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Abstract— In this paper, we study how multiple robots can i
cover known terrain quickly. We extend Multi-Robot Forest
Coverage, a state-of-the-art multi-robot coverage algorithm,
from terrain with uniform traversability to terrain with non-

uniform traversability, which is nontrivial. We prove that its i
cover times are at most about sixteen times larger than minimal i
and demonstrate experimentally that they are significantly i i
smaller than those of an alternative multi-robot coverage Fig. 1. Example of Weighted Terrain
algorithm.

Index Terms— Cell . Decomposition, Multl-quOt Coverage, large cells with large cells with small cells with
Robot Teams, Spanning Tree Coverage, Terrain Coverage. colors weights weights
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Coverage requires robots to visit each location in known
terrain once to perform some task. Examples include lawn
mowing, cleaning, harvesting, search-and-rescue, iomus
detection and mine clearing. In this paper, we study cov-
erage with multiple robots since multiple robots can often
cover terrain faster than a single robot. Recently, several Fig. 2. Model of Weighted Terrain
researchers have proposed multi-robot coverage algaithm
for terrain with uniform traversability, where the travars
time is the same everywhere. Two promising multi-robotit uses a tree cover algorithm [2] as a subroutine that is
coverage algorithms are Multi-Robot Spanning Tree Coverspecific to non-weighted terrain. We thus first generalize th
age (MSTC) [4] and Multi-Robot Forest Coverage (MFC) tree cover algorithm and only then MFC. We prove that the
[5], which both extend the single-robot coverage algorithmnew version of MFC is guaranteed to find solutions with
Spanning Tree Coverage (STC) [3]. In this paper, we gencover times that are at most about sixteen times larger than
eralize these multi-robot coverage algorithms to terrathw minimal. We then demonstrate experimentally that its cover
non-uniform traversability (= weighted terrain), as showntimes are significantly smaller than both those guaranteed
in Figure 1, to extend their applicability to more realistic by the worst-case bound and those of MSTC. We also
situations [1]. demonstrate experimentally that the robots are close io the

We show that STC finds solutions with minimal cover initial locations after they have covered the terrain, wahic
times in polynomial time for a single robot in weighted facilitates their retrieval. Therefore, our generaliaatiof
terrain if the robot has to return to its initial locationexfit =~ MFC to weighted terrain indeed results in a powerful multi-
has covered the terrain. Multi-robot coverage with minimalrobot coverage algorithm.
cover times is known to be NP-hard for two robots and con-
jectured to be NP-hard for an arbitrary number of robots [5].
Thus, one needs to design multi-robot coverage algorithms We model weighted terrain as consisting of large square
that determine solutions with suboptimal (but good) covercells. Each large cell is either entirely blocked or engirel
times in polynomial time. To this end, we generalize MSTCunblocked. Each unblocked large cell has a positive integer
and MFC to weighted terrain. MSTC can be generalizedveight that corresponds to how difficult it is to traverse the
relatively easily but cannot guarantee to find solutionsiwit large cell and is evenly divided into four small square cells
good cover times. MFC is nontrivial to generalize because€Each small cell has a weight that is equal to one quarter

of the weight of the large cell, as shown in Figure 2. Each
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Fig. 3. Simple Single-Robot Coverage Problem

STC Minimal
cover time = 78 cover time = 77
12 1 10 12 10
12[ — o 12] 12[ fo 10
12 1 A
) . ) Fig. 5. Example of STC Fig. 6. Example of
Fig. 4. Suboptimal Cover Time of STC MSTC

with a time that is equal to the average of the weight of theagjacent small cells; andc; 1. (cni1 = 1 is the initial small cell

two small cells. Each move is atomic, that is, needs to b& the robot.) Let the weight of small cell bew(c;) and the time
executed in full by a robot. The travel time along a robotof moves; bet(s;) = (w(c;) +w(cit1))/2. Then, the travel time

path is the sum of the times of the moves of the robot whemyjong the robot path 7 t(si) = o1 (w(e) +w(civn))/2 =

it moves along the path. S°r , w(c;), which is at least the sum of the weights of all small

We study two different team objectives. For the teamcells. STC makes the robot enter and exit every small cell exactly
objective “Cover,” the robots need to move so that each smalhnce. Its cover and return times are thus equal to the sums of

cell is visited by at |efi5t one robot. Their cover time is @quathe weights of all small cells and thus minimal. The sums of the
to the largest travel time along any robot path. For the teanyeights of all small cells are equal to the sums of the weights of
objective “Cover and Return,” the robots need to move s large cells. m.

that each small cell is visited by at least one robot and then ]
return to their initial small cells. Their cover and retuime The cover times of STC can be smaller than the sum of the

is again equal to the largest travel time along any robot.pattveights of all large cells by at most the largest weight of any
Figure 3 shows a complete coverage problem for a singléma” cell because the robot stops one move before returning

robot, including the large cells with their weights, the #ma [0 its initial cell. STC does not necessarily find solutiorigw

cells with their weights, and the robot path with the times ofMinimal cover times, as shown in Figure 4 for the single-
the moves for the team objective “Cover and Return.” The0Pot coverage problem from Figure 3, but it finds solutions
cover and return time is equal to the sum of the weights ofVith close-to-minimal cover times. The robot needs to enter
all large cells, namely 88. (We actually mean the sum of theevery small cell except for its initial small cell at leastoen

weights of all unblocked large cells since blocked largéscel @nd needs to exit every small cell except for its final small

do not have a weight but sacrifice precision but concisenessCell at least once. STC finds solutions where its final small
cell is next to its initial small cell but the best final smadilic

I1l. SPANNING TREE COVERAGE might have a larger weight. Thus, the cover times of STC

Spanning Tree Coverage (STC) [3] finds solutions withcan be larger than minimal by at most the largest weight
minimal cover times (and cover and return times) in poly-of any small cell (that is, a quarter of the largest weight of
nomial time for single robots in non-weighted terrain. STCany large cell). Overall, STC finds solutions with close-to-
can be generalized easily to weighted terrain, as followsminimal cover times and minimal cover and return times in
First, STC constructs a graph whose vertices correspond teolynomial time for a single robot in weighted terrain.
the unblocked large cells and whose edges connect adjacentFigure 5 shows the spanning tree and robot path for the
unblocked large cells. Second, STC finds a spanning tree dérrain from Figure 2 for one robot with the team objective
this graph. Third, STC lets the robot move along the path thatCover.” The cover time is 682 for STC. The robot has to
circumnavigates this spanning tree. For the team objectivénake one additional move to return to its initial small cell
“Cover and Return,” the robot completely circumnavigatesfor the team objective “Cover and Return” (shown with a
the spanning tree until it returns to its initial small célbr ~ dashed line in the figure). The cover and return time is 688
the team objective “Cover,” the robot stops once all smallifor STC.
cells have been visited, that is, one move earlier. Clearly,
STC runs in polynomial time.

Theorem 1:STC finds solutions with minimal cover and  Coverage with multiple robots can be faster than coverage
return times for a single robot in weighted terrain. Thewith a single robot. (The backtracking version of) Multi-
minimal cover and return times are equal to the sums oRobot Spanning Tree Coverage (MSTC) [4] finds solutions
the weights of all large cells. with suboptimal cover times (and cover and return times) in

Proof: The robot needs to enter and exit every small cell atpolynomial time for multiple robots in non-weighted temai
least once for the team objective “Cover and Return.” Assume thaMSTC can be generalized relatively easily to weighted
the robot path ig(s1,...,s,), where moves; connects the two terrain, as follows. We assume for simplicity here that¢her

IV. MULTI-ROBOT SPANNING TREE COVERAGE



are at least three robots and handle fewer than three rabots that each move is atomic, and the robots might thus not be able to
the extended version of the paper: First, MSTC constructs aplit the travel time evenly between them. MSTC lets rahathen
graph whose vertices correspond to the unblocked large celmove clockwise until it meets robet. The sum of the times of the
and whose edges connect adjacent unblocked large cellgaths of robots; andr; until they meet is at most(r;, rx)/2 +
Second, MSTC finds a spanning tree of this graph. Thirdwmaz/4 +t(rj,7%)/2 + Wmas /4 + t(r:,7;). Thus, robots; and
MSTC splits the path that circumnavigates this spannirg trer; meet after a travel time of at mosét(r;,7x)/2 + Wmaz/4 +
into segments between the initial small cells of the robotst(r;,7x)/2 + wWmaz/4 + t(ri,75))/2 + Wmaz /4 = (E(rj, k) +
The number of segments is equal to the number of robots(r;,7;))/2 + Wmax/2 < Wsum/2 + Wmaz/2 = (1 + &) Wsum /2
The travel time along a segment is the sum of the timesnd their travel times are thus at m@$t+ ¢)wsum /2. MSTC lets

of the moves of a robot when it moves along the segmentobotr;, first move clockwise until it meets robej and then move
Case 1: If the travel time along each segment is at mostounterclockwise. Assume without loss of generality that rohot
half of the travel time along the path, then MSTC lets eachs adjacent to robat; in the counterclockwise direction. (Robats
robot move counterclockwise along the segment adjacent tandr;, are identical if there are only four robots, and robatsind

it. Otherwise, let(r, ') be the travel time along the segment r; are identical if there are only three robots.) A similar argument
from the initial small cell of robot in the counterclockwise as for robotr; then shows that the travel time of roboi is at
direction to the initial small cell of robat’. Assume without  mostt(r;,74)/2 4+ Wmax /4 +1(rj, 7) /2 + Wmaz /4 +t(rk, 1) <
loss of generality that robot; (r; and ry, respectively)  woum/2 4+ Wmae/2 = (1 4 @)weum /2 SINCEL(ri, 75) > Weum /2

is adjacent to robot;, (r; and r;, respectively) in the and thust(rj,r) + ¢(rk, ) < Wsum/2. MSTC lets every other
counterclockwise direction and thatr;, ;) is larger than  robot move counterclockwise and their travel time thus is at most
half of the travel time along the path. (Robots and r the time of the segment in their counterclockwise direction which
are identical if there are only three robots.) Case 2: Ifis at mostwsum/2 < (1 + ¢)wsum /2. The travel time of each
t(rj,rg) < t(rp,r;), then MSTC lets robot; first move  robot and the cover time of MSTC thus is at mébt ¢)wsum /2
counterclockwise until it is in an adjacent small cell to Case 3: Case 3 is just a mirror image of Case 2. -tLgtbe the
robot r, (= meets robotr;) and then move clockwise, covertime of STC and,,.:. be the cover time of MSTC. Then, we
lets robotr;, first move clockwise until it meets robot; have shown that,,stc < (14 ¢)wsum /2 in all three cases. Thus, it
and then move counterclockwise, and lets all other robot&olds thatt s < (14+@)wsum /2 < (14+0) (tste +Wmaz/4)/2 =
move counterclockwise. Case 3: #fr;,ry) > t(rp,7:), (14 @)tstc/2 + (1 + @)Wmae/8 SiNCELste > Weum — Wmaw/4-
then MSTC lets robot, first move counterclockwise untii =

it meets robotr; and then move clockwise, lets robet . .
Figure 6 shows the spanning tree and robot paths for the

first move clockwise until it meets robef, and then move i f ) 2 for f b th th biect
counterclockwise, and lets all other robots move clockwisel€@in from Figure 2 for four robots with the team objective
“Cover.” The cover time is 332 for MSTC. The cover and

For the team objective “Cover,” the robots move as given

above and stop once all small cells have been visited. FJEtUM time is 664 for MSTC and only 394 for optimized

the team objective “Cover and Return,” the robots moveMSTC. Unfortunately, this example also demonstrates that

as given above and, once all small cells have been visited/STC finds solutions whose cover times (and cover and
return to their initial small cells by moving either backwar return times) do not necessarily improve with an increasing

along their segments (MSTC) or along paths with minimalnhumber of robots since ][\A|STC malﬁes ﬁnly tvr\l/o ;ObOtS exit
times from their current small cells to their initial smadllis the bottom-most row of large cells through the narrow

(optimized MSTC). Clearly, MSTC runs in polynomial time. passage. Additional robots in the center of the bottom-most
Theorem 2:The cover times of MSTC for at least three "W do not shorten the times of the paths of these two robots.

robots are at least about a factordf(1 + ¢) smaller than The cover times (and cover and return times) of MSTC

the cover times of STC, wher is the ratio of the largest become arbitrarily baq compared to the minimal ones if
weight of any large cell and the sum of the weights of alone expands the terrain above the narrow passage and adds
large cells robots in the center of the bottom-most row since then all

Proof: Let wmq. be the largest weight of any large cell and of th? TOk?OtS Eave to ex!t the bott((j)m-most r%w of Iargg cells
wsum be the sum of the weights of all large cells (which equalsto minimize the cover times (and cover and retum times).

the time of the path that circumnavigates the spanning tree). The-rl;hus' MSTC cannot guarantee to find solutions with good

@ = Wmaz/Wsum- Case 1: If the travel time along each segment isCOVer times (and cover and return times).
at most half of the travel time along the path that circumnavigates
the spanning tree, then MSTC lets each robot move along the
segment adjacent to it in the counterclockwise direction. The travel Multi-Robot Forest Coverage (MFC) [5] finds solutions
time of each robot and the cover time of MSTC thus is at mostwith suboptimal cover times (and cover and return times) in
Wsum /2 < (1 + ¢)wsum /2. Case 2: MSTC lets robot; first  polynomial time for multiple robots in non-weighted terrai
move counterclockwise until it meets robet. The sum of the MSTC determines one tree, splits the path that circumnav-
times of the paths of robots; andr; until they meet is at most igates it into one path for each robot and lets each robot
t(rj, ). Thus, robotsr; and r, meet after a travel time of at move along its path. MFC, on the other hand, determines one
mMostt(r;,7k)/2 + Wmaz /4. The termw.q. /4 takes into account tree for each robot and lets each robot move along the path

V. MULTI-ROBOT FORESTCOVERAGE



MFC (Robot 1) MFC (Robot 2) MFC (Robot 3) MFC (Robot 4)
cover time = 217 cover time = 216 cover time = 225 cover time = 216
cover and return time = 256 cover and return time = 256 cover and return time = 256 cover and return time = 256
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Fig. 7. Example of MFC

that circumnavigates its tree. MFC is nontrivial to geneeal Proof: The cover times of STC can be smaller than the sum of
to weighted terrain. It uses a tree cover algorithm [2] as ahe weights of all large cells by at most the largest weight of any
subroutine that is specific to non-weighted terrain bec#use small cell, while the cover times of MFC are at most the weights
operates on graphs with weighted edges. We therefore builef the largest trees and thus at most the sum of the weights of all
on the existing algorithm and design a tree-cover algorithmiarge cells. Consequently, the cover times of MFC can be larger
TREE COVER that is specific to weighted terrain becausehan the cover times of STC by at most the largest weight of any
it operates on graphs with weighted vertices. We describe gmall cell (that is, a quarter of the largest weight of any large cell).
and prove its properties in Section VI. The cover and return times of STC are equal to the sum of the

MFC for weighted terrain then uses TREE COVER asweights of all large cells, while the cover and return times of MFC
follows: First, MFC constructs a graph whose vertices correare equal to the weights of the largest trees and thus at most the
spond to the unblocked large cells and whose edges connegim of the weights of all large cells. Consequently, the cover and
adjacent unblocked large cells. Each vertex has a weight thaeturn times of MFC cannot be larger than the cover and return
is equal to the weight of its large cell. Second, MFC usedimes of STC. =

TREE COVER to find a ropted tree cover of this graph, However, MFC can make the following much more pow-
where the roots are the vertices that correspond to the larggq guarantee with respect to the minimal cover times (and
cells that contain the initial small cells of the robots. Thecqyer and return times), which MSTC cannot make:

roots thus correspond to the robots. A rooted tree cover of Theorem 4:The cover times (and cover and return times)
this graph is a forest of trees with exactly one tree for eaclhf MEC are at most about a factor ab(1 + ¢|K| + €)
root. Every vertex is in at least one tree. The weight of azrger than minimal, where > 0 is an arbitrary precision
tree is the sum of the weights of its vertices. The Weightparameter that affects how often TREE COVER is called,
of the rooted tree cover is the largest weight of any of its| x| is the number of robots andl is the ratio of the largest

trees. MFC performs a binary search (described later) thaleight of any large cell and the sum of the weights of all
runs in polynomial time and uses TREE COVER to find ajarge cells.

rooted tree cover with a weight that is at most a factor of proof: Let A7 be the weight of the rooted tree cover found by
4(1 + ¢|K| + ¢€) larger than minimal, where > 0 is an  TREE COVER,N be the weight of a weight-minimal rooted tree
arbitrary precision parameter that affects how often TREE;qyer,0 be the cover time of MECP be the minimal cover time,
COVER is called, K| is the number of robots anglis the  and () be the minimal cover time if the robots need to visit only
ratio of the largest weight of any large cell and the sum ofihe ypper left small cells of all large cells. Furthermore gt
the weights of all large cells. Third, MFC lets each robotpe the largest weight of any large cell. First, it holds tBat M
move along the path that circumnavigates its tree. For th@ince the robots visit all small cells and return to their initial small
team objective “Cover and Return,” each robot completelycelis when they circumnavigate their trees. The resulting cover time
circumnavigates its tree until it returns to its initial dhczll. thus cannot be larger than the weight of the rooted tree cover.
For the team objective “Cover,” the robots stop once all $malsecond, it holds thal/ < 4(1 + ¢|K| + €)N since we use TREE
cells have been visited. Clearly, MFC runs in polynomial COVER to find rooted tree covers with a weight that is at most a
time. factor of 4(1 + ¢| K| + €) larger than minimal. Third, it holds that
Remember that the cover times of MSTC for at least threev/4 < Q + w,n../4. Consider a solution where the robots need
robots are at least about a factor2g{1+¢) smaller than the  to visit only the upper left small cells of all large cells. Construct
cover times of STC according to Theorem 2. MFC cannota rooted tree cover where the tree of a robot contains exactly the
make such a strong guarantee with respect to STC: vertices that correspond to the large cells that contain the upper left
Theorem 3:The cover times of MFC can be larger than small cells visited by the robot. The weight of each tree divided by
the cover times of STC by at most the largest weight offour is equal to the sum of the weights of all upper left small cells
any small cell (that is, a quarter of the largest weight of anyvisited by the robot. The sum of the weights of all upper left small
large cell). The cover and return times of MFC cannot becells visited by the robot is at most the travel time of the robot
larger than the cover and return times of STC. plus the largest weight of any small cell (that is, a quarter of the



largest weight of any large cell) since the robot has to enter and Theorem 5:Finding a weight-minimal K-rooted tree

exit all upper left small cells except possibly for its initial small cover for graphsz is NP-hard.

cell (if it starts in one), which it does not need to enter, and its final Proof: We reduce BINPACKING to our problem. BINPACK-
small cell (if it ends in one), which it does not need to exit. Thus, ING consists of a set of elements with given integer sizes and a
the weight of this rooted tree cover (and thus also the weight of dixed number of bins, each with the same given integer capacity.
weight-minimal rooted tree cover) divided by four is at most the The problem is to determine whether each element can be placed in
minimal cover time if the robots need to visit only the upper left exactly one of the bins so that the sum of the sizes of the elements
small cells of all large cells plus a quarter of the largest weight ofin each bin does not exceed its capacity. Given an instance of

any large cell. Fourth) < P trivially. Using these results, it holds BINPACKING, we transform it in polynomial time to an instance

thatO < M < 4(1+ ¢|K|+e)N < 16(1 + ¢|K| +€)Q + 4(1 +
O K|+ €)wmae < 16(1 + ¢|K |+ €)P 4+ 4(1 + ¢|K| + €)Wmaz-

of the problem of determining whether the weight of a weight-
minimal K-rooted tree cover for graplé? is at most a given

The proof continues to hold if each occurrence of cover time isconstant, as follows: We create a completely connected g€aph

replaced with cover and return timem

¢ =~ 0 for terrain with many large cells of about the same
weight. For examplep = 0.0814 for the terrain from Figure
2. Then,16(1+¢|K|+e€) ~ 16 for a small number of robots
|K| ande close to zero. Thus, the cover times (and cove
and return times) of MFC are at most about sixteen time

larger than minimal.

Figure 7 shows the trees and robot paths for the terrain
from Figure 2 for four robots, together with the cover time

with one vertex for each element (whose weight is equal to the size
of the element) and one vertex for each bin (whose weight is one).
The set of rootsK contains exactly the vertices for the bins. If
the weight of a weight-minimak -rooted tree cover is at most the
rgiven capacity plus one, then each element can be placed in exactly
one of the bins so that the sum of the sizes of the elements in each
%in does not exceed its capacity, by placing each element in one of
.the bins whose vertex is the root of a tree that contains the vertex
of the element. Similarly, if each element can be placed in exactly

- one of the bins so that the sum of the sizes of the elements in

and cover and return time for each robot. The cover time is

225 and the cover and return time is 256 for MFC.

VI. WEIGHT-MINIMAL ROOTED TREE COVERS

In Section V, we stated that we modified an existing tre
cover algorithm [2] to work on graphs with weighted vertices
rather than weighted edges. We now state the resultin

each bin does not exceed its capacity, then one can const#iet a

rooted tree cover whose weight is at most the given capacity plus

one, by making the tree rooted in the vertex of a bin contain the
evertices of the elements that the bin contains. Thus, the weight of a
weight-minimal K -rooted tree cover is at most the given capacity
Blus one as well. m

algorithm (called TREE COVER), prove its properties andp ¢ Algorithm

describe how MFC uses it.

A. The Problem

We solve the following problem: Le€z = (V, E) be a
graph with weighted vertices, where(v) is the integer

weight of vertexv € V. Let K C V be a set of distinguished

vertices, called roots. AC-rooted tree cover off is a forest

of | K| trees, which can share vertices and edges. The set f/ (1 +¢lK])

their roots must be equal t&, and every vertex irl/ has

to be in at least one tree. The weight of a tree is the sum of

the weights of its vertices. The weight of /d-rooted tree

cover is the largest weight of any of its trees. The problem

is to find a weight-minimal<-rooted tree cover of grapfi.

B. Definitions

We use the shorthands,,m = >,y w(v), Wmas =

maxyey w(v) and ¢ = Wpaz/Wsum (@S used earlier).
Furthermore, we define the weight of a path in the graph
to be the sum of the weights of its vertices, except for its
end vertices. We define the distance between two trees in the
graph to be the minimal weight of any path that connects
some vertex in one of the trees to some vertex in the other

tree.

C. NP-Hardness

We show that finding weight-minimak -rooted tree cov-
ers is NP-hard, which provides our motivation for designing

approximation algorithms that run in polynomial time.

We now describe TREE COVER, a tree-cover algorithm
inspired by [2] that takes as input a gragh a set of roots

K and a boundB > w,q. It either reports SUCCESS and

returns aK-rooted tree cover of grapliy with weight at

most4 B or reports FAILURE, in which case there does not
exist a K-rooted tree cover of grapi’ with weight at most

. TREE COVER operates as follows:

1) Contract all roots into a single vertex, find any span-
ning tree of the resulting graph, and then uncontract
the single vertex again, splitting the spanning tree into
|K| trees.

2) Decompose each tree recursively into zero or more
non-leftover subtrees and one leftover subtree. We
call the following decomposition procedure once for
each tree from the previous step. The decomposition
procedure removes vertices from the given tree as it
generates the non-leftover subtrees. When it termi-
nates, we declare the leftover subtree to be the root
of the given tree if all vertices have been deleted.
Otherwise, we declare the leftover subtree to be the
remaining tree (formed by the non-deleted vertices).
The decomposition procedure applies to a tree rooted
in r. We distinguish three cases:

Case 1:The weight of the tree rooted inis less than
B. Then, we simply return.

Case 2: The weight of the tree rooted in is in
the interval [B,2B). Then, one non-leftover subtree



consists of the tree rooted in We remove the subtree  Proof: If TREE COVER reports SUCCESS then it returns, for
from the tree rooted im (leaving the empty tree) and each root, the tree consisting of the leftover subtree of the root of

return. weight at mostB, the single non-leftover subtree (if any) matched
Case 3:The weight of the tree rooted inis 2B or  to the root of weight at mos2B, and a weight-minimal path (if
larger. We distinguish three subcases: any) of weight at mostB from the non-leftover subtree to the

Case 3a: The weights of all trees rooted in childrenleftover subtree. The weight of each tree is thus at mbst
of r are less thanB. Then, we pick a number of resulting in aK-rooted tree cover of weight at mosB. =
trees rooted in children of so that the weight of

the tree consisting of- and these trees is in the  Theorem 7:If TREE COVER reports FAILURE, then
interval [B,2B). One non-leftover subtree consists of there does not exist &-rooted tree cover of grap&¥' with
r and these trees. We remove the subtree except foveight at mostB/(1 + ¢|K]).

r from the tree rooted in and recursively apply the Proof: Assume that a weight-minimak’-rooted tree cover of

- - raphG has weightB’ with B’ < B/(1 + ¢|K|). Let L be the
decomposition procedure to the remaining tree r00te<get of non-leftover subtrees created in Step 2 of TREE COVER

?n rin Qrder to .find the other non-leftover Sl_Jbtre?S- Itand K (1) C K be the set of roots that can be matched to non-
is possible to pick a number of trees rooted in childrenleftover subtred € L because the non-leftover subtree and the
of r so that the weight of the tree consistingrofind leftover subtree of the root are at distance of at ni#®siWe show

these trees is in the intervaB, 2B) since the weight th,atc | Uier K él)lf %R\ELQ Cf:oorve[;/’c:e{ry sethof non-ler:‘tO\lier sulbtfrtees
of r is at mostB (since B > w,4,) and the weights L cL.Step3o can then match all non-leftover

i . subtrees according to Hall’s Marriage Theorem. Therefore, TREE
of all trees rooted in children of are less thaB but  cOVER reports SUCCESS and not FAILURE, which proves the
the weight of the tree rooted inis 2B or larger. contrapositive of the theorem and thus also the theorem itself.

Case 3b: The weight of at least one tree rooted in @ Consider anyL’ C L. Let T be the set of trees of a weight-
child of » is in the interval[B,2B). Then, we pick  minimal i -rooted tree cover of grapls and 7' C T be the
such a tree. One non-leftover subtree consists of thiget of trees which have at least one vertex in common with at
tree. We remove the subtree from the tree rooted ineast one of the non-leftover subtrees iin. Let w(L') be the

r and recursively apply the decomposition proceduresum of the weights of all non-leftover subtrees fih and w(T")

to the remaining tree rooted inin order to find the pe the sum of the weights of all trees . First, it holds that
other non-leftover subtrees. B’ > waum/|K| since the sum of the weights of all vertices can
Case 3c: Otherwise, the weight of at least one treae split evenly among the trees in the best case. Second, it holds
rooted in a child ofr is 2B or larger. Then, we thatw(L') > B|L'| since the weights of all non-leftover subtrees
recursively apply the decomposition procedure to thain L’ are in the intervalB,2B) and thusB or larger. Third, it
tree and then to the remaining tree rooted in order  holds thatw(7') < B'|T’| since the weights of all trees i’

to find the non-leftover subtrees. are at mostB’ since any weight-minimal<-rooted tree cover of

3) Find a maximum matching of all non-leftover subtreesgraphG has weightB’. Fourth, it holds thatU;c s K (1)] > |T7].
to the roots, subject to the constraint that a non-leftoverror every tree iril”, there exists at least one non-leftover subtree
subtree can only be matched to a root if the non-in 1’ that has at least one vertex in common with the tre@’in
leftover subtree and the leftover tree of the root areThen, the non-leftover subtree if and the root of the tree ifi”
at distance of at mosB. are at distance of at mogt’ < B/(1 + ¢|K|) < B. The non-

4) If any non-leftover subtree cannot be matched, reporfeftover subtree in.’ can thus be matched to the root of the tree
FAILURE. Otherwise, report SUCCESS and, for eachin 77, Overall, the setJ,c; K (l) contains the roots of all trees
root, return the tree consisting of the leftover subtreein 77, its cardinality thus is at least the cardinality f. Fifth,
of the root, the single non-leftover subtree (if any) it holds thatw(L') < w(T”) + wmas|L'| Since every vertex in
matched to the root, and a weight-minimal path (if at least one non-leftover subtree il is also in at least one tree
any) from the non-leftover subtree to the leftoverin 77, The non-leftover subtrees ih’ can contain at mostL/|
subtree. duplicate vertices, each with weight at mast,...: Every non-

leftover subtree that Step 2 of TREE COVER creates contains at

most one vertex that has not yet been removed from all trees created

Clearly, TREE COVER runs in polynomial time and either in Step 1 and thus could be a duplicate vertex. This statement holds
reports SUCCESS or FAILURE. It is also easy to see thabecause the trees created in Step 1 share at most their roots and
the weights of all non-leftover subtrees (if any) returngd b step 2 removes all vertices of a non-leftover subtree from its tree,
the decomposition procedure in Step 2 of TREE COVERexcept possibly for the root of the non-leftover subtree in Case
for a given tree are in the intervaB, 2B). The weight of 33 when it creates the non-leftover subtree. Using these results, it
the leftover subtree is in the intervéd, B). Also, the root  holds thatwmas = weumd < |K|B’$. This inequality implies that

of the tree is in the leftover subtree. We now prove the maing’|77| > w(T") > w(L') — wmaz|L'| > B|L'| — |K|B'$|L'| =

properties of TREE COVER. (B — |K|B'¢)|L'| > (B'(1+ ¢|K|) — |K|B'¢)|L'| = B'|L|.

Theorem 6:1f TREE COVER reports SUCCESS, then it This inequality in turn implies thatU,c.. K(1)| > |T”| > |L/|,
returns aK-rooted tree cover of grapti with weight at  which is what we wanted to provem

most4B.

E. Properties



F. Application [outdoor]. The third kind is an indoor-like terrain with vl

We perform binary search on the intenja,az, Wsum] and doors [indoor]. The position of the walls and doors are
to find a small value of3 for which TREE COVER reports fixed, but doors are closed with 20 percent probability. We
SUCCESS. We start with the lower bound,,, and the Vvary the number of robots from 2, 8, 14 to 20 robots. We
upper boundu,.,.,. We then repeatedly run TREE COVER €nsure that no two robots are placed in the same large cell
with B set to the average of the lower and upper boundby randomly choosing different large cells for each robot
If TREE COVER reports FAILURE, then we set the lower @nd placing the robots in their lower left small cells. A
bound toB. Otherwise, we set the upper bound Bo We clustering percentage parametedetermines how strongly
stop once the difference of the upper and lower bound i¢he initial large cells of the robots are clustered. The first
at most the given value of the arbitrary precision parametefobot is placed uniformly at random. Subsequent robots are
¢ > 0. We then return thek-rooted tree cover of grapt then placed within an area centered at the first robot, whose
returned by TREE COVER wittB set to the upper bourid. ~ height and width are (approximately% of the height and

Let b be the weight of a weight-minimalk -rooted tree  Width of the terrain. Thus, a small value efesults in a high
cover of graphG. We assume in the following that> 1  clustering of initial large cells, while: = 200 is equivalent
since this property holds for MFC due to the weight of 10 N0 clustering at all [none]. For each scenaric_J, we report
each unblocked large cell being a positive integer. Bebe ~ data that has been averaged over 50 runs with randomly
the lower bound and3,, be the upper bound of the binary 9enerated terrain (if applicable) and randomly generated
search after termination. First, it holds thBt, — B, < ¢ initial small cells. All cover times and cover and return éisn
according to the termination criterion. Second, it holdstth Nnave been rounded to the nearest integer.

b > B;/(1 + ¢|K|) according Theorem 7 since TREE Table 9 reports for each scenario a lower bound that
COVER with B set toB, reports FAILURE. (This statement "€presents an idealized cover time (and cover and return
also holds forB; = w,,,,, the initial lower bound, since >  time) [ideal max]: It simply divides the sum of the weights of
Wimas.) Third, the weight of thek -rooted tree cover of graph @l large cells by the number of robots. The ideal cover time
G returned by the binary search is at mé#, according to (and cover and return time) would result if no robot needed
Theorem 6 since TREE COVER witB set to B, reports [0 pass through already visited small cells. The table also
SUCCESS. (This statement also holds 8y = w,.,, the  [€POrs the smallest [min] and largest [max] travel time of
initial upper bound, since TREE COVER then generates agny robot for each combination of a multi-robot coverage
most one non-leftover subtree for each root, which contain§/gorithm, scenario and team objective. The largest travel

the root.) Using these results, it holds that the weight ofime is equal to the cover time (or cover and return time),
the K-rooted tree cover of grap@i’ returned by the binary and the difference between the smallest and largest travel

search is at mostB, < 4(B, +¢) < 4(1 + ¢|K|)b+4e <  times gives an indication of how balanced the travel times
4(1+¢|K|+e)b, which is at most a factor Of(1+¢|K‘+€_) of the robots are. In addition, the table also reports thie rat
larger than minimal. The binary search runs in ponnomiaIOf the actual travel time and the ideal cover time (and cover

time because TREE COVER runs in polynomial time ang@nd return time) [ratio], giving an upper bound on how far
is 1un [1og, ((Wsum — Wimagz)/€)] < 108y Weum — log, e+ 1  the actual cover time (or cover and return time) is largentha

times, which is polynomial in the size of the input for a Minimal. The ratio is indeed only an upper bound, since the

constant value of. ideal may not be achievable. For instance, several robots
must visit the same small cells in the example from Figure
VIl. EXPERIMENTAL RESULTS 7

We now compare MFC (with a small value for the We make the following observations: The ratio of the
precision parameter) and MSTC experimentally. We evaluateover time (or cover and return time) and the ideal cover time
them on both team objectives, namely "Cover” and "Cover(and cover and return time) increases with the number of
and Return”, and in different scenarios, namely differ-robots for both MFC and MSTC since the overhead (defined
ent kinds of terrain [terrain], different numbers of robots as the number of already visited small cells that a robot
[robots], and different clustering of the robots [clustgfi ~ passes through) increases with the number of robots. The
The size of the terrain is alway9 x 49 large cells. The ratio increases very slowly with the number of robots for
weight of each large cell is always chosen uniformly atMFC, but much faster for MSTC, implying that the cover
random from the weights 8, 16, 24, ..., 80. Figure 8 showdimes (and cover and return times) of MFC remain close
the three different kinds of terrain used in the experimentsto minimal for large numbers of robots. The ratio changes
The first kind of terrain is empty [empty]. The second kind insignificantly with the amount of clustering for MFC, but a
is an outdoor-like terrain where walls are randomly removedot for MSTC, implying that the cover times (and cover and
from a random depth-first maze until the wall density dropsreturn times) of MFC remain small if robots start in nearby
to 10 percent, resulting in terrain with random obstaclessmall cells — a common situation since robots are often

deployed or stored together. The ratio changes insigntfican
1our description generalizes easily since it does not tat@ agcount  for MFC if the team objective is changed from “Cover” to
that the weights of the vertices are integers. A weight-mihiffarooted « » .
Cover and Return”, but increases by about a factor of two

tree cover can be inferred after a binary searchefer 1 if the weights of o g
the vertices are integers. for non-optimized MSTC (because the robot with the largest
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Fig. 8. Screenshots of Different Kinds of Terrain
Terrain | Robots | Clustering || Ideal Max MFC MSTC Optimized MSTC
“Cover and Return” “Cover” “Cover and Return” “Cover” “Cover and Return” “Cover”
Max_ (Min) | Ratio | Max (Min) | Ratio Max__ (Min) | Ratio Max__ (Min) | Ratio Max _ (Min) | Ratio | Max (Min) | Ratio
Empty 2 30 25094 47369 (43018)| 1.07 | 47353 (10612)] 1.07 || 96669 (83672)] 2.19 | 48340 (46595)| 1.10 || 48865 (42446)| 1.11 | 48334 (41325)] 1.10
2 60 45094 47840 (42516)| 1.09 | 47825 (10621)| 1.08 100558 (79782)| 2.27 50284 (48821)| 1.14 50940 (40688)| 1.15 | 50279 (40101)| 1.14
2 none 45094 48061 (42334)| 1.09 | 48028 (10613)| 1.09 104811 (75532) 2.37 52409 (48862)| 1.19 53082 (38625)| 1.20 | 52406 (38078)| 1.19
8 30 11273 12698 (9676) | 1.15 | 12645 (9208) | 1.14 73870  (411) 6.67 | 36967 (206) 3.34 37506 (261) 3.38 | 36938 (207) 3.33
8 60 11273 12765 (10058) 1.16 | 12749 (9549) | 1.15 72479 (1106) | 5.54 | 36240 (559) 227 36883 (668) 3.33 | 36240 (559) 227
8 none 11273 13726 (8983) | 1.24 | 13699 (8729) | 1.24 54885 (2519) | 4.94 | 27453 (1259) | 2.47 28026 (1511) | 2.52 | 27445 (1260) | 2.47
14 30 6442 7620 (5396) | 1.21 | 7586 (5359) | 1.20 || 72107 (37) | 11.41| 36054 (19) | 571 || 36639 (37) | 5.80 | 36054 (19) | 5.71
14 60 6442 7620 (5208) 121 7581 (5166) 1.20 69594 (177) 11.01 | 34797 (89) 5.51 35441  (149) 5.61 34797  (89) 5.51
14 none 6442 8004 (4768) | 1.27 | 7977 (4719) | 1.26 || 43131 (616) | 6.71 | 21566 (308) | 3.35 || 22099 (438) | 3.44 | 21566 (308) | 3.35
20 30 4509 5575 (3487) | 1.26 | 5505 (3466) | 1.24 70424  (19) | 15.93 | 35214  (9) 7.97 || 35810 (19) 810 | 35214 (9) 7.97
20 60 4509 5460 (3666) | 1.23 | 5428 (3628) | 1.23 || 67842 (93) | 1539 | 33922 (48) | 7.69 || 34553 (93) | 7.84 | 33921 (48) | 7.69
20 none 4509 5736 (3093) | 1.29 | 5704 (3054) | 1.28 || 33042 (280) | 7.50 | 16521 (140) | 3.75 || 17028 (254) | 3.87 | 16251 (140) | 3.75
Outdoor 2 30 40586 43430 (37877)| 1.09 | 43418 (10612) 1.09 86654 (75655) 2.18 | 43330 (42868)| 1.09 43927 (38497)| 1.10 | 43327 (37933) 1.09
2 60 40586 43677 (37652)| 1.10 | 43664 (10600)| 1.10 91671 (70637)| 2.29 | 45841 (42694)| 1.15 46410 (36050)| 1.16 | 45836 (35512)| 1.15
2 none 40586 43910 (37472) 1.10 43884 (10652)( 1.10 94781 (67529)| 2.38 47396 (42937) 1.19 48083 (34655)( 1.21 47390 (34071)( 1.19
8 30 10146 11679 (8657) 117 11622 (8484) 117 66563  (303) 6.72 33287 (153) 3.36 33847  (209) 3.42 33283 (153) 3.36
8 60 10146 11677 (8526) 117 11633 (8436) 117 58422  (1131) 5.88 29270 (573) 2.94 29834  (691) 2.99 29223 (570) 2.94
8 none 10146 12124 (8248) | 1.22 | 12078 (8164) | 1.21 || 54687 (1988) | 5.47 | 27355 (1004) | 2.74 || 27999 (1229) | 2.80 | 27347 (1000) | 2.74
14 30 5798 6919 (4876) | 1.22 | 6838 (4835) | 1.20 || 63965 (41) | 11.29 | 31983 (21) | 565 || 32580 (40) | 575 | 31983 (21) | 5.65
14 60 5798 6803 (4877) | 1.20 6752 (4842) | 1.19 56196  (245) 9.92 28098 (123) 4.96 28645 (198) 5.06 | 28098 (124) 4.96
14 none 5798 7253 (4446) | 1.28 7208 (4386) | 1.27 43183  (671) 7.53 21592 (335) 3.77 22177 (453) 3.87 | 21592 (335) 3.77
20 30 4059 5240 (2945) | 1.32 5170 (2918) | 1.30 63018 (26) 18.95 | 31509 (13) 7.97 32056  (26) 8.11 | 31509 (13) 7.97
20 60 4059 5041 (3341) | 1.27 | 4995 (3275) | 1.25 || 56366 (97) | 14.22 | 28183 (48) | 7.11 || 28743 (82) | 7.25 | 28183 (48) | 7.11
20 none 4059 5203 (2811) | 1.31 | 5179 (2778) | 1.30 || 34814 (285) | 8.68 | 17407 (142) | 434 || 17998 (214) | 4.49 | 17407 (142) | 4.34
indoor 2 30 38212 21237 (35599)| 1.10 | 41225 (10612)| 1.10 || 81616 (71193)| 2.18 | 40815 (39557)| 1.09 || 41609 (36585)| 1.11 | 40808 (35898)| 1.09
2 60 38212 41091 (35923)| 1.10 | 41028 (10612)| 1.10 || 85686 (67123)| 2.28 | 42849 (41000)| 1.14 || 43726 (34840)| 1.17 | 42843 (33955)| 1.14
2 none 38212 40784 (36339)| 1.09 | 40678 (10625)| 1.09 88988 (63823)| 2.38 | 44500 (39984)( 1.19 45528 (33535)| 1.22 | 44494 (32470)| 1.19
8 30 9553 11703 (8323) | 1.25 | 11556 (8197) | 1.23 60767  (195) 6.50 | 30421 (103) 3.26 31336 (140) 3.35 | 30390 (101) 3.25
8 60 9553 11522 (8464) | 1.23 | 11440 (8346) | 1.22 55229  (815) 5.85 27620 (408) 2.93 28670 (502) 3.04 | 27616 (408) 293
8 none 9533 11602 (8049) | 1.24 | 11516 (7903) | 1.23 || 49818 (1925) | 5.31 | 24909 (962) | 2.66 || 25926 (1114) | 2.77 | 24909 (962) | 2.66
14 30 5459 7815 (4044) | 1.46 7686 (3988) | 1.43 58513 (35) 10.93 | 29256 (17) 5.46 30242 (33) 5.65 | 29256 (17) 5.46
14 60 5459 7353 (4024) | 1.37 7227 (3983) | 1.35 52785  (219) 9.85 26393 (111) 4.93 27358  (156) 5.11 | 26392 (111) 4.93
14 none 5459 6937 (4128) 1.30 6871  (4047) 1.28 37708  (646) 7.04 18854  (323) 3.52 19782  (410) 3.70 18854 (323) 3.52
20 30 3821 6669 (1175) | 1.77 | 6536 (1146) | 1.74 || 56833 (20) | 15.14 | 28446 (10) | 7.57 || 29434 (19) | 7.84 | 28421 (10) | 757
20 60 3821 5936 (1824) | 157 | 5824 (1791) | 1.55 50182  (88) | 13.50 | 25091  (44) 6.75 || 25985 (74) 6.99 | 25091 (44) | 6.75
20 none 3821 5198 (2288) | 1.39 | 5133 (2238) | 1.37 || 32374 (382) | 8.63 | 16187 (191) | 4.32 || 17040 (264) | 455 | 16187 (191) | 4.32

Fig. 9. Experimental Results for MFC and MSTC (“Max” = Covenil or Cover and Return Time)

travel time has to backtrack along most of its trajectory), VIIl. CONCLUSION

implying that all robots are close to their initial small isel We extended Multi-Robot Forest Coverage, a state-of-the-
when coverage is complete for MFC, which facilitates theirgrt myti-robot coverage algorithm, from terrain with uni-
retrieval. The cover and return times of optimized MSTCtorm traversability to terrain with non-uniform traversiab
are significantly smaller than the ones of non-optimizediyy Currently, Multi-Robot Forest Coverage assumes ideal
MSTC for each scenario. Overall, MFC results in muchgpots, |t is future work to generalize it to robots with actu

smaller cover times (and cover and return times) than MSTGyor and sensor uncertainty and other typical imperfestion
for more than two robots and in comparable cover times

(and cover and return times) than optimized MSTC for two REFERENCES
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