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Abstract— A decode-and-forward LDPC-based coding and de-
coding scheme is proposed and applied to the BAWGN single-
relay channel. The source broadcasts information to both the
relay and the destination. The relay is able to simultaneously
receive and transmit. Both the relay and the destination apply
successive iterative decoding using belief propagation. In the
proposed scheme, the LDPC code used by the source and the
LDPC code used by the relay are designed independently of each
other. Optimality properties of this approach are established via
information-theoretic upper and lower bounds.

Asymptotic analysis shows that the performance of the pro-
posed scheme can be as close as 0.02 dB away from the theoretical
limit for any decode-and-forward scheme, and simulation results
show that its performance for a block code of length 2

14 can be
within 0.65 dB away from the same limit with a corresponding
bit error probability of ∼ 10

−6.

I. INTRODUCTION

Iterative decoding has recently attracted a lot of interest
due to its ability to approach the ultimate channel capacity of
various single-user channels. It turns out that the Low-Density
Parity-Check codes (LDPC codes) introduced by Gallager in
[1] are among the best such codes. Efficient tools to analyze
LDPC codes are developed in [2] and [3], as well as efficient
encoding. It has also been shown in [4] that LDPC codes
approach capacity on the multiple access channel.

In a wireless multiple access network, each node has to
broadcast the data in the network. Consequently, other trans-
mitters have access to the data and can possibly collaborate
to convey the information to the base station. The simplest
network model that enables collaboration is the relay channel.
Two important coding theorems for the single relay channel
were established in [5]. Several coding strategies that exploit
terminal cooperation for relay networks were developed in [6].

Unfortunately, the capacity of the general relay channel
is still an open problem. Nevertheless, an upper bound and
several achievable lower bounds are known. Driven by the
practical interest of collaborative communication, new re-
search challenges consist in achieving the theoretical lower
bounds via efficient and practical coding schemes. As far as we
know, only [7] and [8] have addressed this issue by studying
the performance of a turbo-based scheme for the relay channel.
A particular LDPC-based scheme was analyzed in [9], where
the codes used by the source and the relay have the same rate.

When the source and relay power budgets are fixed (no power
allocation), this generally incurs a rate penalty, but it enables
an interesting mode of operation at the relay, namely simply
to transmit the codeword that is closest to the received signal.
A more general discussion of LDPC codes for Gaussian relay
channels appears in [10].

In this work, we consider the Binary input Additive White
Gaussian Noise (BAWGN) single-relay channel and propose
a decode-and-forward strategy in which the LDPC codes
used by the source and the relay, respectively, are designed
independently of each other. While this generally incurs a rate
penalty, there is an interesting regime where it is optimal. We
characterize this regime using information-theoretic bounds.
We then evaluate our scheme’s performance for both infinite
and finite length, and compare its achievable rate to the
corresponding information-theoretical bounds developed in
[5].

II. PRELIMINARIES

A. Model and Problem Statement
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Fig. 1. BAWGN relay channel.

The BAWGN relay channel is depicted in Fig. 1. The source
sends X to the relay and the destination at the same time. The
relay receives Y1 and sends X1, which depends only on the
past values of Y1, to the destination which receives Y . We
consider a BPSK modulation for the inputs with two power
constraints EX2 ≤ P and EX2

1 ≤ P1, i.e., X ∈ {±√
P} and

X1 ∈ {±√
P1}. Let Z1 ∼ N (0, σ2

1) be the noise added at the
relay and Z ∼ N (0, σ2) the noise added at the destination.

In order to gain insight, and to have a simple parametriza-
tion, we will consider in the following the geometrically
inspired example depicted in Fig. 2, in which the relay is
on a line between the source and the destination. We fix the
distance between the source and the destination to one and we
let d be the distance between the source and the relay. We only
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consider the case in which 0 ≤ d ≤ 1. Moreover we assume
that the two receivers are identical and thus Z and Z1 have
the same variance σ2. In a similar fashion, we assume that
the transmitter at the source and the transmitter at the relay
have the same power constraint, i.e., P = P1. In this case, the
received signals can be expressed as:

Y1 =
1

d
α
2

X + Z1 (1)

Y = X +
1

(1 − d)
α
2

X1 + Z (2)

where α is a fixed and assumed to be known attenuation
exponent, typically around two or three.

S R D

d

1

Fig. 2. Relay on a line between the source and the destination.

The channel is assumed to be memoryless and the transition
density is thus

p(y, y1|x, x1) =
1

2πσ2
e−

0
@y−x− 1

(1−d)
α
2

x1

1
A2

+

 
y1− 1

d
α
2

x

!2

2σ2 . (3)

Finally, let us define the signal-to-noise ratio (SNR) to be P
σ2

in dB.

B. Capacity Upper Bound

The following upper bound on the capacity for the relay
channel is a particular case of the more general max-flow min-
cut theorem in [11, Theorem 14.10.1].

Proposition 1: The capacity of the relay channel is upper
bounded by:

C ≤ sup
p(x,x1)

min{I(X, X1; Y ), I(X ; Y, Y1|X1)} (4)

C. Capacity Lower Bound

Cover and El Gamal proposed in [5, Theorem 1] the decode-
and-forward strategy which provides a lower bound to the
capacity.

Proposition 2: The capacity of the relay channel is lower-
bounded by:

C ≥ RDF � sup
p(x,x1)

min{I(X, X1; Y ), I(X ; Y1|X1)} (5)

Remark 1: We can even show that for any strategy which
allows the relay to decode completely the message sent by the
source, the maximum achievable rate is RDF.

Two naive lower bounds can be found by only considering
either the link between the source and the destination or the
way trough the relay.

If the relay is not used, we obtain the lower bound:

C ≥ max
p(x)

max
x1

I(X ; Y |X1 = x1) (6)

that we call the point-to-point lower bound.

If we consider that the direct channel is ignored, i.e., the
source sends information to the relay, and the relay to the
destination, but the destination no longer attempts to decode
anything that comes directly from the source, we obtain:

C ≥ max
p(x)p(x1)

min{I(X ; Y1), I(X1; Y )}.1 (7)

We will call this lower bound the two-hop lower bound.

III. BOUNDS EVALUATION FOR THE BAWGN RELAY

CHANNEL

In the BAWGN relay channel case, we have to maximize (4)
and (5) over the joint input distribution pX,X1(x, x1) which
can be parametrized as follows

X1\X 1 −1

1 α β

−1 γ 1 − α − β − γ

(8)

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 − α, 0 ≤ γ ≤ 1 − α − β.
Lemma 1: A joint distribution pX,X1(x, x1) which maxi-

mizes the upper bound (4) on the capacity and RDF (5) is of
the form

X1\X 1 −1

1 1
2

ρ 1
2
(1 − ρ)

−1 1
2
(1 − ρ) 1

2
ρ

(9)

where 0 ≤ ρ ≤ 0.5.
The proof can be found in [12].

Let us examine more carefully the lower bound RDF given
by (5). The first mutual information I(X, X1; Y ) is imposed
by the destination and the second one I(X ; Y1|X1) by the
relay. It is thus interesting to compare the behavior of these
two mutual informations when we vary the parameters ρ (the
dependence between X and X1), d and σ, in order to know
where the bottleneck of the scheme is in a given situation.
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Fig. 3. Mutual informations I(X, X1; Y ) and I(X; Y |X1) as a function
of ρ for a) d = 0.25 and b) d = 0.45.

As we can see in Fig. 3, for ρ = 0, i.e., X = X1, we
have I(X, X1; Y ) ≥ I(X ; Y1|X1) = 0. Moreover these two
mutual informations are concave in ρ and I(X ; Y1|X1) is even
symmetric, centered in ρ = 0.5. We can identify two regimes:

1) When the relay is sufficiently close to the source, there
will be a maximizing ρ�, with 0 ≤ ρ� < 0.5 (Fig. 3.a).

2) When the relay is sufficiently far from the source (this
increases I(X, X1; Y ) and decreases I(X ; Y1|X1)), the
two curves no longer intersect in the interval 0 ≤

1It is more relevant to only consider the case in which the two inputs
X and X1 are independent. Indeed, if we put effort in designing a scheme
with dependent codes, there is no reason not to use the decode-and-forward
strategy, since it cannot decrease the rate.
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Fig. 4. Bounds for the BAWGN relay channel: α = 2, SNR= 0 dB.

ρ < 0.5 (Fig. 3.b). Since I(X ; Y1|X1) is concave and
symmetric, the maximum is thus simply

RDF = Iρ=0.5(X ; Y1|X1) = I(X ; Y1). (10)

Since ρ = 0.5 means X ⊥ X1, we will call this the
independent codes regime. It is important to note that in
this regime, the relay is the only bottleneck.

Let us call the cut-off point (dco), the distance corresponding
to the limit case in which RDF = Iρ=0.5(X ; Y1|X1) =
Iρ=0.5(X, X1; Y ).

Now it is interesting to compare the upper bound (4) and
RDF (5). These two bounds are plotted in Fig. 4 versus the
distance d for SNR = 0 dB and α = 2. We can see that when
the relay is close to the source, the two bounds are almost
identical and thus they are both very tight and close to the
capacity. When the relay moves from the cut-off point dco to
the destination, we see that the gap between the two bounds
increases and thus RDF is less and less tight.2

The two naive lower bounds of Section II-C are labeled Rl1

for the point-to-point one and Rl2 for the two-hop one.
As we will see in the following, we are particularly in-

terested in the case in which we restrain ourselves to using
independent codes. So, we have also plotted the maximum
achievable rate of the decode-and-forward strategy (RDFI) for
this particular case.

Finally, Fig. 5 shows the cut-off point dco as a function of
the SNR. It also depicts the other limit distance, dl, above
which RDF = Rl2.

Note that for high SNR, one would select a larger modula-
tion constellation, rather than binary inputs. This is discussed
in part in [10].
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Fig. 5. Evolution of dco and dl as a function of the SNR for α = 2.

2We can say that because we know other tighter lower bounds in this
regime. See [6].

IV. DECODE-AND-FORWARD STRATEGY

The strategy that we used in this paper is based on the
decode-and-forward one proposed by Cover and El Gamal in
[5] when we restrain it to independent inputs, i.e., X ⊥ X1.
Let W be the set of possible messages with |W| = 2nR and
S the set of bins with |S| = 2nR1 . We partition W into S. To
that end, each w ∈ W is assigned uniformly and independently
to a bin s ∈ S. Let wi be the message picked by the source at
time i, by convention we say that wi ∈ si+1. The procedure
depicted in Table I works as follows:

In block i: the source picks a message wi ∈ W and
computes the corresponding codeword x(wi).

Upon receiving y1(i), the relay computes its estimate x(w̃i)
and thus s̃i+1 such that x(w̃i) ∈ s̃i+1. Given its previous
estimate s̃i, it computes and sends x1(s̃i).

Upon receiving y(i), the destination computes the estimate
ŝi (this can be done correctly if n → ∞ and R1 < I(X1; Y )).

In block i+1: same things happen at the source and at the
relay. Upon receiving y(i + 1), the destination computes the
estimate ŝi+1 and uses ŝi, ŝi+1 and y(i) in order to compute
the estimate x̂(wi).

TABLE I

BLOCK MARKOV ENCODING AND DECODE-AND-FORWARD STRATEGY.

Block 1 2 3 · · · B · · ·
X x(w1) x(w2) x(w3) · · · x(wB) · · ·
Y1 w̃1, s̃2 w̃2, s̃3 w̃3, s̃4 · · · w̃B , s̃B+1 · · ·
X1 x1(φ) x1(s̃2) x1(s̃3) · · · x1(s̃B) · · ·
Y φ ŝ2, ŵ1 ŝ3, ŵ2 · · · ŝB, ŵB−1 · · ·

Let R be the rate of the code used by the source. In the
original decode-and-forward strategy, we send B − 1 blocks
of information over B blocks of transmission. Moreover, two
consecutive codewords are selected in a dependent fashion at
the source. This implies two drawbacks:

1) If the relay makes a decoding error in block i, the
destination will be unable to correctly decode blocks
i to B − 1.

2) The actual rate of the original strategy is R′ = B−1
B

R.
Thus, to have R′ close to R, we must choose B large
and this is not desired because of point 1.

Our designed independent input scheme avoids these two
problems. Indeed, since the source selects independently the
codewords to be sent given the messages, an error at the relay
at time i will certainly affect the decoding of block i and
i + 1 at the destination, but not the following ones. We can
thus perform a infinite successive decoding at the destination
with no need to consider B blocks, which implies that R is
the actual rate of the scheme.

V. BINNING WITH LDPC CODES

We work over F � GF (2). Consider a set of messages
W = F

l and a set of bins S ⊆ F
m. Consider an LDPC code

of rate R and length n, and its corresponding parity-check
matrix H specified by its degree distribution.
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ŝi+1

Fig. 6. Factor graph for the decoding of x(wi) when the corresponding bin
si+1 is known.

In order to do the binning, i.e., to partition W into S, each
w ∈ W is assigned to a bin s ∈ S. To this end we compute
the codeword x(w) and we pass it trough a hash function
M, which is a sparse m × n matrix specified by its degree
distribution of rate RM. We say that w ∈ s if and only if

Mx(w) = s. (11)

Now consider that x(w) is transmitted through a channel which
outputs y. Moreover assume that the destination knows s as
side information. According to (11), the destination decoder
uses its knowledge of s in order to increase the number of
constraints on the codeword x(w). By doing that the decoder
transforms the rate R of x(w) into an artificial lower-rate R�

which is given by

n(1 − R�) = n(1 − R) + n(1 − RM)

=⇒ R� = R + RM − 1. (12)

The decoding can thus be performed over the graph depicted
in Fig. 6.

VI. LDPC CODE IMPLEMENTATION

Since we will use LDPC codes, it is important to note that
linear codes can achieve the theoretical limit of our model.

Theorem 1: Linear codes can achieve RDF in the indepen-
dent codes regime of a BAWGN relay channel.
For the proof, see [12].

A. Encoding

Code generation: We consider two parity-check matrices
H and H1 of rate R and R1 respectively and specified by
their degree distribution. Moreover we assume that the code
corresponding to H1 is systematic.
Given a message w the source computes the corresponding
codeword x(w), such that it satisfies

Hx(w) = 0 (13)

The relay encodes a given bin s into x1(s) such that it
satisfies

H1x1(s) = 0. (14)

To perform this encoding, we use the algorithm proposed
by Richardson and Urbanke in [3].

1{H1kx1(si)=0} 1{Hkx(wi)=0}xj(wi)x1j(si)

1{x1j(si)=sij}

sij

p(yj(i)|xj (wi), x1j (si))

Fig. 7. Factor graph for the decoding of x1(si) at the destination.

Binning: We do the binning as proposed in Section V by
considering a hash function matrix M specified by its degree
distribution of rate RM. This means, that at time i:

Mx(wi) = si+1. (15)

We thus have the relation:

R1 =
m

n
=

n(1 − RM)

n
= 1 − RM. (16)

B. Decoding

As has been widely used elsewhere, the decoders employ
the belief propagation algorithm over factor graphs. The de-
coding at the relay is straightforward. Upon receiving y1(i) =
1

dα x(wi) + z1(i), the relay decodes x(wi) using a single-user
factor graph.

Because of the encoding block Markov property,
I(X i

k; Y(1), . . . , Y(i), Y(i + 1), . . . ) = I(X i
k; Y(i), Y(i + 1))

where X i
k is the kth bit of the ith block. Thus, the factor

graphs used at the destination are derived from the MAP rule
(see [13])

arg max
Xi

k
∈{±√

P}
pXi

k
|Y(i),Y(i+1)(x

i
k|y(i), y(i + 1)). (17)

Upon receiving y(i), the destination decodes x1(si) using
the graph depicted in Fig. 7. An iteration consists in simulta-
neous decoding rounds through the constraints corresponding
to H and H1 and then in passing information from one side
of the graph to the other through the middle nodes which
receive the channel observation y(i). Thus, since R ≥ R1, the
information-theoretic bound on R1 is given by

R1 ≤ I(X1; Y ). (18)

Upon receiving y(i+1), the destination decodes x1(si +1) in
the same way and uses its estimate ŝi+1 to fix the constraints
corresponding to M in the previous graph of block i. Accord-
ing to (12) and (16), this transforms the rate R of x(wi) into
R� such that

R� = R − R1. (19)

In order to maximize R, we thus have to maximize the sum
rate R� + R1.

Next, the decoder decodes x(wi) using the decoding graph
depicted in Fig. 6, where x(wi) has an artificial lower-rate R�

and the input observation depends on the received sequence
y(i), but also on the estimate x̂1(si).
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VII. DENSITY EVOLUTION

Under the decoding procedure discussed in Section VI-B
and since H, H1 and M are chosen randomly, the decoding of a
specific bit is asymptotically tree like if we let the block length
grow to infinity and we assume a finite number of iterations.
Therefore we can employ the density evolution method in
order to analyze the performance of our scheme (see [2]).

We consider our BAWGN model expressed by (1) and (2),
with SNR = 0 dB and α = 2 in the independent codes regime.
In order to optimize the decoding at the relay, we have to use
a good single-user code for H. Following Section III, the relay
is the only bottleneck in this regime, the choice of H1 and M
for the decoding at the destination is less crucial. We have
thus decided to use some good single-user codes for H1 and
M, without doing any LDPC degree distribution optimization.

It turns out that the theoretical results of Section III are
confirmed for our practical scheme and the density evolution
shows that we can achieve rates that are ∼ 0.02 to 0.03 dB
away from RDF in the independent codes regime. In particular,
if the relay is at a distance d = 0.3544 from the source, we
can achieve a rate R = 0.99 for σ = 1.0, which is only 0.0248
dB away from the RDF limit σDF = 1.0029.

VIII. SIMULATION RESULTS

We saw in Section IV that errors made by the relay affect
the decoding at the destination. This problem does not appear
in density evolution, since the error probability at the relay
tends to zero when we are under threshold. However, when
we work with finite length codes, the probability of error at
the relay increases as R approaches RDF and these errors are
propagated to the destination.
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10−3

10−2

10−1

P BP
b

−0.1 0.1 0.3 0.5 0.7

destination

relay

SNR (dB)
σDF

Fig. 8. Bit error probability at the relay and at the destination for a block
length n = 214 , R = 0.95, RM = 0.46, R1 = 0.54 and d = 0.446 with
α = 2.

Fig. 8 depicts the bit error probability at the relay and at the
destination for the triple rates R = 0.95, RM = 0.46, R1 =
0.54 and d = 0.446 over the model corresponding to (1)
and (2) with n = 214 and α = 2. We see that the bit
error probability at the destination can be reasonably small
(P BP

b � 10−6) if we are around 0.65 dB within the theoretical
limit σDF.

Fig. 9 compares three achievable points to RDF in a rate
perspective for a fixed bit error probability P BP

b � 10−5.

IX. CONCLUSION

In this work, a decode-and-forward LDPC-based coding and
decoding scheme has been proposed and applied to the single

0.8

0.85

0.9

0.95

0.3 0.35 0.4 0.45 0.5 0.55 d

R = 0.99

R = 0.95

R = 0.85

RDF

Fig. 9. Three achievable rates for SNR=0.915 dB, with P BP
b � 10−5 and

n = 214.

BAWGN relay channel. We have assumed that the relay is
able to simultaneously receive and transmit. Both the relay
and the destination apply successive iterative decoding using
belief propagation.

We have evaluated the max-flow min-cut upper bound and
the Cover and El Gamal decode-and-forward lower bound for
the BAWGN relay channel. We have shown that uniformly
distributed input marginals achieve these two bounds and that
there is an important regime in which the maximizing joint
input distribution is the independent one.

We have shown that in this regime, the performance of the
proposed scheme can be as close as 0.02 dB away to the
theoretical decode-and-forward limit for infinite length and
0.65 dB for block codes of length 214, with a corresponding
bit error probability P BP

b � 10−6.
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