

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

SPL Migration Tensions: An Industry Experience

Antony Tang1, Wim Couwenberg2, Erik Scheppink2,
Niels Aan de Brugh2, Sybren Deelstra2 and Hans van Vliet1

1VU University Amsterdam, 2Océ Technologies
[atang, hans]@cs.vu.nl, [wim.couwenberg, erik.scheppink, niels.aandebrugh, sybren.deelstra]@oce.com

Abstract

In a software development environment where legacy software
systems have been successfully deployed, there are tensions that
deter the organization from moving towards software product line
engineering (SPLE). An example is the effort required to develop
a product line architecture versus time-to-market pressure or the
lack of evidence to justify the benefits of SPLE. In this experience
report we discuss the tensions that exist in Océ Technologies. We
report that a reactive software reuse approach has not yielded the
desired long-term benefits of reusability. A proactive approach
requires knowledge exchange and coordination between software
management and technical staff. We describe how such knowl-
edge sharing can ease the tensions and facilitate a SPLE migration
process.

Categories and Subject Descriptors D.2.11 [Software Archi-
tectures] Domain-specific architectures. K.6.3 [Software Man-
agement] Software selection.

General Terms Management, Design, Economics.

Keywords Industry Case Study, Software Product Line Engi-
neering, Architecture Management, Agile Development Process.

1. Introduction

Software reuse has, for many years, been an area of interest in
software engineering research and in the software industry, and
many companies have successfully used techniques to implement
software product line engineering (SPLE) to achieve large-scale
software reuse. Although it is intuitive to recognize that SPL has
many benefits, it is often difficult to estimate and justify its costs
and benefits. There are a number of reasons for this. Firstly, the
application of product line techniques requires staff to acquire
knowledge in the new practice. Secondly, management may not
be convinced or be aware of the extent of the benefits that SPL
engineering could bring. Thirdly, it is difficult to estimate and
justify the costs and benefits of applying SPL to a legacy system
where some core assets already exist but their reusability effec-
tiveness cannot be gauged.

In an industrial setting with serious time to market pressure it
is often easier to scavenge the existing code base to develop a
new product. This situation is the more likely to happen in a tech-

nology-dominated environment where the engineers take pride in
developing new and challenging features, rather than following
the masterplan as dictated by a product line architecture. This
situation is exacerbated when Agile development practices are
used and meeting short-term delivery goals dominates the think-
ing of the engineers.

Under these circumstances, a tension is created between the
proper, top-down, product line engineering approach that empha-
sizes reuse across products, and the bottom-up development of
new products under market pressure [1, 2]. Naturally, a question
is how to combine these two seemingly opposing forces to im-
prove the effectiveness of producing software in an environment
where software assets and practices already exist.

We conjecture that both development processes may co-exist
and co-evolve. There may be situations where quick development
of new products is what matters. There are also situations when
systematic re-engineering of products towards a proper product
line is beneficial. Gathering data on different performance indica-
tors of both processes, and instituting a knowledge feedback loop
in the organization can provide support to make decisions that
balance between building SPL assets and building software that
satisfies current requirements.

In this paper, we describe an SPLE experience in Océ Tech-
nologies. Océ Technologies produces printers that incorporate
sophisticated software and the print software systems have been
successfully deployed for many years. With the many printer
products that the company is selling the reusability of software is
an important issue. In a recent case of design for software reus-
ability, we study the tensions in migrating to SPLE. In this paper,
we first report the experience of a SPL implementation (Section 2
and 3). We analyze the underlying tensions in the development
process, the architecture planning process and the software devel-
opment culture that deter SPLE migration (Section 4). The theme
of this paper is how various types of knowledge can be used to
resolve the tensions and overcome the inertia to enable an incre-
mentally move towards SPLE (Section 5). We propose a knowl-
edge sharing approach that allows both software management and
technical staff to exchange knowledge to improve decision mak-
ing in SPL implementation.

2. Background of the Industry Case

Océ Technologies produces high-end printers to serve the busi-
ness markets for high-volume printing, wide-format printing and
office printing. Printer software is one of the main components in
a printer. The software renders images and controls the print en-
gine. The company is in a highly competitive market place where
providing new features to the market in a timely fashion is impor-
tant to product success. For this reason, software development in

Océ Technologies has adopted an Agile development process
with governance by the architectural and engineering councils.

In its software development organization, developers are typi-
cally grouped into teams of between three to eight people. A ma-
jor product development would require a considerable number of
software development teams, plus architects, integrators and test-
ers. The software development cycle is typically short, an incre-
ment takes 8 weeks, with sprints of 2 weeks. Developers are
highly motivated and knowledgeable. Documentation is minimal.
The development culture can be described as innovative where
the best people are assigned to the problems, and as such job rota-
tion is common.

Océ Technologies has long recognized that software reuse is
important in terms of leveraging existing software assets across
different products. Architects have formed a council to examine
how to leverage reuse of existing software components across
products.

Over the last few years, Océ Technologies has refactored mod-
ules and interfaces several times to try to achieve software reus-
ability amongst products. Even though the end-product was
developed and deployed successfully, software developers had to
redesign and reprogram key features. Software reuse was
achieved by scavenging design and code from a previous project,
and adopting it to the new requirements by affixing new design
and code. After a couple of such development iterations, the ar-
chitectural design gets eroded and the software becomes sensitive
to new design changes. In 2010, a team of designers and software
developers used SPLE principles to redesign a major architectural
component within the printer system.

The software component under consideration is a part of the
printer controller. A printer controller manages all data that en-
ters and leaves the print system. This can be print jobs received
via a network, scanned documents that are exported to a desktop
PC, settings that are entered via a web client, and so on. The
controller offers different ways to handle jobs. Jobs can be printed
immediately upon reception, or stored to allow them to be edited
on the print system and then printed repeatedly at a later time.
Keeping up with new demands and diversity is one of the major
challenges in controller software development.

Océ's strategy is to support this increasing variety of printers
and configurations with a single controller software code base.
This paper reports the experience we had with the redesign of the
architectural component we call the "Printer Controller Compo-
nent" (PCC). PCC manages print jobs that are sent to the print
system. This is an interesting component from an SPL point of
view since, although many components technically are the same
for each controller, the PCC has specific behavior per product.
Hence it is a component where variation points can be expected to
play an essential role.

While the PCC has specific behavior per product it is still ex-
pected to exhibit consistent behavior towards the engine and op-
erator. Two main aspects are how it handles run-time
contradictions (RTC) and how it deals with error situations. An
RTC occurs when the print engine temporarily stops printing
because it is out of resources. Typical examples are: input tray
empty, output tray full, toner empty, out of staples etc. The prin-
ter controller is responsible to detect and report the RTC as early
as possible and respond to situations according to an engine’s
capabilities. Errors can occur at any time during printing and can
range from paper jams to engine errors. The printer controller
must report the errors to the operator, stop printing until all errors
are resolved and the print system has to recover from the error
situation before resuming. Error recovery can consist of many
steps and may require operator inputs to deal with the error.

Certain differences between products are so fundamental that
the PCC must exhibit different behavior. For instance, the way
print engines handle inputs can be by a print job or a print page.
So variation points not only exist for specific communication but
also for perceived behavior of the overall print system.

In the past four years four redesigns of PCC took place. PCC-1
was redeveloped from scratch entirely. PCC-2 reused part of the
PCC-1 code base and was developed in parallel with PCC-1.
PCC-3 reused the PCC-1 code base with additional features and
was developed after PCC-1 had been completed. PCC-4 was
developed based on SPLE principles and its intention was to ac-
commodate all the commonalities of previous PCCs.

PCC-1 aimed to better define and separate the responsibilities
of PCC from the rest of the controller software so that a dedicated
team could work on it, without impacting other subsystems too
much. The introduction of a new printer family instigated the
PCC-2 and PCC-3 redesigns. It was decided to keep the main
PCC structure intact. There were two reasons for this decision.
Firstly, architects thought that a different architecture redesign
would not meet the product release time frame. Secondly, there
was an inertia to move to SPLE.

Shortly after work had started on PCC-3, two crucial events
happened. Firstly the business priorities and market focus
changed. Secondly, the approach to redesign the software for
reuse only added to the complexity of the component and that in
turn had severe implications on its maintainability. So it was de-
cided to start a fourth, major, redesign of PCC (i.e. PCC-4). The
business driver in the PCC-4 redevelopment was to support a
product line to lower the recurring costs of maintenance and to
support new product features. By this time, the inertia and the
mindset towards SPLE had changed. This latest redesign employs
SPLE principles. It has centered on four major concepts.

1. A new interface was introduced between PCC and its external
components so that there is uniformity in their communica-
tion. The responsibilities of PCC were reconsidered and the
parts that were functionally specific were isolated and relo-
cated to a separate component using this new interface.

2. Explicit variation points were created in all areas within PCC
where different products need them. A strict separation was
made between the core framework that must remain identical
for all products and plugins that should support specific prod-
uct behavior.

3. The existing module test framework was replaced by a fine
grained unit test environment. Module testing checks the re-
sponse of the entire module (i.e. component) whereas unit
testing tests a targeted area within a component, reducing test
overhead and improving test efficiency.

4. The scripting of runtime contradictions was enabled using a
scripting language. Experience showed that adding an RTC to
the existing PCC costs too much for such a common variation
point. Therefore we designed explicit RTC interfaces and
made those available in a scripting environment, reasoning
that a simple concept should only require simple code.

This SPLE initiative to redesign PCC was taken by an engi-
neering team in a self-directing manner, endorsed by manage-
ment. However, the resulting architecture design may also erode
as time progresses, especially when architectural design govern-
ance with a mid-term or long term focus is absent. In order for
SPLE to gain traction, it is necessary to understand the fundamen-
tal issues such as cost-benefits and other tensions that contribute

to the inertia to change. This is where knowledge sharing about
costs and benefits of such an approach come into play.

3. Costs and Benefits of a Domain Specific SPL

The inertia to adopting SPLE can be attributed to many reasons,
one of which is the lack of understanding of the benefits that
SPLE can provide. So it is necessary to analyze (a) the potential
benefits of using SPLE; (b) the way we could measure, predict
and justify which parts of the software developed under SPLE
would yield a positive ROI; (c) implications on extending and
sustaining SPL architecture governance.

There are different methods to compute the cost-benefits for
SPL, all of these methods consider SPL in terms of its product
life-cycle [3-5]. The general idea amongst these metrics is similar.
All of them consider a common software platform that can be
reused many times in different products. Then there is a part
which is unique to individual products and its redevelopment is
unavoidable. A discussion of these related works is in Section 6.
For now, we assume to use the Structured Intuitive Model for
Product Line Economics (SIMPLE) [6]. We chose to use this
model because we are able to gather the data that relate to this
model.

The SIMPLE model splits software product line development
costs into four basic cost functions: (a) Organizational costs are
the costs of reorganizing teams and adapting the development
process to SPLE. (b) Core-Asset Base (CAB) is the cost of devel-
oping the reusable core asset or framework; (c) Unique cost is the
cost for developing each unique feature in a product that is on top
of the CAB; (d) cost of reuse is the cost to check if and which
CAB works, the tailoring of CAB for reuse, additional testing
costs and the learning curve etc.

In our case, we see that a reactive investment approach has
been taken where assets are built incrementally without key strat-
egies to building an SPL architecture [7]. There was no organiza-
tion dedicated to SPL design and development, therefore the
organization cost cannot be measured. However, we can measure
CAB costs, unique costs and reuse costs. These are discussed in
Section 3.1. In addition to the costs of building the software, there
are other costs and benefits that are important to an SPL imple-
mentation: ease of maintaining software, time-to-market and the
software quality. McGregor describes some of these factors in [8].
We report on these aspects in Sections 3.2-4 to further support our
analysis.

3.1 Software Refactoring Cost

The redesign that resulted in PCC-1 was based on three new
concepts. Firstly, a formal interface (called PCCI) was introduced
between PCC and the job management function in the controller.
Secondly, this formal interface was implemented in a CM library
to simplify communication with the print engine. And thirdly,
PCC functions are segmented, so that each function is responsible
for a single behavioral aspect. These design concepts have proved
to be valuable and have persisted over the years. In particular the
PCCI interface and CM library remain almost unchanged till
PCC-4.

This design worked fine for a single product but there are ma-
jor limitations when the software was to be reused in other prod-
ucts because many new product features did not fit well with the
existing design. These are new and unforeseen requirements that
required flexibility in the PCC-1 architecture to support. But
PCC-1 lacked that flexibility. Retro-fitting these new require-
ments led to the interlocking of responsibilities between func-

tions, which in turn led to high complexity and maintenance cost.
The original architecture design eroded over time and software
reusability had not been fully achieved.

There were other architectural design features that hindered
software reuse. Abstractions were introduced where none were
required which led to higher complexity and costs. Some critical
assumptions about engine behavior were made at the core of the
PCC-1 design that reduced the reusability of that component.

The redesign of PCC-1 and PCC-2 took place in the context of
their own respective projects. In both cases, the controller devel-
opment was seen as part of that project. Team leaders reported
primarily to their project and the architectural board. The archi-
tectural board was informed about both projects but did not pay
attention to aligning software developed in the two projects to
achieve reusability. The two projects had separate designers who
made their own design decisions without mutual alignment. Rec-
onciling these design differences to come up with a general PCC
was impossible. When it came to point where a common platform
to support future products is needed, none of the existing software
can fulfill that. A totally new redesign was required.

 Core-asset Base Unique

Cost
Reuse
Cost

Total
Cost

PCC-1 41.5 26.5 32 100
PCC-4 23 10.5 2.5 36

Table 1. SIMPLE relative Costs of PCC developments

In PCC-4 development to cater for all previous PCC functions,

the SPLE principles were used, and the separation of responsibili-
ties of common and variable functions is clear. Table 1 shows the
relative cost of the implementation of PCC-4, compared to PCC-
1. The cost unit in Table 1 is expressed relative to PCC-1 total
development cost, i.e. 100 point as the basis. PCC-4 has a much
lower development cost. No doubt, some experiences had been
gained from the previous three rounds of design that partly ex-
plains the reduction in PCC-4 development costs. It is also true
that careful architecture planning and redesign has created a more
elegant software design, which lowers the cost of programming
and testing, and has lowered the total cost of PCC-4 development.

 The development history of PCC shows that long-term archi-
tecture planning can be a worthwhile investment, especially the
planning towards SPL when the software can be used in multiple
products. Such investments in SPL architecture design can only
be coordinated at the management level, and guided by an archi-
tectural board with architectural governance.

3.2 Software Maintenance Cost

At least two factors make software maintenance cost for the latest
PCC design lower than that of its predecessors. The internal de-
sign is refined further into functionally independent modules.
Moreover, this internal structure is strictly enforced by placing
interfaces between the separate modules. Because of this, bugs
can mostly be localized and fixed within a single module.

Some runtime contradictions are implemented in scripts and
are totally separated from any other code in PCC. This has the
advantage that the code is easy to understand and bugs can be
fixed without the need for any recompile and install cycles.

3.3 Time-to-Market

In implementing one typical feature for a printer product using
PCC-4, it was found that the development time took is 50% as
compared to the development time of the same feature using
PCC-1. Some of the features are developed in lesser time. Be-

cause these features can be added and tested as plugins without
touching the PCC framework or other plugins, a shorter time-to-
market to deliver new product features can be achieved.

3.4 Software Quality

The finer subdivision of PCC in modules and the introduction of
internal interfaces made PCC much easier to test. The generic
framework and product specific plugins can be tested separately.
Since tests are easier to develop, more tests are developed to
achieve better test coverage. In contrast, the test sets for PCC-1
are intertwined and the test cases are harder to develop, making it
difficult to understand the test cases and cover all scenarios.

4. Tensions in Migrating to SPL

The decisions on the software development processes are made
primarily by software (SW) management, explicitly or implicitly,
and these decisions have profound influence on the efficiency and
the quality of software products over time. As shown in this in-
dustry case,software reuse as a stand alone directive is inade-
quate. Architects and engineers who were under pressure to
deliver products in a sprint would choose to satisfy short-term
project needs instead of the long-term product needs as our exam-
ple has shown. This is a tension in which SW management must
play a role in resolving. In order to understand the forces that
influence PL implementation in a case such as this, we show the
causal relationships between software management, software
architecture and its outcomes (Figure 1).

Figure 1. Causal Relationships between Software Management
and Product Results

A software management strategy influences the development

methodology such as the use of Agile development and the proc-
ess of architectural planning. Agile development process focuses
on immediate implementation and that affects, mostly implicitly,
architecture planning and design that is about long-term planning
of software implementation.

Software management and architectural council influence
roadmaps planning where software reuse strategy and software
flexibility to adopt new features are a part of. If the SW manage-
ment strategies for SPLE are present, and architectural principles
for reuse are maintained, the system and software architecture
realization would be the result of the planned activities rather than
happenstance. This relationship hints at the maturity of software
reuse in an organization, whether it is taking an opportunistic
approach or a systematic approach [4].

A well designed architecture is important to SPL because the
way a software system is structured influences how software vari-
ability can be catered for and how software commonalities can be
reused. A good SPL architecture design can contribute positively

to reducing refactoring cost, reducing maintenance cost, and im-
proving the time-to-market and software quality [9]. The reverse
can also be true where poorly designed architecture does not pro-
vide these benefits. These potential benefits need to be balanced
with the costs of realizing the SPL architecture. However, such
knowledge to help justify and make the decisions is often un-
available, especially when the industry domain is specific and
unique.

As Océ manufactures more printer products for different mar-
kets, sharing the code-base for common product features becomes
more important. The redevelopment of PCC in a SPLE fashion is
a natural progression. However, a number of tensions exist in the
current culture and development process that inhibit the SPL ini-
tiative. In this section, we examine the different tensions using the
causal relationships model in Figure 1.

4.1 Sprinting to Software Implementation

Océ Technologies uses the Agile development process in which
different teams of developers would make increments every eight
weeks (with sprints of 2 weeks) to deliver software products. The
way Agile development is practiced, designers and developers
take pride in their success on delivering the required product fea-
tures at the end of each sprint. This practice focuses on reaching
the targets of each sprint, the reuse strategy is adversely influ-
enced by this dominating force.

Naturally, designers and developers scavenge existing soft-
ware for reuse because they are familiar with the existing soft-
ware and can estimate how and how much to adapt existing
software in a new product. Overtime, any reusable architecture
feature can be eroded as ad-hoc modifications are made to the
software.

The habits of achieving short-term goals and doing things
quickly with what can be conveniently used would be so en-
trenched in the development culture that it may have priority over
alternative long-term solution where major architectural redesign
is required.

4.2 Architecture Planning and Software Implementation

As mentioned earlier, Océ Technologies has set up a program and
an architectural council to manage software reuse. Such initiatives
have not been entirely successful as evidenced by the PCC exam-
ple. There are tensions why this might be the case.

Firstly, a tension exists between the top-down architectural de-
sign approach and the bottom-up development approach. From
the top down, architectural design at Océ currently stops short at
defining the behavior and the interfaces of and between sub-
systems, architects loose in-depth implementation knowledge.
From the bottom-up, the developers have the freedom to carry out
the detailed design and the implementation. The development of a
SPL architecture requires the architects to have a long-term vision
to create software structures that are reusable. The architects must
also have in-depth knowledge of the software components to de-
sign the system structures and their interfaces so that the architec-
ture platform is reusable. With this top-down design, some of the
freedom that developers currently have enjoyed would be taken
away.

Secondly, implementing non-functional requirements such as
modifiability and flexibility requires a long-term vision of a soft-
ware product. It also requires architectural governance to ensure
its successful implementation.

SPL architecture design cannot be planned at the implementa-
tion level as each implementation team focuses on local features
and functions. The design for non-functional requirements that

overarches a system must be exercised and coordinated at the
architectural level. It has created a tension with Agile develop-
ment method where long-term planning clashes with short-term
implementation demands. On the other hand, some designers and
developers can be visionary and see opportunity for software
improvements and they seize that opportunity, as the Agile devel-
opment process encourages. The opportunistic approach may
improve software reusability in local software modules but they
would not be systematically planned for the entire system.

4.3 Reusing Legacy Software

When there is a complete set of legacy software that works for the
existing products, it is difficult to justify why a new SPL architec-
ture is a good idea, especially when product deadlines are loom-
ing. Even though SW management and designers agree in
principle that the reusability of software can be improved and
SPLE is a nice idea, there is an inertia to redevelop working soft-
ware. At the management level, they are concerned with manag-
ing the costs, benefits and the risks of change. Some people would
argue why change what already works, and face uncertainties that
SPLE may not deliver the benefits. Sufficient justifications are
required to support such a business case.

At the technical level, a concern is about the scope of the
change, i.e. what must be redesigned, and the reusability from
such a design; another concern is about the implications of the
technical design, i.e. what is the impact of a SPL architectural
design on the rest of system. How much software needs to be
redeveloped? The tension is about why change is needed.

4.4 Knowledge of Costs and Benefits

Despite many economic models that exist, the costs and benefits
of SPL implementation is application domain dependent, and
requires in-depth knowledge on how to estimate the costs and the
benefits accurately. In an organization that is transitioning from
legacy software to SPL, it is difficult for architects to estimate the
ROI because such information is typically unavailable.

As SPL architecture development is a long term investment.
The technical soundness and feasibility of such an endeavor is
often challenged in terms of the potential benefits that it may
bring. An organization that is starting with SPLE may know its
current costs, but the future benefits can be difficult to quantify.
These tensions can inhibit a software organization to make sound
decisions in adopting SPLE.

4.5 It Is About Knowledge

The tensions to transit from a legacy process to a SPLE process
exist primarily because important knowledge is lacking and the
knowledge is not communicated between the right parties. Gen-
eral knowledge of SPLE is widely available in industrial and re-
search reports. However, their applicability to specific application
domains is largely unknown.

At the technical level, architects and designers need to be
aware of SPL principles and if those principles are applicable and
beneficial to their existing software products. They have to learn
and experiment with these principles to explore their applicabil-
ity. The costs and benefits would need to be measured to support
decision making for both technical and SW management.

SPL architecture planning is an integral part of SPLE. Archi-
tects and engineers must share the knowledge if a SPL architec-
ture design is to work. Architects also need to obtain in-depth
implementation details in some parts of a system in order to ana-
lyze software commonalities and variability.

On the other hand, SW management needs to know the techni-
cal feasibility of software changes and their potential ROI. SW
management also needs to learn about managing SPLE and how
SPLE impacts on the architecture design, the current development
organization and on the existing engineering programs.

5. Dual Level Knowledge Sharing in SPLE

Venturing into SPLE by a well-established software development
organization is about managing the risks and the relative benefits
of the changes. It is also about resolving various tensions in the
development process, in the investment process and in the plan-
ning process. We suggest that sharing appropriate knowledge at
the right time between the technical and SW management staff
can alleviate some of the tensions during SPL migration. This is
an iterative and incremental process where knowledge is ex-
changed in a feedback loop (see Figure 2). In the exchange, SW
management benefits from the technical inputs, and, on the other
hand, technical staff receives directives from well-considered SW
management decisions and can work in an environment that is
conducive to SPL architecture planning.

Figure 2. Knowledge Feedback Loop in Software Product Line Management

5.1 Justifying SPL Costs and Benefits

One of the major challenges of migrating to SPL is to systemati-
cally explore opportunities to improve software reuse. The oppor-
tunistic approach of stumbling across the “low-hanging fruits” of
software reuse is not sustainable as a business model. SW man-
agement needs facts to systematically justify and implement SPL
reengineering.

In section 3, we have illustrated the cost savings of PCC im-
plementation and its potential productivity gains. Further devel-
opment and maintenance of a SPL architecture platform requires
budget allocation. Additionally, the qualitative analysis has
shown that the software quality and the time-to-market can also
benefit from this initial investment. SW management can use this
knowledge to revise its development strategies where budgets
need to be allocated to projects to investigate the costs and bene-
fits of SPL designs. Additionally, investigation should take place
to assess applicability of SPLE in other areas. The costs of SPLE
adoption are represented by the SIMPLE model:
 Organizational cost (CORG) – maintain a team or a group of

architects and developers to support this initiative; continue to
maintain PCC-4 as a CAB; to prevent the CAB from architec-
tural erosion; to create sufficient documentation to retain the
knowledge of using and maintaining this CAB.

 Reuse cost – the current reuse cost of this case study is calcu-
lated based on designers and developers who have been in-
volved in the development of the CAB. The reuse cost should
be higher than what is reported here when other developers
start to use it. This is because the other developers have to
learn the SPL architecture platform, understand its design,
analyze the variability points and the testing regime.
These two costs can now be estimated but more data are re-

quired to improve their accuracy. They represent the partial
knowledge that needs to be gathered as SPL implementation pro-
gresses. With the initial success, SW management would need to
maintain the foothold that has been gained and extend such gain
to other potentially beneficial areas.

If an incremental SPLE approach is taken to migrate the leg-
acy software to a SPL platform, a collaborative process between
SW management, architects and developers to make an objective
assessment of the ROI is required. The engineers, designers and
architects, on one hand, can present SPL opportunities and techni-
cal assessments for management’s considerations. SW manage-
ment, on the other hand, needs to have in-depth understanding of
the short-term and long-term costs and benefits of each SPL mi-
gration.

Such a balance is about the cost of implementing a upcoming
product release and the long-term benefits that may be gained if a
SPL architecture is used. When implementing certain software
feature, it may be possible to align these two objectives or to “kill
two birds with one stone”. If the cost of implementing a legacy
solution is CLUNIQUE and the cost of implementing a SPL solution
to achieve the same requirement is (CPUNIQUE + CPCAB), then the
question is how much can (CPUNIQUE + CPCAB) exceed CLUNIQUE
before we decide to choose a SPL design. This question is not
applicable if CLUNIQUE has a higher or equal cost to (CPUNIQUE +
CPCAB) because one would then choose a SPL solution.

The answer to this question depends on knowing a few factors:
(a) the cost difference of software refactoring, using the SIMPLE
model in this case, and the amount of reuse of this SPL architec-
ture in the future as a basis of calculating the ROI, the time frame
used in the estimation should not be unrealistically short or long;
(b) the maintenance cost improvements from the SPL architecture
design; (c) the time-to-market factor, that is if the company has to

react to market competition quickly, what would be the opportu-
nity cost of not having this SPL architecture; (d) improvements in
software quality.

Figure 2 shows a comparison of these factors in terms of con-
tinuing with the legacy software or migrating to a SPL platform.
A migration to SPL would require additional development cost,
so it has a negatively (-ve) impact on investment, whereas legacy
software requires no new investment and so it is neutral. In this
case study, we have found that the SPL implementation (PCC-4)
has positive (+ve) impacts on future refactoring cost, maintenance
cost, time-to-market and software quality. When this is compared
to PCC-1, all these aspects are either negative (-ve) or neutral
(neu). This knowledge that has been learned has enabled SW
management and architects to justify the use of SPLE and con-
tinue with this success.

In the future, software refactoring and maintenance costs will
be measured using SPLE and software engineering practices. The
other two factors are both quantitative and qualitative in nature,
and they require measurements and judgments from both the ar-
chitects and SW management. This knowledge will be used to
support decision making for incremental SPL practices.

5.2 SPL Architecture Planning Discipline

In migrating from legacy architecture to a SPL architecture. There
are different approaches in architectural implementation: the revo-
lution approach is to reengineer the entire architecture; the reac-
tive approach is to reengineer an architecture when opportunity
arises; the proactive approach is to investigate the potential gains
of SPL and prioritize the reengineering.

Which approach to take depends on the situation. Whilst a
revolution approach may be suited for start-up product lines, it
would be costly and risky when many legacy software are in
place and all of them are reengineered at the same time.

A reactive approach is dictated by the circumstances. It relies
on opportunities showing up by themselves. As in our case, if the
resource and the market situations were different, the opportunity
of reengineering PCC-4 might not have been present. So a reac-
tive approach does not provide the company the timely competi-
tive edge that it can gain from SPLE. Additionally, the
architecture design resulting from this approach may not be co-
herent because of the piecemeal and unplanned design activities.

The proactive approach requires investments in a SPL archi-
tecture organization to do planning and scoping. Architects should
actively analyze the commonalities and variability of past, exist-
ing and future products to seek improvements. Past and existing
designs can be obtained from design documentation and the code-
base. Future features can be gathered from technical and product
roadmaps, and stakeholders. Then decisions need to be made as to
which part of the system (i.e. scoping) can be implemented in a
SPL to gain the benefits. The cost of the SPL architecture investi-
gation represents the startup and organization investment.

The planning and execution of any SPL architecture approach
requires SW management commitment and architecture planning
and governance. SW management must have a strategic plan on
what it intends to invest and why. This knowledge must be com-
municated to the technical staff to align expectations and objec-
tives. Architects must ensure that reducing cost and improving
software reusability, time-to-market and high software quality are
the goals in the strategic plan. The architecture roadmaps and
architecture design must be aligned, investigated and updated to
reflect what and how these goals can be achieved. Architectural
planning and governance would address the software reusability
issue similar to what has happened in PCC-4 development.

5.3 Adapting SPLE to Agile Development Culture

The tension between SPL architecture planning and the Agile
development method is about the freedom of making decisions
and by whom. SPL architecture constrains, to a certain extent,
how developers can implement software. Innovative developers
typically do not want those constraints. We suggest that this ten-
sion can be eased if the reasons of the SPL architecture design are
communicated clearly. A well-considered architecture design
should have the following information: the context and the con-
siderations of the design, the key architectural decisions and the
tradeoffs that have been made, and the resulting design is the
logical outcomes of those considerations [10]. The knowledge of
such design rationale is important to convince developers to ad-
here to the SPL design and its principles.

Although SPL architecture design is a top down approach,
sharing design rationale is an important avenue to gain the trust
and buy-in from developers. Under a SPL architecture frame-
work, the innovative forces of the developers can continue to
work. Developers should be encouraged to explore and strengthen
SPL opportunities. Additionally, developers should be encour-
aged to find ways to improve the benefits, quality and the archi-
tectural design of the product. The additional contributions to
improving the SPL architecture design and the economics of de-
velopment is a shift from merely delivering to the short-term
goals. It requires developers to think about the long-term benefits
their work would bring to the organization.

6. Related Work

Software reuse in specific domains, or SPL, has been studied for a
long time. It is well recognized that software architecture is an
important consideration in SPLE [7, 11]. The key idea is to dif-
ferentiate between commonalities and variability in an
application, and implement the architecture in a way that the
application domain knowledge can be encapsulated in a reusable
application architecture platform common to the different
products [12]. Different methods have been suggested to scope
out which parts of the system should become a SPL [13, 14]. The
key considerations in SPL scoping include asset scoping, product
portfolio planning, product line analysis, domain potential
assessment, release planning and asset scoping.

Successful SPL implementations have been reported. For in-
stance, HP’s Owen approach is reported to have been successful
in the inkjet product family [9, 15]. In the last 10 years, whilst
staff has grown by a factor of 5, the code-base has increased 10
folds and the number of products per year increased 7 folds. This
productivity gain is attributed to SPLE. HP’s success is not only a
result of the engineering ingenuity and architecture design. It is
fundamentally important to manage the engineering process ap-
propriately to achieve such results.

A scavenger approach [16] is obviously not the most effective
method for planning software reuse. Kircher et al [17] suggest
that no strong rules can be derived from the success stories in SPL
yet. They believed that managers should shape the organization
whilst the software engineers recognize the need to change. This
view is also shared by us in terms of the collaboration through
knowledge exchange in the feedback loop.

A particular area of interest is how Agile development process
works with SPLE since Océ Technologies has adopted this devel-
opment method and its culture is entrenched in it. The Agile me-
thod is about anticipating new requirements and changes, it is
suited for meeting short term software development goals where
project customers are small and discrete, it is suited to delivering

quick results [18]. On the other hand, SPLC is about building
assets, and planning the software architecture so that reuse can be
maximized for the current products sets as well as for the future.

The fundamental philosophy of these two approaches is oppo-
site to each other. The terms of reference in Agile is short versus
SPLE’s long term investments in software asset development. The
motivations of the developers, architects and management are also
different under these models. A challenge to the migration from
legacy system to SPLE lies in the reconciliation of these two me-
thods. A suggestion is to strengthen architectural practice to miti-
gate the differences [19]. Another suggestion is to emphasize the
commonalities of the two approach: collaboration, changing re-
quirements and maximizing outputs [20]. A further suggestion is
to adopt organizational and management changes in a coordinated
way to handle the changing environment [2].

The eventual success of a SPL implementation is measured by
the benefits that it delivers. There are a number of economic mod-
els to address this issue. Boehm et al. suggested the Constructive
Product Line Investment Model (COPLIMO). The model meas-
ures initial development cost and the annualized post-
development life cycle, the calculation requires estimating the
number of lines of code [3]. However, one could argue that the
code that is built for the SPL architecture would have higher
complexity and therefore more expensive to build than the custom
application code, a case where the cost is dependent on the type
of codes in question [4].

The SIMPLE model proposed by Clements et al. classifies
SPL costs into organization, core asset, reuse and unique costs.
By measuring the costs of setting up SPLE organization and con-
structing core assets, and measuring the benefits that result from
it, they work out the ROI [6, 21]. We find that this economic
model can measure our data and so we choose to use it. In addi-
tion to a quantitative economic model, we need to also consider
time-to-market and quality. There are suggestions in [8] about a
qualitative analysis method that evaluates the costs and benefits
based on qualitative information.

These works have inspired our vision in SPLE migration. As
far as we know, we have not found any reports or papers that
show SPL migration in a similar situation as ours.

7. Conclusions

SPLE engineering has been studied for many years, and successes
have been reported. In a situation where legacy software has been
used in products successfully and the Agile development process
is working well, the inertia to migrate to a SPL architecture is
great despite the obvious benefits that SPLE may bring.

In a recent industry case, we report and analyze the costs and
benefits of a successful SPL reengineering of a major architecture
component. From the analysis, we recognize that there are multi-
ple tensions that restrict an organization from embracing SPLE.
The choice of continuing with the existing software development
approach or moving towards SPLE is multi-faceted. It is con-
cerned with the approach to software reuse – opportunistic or
systematic; the organizational approach to delivering software
under the Agile environment; the approach to architectural plan-
ning; and the benefit measurements for justifying change.

A transition to a SPLE development environment requires
technology and organizational changes. It requires coordinated
efforts between SW management and technical staff. In view of
the tensions, new knowledge such as architectural plans, costs and
benefits must be gained and shared to help both groups to manage
change. This paper discusses the sharing of essential knowledge
to help SW management create a development environment con-

ducive to innovations and long-term software reuse, and help
technical staff align their design and innovations towards SPLE.

Acknowledgments

This research has been partially sponsored by the Dutch "Rege-
ling Kenniswerkers", project KWR09164, Stephenson: Architec-
ture knowledge sharing practices in software product lines for
print systems.

References

[1] G. K. Hanssen and T. E. Fægri, "Process fusion: An industrial

case study on agile software product line engineering," Journal

of Systems and Software, vol. 81 (6), pp. 843-854, 2008.

[2] K. Mohan, B. Ramesh, and V. Sugumaran, "Integrating Soft-

ware Product Line Engineering and Agile Development," IEEE

Software, vol. 27 (3), pp. 48-55, 2010.

[3] B. W. Boehm, A. W. Brown, R. J. Madachy, and Y. Yang, "A

Software Product Line Life Cycle Cost Estimation Model," in

International Symposium on Empirical Software Engineering

(ISESE), 2004, pp. 156-164.

[4] W. B. Frakes and C. Terry, "Software Reuse: Metrics and

Models," ACM Computing Surveys, vol. 28 (2), pp. 415-435,

1996.

[5] G. Böckle, P. Clements, J. D. McGregor, D. Muthig, and K.

Schmid, "A cost model for software product lines," in Software

Product-Family Engineering, 2004, pp. 310-316.

[6] P. C. Clements, J. D. McGregor, and S. G. Cohen, "The struc-

tured intuitive model for product line economics (SIMPLE),"

CMU/SEI-2005-TR-003, 2005.

[7] W. B. Frakes and K. Kang, "Software Reuse Research: Status

and Future," IEEE Transactions on Software Engineering, vol.

31 (7), pp. 529-536, 2005.

[8] J. McGregor, "Qualitative SIMPLE," Journal of Object Tech-

nology, vol. 7 (7), pp. 7-16, 2008.

[9] H. Mebane and J. T. Ohta, "Dynamic Complexity and the

Owen Firmware Product Line Program," in SPLC, 2007, pp.

212-222.

[10] A. Tang, J. Han, and R. Vasa, "Software Architecture Design

Reasoning: A Case for Improved Methodology Support," IEEE

Software, vol. Mar/Apr 2009 (pp. 43-49, 2009.

[11] P. Clements and L. Northrop, Software product lines: Addison-

Wesley Reading MA, 2001.

[12] K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented Project

Line Engineering," IEEE Software, vol. 2002 (July/August),

pp. 58-65, 2002.

[13] J. Savolainen, J. Bosch, J. Kuusela, and T. Männistö, "Default

values for improved product line management," in Proceedings

of the 13th International Software Product Line Conference

(SPLC), 2009, pp. 51-60.

[14] I. John and M. Eisenbarth, "A decade of scoping: a survey," in

Proceedings of the 13th International Software Product Line

Conference (SPLC), 2009, pp. 31-40.

[15] P. Toft, D. Coleman, and J. Ohta, "A cooperative model for

cross-divisional product development for a software product

line," in Software product lines: experience and research di-

rections: proceedings of the First Software Product Lines Con-

ference (SPLC1), 2000, pp. 111-132.

[16] H. v. Vliet, Software Engineering: Principles and Practice, 3rd

ed.: John Wiley & Sons, 2008.

[17] M. Kircher, C. Schwanninger, and I. Groher, "Transitioning to

a Software Product Family Approach - Challenges and Best

Practices," in Proceedings of the 10th International Software

Product Line Conference (SPLC), 2006, pp. 163-171.

[18] M. Ali Babar, T. I. and, and M. Pikkarainen, "An industrial

case of exploiting product line architectures in agile software

development," in Software Product Line Conference (SPLC),

2009, pp. 171-179.

[19] P. Abrahamsson, M. Ali Babar, and P. Kruchten, "Agility and

Architecture: Can They Coexist?," IEEE Software, vol. 27 (2),

pp. 16-22, 2010.

[20] J. McGregor, "Agile Software Product Lines, Deconstructed,"

Journal of Object Technology, vol. 7 (8), pp. 7-19, 2008.

[21] G. Böckle, P. C. Clements, J. D. McGregor, D. Muthig, and K.

Schmid, "Calculating ROI for Software Product Lines," IEEE

Software, vol. 21 (3), pp. 23-31, 2004.

