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ABSTRACT 

Computers offer valuable assistance to people with physical 
disabilities. However designing human-computer interfaces 
for these users is complicated. The range of abilities is 
more diverse than for able-bodied users, which makes ana-
lytical modelling harder. Practical user trials are also diffi-
cult and time consuming. We are developing a simulator to 
help with the evaluation of assistive interfaces. It can pre-
dict the likely interaction patterns when undertaking a task 
using a variety of input devices, and estimate the time to 
complete the task in the presence of different disabilities 
and for different levels of skill. In this paper we describe 
the different components of the simulator in detail and pre-
sent a prototype of its implementation. 

Categories and Subject Descriptors 

D.2.2 [Software Engineering]: Design Tools and Tech-
niques – user interfaces; K.4.2 [Computers and Society]: 

Social Issues – assistive technologies for persons with dis-
abilities 

General Terms 
Algorithms, Experimentation, Human Factors, Measure-
ment 

Keywords 
Human Computer Interaction, Assistive Technology, Us-
ability Evaluation, Simulator. 

INTRODUCTION 
 

Computers offer valuable opportunities to physically chal-
lenged people as it help them to engage more fully with the 
world. However designing and evaluating human-computer 
interfaces for these users is more complicated than for able-

bodied persons, since the range of abilities is more diverse. 
Their patterns of interaction are also significantly different 
from those of able-bodied users. So existing HCI models 
are not easily applicable to assistive interfaces. Assistive 
interfaces are generally evaluated by analysing log files 
after a user trial. However it is often difficult to find par-
ticipants with specific disabilities. Petrie et. al. [10] take the 
approach of remote evaluation but still need to find dis-
abled participants.  

As an alternative, a modelling tool that could simulate HCI 
of users with disabilities would relieve the designer from 
searching for disabled participants to run a conventional 
user trial. However, research on assistive interfaces and 
HCI modelling do not overlap. Very few HCI models have 
considered users with disability. Researchers on assistive 
interfaces have concentrated on designing assistive inter-
faces for a particular application (e.g. Web Browser, Aug-
mentative and Alternative Communication aid etc.), devel-
oping new interaction techniques (e.g. different scanning 
techniques) or developing novel hardware interfaces (head 
mounted switches, eye-gaze trackers, brain-computer inter-
faces etc.). They have not looked at designing a systematic 
modelling tool for assistive interfaces. 

We have developed a simulator to model HCI of disabled 
users. It can predict the likely interaction patterns of users 
when undertaking a task using a variety of input devices, 
and estimate the time to complete a task in the presence of 
different disabilities and for different levels of skill. The 
simulator can be used to compare several existing assistive 
interfaces and to evaluate new alternatives. We also address 
the shortcomings of existing HCI models and hope to de-
velop a system that will be easier to use than the existing 
models and support both able-bodied and disabled users. 

RELATED WORKS 
 

The GOMS family of HCI models (e.g. KLM, CMN-
GOMS, CPM-GOMS) is mainly suitable for modelling the 
optimal behaviour (skilled behaviour) of users [5]. On the 
other hand, models developed using cognitive architectures 
consider the uncertainty of human behaviour in detail but 
have not been widely adopted for simulating HCI. For ex-
ample, developing a sequence of production rules for Soar 
[3], a semantic network for ACT-R [15] or a set of con-
straints for CORE [11] is difficult with respect to an inter-

 
Permission to make digital or hard copies of part or all of this 
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for components of this 
work owned by others than ACM must be honored. Abstracting 
with credit is permitted. To copy otherwise, to republish, to post 
on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee. 
IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain. 
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00 



face designer. Usability issues for cognitive architectures 
are also supported by the X-PRT system [11] for the CORE 
architecture. Additionally, Kieras has shown that a high 
fidelity model cannot always outperform a low fidelity one 
though it is expected to do so [7].  Researchers have already 
attempted to combine these two forms of model to develop 
more usable and accurate models. Salvucci and Lee [9] 
have developed the ACT-Simple model by translating basic 
GOMS operations into ACT-R production rules [15]. The 
model works well to predict expert performance but does 
not work for novices. Blandford et. al. [1] implement the 
Programmable User Model (PUM) using the Soar architec-
ture. They developed a program, STILE (Soar Translation 
from Instruction Language made Easy), to convert the 
PUM Instruction Language into Soar productions. How-
ever, this approach also demands good knowledge of Soar 
from an interface designer.  

The second problem of existing approaches to modelling 
comes from specific issues with disability. There is not 
much reported work on systematic modelling of assistive 
interfaces. McMillan [34] felt the need to use HCI models 
to unify different research streams in assistive technology, 
but his work aimed to model the system rather than the 
user. The AVANTI project [6] models an assistive interface 
for a web browser based on some static and dynamic char-
acteristics of users. However, this model does not address 
the basic perceptual, cognitive and motor behaviour of us-
ers and so it is hard to generalize to other applications. Our 
user model [23] breaks down the task of user modelling 
into several steps that include clustering users based on 
their physical and cognitive abilities, customizing interfaces 
based on user characteristics and logging user interactions 
to update the model itself. However the objective of this 
model is to design adaptable interfaces and not to simulate 
users’ performance.  Keates et. al. [30] measured the differ-
ence between able-bodied and motor-impaired users with 
respect to the Model Human Processor (MHP) and motor-
impaired users were found to have a greater motor action 
time than their able-bodied counterparts. The finding is 
obviously important, but the KLM model itself is too primi-
tive to use. 

OUR OBJECTIVE 
 

Based on the previous discussion, Figure 1 plots the exist-
ing general-purpose HCI models in a space defined by the 
skill and physical ability of users. To cover most of the 
blank spaces in the diagram, we set our objectives to de-
velop a model that can: 

1. Simulate HCI of both able-bodied and disabled 
users.  

2. Work for users with different levels of skill. 

3. Be easy to use and comprehend for an interface 
designer. 

THE SIMULATOR 
 

We are developing a simulator that takes a task definition 
and locations of different objects in an interface as input. 
Then it predicts the cursor trace, probable eye movements 
in screen and task completion time, for different input de-
vice configurations (e.g. mouse or single switch scanning 
systems) and undertaken by persons with different levels of 
skill and physical disabilities.  

 
Figure 1. Existing HCI models w.r.t. skill and physi-

cal-ability of users 

 

The architecture of the simulator is shown in Figure 2. It 
consists of the following three components: 

The Application model represents the task currently un-
dertaken by the user by breaking it up into a set of simple 
atomic tasks. 

The Interface Model decides the type of input and output 
devices to be used by a particular user and sets parameters 
for an interface. 

The User Model simulates the interaction patterns of users 
for undertaking a task analysed by the task model under the 
configuration set by the interface model. It uses the se-
quence of phases defined by Model Human Processor. The 
perception model simulates the visual perception of inter-
face objects. The cognitive model takes the output of the 
perception model and determines an action to accomplish 
the current task. The motor-behaviour model predicts the 
completion time and possible interaction patterns for per-
forming that action. A case study of using the simulator can 
be found in [22] while an application of the model in evalu-
ating different single-switch scanning techniques is pre-
sented in [21]. 

 

Figure 2. Architecture of the Simulator 



 

The remainder of this paper discusses the design of these 
three components of the user model. The perception model 
is designed according to the theories of visual attention. 
Our cognitive model is more detailed than the GOMS 
model but not as complex as existing cognitive architec-
tures. The motor-behaviour model is developed by statisti-
cal analysis of screen navigation paths of disabled users. 

THE PERCEPTION MODEL 

 

Among existing systems, only EPIC [8] and ACT-R/PM 
[19] have distinct perception models. Currently our percep-
tion model considers only vision. It takes a list of keyboard 
and mouse events and a sequence of bitmap images of an 
interface as input and produces a sequence of eye-
movements and the visual search time as output.   

We perceive something on a computer screen by focusing 
attention at a portion of the screen and then searching for 
the desired object within that area. If the intended item is 
not found in that area then attention is shifted to a new loca-
tion. Our model supports both systematic and random 
mechanisms of shifting attention [13,27] and also the top 
down and bottom up theories [8,19] of focusing attention. 
We model the bottom up theory by analysing a bitmap im-
age of the interface using different computer vision algo-
rithms (e.g. colour-histogram matching, shape matching 
etc.). The top down mechanism is modelled in the form of 
heuristics (e.g. the model never searches in a region of 
screen which does not contain any controls or it does not 
undertake a visual search for common operations like 
minimizing, maximizing or closing a window etc.). The 
model is controlled by four free parameters: distance of 
user from the screen, foeveal, parafoveal and periphery 
angles. The default values of these parameters are set ac-
cording to the EPIC architecture [8]. By changing resolu-
tion or by proper filtering of the bitmap images, the model 
can also be used to simulate vision of different visually 
impaired users. 

THE COGNITIVE MODEL 
 

We have modelled the optimal (expert) and sub-optimal 
(non-expert) behaviour separately. We have used the CPM-
GOMS [5] model to simulate the optimal behaviour. For 
sub-optimal behaviour, we have developed a new model. 
This model takes a task definition as input and produces a 
sequence of operations needed to accomplish the task as 
output. It simulates interaction patterns of non-expert users 
by two interacting Markov processes. One of them models 
the user’s view of the system and the other signifies the 
designer’s view of the system. Users operate in the users’ 
space to achieve their goals. They do it by converting their 
intended actions into an operation offered by the device. At 
the same time, they map a state of the device space into a 
state of the user space to decide the next action. Users be-
have sub-optimally, when these mappings between the de-
vice space and the user space are not done optimally. We 
can summarize our assumptions as follows: 

o Users and devices operate in two different state 
spaces [16]. 

o Each state space can be modelled as a Markov De-
cision Process. This is consistent with the fact of 
finite capacity of short-term memory of humans. 

o Users follow the principle of maximum rationality 
[3], so if they know an action to achieve their goal, 
then they will select that action. 

o Users behave sub-optimally by not properly con-
verting their intended action into a device opera-
tion and misperception of a device state. 

o A good interface will minimize the mismatch be-
tween the user space and the device space. 

The operation of the system is illustrated in Figure 3. At 
any state, users have a fixed policy based on the current 
task in hand. The policy produces an action, which in turn 
is converted into a device operation (e.g. clicking on a but-
ton, selecting a menu item etc.). After application of the 
operation, the device moves to a new state. Users have to 
map this state to one of the state in the user space. Then 
they again decide a new action until the new state becomes 
the goal state. 

Figure 3. Sequence of events in an interaction 

 

Learning 

Besides performance simulation, our model also has the 
capability of learning new techniques of interactions. 
Learning can occur either offline or online. The offline 
learning takes place when the user of the model adds new 
states or operations to the user space. The model can also 
learn new state and operations itself. During execution, 
whenever the model cannot map the intended action of the 
user into an operation permissible by the device, it tries to 
learn a new operation. To do so, it first asks for instruction 
from outside. The interface designer is provided with the 
information about previous, current and future states and he 
can choose an operation on behalf of the model. If the 
model does not get any instruction from outside then it 
searches the state transition matrix of the device space and 
selects an operation according to the label-matching princi-
ple [16]. If the label matching principle cannot return a pro-
spective operation, it randomly selects an operation that can 
change the device state in a favourable way. It then adds 



this new operation to the user space and updates the state 
transition matrix of the user space accordingly. In the same 
way, the model can also learn a new device state. Whenever 
it arrives in a device state unknown to the user space, it 
adds this new state to the user space. Then it selects or 
learns an operation that can bring the device into a state 
desirable to the user. If it cannot reach a desirable state, it 
just selects or learns an operation that can bring the device 
into a state known to the user. The model can also simulate 
the practice effect of users. Initially the mapping between 
the user space and the device space remains uncertain (i.e. 
the probabilities for each pair of state/action in the user 
space and state/operation in the device space is less than 1). 
After each successful completion of a task the model in-
creases the probabilities of those mappings that leads to the 
successful completion of the task and after sufficient prac-
tice the probability values of certain mappings reach one. 
At this stage the user can map his space unambiguously to 
the device space and thus behave optimally. 

Usability 

One important aspect of a cognitive model is its own us-
ability, which is mostly ignored in the current literature on 
cognitive models. We have developed user interfaces for 

developing and running the model (Figures 4 and 5 respec-
tively). The model should be developed in three steps. In 
the first step, the designer has to specify some possible user 
states and actions. Then he has to define a state transition 
diagram for the current task by selecting a state and an ac-
tion alternatively. This can be done with the help of a 
physical DFD (for structured design) or a state-transition 
diagram (for object-oriented design) developed as part of 
the system design document. Individual entries of the state 
transition diagram can be modified by clicking on the ‘Ad-
vanced Control’ button. In step 2, all of the previous opera-
tions have to be repeated for developing the device space. 
Finally in step 3, the states and actions of the user space 
and the device space have to be mapped with each other. 
The mapping can be done by defining a joint probability 
distribution matrix using the interface shown in Figure 4d. 
The interface designer is also free to choose any advanced 
modelling techniques (like rule-based system or a decision 
network) to model the mapping between the user space and 
the device space. Once developed, the model can be run 
using the interface shown in Figure 5a. At this stage, the 
system also permits to define and simulate a new task (Fig-
ure 5b). We have demonstrated the use of the model for a 
simple but non-trivial example in the next section. 

Figure 4. Interfaces to develop the model 



 

Figure 5. Interfaces to run the model 

 

Demonstration 

We have modelled an application to send e-mails using 
our system. Initially we developed a very simple interface 
(Figure 6) for sending and receiving e-mails. The inter-
face did not impose or indicate any particular order of 
operations and allowed the user to do any operation at any 
time. So it helped us to observe the natural interaction 
patterns of users while sending or receiving e-mails. The 
device model was developed from the interface itself. The 
state transition diagram of the device space is shown in 
Figure 7. We developed the user space by collecting in-
teraction patterns from 5 participants on the interface. The 
participants were expert computer users but none used the 
interface before. They were aged between 25 to 35 years. 
The state transition diagram of the user space is shown in 
figure 8. The mapping between the user space and the 
device space is presented in table 1.  We ran the model for 
two iterations to simulate the task of sending an e-mail 
using this particular interface. The output of the model is 
shown in table 2.  

 
Figure 6. An interface to send and receive e-mails 

In this particular example, the difference between the user 
space and the device space lies in the interpretation of the 
‘Send Mail’ operator. Users expected after clicking on the 
‘Send Mail’ button, they would automatically be asked to 
specify a recipient, which was not supported by the de-
vice. So during executing the task for the first time, the 
model encountered the error message and learned the op-

eration ‘Give Recipient’. After specifying the recipient, 
the user wanted to confirm the sending operation. The 
‘ConfirmSending’ action did not have any matching op-
eration in the device space. At this stage the model ap-
plied the label matching principle, which successfully 
returned the ‘Send Mail’ operation in the device space. At 
the next iteration, the model performed the task optimally 
by using its learned knowledge. Thus this simple example 
demonstrates how the model can simulate the perform-
ance and learning of first-time users of an interface. 

Table  1. Mapping between the user space and device space 

User Space Device Space 

States  

Ready to write mail Welcome Screen 

Letter without recipient Notepad without recipient 

Specify recipient Specify recipient 

Letter with recipient Notepad with recipient 

Confirmation Message Confirmation Message 

Actions  

Write Mail Write Mail 

Send Mail Send Mail 

Confirm Recipient(s) Confirm Recipient(s) 

 

 

 
Figure 7. State transition diagram of the device space 



 
Figure 8. State transition diagram of the user 

space 

 

Table  2. Output of the cognitive model 

 Device Space User Space 

Iteration 1 

State Welcome Screen Ready to write mail 

Action Write Mail  WriteMail 

 State  Notepad without 
recipient  

 Letter without recipi-
ent 

Action  SendMail   SendMail 

State  ErrorMsg  

 New Action 

Learned 

 GiveRecipients 
 

 State Specify recipient Specify recipient 

Action  ConfirmRecipient   ConfirmRecipient 

 State  Notepad with recipi-

ent   

 Letter with recipient 

 New Action 

Learned 
 SendMail  

Action SendMail  Confirm Sending  

 State  Confirmation    Confirmation 

Iteration 2 

State Welcome Screen Ready to write mail 

Action Write Mail  WriteMail 

 State  Notepad without 

recipient   

 Letter without recipi-

ent 

Action  GiveRecipients   GiveRecipients 

 State  Recipient    Recipient 

Action ConfirmRecipient  ConfirmRecipient 

 State  Notepad with recipi-

ent   

 Letter with recipient 

Action  SendMail   Confirm Sending 

 State  Confirmation    Confirmation 

THE MOTOR-BEHAVIOUR MODEL 

 

A motor behaviour model simulates movement limits and 
capabilities of users for different input devices and inter-
action techniques [12]. For able-bodied users, most mo-
tor-behaviour models are based on Fitts’ Law [26] and its 
variations [12]. For disabled users, there is growing evi-
dence that their interaction patterns are significantly dif-
ferent from those of their able-bodied counterparts [29-
32]. However the applicability of Fitts’ law for motor-
impaired users is a debatable issue. Smits-Engelsman et. 
al. [4], Wobbrock and Gajos [14] found it to be applicable 
for children with congential spastic hemiplegia and mo-
tor-impaired people respectively, but Bravo et. al. [24] 
and Gump et. al. [2] obtained a different result. In general 
for real life pointing tasks, motor-impaired persons are 
not always governed by visual feedback. Their move-
ments seem to be more ballistic (rapid and discrete 
movement without visual feedback, [2]). This may be a 
result of their poor coordination between perception and 
motor-action. This poor coordination causes more neuro-
motor noise than the permissible limit of Fitts’ law [25]. 
They obey Fitts’ law when the task is very simple and 
thus requires less coordination between vision and motor-
action [4] or there are other cues (e.g. auditory) besides 
vision [14].  

There has been some work to develop an alternative to 
Fitts’ law for motor-impaired people. Gump et. al. [2] 
found significant correlation between the movement time 
and the root of movement amplitude (Ballistic Movement 
Factor [17]).  Gajos, Wobbrock and Weld [18] estimated 
the movement time by selecting a set of features from a 
pool of seven functions of movement amplitude and target 
width, and then using the selected features in a linear re-
gression model.  

We have developed the motor-behaviour model by statis-
tical analysis of cursor traces of a previous experiment 
[32]. We did a more detailed analysis of different phases 
of movement for several pointing tasks undertaken by 
motor-impaired users and developed a model to predict 
the movement time for a pointing task. We investigated 
the cursor traces for each individual pointing task. The 
main difference between the mouse movement of the mo-
tor-impaired and able-bodied users lie in the characteris-
tics of the sub-movements [29,31]. Able-bodied users 
move the mouse towards the target by a single long sub-
movement followed by some smaller sub-movements to 
home on the target.  

In the case of motor-impaired users, the number of sub-
movements is greater than that of able-bodied users and 
the main movement towards the target is often composed 
of two or more sub-movements. The time spent between 
two sub-movements (described as pause) also signifi-
cantly affects the total task completion time. So our model 
estimates the total task completion time by calculating the 
average number of sub-movements in a single pointing 
task, their average duration, and the average duration of 



pauses. In the present study, we define a pause as the 
event when the mouse stops movement for more than 100 
msec and a sub-movement is defined as a movement oc-
curring between two pauses.  

To reveal the characteristics of the sub-movements and 
the pauses, we clustered the points where the pauses oc-
curred (i.e. a new sub-movement started). We found that 
about 90% of the sub-movements took place when the 
mouse pointer was very near the source (the pointer had 
not moved more than 20% of the total distance) or near 
the target (the pointer had moved more than 85% of the 
total distance). The sub-movements near the source and 
target are rather ballistic and the remaining 10% of the 
sub-movements actually constituted the main movement. 
So our model divided the sub-movements and pauses dur-
ing a pointing task into three classes based on their posi-
tion with respect to the source and the target. The model 
operates based on the following equation. 

Movement Time 

( ) ( ) ( ) ( )31333222111 / sssdpvDistfdpsdp +−+++⋅++=  

 

Where,  

Dist Distance from source to target 

p1 No. of pauses near source 

d1 Average duration of a pause near source 

s1 
Average duration of a sub-movement near 

source 

p2 No. of pauses in main movement 

d2 Average duration of a pause in main movement 

v2 Speed of movement in main movement 

f 
Fraction of the total distance covered by the 

main movement 

p3 No. of pauses near target 

d3 Average duration of a pause near target 

s3 Average duration of a sub-movement near target 

 

We have estimated each of these model parameters from 
statistical analyses. One challenging task in developing 
the model was to categorize users based on their extent of 
disabilities. Several clinical scales have been used to 
measure disability (e.g. Ashworth scale [20], the weighted 
disability score [28], Tardieu Scale, Spasticity Grading 
[35] etc.), but they are hardly applicable in modelling 
HCI.  

In the present set of data, the experimenters categorized 
the users in several ways based on their experience, diffi-
culty in clicking, pointing, dragging etc. Among these we 
found that a scale based on the difficulty in dragging, is 
significantly correlated (p<0.05) with three model pa-
rameters (No. of pauses near source, No. of pauses near 
target [Figure 9] and average speed of main movement 
[Figure 10]). We drew histograms of other parameters 
(Figure 11) and then they were approximated by the in-
verse transform method [33]. However in developing the 
model we assumed a fixed boundary among the three re-

gions (near source, main movement, near target). To 
make the model more realistic, we blurred these bounda-
ries. We calculated the probability of a pause from the 
function shown in Figure 12. As can be seen from Figure 
12, the probability of a pause gradually increases to 1 near 
the source and the target. We estimated the pause dura-
tions by multiplying it with the probability of occurrence 
of a pause. 

 

Figure 9.Variation of number of pauses w.r.t. a scale 

based on difficulty in dragging 

 

 

Figure 10. Variation of speed of main movement w.r.t. a 

scale based on difficulty in dragging 

 

Figure 11. Histograms of model parameters 

 

To estimate the accuracy of our model, we tested the 



model on 62 pointing tasks undertaken by 15 participants. 
The predictions are obtained by running Monte-Carlo 
simulation 500 times for each pointing task. The actual 
and predicted average task completion times and a Z-
score distribution of the actual and predictions are shown 
in table 3 and Figure 14 respectively. Figure 13 presents a 
scatter diagram of actual and average predicted time. The 
median of the z-scores has come at –0.27 instead of 0, 
however the predicted average task completion time is 
found to be significantly correlated (p<0.002) with the 
actual. 
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Figure 12. Probability of occurrence of a pause 

 

Table  3. Actual and Predicted Task Completion Time 

 

Participants 

Average 

Predicted Time 

(msec.) 

Actual Time 

(msec.) 

P1 3566 1880 

P2 4138 2176 

P3 3418 2400 

P4 4018 2500 

P5 3920 2907 

P7 14632 10309 

P9 7389 2796 

P11 687 1293 

P12 14512 9349 

P14 14974 22833 

P15 4134 10478 

P16 3584 1629 

P17 7895 15888 

P19 4018 2335 

P20 3188 8771 

Pearson r 0.71 

t 3.64 

p 0.0015 

IMPLEMENTATION 

 

We have developed the simulator in a modular fashion – 
all of its components can be run independently of each 
other as well as together. The sequence of operations dur-
ing execution of the simulator is shown in Figure 15. The 
cognitive model takes a task description from the task 
model and produces a list of low-level device operations. 
The interface designer has to execute these operations 
manually while our mouse hooking program runs as a 
daemon. 

Actual vs Predicted Task Completion Time
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Figure 13. Scatter Diagram of Actual vs. Predicted 
Task Completion Time (in msec.) 

 

  
Figure 14. Prediction from our model for mouse in-

terface 

 

The mouse-hooking program generates a list of events (a 
list of key presses and mouse clicks), a low-level snapshot 
(a sequence of bitmap images) and a high-level snapshot 
(locations of windows, icons, buttons and other controls 
in the screen) of the whole interaction. The perception 
model operates on the event list and the sequence of bit-
maps while the motor-behaviour model takes the event 
list and the high-level snapshot as input. An interface de-
signer is free to use any one or more than one modules of 
the system. For example, one can run a GOMS analysis 
on the output of the cognitive model instead of using our 
perception or motor-behaviour model. Similarly the 
mouse-hooking program can be run for any interaction 
that is not produced by our cognitive model and the per-
ception and (or) the motor-behaviour model can be used 
on the output of the mouse-hooking program. 

CONCLUSIONS 
 

In this paper we have presented a simulator that can pre-



dict the likely interaction patterns when undertaking a 
task using a variety of input devices, and estimate the 
time to complete the task in the presence of different dis-
abilities and for different levels of skill. We have devel-
oped the simulator using the concept of Model Human 
Processor and described each modules of the system in 
details. We are now working to increase the accuracy of 
the model and to validate it by some experiments with 
people with disabilities. 

 

Figure 15. Sequence of operations in the simula-

tor 
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