
Automatic Evaluation of Assistive Interfaces

Pradipta Biswas

Computer Laboratory

15 JJ Thomson Avenue

Cambridge CB3 0FD

University of Cambridge, UK

E-mail: pb400@cam.ac.uk

Peter Robinson

Computer Laboratory

15 JJ Thomson Avenue

Cambridge CB3 0FD

University of Cambridge, UK

E-mail: pr10@cam.ac.uk

ABSTRACT

Computers offer valuable assistance to people with physical
disabilities. However designing human-computer interfaces
for these users is complicated. The range of abilities is
more diverse than for able-bodied users, which makes ana-
lytical modelling harder. Practical user trials are also diffi-
cult and time consuming. We are developing a simulator to
help with the evaluation of assistive interfaces. It can pre-
dict the likely interaction patterns when undertaking a task
using a variety of input devices, and estimate the time to
complete the task in the presence of different disabilities
and for different levels of skill. In this paper we describe
the different components of the simulator in detail and pre-
sent a prototype of its implementation.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques – user interfaces; K.4.2 [Computers and Society]:

Social Issues – assistive technologies for persons with dis-
abilities

General Terms
Algorithms, Experimentation, Human Factors, Measure-
ment

Keywords
Human Computer Interaction, Assistive Technology, Us-
ability Evaluation, Simulator.

INTRODUCTION

Computers offer valuable opportunities to physically chal-
lenged people as it help them to engage more fully with the
world. However designing and evaluating human-computer
interfaces for these users is more complicated than for able-

bodied persons, since the range of abilities is more diverse.
Their patterns of interaction are also significantly different
from those of able-bodied users. So existing HCI models
are not easily applicable to assistive interfaces. Assistive
interfaces are generally evaluated by analysing log files
after a user trial. However it is often difficult to find par-
ticipants with specific disabilities. Petrie et. al. [10] take the
approach of remote evaluation but still need to find dis-
abled participants.

As an alternative, a modelling tool that could simulate HCI
of users with disabilities would relieve the designer from
searching for disabled participants to run a conventional
user trial. However, research on assistive interfaces and
HCI modelling do not overlap. Very few HCI models have
considered users with disability. Researchers on assistive
interfaces have concentrated on designing assistive inter-
faces for a particular application (e.g. Web Browser, Aug-
mentative and Alternative Communication aid etc.), devel-
oping new interaction techniques (e.g. different scanning
techniques) or developing novel hardware interfaces (head
mounted switches, eye-gaze trackers, brain-computer inter-
faces etc.). They have not looked at designing a systematic
modelling tool for assistive interfaces.

We have developed a simulator to model HCI of disabled
users. It can predict the likely interaction patterns of users
when undertaking a task using a variety of input devices,
and estimate the time to complete a task in the presence of
different disabilities and for different levels of skill. The
simulator can be used to compare several existing assistive
interfaces and to evaluate new alternatives. We also address
the shortcomings of existing HCI models and hope to de-
velop a system that will be easier to use than the existing
models and support both able-bodied and disabled users.

RELATED WORKS

The GOMS family of HCI models (e.g. KLM, CMN-
GOMS, CPM-GOMS) is mainly suitable for modelling the
optimal behaviour (skilled behaviour) of users [5]. On the
other hand, models developed using cognitive architectures
consider the uncertainty of human behaviour in detail but
have not been widely adopted for simulating HCI. For ex-
ample, developing a sequence of production rules for Soar
[3], a semantic network for ACT-R [15] or a set of con-
straints for CORE [11] is difficult with respect to an inter-

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee.
IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

face designer. Usability issues for cognitive architectures
are also supported by the X-PRT system [11] for the CORE
architecture. Additionally, Kieras has shown that a high
fidelity model cannot always outperform a low fidelity one
though it is expected to do so [7]. Researchers have already
attempted to combine these two forms of model to develop
more usable and accurate models. Salvucci and Lee [9]
have developed the ACT-Simple model by translating basic
GOMS operations into ACT-R production rules [15]. The
model works well to predict expert performance but does
not work for novices. Blandford et. al. [1] implement the
Programmable User Model (PUM) using the Soar architec-
ture. They developed a program, STILE (Soar Translation
from Instruction Language made Easy), to convert the
PUM Instruction Language into Soar productions. How-
ever, this approach also demands good knowledge of Soar
from an interface designer.

The second problem of existing approaches to modelling
comes from specific issues with disability. There is not
much reported work on systematic modelling of assistive
interfaces. McMillan [34] felt the need to use HCI models
to unify different research streams in assistive technology,
but his work aimed to model the system rather than the
user. The AVANTI project [6] models an assistive interface
for a web browser based on some static and dynamic char-
acteristics of users. However, this model does not address
the basic perceptual, cognitive and motor behaviour of us-
ers and so it is hard to generalize to other applications. Our
user model [23] breaks down the task of user modelling
into several steps that include clustering users based on
their physical and cognitive abilities, customizing interfaces
based on user characteristics and logging user interactions
to update the model itself. However the objective of this
model is to design adaptable interfaces and not to simulate
users’ performance. Keates et. al. [30] measured the differ-
ence between able-bodied and motor-impaired users with
respect to the Model Human Processor (MHP) and motor-
impaired users were found to have a greater motor action
time than their able-bodied counterparts. The finding is
obviously important, but the KLM model itself is too primi-
tive to use.

OUR OBJECTIVE

Based on the previous discussion, Figure 1 plots the exist-
ing general-purpose HCI models in a space defined by the
skill and physical ability of users. To cover most of the
blank spaces in the diagram, we set our objectives to de-
velop a model that can:

1. Simulate HCI of both able-bodied and disabled
users.

2. Work for users with different levels of skill.

3. Be easy to use and comprehend for an interface
designer.

THE SIMULATOR

We are developing a simulator that takes a task definition
and locations of different objects in an interface as input.
Then it predicts the cursor trace, probable eye movements
in screen and task completion time, for different input de-
vice configurations (e.g. mouse or single switch scanning
systems) and undertaken by persons with different levels of
skill and physical disabilities.

Figure 1. Existing HCI models w.r.t. skill and physi-

cal-ability of users

The architecture of the simulator is shown in Figure 2. It
consists of the following three components:

The Application model represents the task currently un-
dertaken by the user by breaking it up into a set of simple
atomic tasks.

The Interface Model decides the type of input and output
devices to be used by a particular user and sets parameters
for an interface.

The User Model simulates the interaction patterns of users
for undertaking a task analysed by the task model under the
configuration set by the interface model. It uses the se-
quence of phases defined by Model Human Processor. The
perception model simulates the visual perception of inter-
face objects. The cognitive model takes the output of the
perception model and determines an action to accomplish
the current task. The motor-behaviour model predicts the
completion time and possible interaction patterns for per-
forming that action. A case study of using the simulator can
be found in [22] while an application of the model in evalu-
ating different single-switch scanning techniques is pre-
sented in [21].

Figure 2. Architecture of the Simulator

The remainder of this paper discusses the design of these
three components of the user model. The perception model
is designed according to the theories of visual attention.
Our cognitive model is more detailed than the GOMS
model but not as complex as existing cognitive architec-
tures. The motor-behaviour model is developed by statisti-
cal analysis of screen navigation paths of disabled users.

THE PERCEPTION MODEL

Among existing systems, only EPIC [8] and ACT-R/PM
[19] have distinct perception models. Currently our percep-
tion model considers only vision. It takes a list of keyboard
and mouse events and a sequence of bitmap images of an
interface as input and produces a sequence of eye-
movements and the visual search time as output.

We perceive something on a computer screen by focusing
attention at a portion of the screen and then searching for
the desired object within that area. If the intended item is
not found in that area then attention is shifted to a new loca-
tion. Our model supports both systematic and random
mechanisms of shifting attention [13,27] and also the top
down and bottom up theories [8,19] of focusing attention.
We model the bottom up theory by analysing a bitmap im-
age of the interface using different computer vision algo-
rithms (e.g. colour-histogram matching, shape matching
etc.). The top down mechanism is modelled in the form of
heuristics (e.g. the model never searches in a region of
screen which does not contain any controls or it does not
undertake a visual search for common operations like
minimizing, maximizing or closing a window etc.). The
model is controlled by four free parameters: distance of
user from the screen, foeveal, parafoveal and periphery
angles. The default values of these parameters are set ac-
cording to the EPIC architecture [8]. By changing resolu-
tion or by proper filtering of the bitmap images, the model
can also be used to simulate vision of different visually
impaired users.

THE COGNITIVE MODEL

We have modelled the optimal (expert) and sub-optimal
(non-expert) behaviour separately. We have used the CPM-
GOMS [5] model to simulate the optimal behaviour. For
sub-optimal behaviour, we have developed a new model.
This model takes a task definition as input and produces a
sequence of operations needed to accomplish the task as
output. It simulates interaction patterns of non-expert users
by two interacting Markov processes. One of them models
the user’s view of the system and the other signifies the
designer’s view of the system. Users operate in the users’
space to achieve their goals. They do it by converting their
intended actions into an operation offered by the device. At
the same time, they map a state of the device space into a
state of the user space to decide the next action. Users be-
have sub-optimally, when these mappings between the de-
vice space and the user space are not done optimally. We
can summarize our assumptions as follows:

o Users and devices operate in two different state
spaces [16].

o Each state space can be modelled as a Markov De-
cision Process. This is consistent with the fact of
finite capacity of short-term memory of humans.

o Users follow the principle of maximum rationality
[3], so if they know an action to achieve their goal,
then they will select that action.

o Users behave sub-optimally by not properly con-
verting their intended action into a device opera-
tion and misperception of a device state.

o A good interface will minimize the mismatch be-
tween the user space and the device space.

The operation of the system is illustrated in Figure 3. At
any state, users have a fixed policy based on the current
task in hand. The policy produces an action, which in turn
is converted into a device operation (e.g. clicking on a but-
ton, selecting a menu item etc.). After application of the
operation, the device moves to a new state. Users have to
map this state to one of the state in the user space. Then
they again decide a new action until the new state becomes
the goal state.

Figure 3. Sequence of events in an interaction

Learning

Besides performance simulation, our model also has the
capability of learning new techniques of interactions.
Learning can occur either offline or online. The offline
learning takes place when the user of the model adds new
states or operations to the user space. The model can also
learn new state and operations itself. During execution,
whenever the model cannot map the intended action of the
user into an operation permissible by the device, it tries to
learn a new operation. To do so, it first asks for instruction
from outside. The interface designer is provided with the
information about previous, current and future states and he
can choose an operation on behalf of the model. If the
model does not get any instruction from outside then it
searches the state transition matrix of the device space and
selects an operation according to the label-matching princi-
ple [16]. If the label matching principle cannot return a pro-
spective operation, it randomly selects an operation that can
change the device state in a favourable way. It then adds

this new operation to the user space and updates the state
transition matrix of the user space accordingly. In the same
way, the model can also learn a new device state. Whenever
it arrives in a device state unknown to the user space, it
adds this new state to the user space. Then it selects or
learns an operation that can bring the device into a state
desirable to the user. If it cannot reach a desirable state, it
just selects or learns an operation that can bring the device
into a state known to the user. The model can also simulate
the practice effect of users. Initially the mapping between
the user space and the device space remains uncertain (i.e.
the probabilities for each pair of state/action in the user
space and state/operation in the device space is less than 1).
After each successful completion of a task the model in-
creases the probabilities of those mappings that leads to the
successful completion of the task and after sufficient prac-
tice the probability values of certain mappings reach one.
At this stage the user can map his space unambiguously to
the device space and thus behave optimally.

Usability

One important aspect of a cognitive model is its own us-
ability, which is mostly ignored in the current literature on
cognitive models. We have developed user interfaces for

developing and running the model (Figures 4 and 5 respec-
tively). The model should be developed in three steps. In
the first step, the designer has to specify some possible user
states and actions. Then he has to define a state transition
diagram for the current task by selecting a state and an ac-
tion alternatively. This can be done with the help of a
physical DFD (for structured design) or a state-transition
diagram (for object-oriented design) developed as part of
the system design document. Individual entries of the state
transition diagram can be modified by clicking on the ‘Ad-
vanced Control’ button. In step 2, all of the previous opera-
tions have to be repeated for developing the device space.
Finally in step 3, the states and actions of the user space
and the device space have to be mapped with each other.
The mapping can be done by defining a joint probability
distribution matrix using the interface shown in Figure 4d.
The interface designer is also free to choose any advanced
modelling techniques (like rule-based system or a decision
network) to model the mapping between the user space and
the device space. Once developed, the model can be run
using the interface shown in Figure 5a. At this stage, the
system also permits to define and simulate a new task (Fig-
ure 5b). We have demonstrated the use of the model for a
simple but non-trivial example in the next section.

Figure 4. Interfaces to develop the model

Figure 5. Interfaces to run the model

Demonstration

We have modelled an application to send e-mails using
our system. Initially we developed a very simple interface
(Figure 6) for sending and receiving e-mails. The inter-
face did not impose or indicate any particular order of
operations and allowed the user to do any operation at any
time. So it helped us to observe the natural interaction
patterns of users while sending or receiving e-mails. The
device model was developed from the interface itself. The
state transition diagram of the device space is shown in
Figure 7. We developed the user space by collecting in-
teraction patterns from 5 participants on the interface. The
participants were expert computer users but none used the
interface before. They were aged between 25 to 35 years.
The state transition diagram of the user space is shown in
figure 8. The mapping between the user space and the
device space is presented in table 1. We ran the model for
two iterations to simulate the task of sending an e-mail
using this particular interface. The output of the model is
shown in table 2.

Figure 6. An interface to send and receive e-mails

In this particular example, the difference between the user
space and the device space lies in the interpretation of the
‘Send Mail’ operator. Users expected after clicking on the
‘Send Mail’ button, they would automatically be asked to
specify a recipient, which was not supported by the de-
vice. So during executing the task for the first time, the
model encountered the error message and learned the op-

eration ‘Give Recipient’. After specifying the recipient,
the user wanted to confirm the sending operation. The
‘ConfirmSending’ action did not have any matching op-
eration in the device space. At this stage the model ap-
plied the label matching principle, which successfully
returned the ‘Send Mail’ operation in the device space. At
the next iteration, the model performed the task optimally
by using its learned knowledge. Thus this simple example
demonstrates how the model can simulate the perform-
ance and learning of first-time users of an interface.

Table 1. Mapping between the user space and device space

User Space Device Space

States

Ready to write mail Welcome Screen

Letter without recipient Notepad without recipient

Specify recipient Specify recipient

Letter with recipient Notepad with recipient

Confirmation Message Confirmation Message

Actions

Write Mail Write Mail

Send Mail Send Mail

Confirm Recipient(s) Confirm Recipient(s)

Figure 7. State transition diagram of the device space

Figure 8. State transition diagram of the user

space

Table 2. Output of the cognitive model

 Device Space User Space

Iteration 1

State Welcome Screen Ready to write mail

Action Write Mail WriteMail

 State Notepad without
recipient

 Letter without recipi-
ent

Action SendMail SendMail

State ErrorMsg

 New Action

Learned

 GiveRecipients

 State Specify recipient Specify recipient

Action ConfirmRecipient ConfirmRecipient

 State Notepad with recipi-

ent

 Letter with recipient

 New Action

Learned
 SendMail

Action SendMail Confirm Sending

 State Confirmation Confirmation

Iteration 2

State Welcome Screen Ready to write mail

Action Write Mail WriteMail

 State Notepad without

recipient

 Letter without recipi-

ent

Action GiveRecipients GiveRecipients

 State Recipient Recipient

Action ConfirmRecipient ConfirmRecipient

 State Notepad with recipi-

ent

 Letter with recipient

Action SendMail Confirm Sending

 State Confirmation Confirmation

THE MOTOR-BEHAVIOUR MODEL

A motor behaviour model simulates movement limits and
capabilities of users for different input devices and inter-
action techniques [12]. For able-bodied users, most mo-
tor-behaviour models are based on Fitts’ Law [26] and its
variations [12]. For disabled users, there is growing evi-
dence that their interaction patterns are significantly dif-
ferent from those of their able-bodied counterparts [29-
32]. However the applicability of Fitts’ law for motor-
impaired users is a debatable issue. Smits-Engelsman et.
al. [4], Wobbrock and Gajos [14] found it to be applicable
for children with congential spastic hemiplegia and mo-
tor-impaired people respectively, but Bravo et. al. [24]
and Gump et. al. [2] obtained a different result. In general
for real life pointing tasks, motor-impaired persons are
not always governed by visual feedback. Their move-
ments seem to be more ballistic (rapid and discrete
movement without visual feedback, [2]). This may be a
result of their poor coordination between perception and
motor-action. This poor coordination causes more neuro-
motor noise than the permissible limit of Fitts’ law [25].
They obey Fitts’ law when the task is very simple and
thus requires less coordination between vision and motor-
action [4] or there are other cues (e.g. auditory) besides
vision [14].

There has been some work to develop an alternative to
Fitts’ law for motor-impaired people. Gump et. al. [2]
found significant correlation between the movement time
and the root of movement amplitude (Ballistic Movement
Factor [17]). Gajos, Wobbrock and Weld [18] estimated
the movement time by selecting a set of features from a
pool of seven functions of movement amplitude and target
width, and then using the selected features in a linear re-
gression model.

We have developed the motor-behaviour model by statis-
tical analysis of cursor traces of a previous experiment
[32]. We did a more detailed analysis of different phases
of movement for several pointing tasks undertaken by
motor-impaired users and developed a model to predict
the movement time for a pointing task. We investigated
the cursor traces for each individual pointing task. The
main difference between the mouse movement of the mo-
tor-impaired and able-bodied users lie in the characteris-
tics of the sub-movements [29,31]. Able-bodied users
move the mouse towards the target by a single long sub-
movement followed by some smaller sub-movements to
home on the target.

In the case of motor-impaired users, the number of sub-
movements is greater than that of able-bodied users and
the main movement towards the target is often composed
of two or more sub-movements. The time spent between
two sub-movements (described as pause) also signifi-
cantly affects the total task completion time. So our model
estimates the total task completion time by calculating the
average number of sub-movements in a single pointing
task, their average duration, and the average duration of

pauses. In the present study, we define a pause as the
event when the mouse stops movement for more than 100
msec and a sub-movement is defined as a movement oc-
curring between two pauses.

To reveal the characteristics of the sub-movements and
the pauses, we clustered the points where the pauses oc-
curred (i.e. a new sub-movement started). We found that
about 90% of the sub-movements took place when the
mouse pointer was very near the source (the pointer had
not moved more than 20% of the total distance) or near
the target (the pointer had moved more than 85% of the
total distance). The sub-movements near the source and
target are rather ballistic and the remaining 10% of the
sub-movements actually constituted the main movement.
So our model divided the sub-movements and pauses dur-
ing a pointing task into three classes based on their posi-
tion with respect to the source and the target. The model
operates based on the following equation.

Movement Time

() () () ()31333222111 / sssdpvDistfdpsdp +−+++⋅++=

Where,

Dist Distance from source to target

p1 No. of pauses near source

d1 Average duration of a pause near source

s1
Average duration of a sub-movement near

source

p2 No. of pauses in main movement

d2 Average duration of a pause in main movement

v2 Speed of movement in main movement

f
Fraction of the total distance covered by the

main movement

p3 No. of pauses near target

d3 Average duration of a pause near target

s3 Average duration of a sub-movement near target

We have estimated each of these model parameters from
statistical analyses. One challenging task in developing
the model was to categorize users based on their extent of
disabilities. Several clinical scales have been used to
measure disability (e.g. Ashworth scale [20], the weighted
disability score [28], Tardieu Scale, Spasticity Grading
[35] etc.), but they are hardly applicable in modelling
HCI.

In the present set of data, the experimenters categorized
the users in several ways based on their experience, diffi-
culty in clicking, pointing, dragging etc. Among these we
found that a scale based on the difficulty in dragging, is
significantly correlated (p<0.05) with three model pa-
rameters (No. of pauses near source, No. of pauses near
target [Figure 9] and average speed of main movement
[Figure 10]). We drew histograms of other parameters
(Figure 11) and then they were approximated by the in-
verse transform method [33]. However in developing the
model we assumed a fixed boundary among the three re-

gions (near source, main movement, near target). To
make the model more realistic, we blurred these bounda-
ries. We calculated the probability of a pause from the
function shown in Figure 12. As can be seen from Figure
12, the probability of a pause gradually increases to 1 near
the source and the target. We estimated the pause dura-
tions by multiplying it with the probability of occurrence
of a pause.

Figure 9.Variation of number of pauses w.r.t. a scale

based on difficulty in dragging

Figure 10. Variation of speed of main movement w.r.t. a

scale based on difficulty in dragging

Figure 11. Histograms of model parameters

To estimate the accuracy of our model, we tested the

model on 62 pointing tasks undertaken by 15 participants.
The predictions are obtained by running Monte-Carlo
simulation 500 times for each pointing task. The actual
and predicted average task completion times and a Z-
score distribution of the actual and predictions are shown
in table 3 and Figure 14 respectively. Figure 13 presents a
scatter diagram of actual and average predicted time. The
median of the z-scores has come at –0.27 instead of 0,
however the predicted average task completion time is
found to be significantly correlated (p<0.002) with the
actual.

Pause Distribution with Disance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

Normalized Distance

P
ro

b
a
b
il
it
y
 o

f
a
 P

a
u
s
e

Figure 12. Probability of occurrence of a pause

Table 3. Actual and Predicted Task Completion Time

Participants

Average

Predicted Time

(msec.)

Actual Time

(msec.)

P1 3566 1880

P2 4138 2176

P3 3418 2400

P4 4018 2500

P5 3920 2907

P7 14632 10309

P9 7389 2796

P11 687 1293

P12 14512 9349

P14 14974 22833

P15 4134 10478

P16 3584 1629

P17 7895 15888

P19 4018 2335

P20 3188 8771

Pearson r 0.71

t 3.64

p 0.0015

IMPLEMENTATION

We have developed the simulator in a modular fashion –
all of its components can be run independently of each
other as well as together. The sequence of operations dur-
ing execution of the simulator is shown in Figure 15. The
cognitive model takes a task description from the task
model and produces a list of low-level device operations.
The interface designer has to execute these operations
manually while our mouse hooking program runs as a
daemon.

Actual vs Predicted Task Completion Time

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000 12000 14000 16000

Average Predicted Time

A
c
tu

a
l
T
im

e

Figure 13. Scatter Diagram of Actual vs. Predicted
Task Completion Time (in msec.)

Figure 14. Prediction from our model for mouse in-

terface

The mouse-hooking program generates a list of events (a
list of key presses and mouse clicks), a low-level snapshot
(a sequence of bitmap images) and a high-level snapshot
(locations of windows, icons, buttons and other controls
in the screen) of the whole interaction. The perception
model operates on the event list and the sequence of bit-
maps while the motor-behaviour model takes the event
list and the high-level snapshot as input. An interface de-
signer is free to use any one or more than one modules of
the system. For example, one can run a GOMS analysis
on the output of the cognitive model instead of using our
perception or motor-behaviour model. Similarly the
mouse-hooking program can be run for any interaction
that is not produced by our cognitive model and the per-
ception and (or) the motor-behaviour model can be used
on the output of the mouse-hooking program.

CONCLUSIONS

In this paper we have presented a simulator that can pre-

dict the likely interaction patterns when undertaking a
task using a variety of input devices, and estimate the
time to complete the task in the presence of different dis-
abilities and for different levels of skill. We have devel-
oped the simulator using the concept of Model Human
Processor and described each modules of the system in
details. We are now working to increase the accuracy of
the model and to validate it by some experiments with
people with disabilities.

Figure 15. Sequence of operations in the simula-

tor

ACKNOWLEDGEMENTS

We would like to thank the Gates Cambridge Trust for
funding this work. We like to thank the students of Com-
puter Laboratory and Trinity College, Cambridge to take
part in our experiments. We are also grateful to Dr. Shari
Trewin of IBM TJ Watson Research Centre and Dr. Helen
Pain of University of Edinburgh for sharing their data
with us.

REFERENCES
[1] A. Blandford, R. Butterworthb and P. Curzonb, Models of

interactive systems: a case study on programmable user

modelling, International Journal of Human-Computer Stud-

ies, vol. 60 (2004), 149–200

[2] A. Gump et. al., Application of Fitts’ Law to individuals

with cerebral palsy, Perceptual and Motor Skills (2002),

94, 883-895

[3] A. Newell, Unified Theories of Cognition. Harvard Univer-

sity Press, Cambridge, MA, 1990

[4] B. C. M. Smits-Engelsman et. al., Children with congential

spastic hemiplegia obey Fitts’ Law in a visually guided

tapping task, Journal of Experimental Brain Research

(2007), 177, 431-439

[5] B. E. John and B. E Kieras., The GOMS family of user

interface analysis techniques: Comparison and Contrast.

ACM Transactions on Computer Human Interaction, Vol. 3

(1996), 320-351

[6] C. Stephanidis, et. al., Adaptable and Adaptive User Inter-

faces for Disabled Users in the AVANTI Project, Intelli-

gence in Services and Networks, LNCS-1430, Springer-

Verlag 1998, 153-166

[7] D. E Kieras. Fidelity Issues In Cognitive Architectures For

HCI Modelling: Be Careful What You Wish For. In Pro-

ceedings of 11th International Conference On Human Com-

puter Interaction (HCII 2005). Las Vegas, July, 2005

[8] D. Kieras and D.E. Meyer, An Overview of The EPIC Ar-

chitecture For Cognition And Performance With Applica-

tion To Human-Computer Interaction, Human-Computer

Interaction (1990), vol. 12, 391-438

[9] D.D. Salvucci and F.J. Lee, Simple cognitive Modelling in

a complex cognitive architecture, In Proceedings of the

ACM/SIGCHI Conference on Human Factors in Comput-

ing Systems, Fort Lauderdale, FL, 2003, 265–272

[10] H. Petrie et. al., Remote usability Evaluations with disabled

people. . In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems (CHI ’06) , Montreal,

Canada, April 22-27, 2006. ACM Press, New York, NY,

2006, 1133- 1141

[11] I Tollinger. et. al., Supporting Efficient Development of

Cognitive Models At Multiple Skill Levels: Exploring Re-

cent Advances In Constraint-Based Modeling, In Proceed-

ings of the ACM/SIGCHI Conference on Human Factors in

Computing Systems, Portland, Oregon, USA,2005, 411 –

420

[12] I. S. MacKenzie, motor-behaviour models for human-

computer interaction. In J. M. Carroll (Ed.) HCI models,

theories, and frameworks: Toward a multidisciplinary sci-

ence. 27-54. (2003) San Francisco: Morgan Kaufmann

[13] J. H. Reynolds and R. Desimone, The Role of Neural

Mechanisms of Attention In Solving The Binding Problem,

Neuron 24 (1999), 111-125

[14] J. O. Wobbrock and K. Z. Gajos, A Comparison of area

pointing and goal crossing for people with and without mo-

tor impairments, . In Proceedings of 9th International

ACM/SIGACCESS Conference on Computers and Acces-

sibility (ASSETS 2007) (To appear)

[15] J. R. Anderson and C. Lebiere, The Atomic Components of

Thought. Hillsdale, NJ: Erlbaum, 1998

[16] J. Rieman and R. M. Young, A dual-space model of itera-

tively deepening exploratory learning, International Journal

of Human-Computer Studies (1996) 44, 743-775

[17] K. C. Gan and E. R. Hoffmann, Geometrical conditions for

ballistic and visually controlled movements, Ergonomics

(1988), 31, 829-839

[18] K. Z. Gajos, J. O. Wobbrock and D. S. Weld, Automati-

cally generating user interfaces adapted to users’ motor and

vision capabilities, In proceedings of UIST 2007.

[19] M. D. Byrne, ACT-R/PM And Menu Selection: Applying

A Cognitive Architecture To HCI, International Journal of

Human Computer Studies (2001), vol. 55

[20] M. P. Barnes and G.P. Johnson, Upper Motor Neurone

Syndrome And Spasticity, Cambridge University Press,

U.K., 2001

[21] P. Biswas and P. Robinson, Performance Comparison of

Different Scanning System using a Simulator, Proceedings

of the 9th European Conference of Advancement of Assis-

tive Technology in Europe (AAATE 07) (To appear)

[22] P. Biswas and P. Robinson, Simulation to Predict Perform-

ance of Assistive Interfaces, Proceedings of the 9th Interna-

tional ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS’07) (To appear)

[23] P. Biswas et. al., User Model To Design Adaptable Inter-

faces For Motor-Impaired Users, In Proceedings of the

Tencon ‘05 – IEEE Region 10 Conferences, Melbourne,

Australia, 2005, 1801-1806

[24] P. E. Bravo et. al., A study of the application of Fitts’ Law

to selected cerebral palsy adults, Perceptual and Motor

Skills (1993), 77, 1107-1117

[25] P. H. McCrea and J. J. Eng, Consequences of increased

neuromotor noise for reaching movements in persons with

stroke, Journal of Experimental Brain Research (2005),

162, 70-77

[26] P.M. Fitts, The information capacity of the human motor

system in controlling the amplitude of movement, Journal

of Experimental Psychology (1954), 47, 381-391

[27] S. J. Luck et. al., Neural Mechanisms of Spatial Selective

Attention In Areas V1, V2, And V4 of Macaque Visual

Cortex, Journal of Neurophysiology (1997), vol. 77, 24-42

[28] S. Keates and J. Clarkson, Countering Design Exclusion

An Introduction To Inclusive Design, Springer-Verlag

London Ltd., UK., 2004

[29] S. Keates, and S. Trewin, Effect of age and Parkinson's

disease on cursor positioning using a mouse. In Proceed-

ings of 7th International ACM/SIGACCESS Conference on

Computers and Accessibility, Baltimore, MD, USA, Octo-

ber 2005.

[30] S. Keates, J. Clarkson and P. Robinson, Investigating the

Applicability of User Models for Motion Impaired Users,

In Proceedings ASSETS 2000, ACM/SIGACCESS Con-

ference on Computers and Accessibility, November 13-15,

2000

[31] S. Keates, S. Trewin, and J. Paradise, Using pointing de-

vices: Quantifying differences across user groups. In Pro-

ceedings of UAHCI 2005: 3rd International Conference on

Universal Access in Human-Computer Interaction, Las Ve-

gas, USA, July 2005.

[32] S. Trewin and H. Pain, Keyboard and mouse errors due to

motor disabilities. International Journal of Human-

Computer Studies 50(2), (1999), 109-144.

[33] S.M. Ross, Probability Models For Computer Science,

Elsevier, 2002

[34] W. W. Mcmillan , Computing For Users With Special

Needs And Models of Computer-Human Interaction, In

Proceedings of the ACM/SIGCHI Conference On Human

Factors In Computing Systems (1992), 143-148

[35] V.A. B. Scholtes et. al. , Clinical assessment of spasticity in

children with cerebral palsy: a critical review of available

instruments, Developmental Medicine and Child Neurology

(2006), 48, 64-73

