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ABSTRACT

We give a rigorous analysis of the convergence properties of a recurrent back-
propagation algorithm for recurrent networks containing either output or hidden layer recurrence.
The conditions permit data generated by stochastic processes with considerable dependence.

The theory suggests restrictions relevant in practical applications.

1. INTRODUCTION

Artificial neural network models are a class of flexible nonlinear functions
developed by cognitive scientists that are useful in forecasting, patterm recognition, signal pro-
cessing and process control applications. In "feedforward" networks, inputs activate "hidden"
units, which in tum determine output activation. In these networks signals flow in only one

direction, without feedback.

Applications in forecasting, signal processing and control require explicit treatment
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2. HEURISTICS AND THE METHOD OF RECURRENT BACK-PROPAGATION

Suppose that we observe a realization of a sequence {Z,} = (Z;:t=0, 1,...} of ran-
dom vectors, where Z = (¥;, X1)7 (with T denoting the transposition operator), Y, is (for simpli-
city) a scalar, and X; isa vx1 veétor, ve IN={1,2,..}. We interpret Y, as a target value at
time ¢, and X, as a vector of input variables influencing Y, and generated by nature. X, may con-
tain lagged values of Y, (e.g. Y;-1, Y2, ...) as well as lagged values of other variables. For con-
venience, we assume throughout that the first element of X, (i.e. X;) is always equal to one.

Let X! = (Xo, .... X;) denote the history of the X process from time zero through time
t. (Similarly, for any sequence {a,}, a* =(ay, ..., a;).) Suppose we are interested in approximat-
ing E(Y,|X*), the conditional expectation of ¥; given X !, by a parametric function of X*, so that
fi: R"**DY x© — R (say) defines a family of approximations f; (X*',0) as 6 ranges over the
parameter space © c R’, s € N, say.

In this situation we define the approximation error ¢, @) = Y, - f; (X', 8) and select

6* such that

0* = min! lim E (e, 0)*)2,
=y

where min! designates a local minimizer of its argument, we assume limits exist, and E(-)

denotes mathematical expectation. To see why this is natural, note that

E (,0)®) = E(Y, - E (%X + E ((E (%,|X) - £, X", O)1).

It follows that 8* also satisfies

6* = min! lim E(E (¥, Ix) -1, &*. O)P).

and thus indexes a locally mean-square optimal approximation to the limit of E (Y, [X*).

Given the validity of an interchange of limit, derivative and expectation, we have

lim VE (e,@®)2 = lim £ (Ve, ©) ¢, @)1 = 0
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as the necessary first order conditions for 6*, where V is the gradient operator with respect to 6,
producing an s X 1 vector. The expectation above is usually unknown; however, the method of
stochastic approximation (Robbins and Monro, 1951; Kushner and Clark, 1978) can appmximate
a solution to the first order conditions.

In general, stochastic approximation estimates a solution to the equations

M@) =0 (withM : 8 - R) as

a

6:,1=6,-11:m ', ég). t=0,1, ..,
where lim E (m, (Z*,0)) = M(@), and {1, € R*} is a "leaming rate" sequence. For our applica-
§—pen

tion, we have

m, Z'.6)=Ve @ e (9)

We take f; as the output function of a recurrent neural network with output given in

time period ¢ by
0,=F (@ + AT B), with (2.1a)
Aj=GXTy;+R( &), j=1,.4q 2.1)
R;=p; X;-1, R—1,60), i=1,.,p, 2.1¢c)

where F:IR— R,G: R— I (I =[0,1]) are given functions (e.g., the logistic function
GRA)=(1+ e*)1); A, is the ¢x1 vector of hidden unit activations; parameters are
a(1x1),8@x 1D 7=@], .. VDT (qvx1) and 5= (5T, ... ST (gp x 1) collected together in
the s x 1 network weight vector 6 = (@, BT, 77, 87)7, with 5 = 1+q+q(v+p); and R, is the p X 1
vector of recurrent variables, determined from previous inputs (X;.;), previous recurrent values
(R,-1) and network weights () throughp;,i=1,"..., p.

When R, = O,_;, we have the Jordan (1986) network, and

g T
P1 X1, R-1,.0)=F(@ + z ﬂj GX Yi + R,y 5,))
i=l
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When R, = A,_;, we have the Elman (1988) network, and

pi KXot Ri-1,0)=GXI_y i +R1 &), i=1,..q
Substituting for A;; in (2.1a) gives
3 T T
O,=F@a+ Y BjGXiv;+R; )
j=1

for the single hidden layer recurrent net. Because ¢, =Y, — O,, network error depends on Z,, R,

and 6. Thus, this net is a particular case of a generic class of models with errors

e, = u(Z,. R‘, 9),

where the function u results from the assumed network output function, and R, is determined by
network recurrence.

Above, the recurrent variables were generated as R, =p (X;, R,-.0), with
pu(p1,-mp p)T. However, much flexibility is gained by including Y;_; as a determinant of R;,
so we write R, =p (Z,—y, R, 0).

Because of R,, network error is a function of the entire history of targets and inputs,
Z*. For a given 6 and a given initial recurrent value, say Ry, the recurrent variables are given in

time period ¢ as

Rl =p (zt-l'p (Zl-Zo ers 9), 0) = Il(zt-lr e)'

where we have suppressed the dependence of /; on Rg. Network error is then

e 0) = uZ, 1,2, 6),6).

The gradient Ve, needed for leamning is

Ve, ©) = up (Z [, (27,6, 00 + V1, (Z7,0) u, (Z,, 1, (27", 0),0),

where ug is the 1 x s derivative of u with respect to 6 (uh =V u), u, is the 1 x p derivative of u
p
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with respect to recurrent variables, and V I, is the s X p gradient matrix of /; with respect t0 8.
Any learning algorithm based directly on ¢, and Ve, will be computationally inten-
sive, as the effect of any change in § must be propagated through time from period zero up to
period . The required computations grow as ¢ increases, and the entire history Z! must be kept in
memory.
A computationally convenient altemative results from exploiting the recursive struc-

ture of R,. Because

R =1(Z"",0)=p (Z1, 41 (272,0).6)

it follows that

V1, (Z1,0)=po (Zi-t, Reet, )T + V 1,1 (Z°72,8) p, (Zioy. Ry, )T,

where pg is the p X s Jacobian matrix of p with respect to & (pF=Vp)andp, is the p X p Jaco-
bian matrix of p with respect to recurrent variables. With A, = Vi, (Z'71,0), we have a recur-

sion,

Ay =pg (Zio1, Ryt 6) + Ay pr(Zi1, Ry G)T-

The recursions for R, and A, suggest a learning algorithm that updates R, and A, with the weight
update in time ¢ but neglects the effect of weight updates on past values. If the system doesn’t
have "too long" a memory and if we eventually get "close” to 6*, then sufficiently little may be
lost by ignoring the update effects that we still obtain the desired convergence to o*.

Thus, we begin by picking arbitrary initial weights éo, recurrent variables 130 and

s X p gradient matrix Ag. To update network weights we compute network error

a0 =u (ZOt ROv 60)

and form

Véo = ug (Zo, Ro, 80)7 + Ag 1, (Zo, éo, 60)



in order to get period 1 weights

6, =90-110V30-2°.

The recurrent variables and gradient matrix are updated for use in period 1 to

I‘él =p (Zo. &o,eo), and

A =pg (Zo, I‘éo. éo)r + ao pr Zo, ﬁo. éo)T-

Now we may compute

€ =u(21,ﬁ1,é;) and

Ve, =ug(Z;, RO +4A1 1, (Z1, R1,6)T

to obtain period 2 weights

62=6,-n1 Ve, ¢
At time ¢ we have targets and inputs Z,, recurrent variables 13,, weights 6, and gradient matrix 8,.

permitting us to compute

2‘ =u (zh kt- ét)'

Ve, =ug (Zo R, 0T + A u, (Zi, R, 6T,

"

01 =0,—1, Ve, - ¢, 2.2)

ku—l =p (%, I‘é,,é,), and

~ A

A1 =pe (Z R 6T +A,p, (Z, R, 0.

Note the modest memory and computation requirements of this algorithm.

We refer to this as "recurrent back-propagation”, as it generalizes back-propagation



to certain recurrent networks. It is a special case of the Williams-Zipser (1988) algorithm. Our
main goal is to obtain conditions under which recurrent back-propagation converges as { — <o 10
a desired value, 6*.

A potential difficulty is that nothing prevents é, — o0, To avoid this, we employ a
projection operator x : R’ — ©, where © is a compact subset of IR*. The projected process
{x @)} is bounded, and 8, =7 (8,) whenever 8, € ©(8, ) will also denote the projected pro-

cess for notational convenience.

3. MAIN RESULTS

In order to state our assumptions, we introduce the notion of a stochastic process
near epoch dependent on an underlying mixing process (Billingsley, 1968; McLeish, 1975; Gal-
lant and White, 1988).

Let {V,} be a stochastic process on a probability space (€2, %, P) and define the mix-

ing coefficients

Om B SUD; SUD (Fe 5_.G € $r.n:PF) >0} |[P(G|F)=P(G)|

Cp =SUD; SUD (Fe 5'_.G e 5o} |P(GAF) = P(GYP(F)|,

where 7! =26(Vs, .... V). When ¢, — 0 or @, = 0as m — o we say that {V,} is ¢ - mixing
or « - mixing. When ¢, = O(m*) for some A <—a we say that (V,} is ¢ - mixing of size —q,
and similarly for a,,. Mixing processes have an asymptotic independence property, although
dependence in the short run may be considerable.

Processes formed as functions of infinite histories of mixing processes have longer
memories. As long as these functions depend mainly on the "near epoch” of the mixing process,
they are still well-behaved enough for our purposes. Let 1Z: k2 =(E|2)*)"? and let L(P) denote
the class of random variables with JZ, |, <. Let Ei*m(Z)=E(Z,|Fiin). We express the

dependence of {Z;} on an underlying process {V,} in the following way.
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DEFINITION 3.1: Let { Z, } be a sequence of random variables belonging to L,(P).
and let (V,) be a stochastic process on (Q, %, P). Then {Z, is near epoch dependent (NED) on

v, } of size —a if v, =sup, |Z, - Ei*m (Z)], is of size —a. .

McLeish (1975, Theorem 3.1) establishes that NED functions of mixing processes
are "mixingales”, which possess convergence properties that suffice for the convergence condi-
tions of Kushner and Clark (1978).

We may now describe the data generating process.

ASSUMPTION A.1: (R, 7, P) is a complete probability space on which is defined the sequence
of ¥ - measurable functions Z:Q->R**!,:=0,1,2,..}, ve N with supn ZIS
g€l<e. (Z) isNEDon V, ofsize -1/2 where V,,r=0,%1,£2,.. isamixing process
on (Q, ¥, P) with ¢,, of size -1/2 or @,, of size -1. For each ¢t =0, 1,..., Z; is measurable

F 'm0 (... Vi, Vo). Partition Z, as Z, = (¥, XN, X,:Q— R", withX;; =1,¢=0,1,...

The process ge_nerating the input and target sequences is thus bounded and may have a
moderately long memory. By convention, 1Z 1 =(Z}} 722 and € is a generic small con-
stant. Let supp Z; denote the support of Z,, i.e. the closure of the complement of the largest Borel
set B such that P[Z, € B] =0, and let jsupp {Z; } =cl (Ufuo supp Z;) denote the "joint sup-
port” of {Z }. Assumption A.1implies that jsupp Z} €K, =x!2{ (-e1,eM).

The following condition restricts the network error function.

ASSUMPTION A2: Let D, D, and Dy be Borel subsets of R**!, R? and
RR* respectively, p, s, € IN, with K,cD, Then u:D,xD,xDg— R is continuously

differentiable of order 2 on D; XD, X Dyg. *

We let up and u, denote the 1xs and 1Xp partial derivative functions of 4 with respect to
6 and r.

The next condition restricts network recurrence.

[N
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ASSUMPTION A.3: With D,, D, and Dy as in Assumption A.2, let X, be a compact subset
of D, and let © be a compact subset of Dy.
@) p:D,xD,x Dy — K, is continuously differentiable oforder2on D, xD, %X Dg.
(i) For each (z,0) in K,x®, p(z,-,8) 1is a contraction mapping on

K, ie. 1p(z,r,0)-p(z,7r2,0)1Scolry=ral,co<1l,7, 72, € K,. .

We let pg and p, denote the pxs and pXp Jacobian matrices of p with respect to
@ and r. The contraction property keeps the internal network feedbacks under proper control.

We now state formally the leamning recursions.

ASSUMPTION A4: () let K, be a compact subset of R** and let
1:\30 e K,, 130 e K, and éo € © be chosen arbitrarily and independently of {Z;} For
t=0,1,2,.., define

& =uZ, R 6y
Ve, = ug (Zy R 0 )7 + A, uy (Zy Ry 6T
8,01 =70, — 1, V& &)
Ry =pZ.R.0;) and

A =po (s R:aQ:)T + A:pr<ztv R, 9‘)7‘,

where 7 : IR* — © is a projection operator restricting {é, } to the compact set ©; and

g {(m is a sequence of positive real numbers such that

}::":On?<m and 37 7, = e .

An important condition is the restriction on the learning rate sequence {n.}. This condition
holds whenever 1], e t#, 172 <y S 1. The larger values for u lead to faster convergence. The
projection device applied to {é, } ensures that {é, is bounded. Assumption A.3 ensures that

(A,} is bounded.
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(¢) If © is not contained in d(©*), but for each @ & Qo, 6, @) enters a compact
subset of d(©*) infinitely often, then 6, — ©* as t —> e w.p.1.
(d) Given the conditions in (c), if ©* contains only finitely many points, then

é,—)@*ee*aS—t—)w w.p.l; *

The path of the recurrent back-propagation algorithm behaves asymptotically like
the solution trajectory of an appropriate ODE. Thus, 6* satisfies Z(O*) =0 when h has azero
in ©. These conclusions are identical to those of Kuan and White (1990a) using Theorem 2.4.2
of KC for single hidden layer feedforward networks, except that there 8* indexes a locally mean
square optimal approximation to E (¥; | X,), while here the approximation is to £ (¥; | X .

Because output in single hidden layer recurrent networks is given by

o=F@+ ¥ B;GuTy; +r7 &), @)
j=t
the network error function is
u(r0)=y-F@+ X B;G&Ty+r7 5)). 32)
j=t

For Jordan nets, network recurrence is

par8)=Fa+ X p;GaTy +r8). 33)
j=
For Elman nets, network recurrence is

pir0)=GxTy,+rT8), i=1,..q (34)

It is now simple to state conditions sufficient for those of Theorem 3.2; we maintain Assumptions
A.1, A.4and A.5, and choose F, G and © so that Assumption A.2 and A.3 hold.

The following suffices for Assumption A.2.

ASSUMPTION B.2: Network output is given by (3.1) and network error by (3.2), where
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F: R> R and G: R—1I are twice continuously differentiable on R. *

For example, F may be the identity function, or F and G may be the logistic squasher or tanh
squasher. We denote the first derivatives of F and G as F"and G~.

The differentiability conditions of Assumption A.3(i) are satisfied for both Jordan
and Elman nets under Assumption B.2. It remains to guarantee that in each case p (z,-,0) isa

contraction mapping.

First consider the Jordan  net. Define the compact  sets
Kp-=-{beHi’.:b=a+z;7:lﬁjaj,ajeﬂ,ee®} and Kg={ace H?:a=xT“/j+rT5j,
ze K, rek,0e®), where here K,=coF(Kr), the convex hull of the image of

Kr under F. The mean value theorem ensures that in the convex compact set X,

1p(2,71.8)=p(2.72,6)1 S(SUD; ek, re k. 0c 0 |pH(z.7,8) Iry=ral.

We have that

pHz.r,0)=F'(+ iﬂ, G(XTY; +rd) [i G’(XT ri+r 8j)ﬁ,- 8,]

i=l j=l

is a scalar, so

Pz, r,0) 1S | F'a + 3 B:G(Ty: + 1T 5 3 Gu&Tyj+rT8) B §
i=1 j=1

The continuity of F* and G* and the compactess of Kr and Kg imply the existence of con-

stants cr and cg bounding F'(b) and G’(a) forall be Kf,ae Kg, so
|p,(2.l‘,9)|SCFCG i Iﬁi 8,-!.
j=l

This is less than 1 as we require if Z;!:l 1B; &l <(crcg)™, sowe impose the

following condition.
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ASSUMPTION B.3(a) (Jordan): Network recurrence is determined by (3.3). Put
cr=suppek, | F'B)l,cG=Sup;ex,1G'(@)]. Then © is such that Z}=1 B; 5;

S(crcg)! (1-¢) forsome £>0. ¢

For example, if F(a) =G(@) =(1+ e%)"! (logistic squashing at both hidden and output layers)

then cg = cg = 1/4, so contraction is ensured by imposing Z;'l 1B;118;1<16(1-¢). The

theory thus provides a concrete benefit, insofar as this restriction aids practical implementations.
For the Elman net, set K, = I? in defining Kg. Now p is a vector-valued func-

tion. The mean value theorem for such functions again ensures

1p(z,r1,0)—p(2.r2,0) | S(SUP; gk, re k.00 | P27, 0) 1)1 ri=ral,

where now 1p,(z,r,0) is the square root of the maximum eigenvalue of

™ Now

T
pr(zt r, G)Pr(z: r, 6

pri(z,r,0) = G'(IT‘Y,' +rT D) 5‘-7 i=1, .q.

Ipr(z» r.e)l S(VPr(Z- r, 9)1;,(2, r, 9)?;/2

= (3 G Ty + 17 52 6T 612

i=1

< Ca(i 5,7 5,‘)"2.

i=l
We obtain the contraction property using
ASSUMPTION B.3(b) (Elman): Network recurrence is determined by (3.4). Put

CG=Supsex,|G'(@)l. Then © is such that (F7_ 8T )V <cg (1-¢) for some

£>0. *
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The desired convergence now follows immediately.

COROLLARY 3.3: Given Assumptions A.1, B.2, B.3(a) or B.3(b), A.4 and A.S, the conclusions
of Theorem 3.2 hold. .

Thus, recurrent back-propagation in the Jordan or Elman nets converges in the precise sense esta-
blished by Theorem 3.2, provided that network weights are sufficiently restricted as to ensure a

contraction mapping property for network recurrence.

4. SUMMARY AND CONCLUDING REMARKS

We have applied a result of Kuan and White (1990b) to establish the almost sure
convergence of recurrent back-propagation for Jordan and Elman nets. Other recurrent structures
are readily handled by applying KW’s result, for example, recurrent networks with several hid-
den layers feeding back into one another in various ways. The key condition is that network
recurrence have a contraction mapping property. We also draw attention to the learning rate
restriction of Assumption A.4(ii).

For simplicity, we did not permit control or manipulation of the system generating
the data; however KW's results apply directly to this case also. Specifically, the present conver-
gence results extend to situations in which a recurrent network is learning while controlling an
unknown system with internal feedback and output subject to exogenous noise. Some interesting
difficulties arise in this context due to the network’s ignorance of the recurrence structure of the
system. In particular, the convergence is no longer necessarily to a locally mean square optimal
approximation to expected system behavior. The interested reader is referred to KW for addi-

tional detail.
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