definitions for both types of kernels. In particular, J ¼IK in

the positive definite case; hence, �	 ¼ �T and all definitions

presented here reduce to the ones from Section 2.1. Note
that we could have focused on the mere indefinite notation

as the pd case is just a special instance. This would,

however, have hampered the reading of subsequent

sections and the distinction between the positive definite

and indefinite parts. Consequently, we deliberately use  

and � in the indefinite case in contrast to � and � from the
pd case to make this distinction more obvious.

3 KERNEL FISHER DISCRIMINANT ANALYSIS

Kernel Fisher discriminant (KFD) was proposed and
successfully applied by Mika et al. [23], [24]. Since it is
well known and due to space limits, we will directly focus
on the extension to the indefinite case.

3.1 Indefinite Kernel Fisher Discriminant

Assume the training data for a two-class problem, c ¼ 2, is
embedded into a Krein space K by the mapping  , i.e.,

� :¼ ½ ðx1Þ; . . . ;  ðxnÞ� is the sequence of mapped training

data and  ½1�� ;  
½2�
� 2 K are the class means. The Fisher linear

discriminant attempts to find a direction w 2 K such that

the between-class scatter is maximized while the within-

class scatter is minimized along w. In analogy to the positive
definite case, the indefinite Fisher linear discriminant

fðxÞ ¼ hw;  ðxÞiK þ b ¼ w	 ðxÞ þ b ð4Þ

is defined by the vector w that maximizes the Fisher

criterion

JðwÞ ¼
w;�KBw
� �

K
w;�KWw
� �

K
¼ w	�KBw

w	�KWw
; ð5Þ

where the between-class scatter operator acts as

�KBw¼ð ½1�� � ½2�� Þh ½1�� � ½2�� ; wiK¼ð ½1�� � ½2�� Þð ½1�� � ½2�� Þ
TJw.

Hence, �KB¼�
jKj
B J , where �

jKj
B ¼ð ½1�� � ½2�� Þð ½1�� � ½2�� Þ

T is the

Hilbert between-class scatter operator in jKj. Similarly, the

within-class scatter operator can be expressed as �KW :¼
�
jKj
W J with the Hilbert within-class scatter operator �

jKj
W :¼P2

j¼1 P ð!jÞ
P

ið ðx
j
iÞ� ½j�� Þð ðx

j
iÞ� ½j�� Þ

T based on suitable
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Kernel-Induced Quantities for

Positive Definite and Indefinite Kernels

Data embeddings � and � refer to kernel-induced Hilbert and Krein
spaces, respectively.
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estimates of prior probabilitiesP ð!jÞ. The bias in the classifier

can be chosen as b¼� 1
2 hw; 

½1�
� þ  ½2�� iK ¼ � 1

2w
T J ð ½1�� þ ½2�� Þ,

such that the midpoint of  ½1�� and  ½2�� is on the decision line.

The Fisher criterion can therefore be rewritten as

JðwÞ ¼ w
TJ�

jKj
B Jw

wTJ�
jKj
W Jw

: ð6Þ

An important insight at this point is a geometric

interpretation of the indefinite Fisher discriminant: Insert-

ing the operator representations and substituting v :¼ Jw
into the Fisher criterion (6) and the discriminant function (4)

yields JðwÞ ¼ vT�
jKj
B v=ðvT�

jKj
W vÞ and fðxÞ ¼ vT ðxÞ þ b with

b defined as b ¼ � 1
2 v

Tð ½1�� þ  ½2�� Þ. This means that the

Fisher discriminant in the Krein space K is identical to the

Fisher discriminant in the associated Hilbert space jKj. This

is by far not clear a priori and not valid for other indefinite

kernel classifiers, e.g., indefinite SVM [11].

A kernel method should avoid such explicit embeddings

into a Krein space and constructions of new inner products

based on eigendecompositions. The kernel function should

be used instead. And indeed, the discriminant can be

obtained in a kernelized form by using the original

indefinite kernel. Assume that the indefinite kernel function

k : X � X ! IR encodes the inner product kðxi; xjÞ ¼
 ðxiÞTJ ðxjÞ in K. As a result, the kernel matrix for the

training data is K ¼ �TJ�. Since � ¼ ½�½1�;�½2��, we can

decompose K ¼ ½K1; K2�, where Kj is an n� nj kernel

submatrix for the jth class. The normal w can be written as

an expansion of the form w ¼
Pn

i¼1 �i ðxiÞ ¼ ���. As a

result, the indefinite kernel Fisher discriminant (IKFD) can

be expressed as fðxÞ ¼
Pn

i¼1 �ikðxi; xÞ þ b. Moreover, given

that z :¼ ½ 1n1
1T
n1
; � 1

n2
1T
n2
�T is an n� 1 vector and M :¼

ðKzÞðKzÞT, we have

wTJ�
jKj
B Jw ¼ ��T�TJ ð�zÞ ðzT�TÞJ��

¼ ��TðKzÞðKzÞT � ¼ ��TM��:

Similarly, we can derive that wTJ�
jKj
W Jw ¼ ��TN��, where

N :¼
P2

j¼1 P ð!jÞKjH
½j�KT

j and H ½j� ¼ Inj � 1
nj

1nj1
T
nj

. The

objective (5) now becomes

Jð��Þ ¼ ��
TM��

��TN��
: ð7Þ

Since N is positive semidefinite and singular by construc-

tion, its regularized version N� :¼ N þ �I for � > 0 is used

instead. The coefficients �� of (7) are determined by the

leading eigenvector of ðN�1
� MÞ, which is equivalent (up to

scaling) to �� ¼ N�1
� Kz. The bias becomes b ¼ � 1

2��
TKzþ,

where zþ :¼ ½ 1n1
1T
n1
; 1
n2

1T
n2
�T. Hence, given that kx ¼

½kðx1; xÞ; . . . ; kðxn; xÞ�T, a two-class IKFD is defined as

fðxÞ ¼ ðzTKN�1
� Þkx �

1

2
ðzTKN�1

� ÞKzþ: ð8Þ

Note that multiple-class problems are usually solved by
one-against-all two-class discriminants.

By comparing IKFD to KFD [23], [24], we observe that the
final formulations are exactly the same: The difference lies in
the definiteness of the kernel used. This result has an

important implication in practice. Independently of the
definiteness of the kernel matrix, the kernel Fisher discrimi-
nant obtained by (8) is applicable to indefinite kernels and
has a geometric foundation and geometric interpretation in

indefinite spaces. Details on IKFD can be found in [14].

4 KERNEL QUADRATIC DISCRIMINANT ANALYSIS

Quadratic discriminant analysis originally assumes a finite-

dimensional vectorial input space X :¼ IRk. Each class !j is
assumed to be normally distributed,

pðxj!jÞ ¼ N ðx; f�½j�; �½j�gÞ

¼
expf� 1

2 ðx� �½j�Þ
Tð�½j�Þ�1ðx� �½j�Þg

ð2�Þ
k
2ðdetð�½j�ÞÞ

1
2

;

with a covariance matrix �½j� 2 IRk�k and a mean vector

�½j� 2 IRk. Each class has an individual prior probability
P ð!jÞ with

P
j P ð!jÞ ¼ 1; cf. [7] for details. The maximum

a posteriori probability (MAP) decision for a pattern x

relies on a comparison of c functions pðxj!jÞP ð!jÞ=pðxÞ,
which simplify to the following quadratic discriminant
functions fj, j ¼ 1; . . . ; c:

fjðxÞ :¼ � 1

2
ðx� �½j�ÞTð�½j�Þ�1ðx� �½j�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼D2
M
ðx;f�½j�;�½j�gÞ

þ bj;

bj :¼ � 1

2
lnðdetð�½j�ÞÞ þ lnðP ð!jÞÞ:

ð9Þ

Given c classes, a new object x is assigned to the class !j if

fjðxÞ � fiðxÞ; for all i 6¼ j: ð10Þ

In case of ties, a deterministic rule is applied that, e.g.,

chooses minimal j that yields the maximum fjðxÞ. In
practice, covariance matrices, means, and prior probabilities
are frequently unknown and estimated from the training
data. In particular, the prior probabilities are usually

estimated as P ð!jÞ :¼ nj=n.
As discussed in [19], nonlinear classifiers may be

required in the kernel-induced feature space and Gaussian
distributions can be observed. However, the authors state

that, for an operator T , the term  ðxÞ; T ðxÞh iH cannot be
expressed by inner products; hence, cannot be kernelized. It
is actually possible to do so if T is the empirical covariance
operator, i.e., T ¼ C. This is our motivation for studying

quadratic classifiers based on Mahalanobis distances in the
implicit kernel feature space.

Hence, in order to describe KQD, we replace x by �ðxÞ on
the right-hand side of (9) and provide suitable approxima-
tions for the covariance operator and the mean. Most

importantly, we need to find the kernel formulation of the
square Mahalanobis distance. The decision rule fj in (10)
remains unchanged. The bias bj in (9) can be expressed by
operations on the kernel only, but it will get another

treatment in Section 4.4. This is done in order to avoid
numerical difficulties.
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We will now derive three approaches to kernel quadratic
discriminant denoted as: KQD-IC for Invertible Covariance
operators, KQD-RC for Regularized Covariance operators, and
KQD-FK for Full Kernel matrix. The methods differ in their
underlying assumptions, the computational complexity, and
the amount of the kernel-matrix information they rely on.
The first two techniques work in class-related subspaces,
while the third one is defined in the complete kernel-
induced space. KQD-IC and KQD-RC are computationally
more attractive than KQD-FK; hence, they are preferred in
the case of “clean” classes, i.e., when the classes are
discriminative based on the diagonal kernel submatrices.
This is the reason for considering multiple formulations.

Each of the above methods has a proper extension to
indefinite kernels yielding IKQD-IC, IKQD-RC, and IKQD-
FK, respectively. Different regularization methods are
indicated by additional subscripts and superscripts. In
particular, superscript þ indicates regularization by a
suitable addition, while superscript � indicates regulariza-
tion by a suitable removal (or simplification) step. All of the
methods are summarized in Table 2.

4.1 KQD-IC Based on Invertible Covariance
Operators

We assume an embedding of the training data by a
kernel-induced mapping � into a Hilbert space H. We
require here invertible (nonsingular) empirical class

covariance operators C in the kernel-induced space. This
limits our reasoning to a finite-dimensional H because the
image of an empirical covariance operator C based on n
samples has a finite dimension m < n. The following
considerations require identical classwise derivations.
Therefore, in order to simplify the notation, we concen-
trate on a single class of n elements � ¼ ½�ðx1Þ; . . . ; �ðxnÞ�
and drop the super/subscript j. Remember that the
empirical mean of � is �� :¼ 1

n�1n, the centered config-
uration is ~� :¼ �� ��1T

n ¼ �H, and the invertible (due to
our assumption) empirical covariance operator is defined as
C :¼ 1

n
~�~�T. We want to kernelize the empirical square

Mahalanobis distance D2
Mð�ðxÞ; f��; CgÞ given in (1). This

can be computed without performing the explicit mapping �
as we will now derive. Similar derivations for the subse-
quent methods are presented in Appendix A, which can be
found in the Computer Society Digital library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2008.290.

Since H is m-dimensional, with m < n, we may interpret
~� as an m� n matrix. Hence, it has a singular value
decomposition given by ~� ¼ USV T with orthogonal ma-
trices U 2 IRm�m and V 2 IRn�n, and a diagonal matrix
S2 IRm�n. By using the orthogonality of U and V , we have:
C ¼ 1

n
~�~�T ¼ 1

n USS
TUT and ~K ¼ ~�T ~� ¼ V STSV T, with an

invertible matrix SST2 IRm�m, but singular STS2 IRn�n. So,
C�1¼nUðSSTÞ�1UT and ~K�¼V ðSTSÞ�V T, where the super-
script � denotes here the pseudoinverse of a matrix. This
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KQD and IKQD Approaches for a c-Class Problem Based on Decision Functions fj, j ¼ 1; . . . ; c

The sample x is classified to !j iff fjðxÞ � fiðxÞ, for all i 6¼ j. The values bj are found by error minimization on the training set. For simplicity, we use �

to denote feature spaces and 	 to denote the conjugate-transpose for both Hilbert and Krein spaces. Recall that H ¼ In � 1
n1n1

T
n and

H ½j� ¼ Inj � 1
nj

1nj1
T
nj

. pinvðA;�Þ denotes a denoised pseudoinverse of the matrix A such that singular values whose magnitudes are smaller than �

are set to zero. ~K½j� ¼ U ½j�j�½j�jJ ½j�ðU ½j�ÞT stands for an eigendecomposition of ~K½j�, where �½j� ¼ diagð��½j�þ ; ��½j�� ;0Þ ¼ j�½j�jJ ½j� has pj positive and qj

negative eigenvalues, and J ½j� :¼ diagð1pj ;�1qj ;1nj�pj�qj Þ.
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Moore-Penrose inverse exists, is unique, and can be obtained
by a singular value decomposition of the matrix. (Specific
conditions for the existence of the Moore-Penrose inverse can
also be characterized for general operators in Krein spaces;
see [22] for details.) Multiplication of these equations with ~�
yields

1

n
C�1 ~� ¼ UðSSTÞ�1SV T;

~� ~K� ¼ USðSTSÞ�V T:

ð11Þ

Since S 2 IRm�n is diagonal and has m nonzero singular
values, both middle matrices SðSTSÞ� and ðSSTÞ�1S are
m� n diagonal matrices with inverted singular values on
the diagonal. Therefore, these matrices are identical and we
conclude that

~� ~K� ¼ 1

n
C�1 ~�: ð12Þ

Given an arbitrary centered vector ~�ðxÞ ¼ �ðxÞ � 1
n�1n, C

acts on ~�ðxÞ as follows:

C ~�ðxÞ ¼ 1

n
~�~�T �ðxÞ�1

n
�1n

� �

¼ 1

n
~�H kx �

1

n
K1n

� �
¼ 1

n
~�~kx;

where kx and ~kx are defined in (2). Since C is invertible, this
implies with (12) that

~�ðxÞ ¼ 1

n
C�1 ~�~kx ¼ ~� ~K�~kx: ð13Þ

Finally, the identities (12) and (13) allow us to express the
Mahalanobis distance in its kernelized form as

D2
Mð�ðxÞ; f��; CgÞ ¼ ~�ðxÞTC�1 ~�ðxÞ ¼ ~�ðxÞTC�1 ~� ~K�~kx

¼ n ~kT
x ð ~K�Þ2~kx:

For the jth class, the kernel Mahalanobis distance becomes:

D2
Mð�ðxÞ; f�½j�� ; C½j�gÞ ¼ njð~k½j�x Þ

Tðð ~K½j�Þ�Þ2~k½j�x ;

where ~K½j� ¼ H ½j�K½j�H ½j� and ~k½j�x ¼ H ½j�ðk½j�x � 1
nj
K½j�1njÞ. In a

c-class problem, a quadratic discriminant for the jth class is

obtained from (9) by inserting the estimated quantities as

fjðxÞ ¼ �
nj
2
ð~k½j�x Þ

Tðð ~K½j�Þ�Þ2~k½j�x þ bj: ð14Þ

Note that ~K½j� is singular as rankð ~K½j�Þ < nj due to kernel
centering. In addition, we can rely on the pseudoinverse of
~K½j� with a given tolerance �j > 0, such that ð ~K½j�Þ� :¼

pinvð ~K½j�; �jÞ. This means that singular values smaller than�j
are treated as 0. The use of the tolerance�j acts as a denoising
step. It is necessary in practical applications in order to
prevent noisy and unreliable estimates of ð ~K½j�Þ� when ~K½j�

yields many tiny eigenvalues. Alternatively, we can use the
inverse of the regularized kernel ~K

½j�
reg :¼ ~K½j�þ�jInj , where

�j > 0 is a small regularization constant. This leads to
alternative discriminant functions in the form of

fjðxÞ ¼ �
nj
2
ð~k½j�x Þ

T ð ~K½j�regÞ
�2~k½j�x þ bj: ð15Þ

We will denote method (15) by KQD� ICþ(KQD with
Invertible Covariance matrices), while method (14) is
denoted by KQD-IC�. Here, the superscript þ indicates
regularization by diagonal addition, while � indicates
removal of kernel matrix information by a thresholded
pseudoinverse.

4.1.1 IKQD-IC, Extension to Indefinite Kernels

We again assume nonsingular empirical class covariance
operators of data embedded into a finite-dimensional
Krein space K. One can show with a slightly refined
argumentation that the analogue of (12) also holds for the
indefinite case. Hence, we can express the kernel
Mahalanobis distance as before. We omit the derivation
here and refer to Appendix A.1, which can be found in
the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPAMI.2008.290, for details.
As a result, we obtain the following quadratic discrimi-
nants for the IKQD-IC�approach:

fjðxÞ ¼ �
nj
2
ð~k½j�x Þ

Tðð ~K½j�Þ�Þ2~k½j�x þ bj; ð16Þ

where ð ~K½j�Þ� :¼ pinvð ~K½j�; �jÞ is a denoised pseudoinverse of
~K½j�. It means that singular values whose magnitudes are

smaller than the chosen �j are set to zero. This formulation is

equivalent to (14) except for the definiteness of the kernel

matrix ~K½j�. The inverse of regularized ~K½j� can again be used

instead of the pseudoinverse ð ~K½j�Þ�. Remember that, when

we regularize ~K½j� by adding a constant �j to its diagonal,
~K½j� þ �jInj , we equivalently enlarge the original eigenvalues

of ~K½j� by �j. Here, ~K½j� is an indefinite kernel that has both

positive and negative eigenvalues. Regularization should

therefore be in agreement with this property. Let us consider

an eigendecomposition of ~K½j� as ~K½j� ¼ U ½j��½j�ðU ½j�ÞT, where

�½j� ¼ diagð��½j�þ ; ��½j�� ;0Þ is a diagonal matrix with pj positive, qj
negative, and ðnj�pj�qjÞ zero eigenvalues, while the

corresponding eigenvectors are stored in U ½j� ¼ ½U ½j�þ ;
U ½j�� ; U

½j�
0 �. By introducing J ½j� :¼ diagð1pj ;�1qj ;1nj�pj�qjÞ, we

imply that �½j� ¼ j�½j�jJ ½j�, where j�½j�j denotes the absolute

values of �½j�. We can then easily verify that ~K½j� ¼
U ½j�j�½j�jJ ½j�ðU ½j�ÞT. Hence, we will define ~K

½j�
reg :¼ U ½j��½j�reg

ðU ½j�ÞT, where �
½j�
reg :¼ �½j� þ �jJ ½j� and �j > 0 is a chosen

constant. This leads to the IKQD-ICþdiscriminants in the

following form:

fjðxÞ ¼ �
nj
2
ð~k½j�x Þ

Tð ~K½j�regÞ
�2~k½j�x þ bj: ð17Þ

These are equivalent to (15) when ~K½j� is a pd kernel matrix.

4.2 KQD-RC Based on Regularized
Covariance Operators

Since we deal with finite samples in a high-dimensional or
infinite dimensional Hilbert space H, the empirical covar-
iance operator may not be invertible. Regularization is
therefore necessary to prevent it from being singular. One
can show that an additive regularization of the covariance
operator C

½j�
reg :¼ 1

nj
~�½j�ð~�½j�ÞT þ 	2

j I is equivalent to an
additive regularization of the centered kernel matrix
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~K
½j�
reg :¼ ~K½j� þ nj	2

j Inj . This allows subsequent derivation of
the corresponding kernel Mahalanobis distance. See Ap-
pendix A.2, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2008.290, for details.

In our c-class problem, a quadratic discriminant for the

jth class described by f�½j�� ; C
½j�
regg is therefore defined as

fjðxÞ ¼ �
1

2	2
j

~k½j�xx � ð~k½j�x Þ
Tð ~K½j�regÞ

�1~k½j�x

� �
þ bj: ð18Þ

We refer to this method as KQD-RCþ (Kernel Quadratic

Discriminant with Regularized Covariance operators). There

is no need to use a pseudoinverse here as ~K
½j�
reg is invertible.

Note, instead, that nj	
2
j Inj is a dominant component in ~K

½j�
reg

for a sufficiently large nj. In such a case, ð ~K
½j�
regÞ�1 can be

approximated by 1
nj	

2
j

Inj . This leads to the following

simplified discriminants, denoted by KQD-RC�:

fjðxÞ ¼ �
1

2	2
j

~k½j�xx �
ð~k½j�x Þ

T~k½j�x
nj	2

j

 !
þ bj: ð19Þ

4.2.1 IKQD-RC, Extension to Indefinite Kernels

Similarly to the positive definite case, we deal with finite

samples in a high-dimensional or infinite-dimensional Krein

space K. So, regularization of the empirical covariance

operator is necessary to prevent it from being singular. Here,

however, the regularization should respect the indefinite

character of the space, i.e., be in agreement with the positive

and negative subspaces of K. The derivations in

Appendix A.3, which can be found in the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2008.290, are based on the choice
~K
½j�
reg :¼ ~K½j� þ nj	2

jU
½j�J ½j�ðU ½j�ÞT, where ~K½j� ¼ U ½j��½j�ðU ½j�ÞT

is the eigendecomposition of the centered kernel submatrix

for the jth class and J ½j� :¼ diagð1pj ;�1qj ;1nj�pj�qjÞ with pj
and qj being the number of positive and negative eigenvalues

of �½j�, respectively. This leads to the kernel Mahalanobis

distance and allows us to define a quadratic discriminant for

the jth class as

fjðxÞ ¼ �
1

2	2
j

~k½j�xx � ð~k½j�x Þ
Tð ~K½j�regÞ

�1~k½j�x

� �
þ bj: ð20Þ

Note that the above expression is the same as (18), except that
~K½j� is now an indefinite kernel matrix and ~K

½j�
reg is regularized

in agreement with the indefinite character of the kernel. We

will denote this method as IKQD-RCþ. If nj	
2
j is dominating

the terms in ~K, we can simplify this method further on by

approximating ~K
½j�
reg by nj	

2
jU
½j�J ½j�ðU ½j�ÞT. Hence, ð ~K

½j�
regÞ�1¼

1
nj	

2
j

U ½j�J ½j�ðU ½j�ÞT. This leads to the following IKQD-RC�

discriminants:

fjðxÞ ¼ �
1

2	2
j

~k½j�xx �
ð~k½j�x Þ

TU ½j�J ½j�ðU ½j�ÞT~k½j�x
nj	2

j

 !
þ bj: ð21Þ

Note that U ½j�J ½j�ðU ½j�ÞT is not a diagonal matrix, in contrast
to KQD-RC�for which J ½j� ¼ Inj holds.

4.3 KQD-FK Derived in the Complete Kernel Space

Both KQD approaches considered so far build discriminant
functions fj in class-related kernel feature subspaces. The
functions fj rely on the nj � nj class kernel matrices K½j�,
which are diagonal block submatrices of the kernel K. This
means that the between-class information expressed in the
relevant off-diagonal ðn�njÞ � nj submatrices of the
kernel K is unused in the Mahalanobis distances. Now,
we want to propose the third approach, in which each
discriminant function fj relies on both within-class and
between-class kernel information. As a result, it builds upon
kernel values from the objects of the jth class to all other
objects. We therefore define KQD in a complete kernel
space specified via kernel PCA (KPCA), as derived in
Appendix A.4, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2008.290.

Let ~K ¼ ½ ~K1; . . . ; ~Kc� be the centered kernel matrix, where

centering is global for all training objects. The column-blocks
~Kj 2 IRn�nj correspond to the kernel vectors of different

classes. The lower subscript is chosen to avoid confusion

with the classwise centered matrices ~K½j� 2 IRnj�nj from the

KQD-IC methods. The kernelized Mahalanobis distance is

based on the matrix ~~K½j� :¼ ~KjH
½j� ~KT

j 2 IRn�n. Note that ~Kj is

a submatrix of ~K, where ~K is centered as a whole, while ~~K½j�

is an inner product matrix that involves additional centering

of ~Kj with respect to the jth class. For this reason, we use the

double-tilde notation. Since rankð ~~K½j�Þ<nj by construction,

its inverse cannot be derived. In analogy to KQD-IC, we

either use a pseudoinverse of ~~K½j� or regularize it by

diagonal addition. This leads to the following discriminant

functions, denoted as KQD-FK�(Kernel Quadratic Discri-

minant in the Full Kernel space)

fjðxÞ :¼ �nj
2
ð~~k½j�x Þ

Tð ~~K
½j�Þ�~~k

½j�
x þ bj; ð22Þ

with ~~k
½j�
x :¼ ~kx � 1

nj
~Kj1nj . The KQD-FKþapproach is based

on ~~K
½j�
reg :¼ ~~K½j� þ �jIn, which leads to the following

discriminants:

fjðxÞ :¼ �nj
2
ð~~k½j�x Þ

Tð ~~K
½j�
regÞ
�1~~k

½j�
x þ bj: ð23Þ

4.3.1 IKQD-FK, Extension to Indefinite Kernels

We denote ~K ¼ ½ ~K1; . . . ; ~Kc� as the centered indefinite

kernel matrix for all training objects. The column-blocks

~Kj 2 IRn�nj describe kernel vectors of different classes. A

data representation obtained from indefinite kernel PCA

(IKPCA) [27] allows one to derive the kernel Mahalanobis

distance based on the double-centered matrix ~~K½j� :¼
~KjH

½j� ~KT
j 2 IRn�n as worked out in Appendix A.5, which

can be found in the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.

290. Again, rankð ~~K½j�Þ<nj by construction, so its inverse
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cannot be computed. We can either use a pseudoinverse

of ~~K½j� or regularize it appropriately. Note that indepen-

dent of the definiteness of ~K, ~~K
½j�

is always positive

semidefinite because it is an inner product matrix, i.e.,
~~K½j� ¼ ð ~KjH

½j�Þð ~KjH
½j�ÞT. Consequently, both pseudoinverse

of ~~K
½j�

and its regularization by diagonal addition work

identically to the positive definite case. This means that the

IKQD-FK� discriminants are described by (22), while the

IKQD-FKþ discriminants are expressed by (23). The

difference again only lies in the definiteness of the kernel.

The summary of all KQD approaches is presented in

Table 2.

4.4 Choice of Bias

It is possible to derive the bias bj in the discriminant function

fj of an MAP decision only by using operations on kernels.

For instance, we get bj ¼ � 1
2

Pl
i¼1 lnð�½j�i Þ þ lnðP ð!jÞÞ, where

�
½j�
i are nonzero eigenvalues of a nonsingular covariance

matrix C½j� in an l-dimensional space. This holds because

lnðdetðC½j�ÞÞ ¼ lnð
Ql

i¼1 �
½j�
i Þ ¼

Pl
i¼1 lnð�½j�i Þ. It is well known,

e.g., from KPCA, that �
½j�
i can be obtained as the l nonzero

eigenvalues of the scaled and centered kernel matrix 1
n

~K½j�,

cf. [33]. In particular, it is straightforward to show that the

eigenvalues �
½j�
i of C½j� are identical to the eigenvalues of

1
nj

~K½j� for i ¼ 1; . . . ; l :¼ rankð ~K½j�Þ. Similar expressions for bj

can also be derived for regularized covariance matrices.
Numerical problems, however, arise because a centered

kernel matrix has often a slowly decaying eigenvalue
spectrum. In order to take all nonzero eigenvalues into
account, one has to compute the logarithm of the
eigenvalue-product. This is numerically unstable if ~K½j�

has many small eigenvalues. The restriction to a fixed
number of eigenvalues is equivalent to the choice of
intrinsic dimension. A variation of this factor can lead to
large variations in the bias as the logarithms of small
eigenvalues become arbitrarily large in magnitude. In
addition to the instability of a proper estimation of intrinsic
dimension, the resulting (unreliable) bias bj turns out to
frequently dominate the Mahalanobis distance contribution
in the experimental computation of fj. As a result, it spoils
the predictability of the resulting classification rule. There-
fore, we apply another interpretation of the bias values bj as
in the traditional QDA. This leads to a stable and elegant
computation scheme for bj in the kernelized classifiers.

In the case of classwise normally distributed data, the
traditional QDA (with exact mean and covariance) is the
Bayes classifier [7]. In particular, no other choice of bias
values will result in a lower classification error than the
Bayes error. Therefore, the bias values of fj can equivalently
be defined as the ones that minimize the QDA prediction
error. Since the training error is a good surrogate for the
Bayes error in QDA for a large training set, we apply the
following procedure to determine bj on the training data.
For a two-class problem, say !i and !j, a greedy search can
be applied to determine the optimal estimate for the biases

bi and bj, or more precisely, for their difference bi � bj. This
difference is the only relevant quantity for the class
decisions, as an addition of a constant to all bias values
keeps the decisions unchanged. Having fixed one value bi,
only a finite number of values for the second bias bj need to
be tried to obtain the minimal training error for the two
classes. For a c-class problem, this can be applied in a
classwise manner which yields 1

2 cðc� 1Þ estimates �ij for
the differences bi�bj, j > i. The desired bias values b ¼
½bi�ci¼1 are found by solving a small least squares problem

min
b

Xc�1

i¼1

Xc
j¼iþ1

ðbi � bj ��ijÞ2:

4.5 Computational Complexity

Table 3 presents computational complexities of the KQD
approaches and some reference methods. The latter are
linear kernel classifiers, such as KFD and SVM, and
nonlinear ones, such as the kernel k-Nearest-Neighbor
(KNN) based on the kernel-induced distance d2ðx; x0Þ :¼
kðx; xÞ � 2kðx; x0Þ þ kðx0; x0Þ, and KPCA-QD, which is a
quadratic discriminant trained in a feature space obtained
from KPCA. Indefinite versions of these are identified by
the prefix “I” in the used abbreviations.

For simplicity, we assume a c-class problem with
n training samples such that class priors are equal and set
to nj :¼ n=c for all classes. The value 
 denotes the fraction
of support vectors of SVM, while p is the dimension of the
KPCA space. The test complexities of the KQD methods
rely on c evaluations of decision functions. These are either
matrix-vector multiplications of size nj for classwise
methods (except for KQD-RC�) of size n for full kernel
approaches, or merely vector inner products of the length nj
for KQD-RC�. This leads to the test complexities for a single
pattern reported in the right column of Table 3. The bias
derivation for the classifiers requires cn Mahalanobis
distances, equal to n times the test-complexity. For these
values, the bias-difference estimates �ij are computed in
Oðc2n2

j Þ ¼ Oðn2Þ and the solution of a least square problem
finds the desired bias values in Oðc3Þ, as described in
Section 4.4. The computation of c matrix (pseudo)inverses
for the decision functions can be realized in either Oðcn3

j Þ or
Oðcn3Þ, depending on the size of the involved matrices.
Again, KQD-RC� is a special case as only auxiliary vectors
need to be computed here in Oðcn2

j Þ. This gives the training
complexities as shown in the left column of Table 3. Note
that centering of a kernel vector can be realized in OðnjÞ or
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OðnÞ depending on the vector length, so it does not
influence the estimated values. Reference classifiers are
based on matrix inverses of the complexity Oðn3Þ for KFD,
eigendecomposition complexity Oðn3Þ for KPCA-QD, and
empirical SVM complexity scaling with Oðn2Þ (based on
optimized training routines; otherwise, the complexity of
Oðn�Þ, � � 3, would be realistic for general QP solvers).

Observe that the KQD-IC and KQD-RC approaches are
clearly beneficial in the case of multiple classes as the
dominating n3-term is mainly inversely proportional to c.
The more expensive KQD-FK approaches still have identical
training complexity as, e.g., KFD. As we have quadratic
classifiers, the test complexity is based on nonsparse matrix
multiplications; hence, asymptotically more expensive than
in case of linear kernel classifiers such as SVM and KFD. The
KQD-RC� approach is clearly advantageous over the
remaining classifiers due to its simple classification rule.

4.6 Related Methods

Various nonlinear kernel techniques, including the kernel
Mahalanobis distance, are considered in [32]. As such, the
pure kernel Mahalanobis distance (KMD) is used there in a
classwise manner. This is analogous to our KQD-IC�

approach relying on the pseudoinverse of the class-related
kernel submatrices, but without the use of bias values. The
authors report a good performance of KMD on the RBF
kernels defined for some standard vectorial data from the
Machine Learning Repository [17].

The assumption of Gaussian distributions in kernel
spaces suggests a relation to Gaussian processes, i.e.,
collections of random variables whose any finite number
has a joint Gaussian distribution. Indeed, there is an
interesting link between KQD-RCþ and Gaussian process
regression [29]. A Gaussian process is used in Machine
Learning as a prior probability distribution over functions
and used for Bayesian inference. In our case, these functions
are defined in a centered kernel-induced space as
fðxÞ ¼ wT�ðxÞ. In practice, we also assume additive iid
Gaussian noise � with variance �2

n, which leads to the
relation y ¼ fðxÞþ�. As a result, fðxÞ is a Gaussian process
with mean mðxÞ ¼ 0 and covariance kðx; x0Þ. Given the
training data fxi; yigni¼1, a centered kernel matrix ~K is the
covariance matrix of the corresponding Gaussian process.
The joint distribution of the observed target values and the
function value fx at a test point x is

y
fx

	 


 N 0;

~K þ �2
nIn

~kx
~kx ~kxx

	 
� �
:

The Gaussian posterior distribution pðfxjXtr;y; xÞ has the

mean 	fx ¼ ~kT
x ð ~K þ �2

nInÞ
�1y and the variance varðfxÞ ¼

~kxx � ~kT
x ð ~K þ �2

nInÞ
�1~kx (see [29] for details). Hence, in

particular, varðfxÞ with �2
n ¼ n	2

n is equivalent to the

kernel Mahalanobis distance derived for KQD-RCþ, i.e.,

when the covariance operator is regularized in the kernel-

induced space.
Kernel discriminant analysis is more specifically dis-

cussed in [19]. In particular, the authors present a statistical
support for KFD and show an approach of “kernel Fisher’s
quadratic discriminant analysis.” This method uses a vector-
ial representation of patterns by the kernel values kx and

performs QDA on them. Our approaches are quite different
and do not restrict the kernels to be Gaussian or
Epanechnikov as considered in [19].

We also want to mention the recent paper of Wang et al.
[41] which presents a method of kernel quadratic discrimi-
nant analysis for small sample size problems. This proposal
relies on supervised dimension reduction in a kernel-
induced space followed by discriminant analysis. Given
c classes, the first step is realized by a kernel Fisher mapping
to at most a ðc� 1Þ-dimensional space in which a specifically
regularized quadratic discriminant is found. As such, this
procedure is not a pure extension of the traditional quadratic
discriminant, as we develop it in this paper, but involves an
intermediate step of a kernel linear discriminant.

Finally, we want to emphasize that kernel methods are
mostly nonlinear extensions of linear algorithms and one
might ask whether KQD techniques can be interpreted as
linear classification in an extended kernel-induced space
with a suitably chosen kernel. The answer is negative,
which can be most obviously seen in the KQD-RC
approaches, as the diagonal kernel values kðx; xÞ are
required. No linear classifier in kernel space could make
use of these for classification.

5 EXPERIMENTS AND RESULTS

In our experimental study, we focus on various classifica-
tion problems in order to compare the performance of the
KQD and IKQD methods to relevant reference classifiers,
such as SVM, KFD, KNN, and KPCA-QD as introduced in
Section 4.5. The reference methods are also applicable to
indefinite kernels, cf. [11], [27], and Section 3.1. Conse-
quently, the reference methods will be denoted as ISVM,
IKFD, IKNN and IKPCA-QD in the case of indefinite kernel
matrices. All experiments rely on the MATLAB package
PRtools41 [8]. SVM/ISVM is trained by using MATLAB
inherent optimization routines for small data sets and
LIBSVM [3] for large data sets. In particular, the latter
software is guaranteed to converge for indefinite kernels.

5.1 Positive Definite Kernel on 2D Data

Let us consider an artificial data set as illustrated in Fig. 1.
The classes are generated by two normal distributions,
slightly transformed in a nonlinear way such that the
resulting distributions are no longer Gaussian. Each class
in the training set is represented by 50 samples. We
choose the Gaussian Radial Basis Function (RBF),
kðx; x0Þ ¼ expð�jx� x0j2=s2Þ, as the kernel. The same
regularization parameters are used for all classes, i.e.,
	2
j :¼ 	2; �j :¼ �, and we perform 10-fold cross-validation

to determine the following parameters: � 2 ½10�10; 10�3� for
the KQD-IC and KQD-FK methods, 	2 2 ½10�3; 104� for the
KQD-RC approaches, � 2 ½10�6; 101� for KFD, C 2
½10�1; 106� for SVM, and � 2 ½10�7; 100� for KPCA-QD,
where each parameter interval is discretized by 15 values
on a logarithmic scale. The value k 2 f1; . . . ; 15g is
optimized for KNN. The kernel parameter is included in
the cross-validation search by 15 values for s spanning the
interval ½0:1; 500�. Classification results are found on
independently drawn test sets of 500þ 500 examples.

Example KQD-classifiers are depicted in Fig. 1a. Fig. 1b
illustrates the reference classifiers: KFD, SVM, KPCA-QD,
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and KNN. The training samples are marked by squares, and
additionally, a random subset of 200 test samples is plotted.
Note that the cross-validated s are reflected in the
variability of the decision lines, e.g., higher variability or
lower s for KQD-RCþ and KQD-RC�. The KNN rule is, as
expected, highly nonlinear.

To analyze classification performance, we determine the
overall mean and standard deviation of the test errors
determined by (s; C; �; 	; k) cross-validated classifiers in
10 runs. The corresponding errors are reported in the left
part of Table 4. The KQD-IC and KQD-FK nonlinear kernel
classifiers seem to perform much better than the SVM and
KFD, which are linear classifiers in H. But they are also
superior to other nonlinear kernel classifiers, namely KNN
and KPCA-QD.

5.2 Indefinite Kernel on 2D Data

We consider an artificial 4� 4 checkerboard data based on a
uniform distribution on ½�2; 2�2� IR2, cf. Fig. 2. We first
define the base kernel kðx; x0Þ :¼ expð�dðx; x0Þ4=s2Þ by using
dðx; x0Þ :¼

P
i¼1;2 jxi�x0ij

2. Practical source of indefiniteness
in kernels can be caused by incorporation of prior knowl-
edge about invariance into kernels, deriving kernels from
distances, or combining kernels [26], [12]. We observe that
the checkerboard distribution is invariant with respect to
the point reflection �ðxÞ :¼ �x through the origin. We
incorporate this knowledge by combining two base kernels

into a new one: 	kðx; x0Þ :¼ maxfkðx; x0Þ; kðx; �ðx0ÞÞg, which
can alternatively be motivated by invariant distances [13].
We choose these kernel settings because of significant
indefiniteness. Hence, the example is suitable for demon-
strating the behavior of the methods for indefinite kernels.
Note that this kernel is symmetric, as kðx; �ðx0ÞÞ ¼
kð�ðxÞ; x0Þ for the RBF-kernel.

We follow the same experimental setup as in Section 5.1,
i.e., a training set of 50þ 50 elements is drawn, kernel
width and classifier parameters are found via 10-fold
cross-validation. Test error rates are determined on an
independent test set of 500þ 500 samples. The ranges of s
and � are slightly shifted as compared to the previous
section.

Example classifiers are illustrated in Fig. 2. One can
clearly observe the perfect point symmetry of all classifiers
due to the use of an invariant kernel, even though the
training set is asymmetric. To maintain the clarity of
presentation, the test examples are not plotted.

To assess the statistical significance, we repeat the above
data-drawing, cross-validation, and test-error determina-
tion 10 times. The resulting average test errors are given in
the right column of Table 4 in the previous section. We see
that all IKQD approaches outperform both ISVM and
IKNN; IKQD-IC�is even slightly superior to IKPCA-QD
and IKFD.

In the above experiments, the kernel parameter s was
cross-validated, which is necessary for evaluating the
classification performance. Still, further interesting observa-
tions can be made by fixing s and performing cross-
validation over the remaining parameters. By this, the
inherent feature-space representation of the data is fixed,
which allows investigations of indefiniteness. Further
preferences of s of the different classifiers can be found.

These results are presented in Table 5. In addition to the
10-fold averaged test errors, we assess some measures of
indefiniteness of the resulting kernel matrices. First, we
determine the signature ðp; qÞ of the kernel matrix, defining
the dimensions p; q 2 IN of positive and negative subspaces,
respectively. It results from an embedding of the training
data into a finite-dimensional Krein space K. Further, we
provide an index of indefiniteness, rneg :¼ð

P
�i<0 j�ijÞ=

ð
P

i j�ijÞ, the ratio of negative variance to overall variance
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Fig. 1. Classifiers on 2D toy data based on the Gaussian RBF-kernel. The classifier parameters are determined via cross-validation. (a) Results for

all KQD methods. (b) Results for the reference methods.

TABLE 4
Average Classification Errors (%) for

Positive Definite and Indefinite 2D Data Sets

Numbers in parenthesis denote standard deviations.
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measured by the sums of absolute eigenvalues �i of K, and
the squared distance of the class means k�½1�� � �½2�� k

2
K.

Concerning indefiniteness, we note that the fraction of
negative energy is the highest in the middle range of s and is
decreasing toward both lower and higher values. This is
expected because kernel matrices converge to either In for
s! 0 or to the matrix 1n1

T
n for s!1, which are both

positive semidefinite. Note that the square distance between
class means in the embedded Krein space may by negative
for some s. This gives rise to difficult separation with
indefinite SVM [11]. Indeed, ISVM performs badly in these
cases. We can observe that the IKQD-RC approaches seem to
favor smaller values of s, whereas the IKQD-IC classifiers are
better for larger s. The IKQD-FK approaches work accep-
table over the whole range of s. KNN, despite of being a
kernel classifier, is theoretically independent of the choice of
s for the RBF-kernel. However, due to differing randomiza-
tion seeds and numerical inaccuracies, the numbers in the
table are slightly varying. Similar observations can be made
for the positive definite data set of the previous section.

5.3 Real-World Kernel Data

We now consider both two-class and multiclass problems,
ranging from positive definite kernels, slightly indefinite
kernels to strongly indefinite kernels, and covering equally

balanced as well as unbalanced class sizes. We compare the
performance of the IKQD methods to the reference classifiers.

The data are defined either by a symmetric dissimilarity

function dðx; x0Þ or symmetric similarity function sðx; x0Þ,
designed or optimized for the given task. Examples of such

measures are edit distance, variants of Hausdorff distances,

compression distance, structural similarity, or shape match-

ing similarity. These pairwise functions allows us to define

suitable kernels by kðx; x0Þ :¼ �ðdðx; x0ÞÞ2 or kðx; x0Þ :¼
sðx; x0Þ after appropriate linear scaling. The scaling is done

such that all dissimilarities are divided by the average

dissimilarity in the training set, or by the average self-

similarity if we deal with similarity data. Such a scaling is

only important for practical reasons in order to use identical

ranges of cross-validated parameters for different data sets.
The centered training kernel matrix ~K obtained from a

dissimilarity function is positive definite only if the

dissimilarity matrix D :¼ ðdðxi; xjÞÞni;j¼1 is isometrically

embedabble into a euclidean space [10], [26]. Since this

does not often occur for optimized proximities, we will

mostly encounter indefinite kernels. Consequently, we use

the indefinite notation throughout this section for all the

IKQD techniques and reference classifiers.
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Fig. 2. Classifiers on 2D checkerboard data based on an invariant and indefinite Gaussian RBF-kernel. The classifier parameters are determined via

cross-validation. (a) Results for all IKQD methods. (b) Results for the reference methods.

TABLE 5
Indices of Indefiniteness and Average Classification Errors [in Percent] for Different Kernel-Based Classifiers

Based on the Invariant Gaussian RBF Kernel for Checkerboard Data The kernel parameter s Varies

Averaging is performed over 10 data drawings.
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The data sets are described in Appendix B, which can

be found in the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TPA-
MI.2008.290, while kernel matrices are briefly characterized
in Table 4. Note that the indefiniteness indices rneg and ðp; qÞ
are derived on the centered kernels (as the IKQD and IKFD
methods rely on either global or classwise centering).

We run holdout experiments in which the complete data
set is split into the training and test kernel matrices such
that the specified �-fraction is used for training (see
Table 6). We do not set a fixed � because the data sets
have variable sizes while we want to focus on small-size
and moderate-size problems (due to time complexity as
well). In each run, parameters of all classifiers are
determined by 10-fold cross-validation. Here, the classwise
regularization parameters are again kept identical for all
classes, i.e., �j :¼ � and 	2

j :¼ 	2. The following parameter
ranges are considered: �2½10�6; 0:5� for IKFD, IKQD-ICþ,

and IKQD-FKþ, �2½10�8; 0:5� for IKPCA-QD, IKQD-IC�,

and IKQD� FK�, 	22½10�6; 2� for the IKQD-RC ap-

proaches, and C2½10�1; 108� for ISVM. The total number

of investigated values is 11-13. For IKNN, the value k2
f1; 2; . . . ; 45g is optimized. IKPCA-QD has two parameters:

the amount of preserved variance pvar in the IKPCA and the

regularization � of QDA in the IKPCA space. We set pvar ¼
0:8 in all experiments as IKPCA usually gives very long

eigenvalue tails which are not very informative. The
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TABLE 6
Characteristics of Real-World Kernel Data � Is the Fraction

of Data Used for Training in the Holdout Experiments

The indices of indefiniteness of the kernel, rneg 2 ½0; 1� and ðp; qÞ, are
averaged over 25 runs.

TABLE 7
Average Classification Errors (%) for Positive-Definite and Indefinite Kernel Data Numbers

in Parentheses Denote Standard Deviations

Best IKQD and reference classifier are highlighted in each column.
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complete procedure is repeated 25 times for all classifiers

and the results are averaged out.
Table 7 shows average classification errors and standard-

deviations for the IKQD classifiers and reference methods.
Problems with nearly pd kernels are: Nist38-EU (pd), Heart
(pd), Protein, Prodom, and Files. Problems with moderately
indefinite kernels are: Mucosa, Chromo-ABS, Cat-cortex,
News-COR, Chromo-DIF, and Nist38-MH, while the remain-
ing problems deal with highly indefinite kernels. The
following observations can be made for the IKQD methods:

. All IKQD-	þ approaches perform usually similarly
or better than their corresponding IKQD-	� variants.

. IKQD-ICþ and IKQD-IC� frequently perform badly.

. Usually, one of the best methods is either IKQD-RCþ

or IKQD-FKþ.

Among the reference methods, we see that:

. ISVM performs badly for multiclass indefinite kernel
problems and is mostly outperformed by IKFD or
IKNN.

. IKFD works, in general, very well with indefinite
kernels, which is an empirical support in addition to
its sound geometrical motivation.

. There is no clear favorite among the reference
classifiers IKFD, ISVM, IKNN, and IKPCA-QD.

By comparing our IKQD approaches and the reference
classifiers, we conclude that:

. Overall, in half of the cases, a reference method gives
better performance than all the IKQD methods.

. ISVM is outperformed by IKQD-FKþ in all cases
except for the Heart and Mucosa data.

. IKNN is outperformed by IKQD-FKþ in all but the
Chicken-	, Pen-	 and Chromo-	 examples.

. IKQD-FKþ outperforms IKPCA-QD for a small
number of classes c. IKPCA-QD tends to work better
than IKQD-FKþ if c � 10.

. IKFD achieves better results than IKQD-RCþ in 9 out
of the 18 data sets and outperforms IKQD-FKþ in
8 cases.

. ISVM is usually significantly outperformed by either
IKQD-RCþ or IKQD-FKþ.

These findings are also supported by further experiments
on positive definite kernels, resulting from vectorial data
with Gaussian RBF kernel, which we omit here.

6 SUMMARY AND CONCLUSIONS

In this paper, we have presented different formulations for
kernel quadratic discriminants. In particular, we make a
distinction between approaches based on invertible covar-
iance operators KQD-IC, regularized covariance operators
KQD-RC, and full kernel space approaches KQD-FK. All
methods rely on kernel Mahalanobis distances, appropri-
ately regularized in kernel-induced feature spaces. They
differ in the amount of kernel information they rely on.
When ignoring the computation of the bias bj, the KQD-IC
and KQD-RC approaches do not use the between-class
kernel submatrices. As a result, lower than expected
recognition accuracy may be achieved as the methods can

only work well for the classes with “clean” separation (as,
e.g., in the Nist38-EU case). This means that the between-
class kernel values are much smaller than the within-class
kernel values. In contrast, the KQD-FK methods rely on the
full kernel information for the computation of the Mahala-
nobis distance. In addition to the test-versus-train matrix,
the KQD-RC approaches require the diagonal kernel values
kðx; xÞ. A formal limitation of KQD-IC� and IKQD-IC� is
that the assumption of invertible covariance operator is
made for the derivation, though not required, and hence,
not checked for the final classifier evaluation. Still a failure
of this assumption on certain data sets may lead to a loss of
recognition accuracy.

Concerning computation complexities, the KQD-IC and
KQD-RC approaches have the conceptual advantage of a
reduced test time for large number of classes. The
dominating complexity contributions are inversely growing
with the number of classes. However, except for KQD-RC�,
the classification time of the methods grows quadratically
with n in contrast to linear kernel methods. Future work
will aim at acceleration, e.g., by sparse matrix approxima-
tions for the inverses of covariance matrices or training
subset selection. KQD is a true multiclass approach, not
depending on series of binary decisions. As the computa-
tion schemes are identical for all classes, the decisions
functions can easily be parallelized.

The methods are genuinely nonlinear, which is concep-
tually wider and may be favorable in comparison to kernel
methods obtained from linear algorithms. The methods
have natural extensions to indefinite kernels. In particular,
we present a derivation of indefinite KFD, which has a
geometric interpretation in Krein spaces. We also propose
extensions of all discussed KQD discriminants to indefinite
kernels. All these methods have a sound mathematical
motivation; hence, they extend the class of kernel methods
to the methods that work with general, both positive and
indefinite, kernels.

Experimentally, IKQD-RCþ and IKQD-FKþ seem to be
favorable among the IKQD approaches. The latter method
seems the most beneficial, but is computationally more
expensive due to the processing of full kernel matrix for
each discriminant. The IKQD-ICþ and IKQD-IC� techni-
ques do not perform well in some cases. In addition to the
conceptional arguments given earlier, there may be numer-
ical difficulties caused by the use of the second power of
(pseudo)-inverses of the class-related diagonal kernel
submatrices (see (17) and (16)). If there is insufficient
discriminative information in the class-related kernel
submatrix, it will be enhanced in this process. IKFD is
frequently similar or better than the IKQD approaches, but
there are also many situations in which IKQD-RCþ or
IKQD-FKþ are strong winners. This especially occurs for
suboptimally designed dissimilarity measures, as encoun-
tered in the Nist38-MH, Poly-H, Chicken-15, and Chromo-DIF
cases, or for imbalanced data such as the Cat-cortex or News-
COR cases. In general, the IKQD-RC and IKQD-FK methods
mostly outperform ISVM, which becomes apparent with a
growing indefiniteness of the kernel. The best IKQD
method, IKQD-FKþ, frequently outperforms the reference
classifiers IKNN and IKPCA-QD.
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In summary, we provide a comprehensive approach to

kernel quadratic discriminant analysis based on the suitably

regularized kernel Mahalanobis distance in either class-

related or full kernel-induced subspaces. The bias terms in

the derived discriminant functions are currently found on

the training set such that they minimize the training error.

This is done in order to avoid numerical problems that arise

if we want to express them in analogy to the quadratic

discriminant in a Euclidean space, i.e., as the logarithms of

the eigenvalue-product of the scaled kernel matrices. There

is also some room left for a possibly better and/or more

reliable estimation of the bias terms. More research is also

needed to clearly identify conditions under which the

nonlinear KQD/IKQD methods will outperform the linear

KFD/IKFD and SVM/ISVM techniques.
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