
IEEE Personal Communications Magazine, Third Quarter 1994, pp.14{27Narrowband Interference Suppression inSpread Spectrum CDMAH. Vincent Poor, Leslie A. Rusch�Code-division multiple-access (CDMA) implemented with direct-sequence spread spectrum signalingis among the most promising multiplexing technologies for cellular telecommunications services, such aspersonal communications, mobile telephony, and indoor wireless networks [1, 2, 3, 4, 5]. The advantages ofdirect-sequence spread spectrum for these services include superior operation in multipath environments,exibility in the allocation of channels, the ability to operate asynchronously, privacy, and increased ca-pacity in bursty or fading channels. Also among the attractive features of spread spectrum CDMA is theability of spread spectrum systems to share bandwidth with narrowband communication systems withoutundue degradation of either system's performance. In particular, the ability of spread spectrum to providereliable performance in severe signal-to-noise (SNR) environments and its low energy pro�le make thesharing of frequency bands by multiple and disparate users a real possibility. This ability provides a meansby which to alleviate overcrowding in the radio frequency spectrum, as well as to allow more user exibilityin the choice of modulation format.
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SequenceFigure 1: Spreading/Despreading ProcedureIn a direct-sequence spread spectrum system, a data signal is modulated with a binary pseudonoise(PN) signal having a nearly at spectrum before transmission; so that the transmission bandwidth is muchgreater than the message bandwidth. At the receiver, the incoming signal is \despread" by correlatingit with the PN signal. This process is illustrated in Fig. 1. The binary pulses comprising the PN signalare known as chips to distinguish them from the binary bits of the data signal. The number of chipsper data bit, G; is the spreading ratio or coding gain of the system, and the noise immunity improveswith increasing G: Each user in a spread spectrum CDMA system has a distinct PN code that allowsthe receiver to distinguish it from the other users in the system. Again, increasing the coding gain (andhence the transmitted bandwidth) allows for the accommodation of more users since it allows for lowercross-correlations between the PN signals of the multiple users [6]. For the demodulation of CDMA signals,the despread data signal can be processed via one of several multiuser receiver algorithms, including simplesign extraction, decorrelation [7, 8] or maximum-likelihood sequence detection [9].�The authors are with the Department of Electrical Engineering, Princeton University, Princeton, NJ 08544.1



As noted above, the spreading of the data signal's energy over a su�ciently wide bandwidth allowsit to co-exist with narrowband signals with only a minimum of interference for either signal. Obviously,the low spectral density of the spread spectrum signal assures that it will cause little damage to thenarrowband signal beyond that already caused by the ambient wideband noise in the channel. On theother hand, although the narrowband signal has very high spectral density, this energy is concentratednear one frequency and is of very narrow bandwidth. The despreading operation of the spread spectrumreceiver has the e�ect of spreading this narrowband energy over a wide bandwidth, while at the same timeit collapses the energy of the originally spread data signal down to the original data bandwidth. So, afterdespreading, the situation is reversed between the original narrowband interferer (which is now wideband),and the original data signal (which is now narrowband). A bandpass �lter can be employed so that onlythe interferer power that falls in the bandwidth of the despread signal causes any interference. This will beonly a fraction, 1=G; of the original narrowband interference that could have occupied that same bandwidthbefore despreading. This process is illustrated in Fig. 2.
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Figure 2: Spectral E�ectsThus, spread spectrum communications is inherently resistant to the narrowband interference (NBI)caused by co-existence with conventional communications. However, it has been demonstrated that theperformance of spread spectrum systems in the presence of narrowband signals can be enhanced signi�cantlythrough the use of active NBI suppression prior to despreading [10, 11, 12]. Not only does active suppressionimprove error-rate performance [13], but it also leads to increased CDMA cellular system capacity [3] andimproved acquisition capability [14].Over the past two decades, a signi�cant body of research has been concerned with the developmentof techniques for active NBI suppression in spread spectrum systems, and the purpose of this paper is toprovide an overview of these techniques. An excellent review of those methods developed prior to 1988 canbe found in a survey paper authored by Milstein [12]. Thus, although we will review all of the methods thathave been proposed, we will treat these earlier methods only briey, and we will focus instead on those thathave been developed more recently. It should also be noted that much of the work in this area has beenmotivated by the application of spread spectrum as an anti-jamming signaling method for military use;however it is equally applicable to the problem of NBI in cellular CDMA. Current research makes a moreconscious e�ort to incorporate methodologies that allow for performance improvements when considering2



the spread signal as a CDMA signal, as we will discuss later.We begin, in the following section, with a brief review of NBI mitigation techniques based on thelinear signal processing regimes of adaptive linear transversal �ltering, and Fourier-domain �ltering. Thesemethods represent the original approaches to this problem, and they are quite well developed. Most of thispaper, on the other hand, will be concerned with recently developed model-based techniques that employnon-standard signal processing methods to enhance the interference rejection capabilities in CDMA systemsbeyond those of standard methods. In particular, in the second section we consider techniques based onnonlinear �ltering [15] in which the spread spectrum CDMA signal (which is digital) is modeled as anon-Gaussian noise in the interference suppression process. Further, in the third section we consider thesituation in which the NBI is also a digital communications signal. In this situation, multiuser detectiontechniques [16] can be used to give quite signi�cant performance improvement over other methods. Finally,we present some conclusions and a discussion of open issues in this area.Linear Techniques for Interference SuppressionIn this section we will describe NBI suppression methodology based on linear signal processing paradigms,which represents a large part of the work in NBI mitigation. This methodology is quite well-developed, andit has been investigated extensively, from theoretical analyses through implementation studies. Since thiswork has been reviewed comprehensively by Milstein in [12], we will provide only a broad-brush overviewhere.Briey described, this development has focused on two basic types of techniques: estimator/subtractermethods that perform time-domain notch �ltering; and transform-domain methods that operate to block(or suppress) narrowband energy in the frequency domain. These two types of systems are depicted inFigs. 3 and 4.
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are described in [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. One way of forming such a replica is toexploit the disparity in predictability of the NBI and the spread spectrum signal. In particular, since thespread data signal has a nearly at spectrum, it cannot be predicted accurately from its past values unless,of course, use is made of knowledge of the PN sequence. The interfering signal, being narrowband, can bepredicted accurately on the time scale of the PN signal. Hence, a prediction of the received signal basedon previously received values will, in e�ect, be an estimate of the interfering signal provided the predictionhorizon is beyond the correlation time of the PN signal. By subtracting predicted values of the receivedsignal obtained in this way from the actual received signal and using the resulting prediction error as theinput to the PN correlator, the e�ect of the interfering signal can be reduced signi�cantly. This procedureis, in e�ect, performing a whitening operation on the received signal.An alternative estimator/subtracter implementation is formed by replacing the NBI replica formed byprediction with one formed by interpolation [19, 20, 27]. This latter approach has performance advantagesover the predictor/subtracter, including enhanced processing gain and a more desirable phase pro�le. Theonly disadvantage is delay on the order of a few correlation times of the PN signal, which is easily toleratedsince it is much less than a symbol duration.The estimator/subtracter form of notch �lter has primarily involved the use of linear transversal pre-diction or interpolation �lters to create the NBI replica. Such a �lter forms a linear prediction of thereceived signal based on a �xed number of previous samples, or a linear interpolation based on a �xednumber of past and future samples. This estimate is subtracted from the appropriately timed receivedsignal to obtain the error signal to be used as input to the PN correlator. The �lter tap coe�cients aretypically updated using a suitable adaptive algorithm, such as the least mean squares (LMS) algorithm.The cost of this processing is the introduction of some distortion into the spread spectrum signal. Thisdistortion is negligible when PN sequences of su�cient lengths are used to spread the desired signal. Inparticular, the length of the PN sequence must be much greater than the length of the �lter, a requirementeasily met in any practical spread spectrum system [21]. These approaches will be discussed in furtherdetail in the next section.In transform-domain NBI suppression techniques (see Fig. 4) the principal approach is to take theFourier transform of the received signal, to apply a mask in the frequency domain to notch out the NBI,and then to inverse transform the result back to the time domain for correlation with the PN code (see, e.g.,[3, 14, 18, 30, 31]). A useful mask to consider is an adaptive one that excises those Fourier components whoseenergy levels exceed a set threshold [12]. Alternatively, a whitening mask can be used by �rst applyinga nonparametric spectrum estimator to the received signal, from which such a mask can be derived [18].Depending on the overall system bandwidth and on the consequent processing speed requirements, theFourier transforms required by this techniques can be performed in hardware such as surface-acoustic-wave(SAW) technology, or in software using the fast Fourier transform (FFT).Each of these two general types of NBI suppression techniques is e�ective in improving the performanceof spread spectrum systems in the presence of NBI. Neither is uniformly superior to the other, and which isbest for a given application depends largely on implementation considerations, some of which are discussedin [12] and [18]. A hybrid system involving both transform-domain and time-adaptive �ltering has beenconsidered recently in [32]. In this work, an LMS adaptive �lter is used to suppress frequency componentsthat are correlated from FFT frame to FFT frame. By combining favorable features of each approach, thistechnique yields a lower complexity system for multiple narrowband interferers, when compared to purelytime-domain systems with similar performance characteristics.In the following two sections we describe two more recently developed methodologies for NBI mitigation,4



both of which make use of signal modeling to yield performance improvements. The �rst of these, whichis described in the following sections, falls within the category of an estimator/subtracter technique, butit takes advantage of the non-Gaussian nature of the spread spectrum signal to improve the estimatorperformance through nonlinear �ltering. The second technique exploits the fact that the NBI signals to beencountered in cellular CDMA applications are likely to be digital communications signals. In prior work,the NBI has typically been modeled either as a sinusoidal signal, or as a narrowband autoregression. Eitherof these models is well-suited to treatment via standard signal processing methods. However, if the NBI isalso a digital communications signal, this structure can be exploited to further improve the performanceof active NBI suppression. Nonlinear Estimation TechniquesIn this section we describe nonlinear �ltering methods that o�er improved suppression capability overlinear methods in the estimator/subtracter con�guration of Fig. 3. This work was developed in [33, 34, 35],where the narrowband signal is modeled as an autoregressive (AR) process, that is, as the output of anall-pole linear �lter driven by additive white Gaussian noise. This model is similar to that used in analysisdescribed in the previous section. For the situation in which the statistics of this AR process are known tothe receiver, this work prescribes a time-recursive nonlinear �lter whose nonlinearity takes the form of softdecision feedback of an estimate of the spread spectrum signal. The much more common situation is thatin which the receiver is ignorant of the parameters that characterize the autoregressive signal. For thissituation this approach results in an adaptive nonlinear �lter using a standard LMS adaptation algorithmto predict the interferer by incorporating the soft decision feedback into this algorithm.The techniques to be presented in this section result from a fresh examination of the prediction of theinterferer. A linear prediction method is optimal in the minimum mean square error (MMSE) sense whentrying to predict a Gaussian autoregressive process in the presence of additive white Gaussian noise. Whenthe prediction is done in a non-Gaussian environment, linear methods are no longer optimal and we turn tononlinear methods. For narrowband interference added to a spread spectrum signal, the prediction of theinterferer takes place in the presence of both Gaussian and non-Gaussian noise. The non-Gaussian noise isthe spread spectrum signal itself.As is the case for linear �ltering, nonlinear �ltering techniques exploit the predictability of the nar-rowband interferer vis-�a-vis the spread spectrum signal. The prediction is subtracted from the observationand what remains, which in the case of ideal prediction would be the spread spectrum signal plus additivewhite Gaussian noise, is sent on to a multiuser receiver. The multiuser receiver is selected from the varietyof possible receivers noted previously.In the next section we describe an appropriate system model in which to discuss this methodology andwe focus on the case where the statistics of the interferer are known. A nonlinear, time-recursive �lter isdescribed along with its performance. We compare and contrast the linear Kalman-Bucy �lter with thisnonlinear �lter. An adaptive version of the nonlinear �lter, to be used when the statistics of the NBI arenot known, is presented in the subsequent section. These �lters (both linear and nonlinear, adaptive andnonadaptive) can be cast into an interpolating, vice predicting, structure for added gain and better phasecharacteristics. Finally, we discuss open research questions in the analysis of the nonlinear �lters.Known StatisticsSystem ModelConsider a received signal that is passed through a �lter matched to the chip waveform and chip-5



synchronously sampled once during each chip interval, per Fig. 5. The equivalent discrete time receivedsignal will have components due to the spread spectrum signal, sk , the narrowband interference, ik, andthe ambient white noise, nk. The observation at sample k is then given byzk = ik + sk + nk:The noise can be modeled as being additive white Gaussian noise (AWGN) with variance �2n, and the signalsk as having the following binomial density functionp(sk) = 2�N � NXj=1 Nj ! �(sk �N + 2j)where N is the number of users in the CDMA system. This model assumes equal energies for all users forthe sake of simplicity in illustrating the techniques, however, this is not a necessary assumption. As notedin the preceding, the interference is taken to have bandwidth much less than the spread bandwidth. Thethree signals can be assumed to be mutually independent.
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zk νk+= ikFigure 5: Discrete Time ModelVijayan and Poor cast the interference suppression problem in state space form for use with the Kalman-Bucy �lter [33]. As noted previously, the interference is modeled as an AR process, i.e.,ik = pXj=1�j � ik�j + ekwhere ek is a white Gaussian process and �1; : : : ; �p are the coe�cients of the regression. A state spacerepresentation of this system is given in the following equations and de�nitions. The state vector, xk,consists of ik and the p� 1 previous interference samples, where p is the order of the AR model, i.e.,xk = [ik ik�1 : : : ik�p+1]T :The state transition matrix � is determined by the coe�cients in the AR model (i.e., it is the companion6



matrix of the vector [�1; : : : ; �p]), and given by� = 266666664 �1 �2 : : : �p�1 �p1 0 : : : 0 00 1 . .. 0 0... ... . . . . . . ...0 0 ::: 1 0 377777775 :The vector wk is formed from the white Gaussian noise process driving the AR model and is completelycharacterized by its variance �2i : wk = [ek 0 : : : 0]T :Finally, on de�ning H = [1 0 : : : 0], we can write the state and observation equations asxk = �xk�1 + wk (1)and, zk = Hxk + �k : (2)The observation noise, �k , is a sum of the white Gaussian measurement noise, nk , and the spreadspectrum signal, sk, as is clear from Fig. 5. Optimality of linear prediction schemes would require that theobservation noise be Gaussian. For spread spectrum signals with power comparable to the AWGN power,this approximation is very poor and nonlinear �lters are called for. We �rst consider the case when thethe AR parameters � are known and present a nonlinear �lter that takes into account the non-Gaussianobservation noise. In the subsequent section an adaptive version of this nonlinear �lter is described.Kalman-Bucy and ACM FiltersFor the state space system of (1)-(2), the Kalman-Bucy �lter (see for example [15]) is the optimallinear predictor of the state (and observation), and it is the optimal predictor when the observation noiseis Gaussian. In this case, however, the observation noise density is the convolution of that of the spreadspectrum signal with the Gaussian density. The smaller the measurement noise power in relation to thespread spectrum signal, the more pronounced is this deviation from a Gaussian environment.Recall that the MMSE estimator of the state (1) at a �xed time k given the previous observations isE[xkjzk�10 ]. If the observation noise �k were Gaussian, this would imply that the state and observationswere jointly Gaussian. In this case, the conditional mean (and hence the MMSE estimator) would also havea Gaussian distribution. The Kalman-Bucy recursions are based on this model of Gaussian observationnoise. For the system model used here the measurement noise is clearly not Gaussian, and the optimal�lter (that is, the exact conditional mean) is nonlinear with complexity that increases exponentially inthe time index [36]. For the general state space �ltering formulation with non-Gaussian measurementnoise, Masreliez proposed an approximation to this optimal �lter [37] that greatly reduces complexity. Inparticular, Masreliez proposed that some, but not all, of the Gaussian assumptions used in the derivationof the Kalman-Bucy �lter be retained in de�ning a nonlinear recursively updated �lter. He abandoned therequirement that the observation noise be Gaussian. However, he retained a Gaussian distribution for theconditional mean, although it is not a consequence of the probability densities of the system (as is the casefor Gaussian observation noise); hence the name approximate conditional mean (ACM) that is applied tothis �lter. 7



Using the Masreliez assumption one can derive a nonlinear ACM �lter with recursive updates. Thetime updates are: xk+1 = �x̂k ;and Mk+1 = �Pk�T +Qk :The measurement updates are given by:̂xk = xk +MkHTgk(zk) ;and Pk = Mk �MkHTGk(zk)HMk :The predicted estimate xk is the mean of xk conditioned on previous observations, E[xkjzk�10 ], and Mk isits covariance. The vector x̂k is the �ltered estimate and its conditional covariance matrix is Pk. Qk is thecovariance matrix of the state input (the AR process).Note that the time updates of the ACM �lter are identical to those of the Kalman-Bucy �lter. Theterms Gk and gk denote nonlinearities arising from the (non-Gaussian) distribution of the observation noiseand are given as gk(zk) = � "@p(zkjzk�10 )@zk # � h p(zkjzk�10 )i�1 ;and Gk(zk) = @gk(zk)@zkwhere p(zkjzk�10 ) denotes the measurement prediction density. The measurement updates reduce to thestandard equations for the Kalman-Bucy �lter when the observation noise is Gaussian.For the sake of illustration, consider a system with one CDMA user. In this case, the observation noiseis the sum of a Gaussian random variable and one that takes values of �1 with equal probability. Itsdensity is given by the following Gaussian mixturep�k(�) = 12 hN�2n(� � 1) +N�2n(� + 1)i (3)where N�2(x) 4= 1p2��e� x22�2 :De�ning �k as the innovation (or residual) signal and �2� as its variance, i.e.,�k 4= zk �Hx̂k and �2� 4= HMkHT + �2n ;we can write the functions g and G in this case asgk(zk) = 1�2� � �k � tanh� �k�2�� � ;8
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As the number of spread spectrum users increases, the total power of the spread spectrum signal alsogrows. One would expect that as the power increases, the spread spectrum signal is even more easilydistinguishable from the noise and the ACM �lter will be tracking sk with greater accuracy. Contrast thiswith the performance of the Kalman-Bucy (linear) �lter where the increased power of the spread spectrumsignal causes the measurement noise to be even more highly non-Gaussian. Its performance will degradeas the number of users increases.The �gure of merit in comparing estimator/subtracter methods is the SNR improvement, i.e., the ratioof the SNR at the output of �ltering to the SNR at the input. While higher input SNR leads to lowerbit error rate, the quantitative improvement in probability of error will be smaller. This is due to thefact that the processing gain of the spread spectrum signal provides some interference suppression in itsown right, from which both linear and nonlinear processing will bene�t. It is shown in [40, 41] that thereduction in probability of error is not signi�cant, despite larger SNR, when a very small processing gain(for example, length 7) is used. However, for moderate and large processing gain, the SNR is shown to bea useful measure of performance.In order to assess the performance gains a�orded by the nonlinear techniques described in the preceding,Fig. 7 provides the results of simulations for a second order AR interferer with both poles at 0.99 (i.e.,�1=1.98 and �2=-0.9801). In this simulation, the noise power was held constant at �2n = 0:01, while thetotal of noise plus interference power was varied from -20 dB to 5 dB (all relative to a unity power for asingle spread spectrum signal).
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Figure 7: Predictor Performance for Known Statistics - Multiple spread spectrum UsersAs expected the Kalman-Bucy �lter's performance falls o� as the number of users (and hence thespread spectrum power) increases. The ACM �lter's performance, in contrast, changes imperceptibly andall curves overlap. The ACM �lter exhibits signi�cant improvement in SNR over the Kalman-Bucy �lter,more so as the number of users increases. 10



Adaptive FilteringWhen the statistics for the AR process modeling the NBI are not known, an adaptive algorithm mustbe used in place of the �xed �lters described previously. Adaptive versions of the Kalman-Bucy and ACM�lters su�er from slow convergence in this application, and thus �xed-length transversal �lters are moreuseful. In this context, the LMS algorithm is one of the simplest adaptive algorithms to analyze andimplement. A linear predictor using an LMS �lter of length L has the system diagram given in Fig. 8.
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vector Xk and the tap weight vector �k are de�ned as follows.Xk 4= [zk�1 zk�2 : : : zk�L]T�k 4= [a1;k a2;k : : : aL;k]TThe LMS estimate ẑk is determined bŷzk = XTk � �k�1�k = �k�1 + �k(zk � ẑk) �Xk (4)where �k is a normalized step size.The noise in this LMS algorithm is the observation noise �k which is the sum of Gaussian and non-Gaussian noise. The nonlinearity derived for the ACM �lter can be incorporated into this LMS structureand thereby substantially remove the spread spectrum signal from the adaptation process.Once again for the sake of simplicity we consider the case of one CDMA user, and refer the reader to[35] for the solution of the general system of N CDMA users. The soft decision feedback of the spreadspectrum signal is introduced into the LMS algorithm as illustrated in Fig. 9.Let zk represent the observation less the soft decision on the spread spectrum signal, that is,zk 4= zk � tanh �k�2k! :By altering the tap weight update (4) to be based on the residual less the soft decision feedback, wehave an update equation given by�k = �k�1 + �k(zk � ẑk) [ zk�1 zk�2 : : : zk�L ]T :When the decision feedback is accurate, the �lter adaptation is indeed being done in essentially Gaussiannoise, i.e., without the spread spectrum signal.To assess this alternate adaptive algorithm, simulations are presented for the same AR model forinterference given in the previous section. Results given in Fig. 10 show that this adaptive algorithmachieves the same performance as do the recursive �lters that make use of the statistics of the interferer.Interpolating FiltersAs mentioned earlier, linear interpolating �lters were found to have good phase characteristics as well asgreater SNR improvement for NBI suppression than do linear predicting �lters [19, 20, 27]. The nonlinear�ltering techniques described previously can also be applied to an interpolating, vice predicting, �lter. Inthe nonlinear interpolators (both for known statistics and the adaptive version) a block of data is processedboth forward and backward through the �lter equations. The results are combined into one interpolatedestimate of the interferer, as described in the following paragraph.In [35] interpolating versions of the Kalman-Bucy and ACM �lters are found. For the nonlinear �lter,the assumption is made (analogously to that in the ACM �lter derivation) that the densities of bothforward and backward estimates are Gaussian. The interpolated estimate at any given time index (i.e.,the expected value of the state conditioned on previous and following observations), is then shown to beGaussian with the following mean and covariance,mean = �Tf ��1f [��1f + ��1b � ��1]�1 + �Tb ��1b [��1f + ��1b � ��1]�112
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Figure 10: Adaptive Predictor Performance - Multiple spread spectrum Userscovariance = [��1f + ��1b � ��1]�1where �f and �b are the forward and backward estimates, �f and �b their covariances, and � is thecovariance of the AR process describing the interference. In the case of the nonlinear �lter, the forwardand backward estimates and covariance matrices are determined by nonlinear �lter recursions.
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Figure 11: Interpolator Performance for Known StatisticsSimulation results for these interpolators in the case of known statistics, using the system parametersdescribed earlier, are given in Fig. 11. It is clear that for both the Kalman-Bucy and ACM �lters theinterpolating version outperformed the predictor. The solid line in Fig. 11 gives an upper bound onthe SNR improvement when the narrowband interference is predicted with noiseless accuracy, that is, as�n ! 0. This is calculated by setting E(j�k�sk j2) equal to the power of the AWGN driving the AR process,i.e., the unpredictable portion of the interference. For the system parameters used in these simulations the13



ACM predictor already performs well, and there is little margin or improvement via use of an interpolator.The adaptive �lter in Fig. 12 shows greater margin for improvement, on which the interpolator capitalizes.
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Figure 12: Adaptive Interpolator PerformanceHowever, in either case, the interpolator does o�er improved phase characteristics and some performancegain at the cost of additional complexity (less than three times as many operations) and a delay (due toblock length) in processing. The delay should be inconsequential in most spread spectrum applicationsand, depending on the hardware implementation of the ACM �lter, the added complexity may also proveto be acceptable. AnalysisMany fundamental results for the ACM �lter remain open questions. In the case of Kalman-Bucy�ltering, it is well known that the covariance matrix will reach a steady state value if the eigenvaluesof the state transition matrix are less than unity. No similar criterion is know for the ACM �lter. ForKalman-Bucy �ltering the covariance matrix is determined by the following well known discrete timeRiccati equation, �k+1jk = � h�kjk�1 + �kjk�1HTKkH�kjk�1i�T +Q ;where Kk = (H�kjk�1HT + N + �2n)�1 is independent of the data and is deterministic. This is not thecase for the ACM �lter, whose covariance is governed byMk+1jk = � hMkjk�1 +Mkjk�1HTGk(�k)HMkjk�1i�T + Qwhere Gk is a nonlinear function of the observation. The study of this nonlinear stochastic di�erenceequation poses a research topic in its own right. During simulations the ACM covariance can be observed toconverge to a value equal to that of a Kalman-Bucy �lter with an input composed solely of the narrowbandinterference and AWGN. That is, in the steady state the ACM performed like a Kalman-Bucy �lter actingon observations from which the spread spectrum signal had been removed. Criteria to assure a probabilisticconvergence of ACM covariance and a characterization of the rate of convergence are needed, as well asconvergence analysis of the adaptive nonlinear �lter.14



Simulations of nonlinear �ltering systems demonstrate that the ACM �lter can dramatically outperformthe Kalman-Bucy �lter. To what extent are these results dependent on the parameters chosen for thesimulation? Clearly the nonlinear method is e�ective because the measurement noise, AWGN and spreadspectrum signal, is non-Gaussian. If the spread spectrum signal actually lies below the noise oor, thenthe Gaussian assumption is more reasonable, and the Kalman-Bucy �lter may actually outperform thenonlinear �lter. Simulations show that for �2n > 1 the Kalman-Bucy �lter and the nonlinear �lter havevirtually the same performance, and for values just below one the Kalman-Bucy sometimes has a slightedge in performance. Note, however, that the ACM �lter is never signi�cantly outperformed by theKalman-Bucy �lter since it reduces to the Kalman-Bucy �lter in the limit of vanishing signal power.Similarly, the disparity of bandwidth between the existing users and the spread spectrum signal isessential for the success of this �ltering method and altering the AR model parameters (poles) will impactperformance. Until criteria are known to guarantee (in a probablistic sense) that the ACM performancewill be better than that of the Kalman-Bucy �lter, we can only extend these simulation results by appealingto our intuition that the conditions of 1) low background (AWGN) noise relative to the spread spectrumsignal and 2) the narrow bandwidth of the interferer relative to the spread spectrum signal are favorableconditions for this scheme to work.Multiuser Detection TechniquesMost of the methods of interference suppression discussed so far have been based on the estima-tor/subtracter structure in Fig. 3. Analysis of these �ltering techniques has involved modeling the narrow-band signal as either a deterministic sinusoidal signal or an autoregressive signal (AR), i.e., the output ofa linear �lter driven by additive white Gaussian noise. These models greatly simplify analysis and havecharacteristics that capture the narrowbandedness of the interferer. Consider, however, the situation wherethe interferer is actually a digital communications signal with a data rate much lower than the spread spec-trum chip rate. This signal is indeed a narrowband interferer, but it is poorly modeled as either a sinusoidor an AR process. In such a situation the structure of the digital interferer can be exploited to developa spread spectrum receiver that optimally rejects the interference. The estimator/subtracter structure isonly optimal if the estimation is errorless.The estimator/subtracter separates the problem of narrowband interference suppression from the de-tection and estimation of the spread spectrum signal. This is understandable for the interference modelsproposed, but it is not appropriate for a digital interferer. When the interference is digital it is not unlikethe spread spectrum signal itself, also a digital signal. Because of this similarity, techniques from multiuserdetection theory that work well in defeating multiple access interference (which represents wideband inter-ference) have also proved to be e�ective against the narrowband interference. This idea has been exploredin [42], and we review this approach here.In order to apply methods from multiuser detection theory, the single narrowband interferer is treatedas a collection of virtual spread spectrum users. The case of one true spread spectrum user and onenarrowband interferer has been studied in [42, 43], however, these results can be extended to more generalsituations. Although such a system of one true spread spectrum user and one digital, narrowband interfereris not a code division multiple access system in the usual sense, in the following section we describe howthis can be thought of as a system of m+ 1 spread spectrum users, where m is a function of the relativedata rates of the two signals. The techniques of multiuser, CDMA detection have been applied to thismodel to derive a new receiver for the spread spectrum user that encompass the narrowband suppressionfunction. 15



Ideally we would like to use a receiver that optimally, either in a maximum likelihood or minimumprobability of error sense, detects the desired signal in the presence of both additive white Gaussiannoise and multiple access interference. Such a receiver is described by Verd�u in [9]. Unfortunately thedecision algorithm for this sequence detector has complexity that is exponential in the number of users.For the system under consideration the receiver would have complexity exponential in the number ofnarrowband data symbols per spread spectrum data symbol, a number that can be quite large. To reducethis computational burden a linear detector known as the decorrelating detector, proposed by Lupas andVerd�u in [8], was considered for this new application of multiuser detection theory. The decorrelatingdetector performs as well as the optimal detector in the limit where system errors are due to interferencefrom other signals vice thermal noise, and for large interference power.Since in general the spread spectrum signal will not be synchronized to the narrowband interference,we will discuss only the asynchronous case here. A detector for a synchronous system is treated in [42].For an asynchronous system a one-shot approach to bit decisions is not optimal, and decisions are insteadmade for a frame of bits at a time. The outputs of a bank of matched �lters, where each �lter is matched toa spreading code of an active user, is known to form a su�cient statistic for detecting the spread spectrumbit. Therefore any asynchronous multiuser detector can be cast in the form illustrated in Fig. 13. As theframe of data becomes in�nitely large the decision algorithm of the decorrelating detector approaches anin�nite impulse response (IIR) �lter [8].
Bank 

of
Matched
Filters

r(t) Decision
Algorithm

Frame
of

Data
b
^

y[-N]

y[N]Figure 13: Asynchronous Multiuser DetectorFinally, in addition to the decorrelating detector we will also discuss the conventional, or matched �lter,detector. The decision algorithm for this detector is quite simple. Only the output of the �lter matched tothe desired user is considered. The algebraic sign of this output is used as the bit estimate. This detectoris optimal only in the case of a single spread spectrum user in AWGN. Due to its simplicity it is oftenadopted despite its poor performance in the presence of strong multiple access interference.The following section introduces the model used to describe a system of one true spread spectrumuser and one digital interferer. The structure of the virtual CDMA system leads to a solution for theIIR �lter coe�cients of the decorrelating detector. Closed form expressions for the probability of errorfor the decorrelating and matched �lter detectors, as well as a lower bound on the probability of error fora predictor/subtracter are given in the subsequent section. Finally, these curves are plotted for systemparameters derived from a �eld test of a spread spectrum system overlaid on a narrowband service.System ModelConsider a system with one spread spectrum signal and one narrowband binary communications signalin an otherwise AWGN channel. Each data bit of the spread spectrum user is modulated by a pseudonoisesignature sequence (each entry being one chip), which spreads the signal in the frequency domain. Thetransmission rate of the spread spectrum signal is the data rate times the length of the signature sequence.16



We assume a relationship between the data rates of the two users, i.e., m bits of the narrowband user occur
one SS bit

m = 4 narrowband bits

G = 63 chips

τ Figure 14: Signal Compositionfor each bit of the spread spectrum user. Given that most digital data is sent at rates that are powers oftwo, it is reasonable to employ an integer relationship between the bit rates; indeed, m is most likely tobe a power of two. Let T be the bit duration of the spread spectrum user, which implies T=m is the bitduration of the narrowband user. We call � the �xed, known time lag between the spread spectrum bitand the nearest previous start of a narrowband bit, i.e., 0 � � � T=m.Figure 14 illustrates these ideas form = 4. For the sake of illustration we feature rectangular waveformsat baseband, however all remarks hold for arbitrary waveforms and carrier frequencies that are o�set. Wecan think of the m bits of the narrowband user as arising from m di�erent users. For instance they couldbe m \virtual" users in a time division multiple access system. We can also consider them to be m usersin a CDMA system. The signature waveforms of these users are not PN sequences hence this signal isnot spread in the frequency domain. These virtual signature waveforms are zero everywhere except onesubinterval of the spread spectrum bit.In Fig. 15 each of the narrowband bits has been separated into a virtual CDMA user. The �rst virtualuser's signature sequence is one during the �rst \chip" interval and zero everywhere else. Similarly eachbit can be thought of as a virtual user with a signature sequence with only one non-zero entry. These forma set of orthogonal users, uncorrelated with one another. However, in general, the ith virtual user will havesome cross-correlation with the spread spectrum user. If we call � the vector of cross-correlations during areferenced spread spectrum bit, de�ned explicitly in (5), and  the vector of cross-correlations during theprevious bit interval, de�ned in (6), we see that the two cross-correlation matrices R[0] and R[1] for thisvirtual multiuser system have very simple structures,R[0] = " Im ��T 1 #where Im is the m�m identity matrix, andR[1] = " 0 0 0 # :Let G be the processing gain of the spread spectrum signal. Then the chip interval has length T=G,versus T=m for the narrowband bit. By the assumption that the interferer is narrowband, we have G� m.17
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Figure 15: Virtual CDMA SystemLet s1(t) be the normalized bit waveform of the narrowband user and s2(t) be the normalized chip waveformof the spread spectrum user, that is,s1(t) = 0 8 t =2 (0; T=m) and Z T=m0 s21(t)dt = 1s2(t) = 0 8 t =2 (0; T=G) and Z T=G0 s22(t)dt = 1 :Also, let �2n be the power of the AWGN in the shared channel; and, assuming that the received strengthof the spread spectrum and narrowband signals remains constant for the larger bit interval, let w1 be thereceived energy of the narrowband signal, and w2 the received energy of the spread spectrum user, includingthe processing gain. Finally, let �i be the ith chip value of the spread spectrum signature sequence. Thereceived signal, r(t), is thusNXk=�N 8<:bm[k]pw2 G�1Xi=0 �is2�t�iTG���kT�+pw1m�1Xj=0 bj[k]s1�t�j Tm�kT�9=;+ n(t)where the frame size is 2N+1, and b0[k]; : : : ; bm�1[k] or b[k] is the vector of the narrowband bits, and bm[k]or bSS [k] is the spread spectrum user's bit, all during the kth bit interval of the frame.The outputs of the bank of matched �lters shown in Fig. 13 form a su�cient statistic for determiningthe users' bits (see for example [15], pp 408-409). The �lter bank consists of �lters matched to the spreadingcodes of the active users. The cross-correlations mentioned earlier are de�ned by�k 4= 1pG G�1Xi=0 �i Z 1�1 s1 �t � k Tm� s2 �t � iTG � ��dt (5)and k 4= 1pG G�1Xi=0 �i Z 1�1 s1�t� k Tm� s2 �t � iTG + T � �� dt (6)18



Due to the de�nition of the delay only the �rst component of  will be non-zero; however for ease in somematrix equations we maintain the vector notation. If we form a matrix W of received energies,W 12 = diag(pw1; : : : ;pw1;pw2) ;then the outputs of the matched �lters form a vector y that can be written asR[1]TW 12 " b[1]bSS [1]#+ R[0]W 12 " b[0]bSS [0]# +R[1]W 12 " b[�1]bSS [�1]#+ n= 266664 0...00pw1b0[1] 377775+R[0]W 12 " b[0]bSS [0]#+ 2666640pw2bSS [�1]0...0 377775+ n (7)where n is a Gaussian vector with zero mean and covariance matrix �2nR[0].Decorrelating DetectorBecause of the complexity of the maximum likelihood and minimum probability of error receiver,several other performance criteria have been proposed to gauge the e�ectiveness of suboptimal multiuserdetectors [44]. One such quantity is the e�ciency of a receiver which is determined by the ratio of e�ectivesignal-to-noise ratio to actual SNR. The e�ective SNR is de�ned as the signal level required in the presenceof multiple access noise to achieve the same probability of error when the multiple access noise is removed.The asymptotic e�ciency is the limit of the e�ciency as we allow the background AWGN to go tozero. This asymptotic quantity is not only more tractable analytically than the e�ciency, but it also givesa better sense of how the detector performs in the stated environment, i.e., when the dominant source ofsignal corruption is not AWGN but rather the narrowband interferer.Consider the limiting form of the receiver in Fig. 13. As the size of the frame of data grows in�nitely longon either side of the spread spectrum bit interval of interest, the decision algorithm for the decorrelatingdetector approaches an IIR �lter [8]. The coe�cients of this �lter are a function of the asymptotic e�ciency.If we were to look at the entire frame of data covering N spread spectrum bits and consider a concatenatedvector of all the matched �lter outputs for the entire frame, we could form one cross-correlation matrixde�ned by RN = 2666666664 R[0] RT [1] 0 : : : 0R[1] R[0] RT [1] .. . 00 R[1] .. . . . . ...... 0 .. . . . . RT [1]0 : : : 0 R[1] R[0] 3777777775  N diagonal submatricesIn [8] it was found that the asymptotic e�ciency of the decorrelating detector is determined by invertingthis cross-correlation matrix RN .It is shown in [42] that as N !1 the asymptotic e�ciency of a decorrelating detector in a system ofone true spread spectrum user and one digital interferer is given by� = r�1� �T�� T�2 � 4(�T)2 (8)19



and the �lter coe�cients are given byf(n) = �jnj� where � = 1� �T�� T � �2�T :PerformanceIt is of interest to compare the performance of the decorrelating detector to that of the two mostcommon receivers to date, the matched �lter and the predictor/subtracter followed by a matched �lter.Exact expressions for the probability of error for the matched �lter and the decorrelating detector areknown; however there is no such closed form expression for the predictor/subtracter. Therefore we considera crude lower bound on the probability of error for the predictor/subtracter, representing the theoreticallimit on predictability of the narrowband signal. At the conclusion of this section, the exact probability oferror for these detectors are plotted for a speci�c PN sequence. These results demonstrate how the multiuserdetectors can outperform the conventional detector and the idealized predictor/subtracter detector.Ideal Predictor/SubtracterThe predictor/subtracter receivers are e�ective because the disparity in bandwidth means that, whensampled at the chip rate of the spread spectrum signal, the interference is the only predictable portionof the total received signal. To obtain a crude lower bound on the probability of error resulting from theprediction process, assume for the moment that only the binary narrowband signal is present, and that allinformation is available about the waveform of this signal. We assume the interferer is matched �ltered asappropriate to obtain an equivalent square pulse binary signal. This square pulse is sampled at the chiprate.Because of the assumed perfect knowledge of the narrowband signal waveform, it is known when asample is interior to the narrowband bit, and when a transition has occurred between samples. For aninterior point perfect prediction can be achieved, and hence the only errors occur during samples with bittransitions, as illustrated in Fig. 16. In plots presented later, the curves labeled \Ideal Predictor" represent
perfect prediction unpredictableFigure 16: Ideal Predictora calculation of the probability of error under these assumptions.Conventional and Decorrelating DetectorsThe estimate for the spread spectrum bit given by the matched �lter is b̂SS = sgn(ym[0]), where ym[0]20



is computed using (7) to beym[0] = pw10b0[1] +pw1�T b[0] +pw2bSS [0] + nm= pw1[�T 0]~b+pw2bSS [0] + nmwhere ~b is an (m+1)� 1 vector of possible bit values. The probability of error isPr(b̂SS = 1jbSS = �1) = Pr(nm > pw2 �pw1[�T 0]~b)= 12m+1 2m+1�1Xi=0 Q0@pw2 � pw1[�T 0]~bi�n 1Awhere f~big is an ordering of the 2m+1 possible vectors of narrowband bits.2The probability of error for the decorrelating detector as the number of spread spectrum bits in a framegoes to in�nity is determined by the asymptotic e�ciency calculated in (8). Application of the limitingIIR �lter yields the spread spectrum bit with power w2 plus Gaussian noise with variance �2n=�. Thereforethe probability of error is Q�pw2��n � :SimulationsData provided in [11] for an overlaid CDMA system was used to select system parameters to studythe performance of these detectors. The noise variance is chosen to be �2n = 4, as required for the spreadspectrum signal to be 6 dB down from the ambient noise and to ensure no degradation in performance ofthe pre-existing narrowband user's communications system. The narrowband user's power is allowed tovary from parity with the spread spectrum signal, to 40 dB above it. All powers are referenced to a unityspread spectrum signal, before despreading. A processing gain of 63 is adequate to get reasonable systemperformance for these parameters. An m-sequence of length 63 is used as the spreading code and a squarepulse for both s1(t) and s2(t). The narrowband signal is allowed to have 1, 2, 4, and 8 bits relative to thespread spectrum signal. Larger values make the probabilities of error very di�cult to compute and theyalso conict with the assumption of a narrowband signal (m=G is a measure of the narrowbandedness ofthe signal).The performance of all three detectors (the matched �lter, ideal predictor/subtracter, and decorrelatingdetector) depends on the �xed time delay � ; therefore Figs. 17 and 18 plot the range of probabilities of errorfor all delays, with the average performance indicated by the discrete points. In Fig. 17,m = 1 and m = 2,representing the most narrowband interferer, a regime where we would expect the predictor/subtracter tohave its best performance. In Fig. 18, m = 4 and m = 8, and the interferer is, relatively speaking, lessnarrowband.Consider �rst the performance of the matched �lter detector. It is only for interference powers belowthe AWGN (6dB) that this detector performs well. It is near-far limited, by which we mean that as theinterferer's power becomes arbitrarily large, the probability of error approaches one half.As expected, the ideal predictor/subtracter does best for small values of m. As m becomes larger,the di�erence in bandwidth between the narrowband signal and the spread spectrum signal becomes less2Q(x) = 1p2� R1x e�v2=2dv 21
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