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ABSTRAcr

The theory suggestS restrictions relevant in practical applications.

1. INTRODUCfION

direction. without feedback.
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representation resultS from also allowing for internal network. feedbacks. Such "recurrent" StrUc-

tUres were used by Jordan (1986) for controlling and learning smooth robot movementS. and by

values of hidden unitS feed back into themselves.

1974; Parker. 1982; and RumelhaIt. Hinton and Williams. 1986). Its convergence properties

processes.

special case of the Wtlliams-Zipser algorithm.

The recumnt netWorks treated here are related to but distinct from the recumnt net-

instantaneous feedback; here we only permit feedback with a time lag. Their network recun-ence

cover Almeida's and Pineda's recun-ent versions of back-propagation.

Our results follow from a result ofKuan and White (1990b) (KW), derived from fun-

damental results of Kuslmer and Oark (1978) (KC). The conditions under which convergence

holds .suggests some restrictions relevant in practice.



-3-

2. HEURISTICS AND 11IE METHOD OF RECURRENT BACK-PROPAGAnON

Suppose that we observe a realization of a sequence {Z,} = {Z,: t = O. I } of ran-

dom vectors. where z, = (y,. X[)T ( with T denoting the transposition o~rator). Y, is (for simpli-

city) a scalaf, and X, is a v x 1 veCtOr, veINs {I, 2 }. We interpret Y, as a target value at

time t, and Xt as a vector of input variables influencing Yt and generated by nature. Xt may con-

tain lagged values of Y, (e.g. Y,-lt Y,-2t ...) as well as lagged values of other variables. For con-

venience, we assume tluoUghout that the first element of X, (i.e. X,I) is always equal to one.

LetXt & (XO, ..., X,) denote the hiStory of the X process from time zerotbrough time

t. (Similarly, for any sequence {ar}, at .(ao, ..., ar).) Suppose we are interested in approximat-

ing E(Y, IX'). the conditional expectation of Y, given X'. by a parametric function of X'. so that

f, : m:v(t+l) x e -+ IR (say) defines a family of approximations f, (X'. 8) as 8 ranges over the

parameter space e c m.I, s elN, say.

In this sittlation we define the approximation error e, (8) = Y,- j, (X', 8) and select

8* such that

8* = miD! lim E (e, (8Y)/2.
,-+-

where min! designates a local minimizer of its argwnent. we assume limits exist, and E(-)

denotes mathematical expectation. To see why this is natural. note that

E (e,(8f) = E([Y, - E (Y, IX')]2) + E ([E (Y, IX') - f, (X', 8)r).

It follows that 8* also satisfies

8* = min! 1im E([E (Y,IX') - j, (X', 8)]2),
1--

and thus indexes a locally mean-square optimal approximation to the limit of E (Y, IX').

Given the validity of an interchange of limit, derivative and expeCtation, we have

lim V E (e,(8)2}/2 = lim E [Ve, (8) . e, (8») = 0
,.- ,.-
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as the necessary first order conditions forO., where V is the gradient operator with respect to 0,

producing an s x 1 v~r. The expectation above is usually unknown; however. the method of

stochastic approximation (Robbins and Monro. 1951; Kushner and ClaIk. 1978) can approximate

a solution to the first order conditions.

In general, stochastic approximation estimates a solution to the equations

M(8) = 0 (withM: 9 ~ R") as

A A A

8,...1 =8,-11,m,(Z',8,), t = 0, I, ...,

where lim E (m, (Z'. 8» = M(8). and {7} t e m,+} is a "learning rate" sequence. For our applica-
t--

tion. we have

m, (Z', 8) = V e, (8) e, (8).

We take fr as the outpUt function of a recurrent neural network with output ~ven in

time period t by

Ot = F (a + AT .8), (2.1a)with

A1j = G (X: Yj + R: C"p. (2.1b)j = 1,..., q,

(2.1c)Rti = P i (X'-l' R'-l' 8), i = 1, ..., p,

where F: R-+ R, G: R-+ 8 (8. [0, 1]) are given functions (e.g., the logistic function

G~) = (1 + e~)-l); A, is the q x 1 vector of hidden unit activations; parameters are

a (1 x 1), fJ (q x 1), r E CrT, ..., ~)T (qv x 1) and O' (oT, ..., O~)T (qp x 1) collected together in

the s x 1 netWork. weight vector 8 = (a,pT,r. .sT)T, with s = l+q+q(v+p); and R, is thep x 1

vector of recurrent variables. determined from previous inputs (X,-I). previous recun'ent values

(R,-l) and network weights (8) throughP i, i = 1,..., p.

When R, = 0'-1. we have the Jordan (1986) netwoIk.. and

q T
PI (X,-lt R'-l. 6) = F(a + }: f3 j G(X,-1 Yj + R'-l 6»).

j=l
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When Rt = At-I, we have the Elman (1988) network, and

p; (X'-l' R,-l. 8) = G(X;-l 1; + R;-l 6;). i = 1, ..., q.

Substinlting for Atj in (2.1a) gives

q T T
0, = F(a + I. Pj G(X, rj + R, b"p)

j=l

for the single hidden layer Iecwrent net Because e, = Y, - 0" netWork error depends on Z" R,

and 8. Thus, this net is a particular case of a generic class of models with errors

e, = u(Z" R" 8),

where the function u results from the assumed network. output function, and Rt is detennined by

network recurrence.

Above, the recurrent variables were generated as Rr = P (X'-I' Rr-l' 8), with

P .(PI' ...,pp)T. However, much flexibility is gained by including Y,-l as a determinant ofR"

so we write R, = P (Z'-l' R,-l. 8).

Because of Rto network. enof is a function of the entire history of targets and inputs.

zt. For a given 6 and a given initial recurrent value. say Ro. the recurrent variables are given in

time period t as

R, =p (Z,-l.P (z,-Z' ..., B), B) sl,(Z,-l,B),

where we have suppressed the dependence of It on R o. Network error is then

e, (8) = u(Z" I, (Z,-l , 8), 8).

The gradient Ve, needed for learning is

where u9 is the 1 x s derivative of u with respect to 8 (uI = V u), Ur is the 1 x p derivative of u
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with respect to recurrent variables. and V It is the oS x p gradient matrix of It with respect to 8.

Any learning algorithm based directly on e, and Ve, will be computationally inren-

sive. as the effect of any change in 8 must be propagated through time from period zero up to

period t. The required computations grow as t increases, and the entire history zt must be kept in

memory.

A computationally convenient alternative results from exploiting the recursive struc-

ture of R,o Because

. 8) = P (Z'-1' 1,-1 (Z'-2, 8), 8)Rt = It (zt-1

it follows that

bian matrix of p with respect to recurrent variables. With A, = VI, (Z"';l, 9), we have a recur-

sian,

The recursions for Rt and ~, suggest a learning algorithm that updates R, and ~t with the weight

update in time t but neglects the effect of weight updates on past values. If the system doesn't

have "too long" a memory and if we eventually get "close" to 8*, then sufficiently little may be

lost by ignoring the update effects that we still obtain. the desired convergence to 8*.
~ A

Thus. we begin by picking arbitrary initial weights 8 o. recurrent variables R 0 and
A

S x p gradient mauix £\0. To update network. weights we compute network. error

A A

eo = u (ZOt ROt 80)

and form
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in order to get period 1 weights

81 =8o-fJoVeo.eo.

The recurrent variables and gmdient matrix are updated for use in period 1 to

A A A

Rl =p (Zo, Ro.8o), and

A AATA AA

61 =Pe (Zo.Ro.8o) +60 p,.(Zo.Ro.8o)T.

Now we may compute

el =U(ZltRlt81) and

to obtain period 2 weights

82 = 8 1 - 111 Ve 1 . e 1

A A A

At time t we have targets and inputs Z,. recurrent variables R,. weights 8, and gradient matrix 6,.

permitting us to compute

A A

e, = U (2,. R,. e ,).

9'+1 =9,-l1,Ve,.e" (2.2)

A A A

R'+l =p (2" R" 8,), and

Note the modest memory and computation requirements of this algorithm.

We refer to this as "recurrent back-propagation", as it generalizes back-propagation
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to cenain recurrent networks. It is a special case of the Williams-Zipser (1988) algorithm. Our

main goal is to obtain conditions under which recurrent back-propagation converges as t ~ - to

a desired value. 8*.
A

A potential difficulty is that nothing prevents 8, ~ -. To avoid this, we employ a

projection operator n: JR." -+ 8. where 8 is a compact subset of JR.". The projeCted process
. . A A A

{n (8,)} is bounded. and 8, = n (8,) whenever 8, e 8{ 8 r} will also denote the projected pro-

cess for notational convenience.

3. MAIN RESULTS

In order to state our assumptions, we introduce the notion of a stochastic process

near epoch dependent on an underlying mixing process (Billingsley, 1968; McLeish, 1975; Gal-

lant and White. 1988).

Let {V,} be a stochastic process on a probability space (Q, .1; P) and define the mix-

ing coefficients

tp",-SUP, sup (F. ,.~.G. "=--:P(F»OJ\P(G\F)-P(G)I

am a SUp, SUp {F. '-,-.G. ,-:_} IP(Gr'\F)-P(G)P(F)I.

where 1'~ ea(V 1" ..., V,). When ;'" ~ 0 or a", ~ 0 as m ~ - we say that {V,} is ; - mixing

or a - mixing. When ;'" = O(m).) for some A < -a we say that {V,} is ; - mixing of size -a.

and similarly for am. Mixing processes have an asymptotic independence property. although

dependence in the short nm may be considerable.

Processes fonned as functions of infinite histories of mixing processes have longer

memories. As long as these functions depend mainly on the "near epoch" of the mixing process,

they are still well-behaved enough for our purposes. Let IZtl2 .(£1ZJ2)lI2 and let L2(P) denote

the class of random variables with Iz, 02 <~. Let E~~ (Z,). E(Ztl.'F~~). We express the

dependence of {Z,} on an underlying process {V,} in the following way.
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DEFmrrION 3.1: Let.{ z, } be a sequence of random variables belonging to L2(P),

is near epoch dependent (NED) onand let (V,} be a stochastic process on (.0., ,; P). Then (Z,

.V, } of size -a if \J", E sup,lz, -~:: (z,)82 is of size -a.

McLeish (1975.1beorem3.1) establishes that NED functions of mixing processes

are "mixingales", which possess convergence properties that suffI;e for the convergence condi-

tions of Kushner and Clarlc (1978).

We may now describe the data generating process.

ASSUMPnON A.I: (Ct!1; P) is a complete probability space on which is defined the sequence

Z, ISof IJ - measurable functions z,:.o.-+RY+l,t=O,t,2,...}, veIN with SUPr~

V" t = O,:i: 1, :i:2 is a mixing processof size -1/2 where£-1 <". {z,} is NED on v,
on (Q,.IJ; P) with t/lm of size -1/2 or am of size -1. For each t = 0, 1,..., Z, is measurable

if' EO' (..., V'-l' Vr>. PartitionZ, as Z, = (Y" Xf>T, X, :0-.+ mY, with X, I = 1, t = 0,1, .

The process generating the input and target sequences is thus boun,ded and may have a

stant. Let supp Z, denote the suppon of Z't i.e. the closure of the complement of the largeSt Borel

set B such that P[Z, e B) = 0, and let jsupp {z,} -cl (u,..o supp Z,) denote the "joint sup-

z } cK =X!+1 [ _~-1 £ -1 }t % - 1=1 ~. .p>n" of {Zt}. Assumption A.I implies that jsupp

The following condition resnicts the network error function.

R"...l, m.P andBorel subsetS ofDz. Dr and D8 beASSUMPTION A.2: Let

Then u:D,xD,xDs -+ R. is continuouslylR.r respectively, p, s. e W, widl K, cD,.

differentiable of order 2 on Dz xD,. xDso .

We let "9 and ",. denote the 1 x of and 1 x P partial derivative functions of" with respect to

8 and r.

The next condition restrictS network recurrence.



-10-

ASSUMPrION A.3: With D,t D, and DB as in Assumption A.2t let K, be a compact subset

of Dr and let e be a compact subset of D,.

(i) P :D, xD,.xD, -+K, is continuously differentiable of order 2 onD,xD,.xD,-

(Z, 8) in K, x 9, P (z. . . 8) is a contraction mapping onFor each(ii)

K,.. i.e. Ip(z. rl.9)-p(z. r2.9) I Sco I rl-r21. Co < 1. rl. r2. e Kr. .

We let Ps and Pr denote the p xs and P xp Jacobian matrices of P with respect to

8 and r. The contraction propeny keeps the internal netWork feedbacks under proper conuol.

We now state fonnally the learning recursions.

m.rxp and letofK6 be subsetASSUMPTION A.4: (i) let compacta

{z,} Forbe chosen arbitrdrily and independently of

t = 0, 1,2, ..., define

A A

e, = U(Z't R't 9,)

8'+1 =tr[8,-1l1 Ve, e,]

A A A

R,...l =p(Z,O R,o 6,} and

A

where 1t': m$ ~ e is a projection operator restricting {8 I to the compact set 8; and

numbers such thatof positive real(71, is(ii) sequencea

.

An imponant condition is the restriction on the learning rate sequence { 7J t }. This condition

holds ':Nhenever 1], « t-1', 1/2 <.u S 1. The larger values for.u lead to faster convergence. The
A

ensures that {8 I
..

projection device applied to {8 t is bounded. Assumption A.3 ensures that

A

{ dt} is bounded.
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A

(C) If e is not contained in d(e*), but for each Q) ~ {10, 8 t (Q)) enters a compact
A

subset of d(9*) infinitely often, then 8 t ~ e* as t ~ ~ w.p.l.

(d) Given the conditions in (c). if 9* contains only finitely many points. then

A

8, ~8* E 8* as t ~- w.p.l. .

The path of the recunent back-propagation algorithm behaves asymptotically like
- -

the solution trajectory of an appropriate ODE. Thus. 8* satisfies h(8*) = 0 when h has a zero

in 8. These conclusions are identical to those of Kuan and White (l990a) using Theorem 2.4.2

of KC for single hidden layer feedforward networks. except that there 8* indexes a locally mean

square optimal approximation to E (Y, I Xu. while here the approximation is to E (Y, I X').

Because output in single hidden layer recurrent netWorks is given by

0 = F(a + f.B i G (x1 ri + ,161»,
i-I

(3.1~

the network error function is

u(z, r,8) =y -F(a + t Pi G(xT 1i + rT6p).
i-I

(3.2)

For Jordan nets, network recurrence is

p (z, r,8) = F(a + f Pj G (XT Yj + r 6fl).
j=l

(3.3)

For Elman nets, network. recurrence is

p;(:, r, 8) = G (xT Yi + rT 6;), (3.4)i = I, q.

It is now simple to state conditions sufficient for those of Theorem 3.2; we maintain Assumptions

AI, A.4 and A.S, and choose F, G and e so that Asswnption A.2 and A.3 hold.

The following suflk:es for Assumption A.2.

ASSUMP110N B2: Network output is given by (3.1) and network error by (3.2), where
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F: R-+ R and G: R-+J' are twice continuously differentiable on Dl.. .

For example, F may be the identity function, or F and G may be the logistic squasher or tanh

squasher. We denote the first derivatives of F and G as F' and G'.

The differentiability conditions of Assumption A.3(i) are satisfied for both Jordan

and Elman nets under Assumption B2. It remains to guarantee that in each case p (z. . . 8) is a

contraction mapping.

Define theconsider the Jordan setsFirst net. compact

KF under F. The mean value theorem ensures that in the convex compact set K,.

Ip(z. rl. 8) -p(z. r2. 8)1 :S (sup, E K..' e K,. 9 E e Ip,(z. r.8) 1 rl - r2 I.

We have that

p,(z, 7,8) = F'(a + t.8i G(xT Yi + 7 OJ» [t G'(xT 7j + 7 Op.8j Op
i-I i-I

is a scalar. so

q q
IPr(:, r,8) I S I F'(a + r; Pi G (xT Yi + rT c5i»I r;

i=l j=l
G.(xT rj + rT 6p .8i 6j

and G' and the compacmess of KF and KG imply the existence of con-The continuity of F'

and G#(a)stants CF and CG bounding F'(b) loran bE KF- a e KG- so

Ip,(z.r.8)ISCFCG f IfJi
i=l

6j1.

This is less than 1 as we require if L1=1 l,Bj OJ I < (CF CG)-I. so we iritpose the

following condition.
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(3.3). Putis determined byASSUMPrION B.3(a) (Jordan): Network recunence

.8j b".
J

CF=SUPbeX,IF'(b)I,CG=SUPaeXGIG'(a)l. Then e is such that :>:J=l

S (CF cG)-l (1 -E) for some E > O. .

For example. if F(a) = G(a) = (1 + e-G)-l (logistic squashing at both hidden and ou~t layers)

then Cp = CG = 1/4, so contraction is ensured by imposing !'J.l 1,8 j 1 1 OJ 1 S 16 (1 -e). The

theory thus provides a concrete benefit, insofar as this restriction aids practical implementations.

For the Elman net, set K, = nq in defining KG- Now p is a vector-valued tunc-

tion. The mean value theorem for such functions again ensures

Ip(z, '1, 8)-p(z, '2,8) I oS (SUP,. K,. re K..'8 e I Pr(:'" 8) 1)171-72.1.

ofof eigenvaluewhere now I P r(Z. r. 6)
,. ~

p,(z. r. 6)p,(z. r.6) . Now

is the theroot maximwnsquare

Pri(Z, r,9) = G'(XT ri + rT oJ or i = 1, ,.q.

so

8 1'" t/2
Ip,(z. r. ) I S(trp,(z. r.8)p,(z. r.8) )

q
= (I: G'(XT Yi + rT Di)2 Dr Di)1J2

i=l

S CG( t 6r 6-)112I I '
i=1

We obtain the contraction property using

detennined by (3.4). PutASSUMPTION B.3(b) (Elman): Network recurrence is

for someThen e is such thatCG = SUPa & KG I G'(a) I.

£. > o. .
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The desired convergence now follows immediately.

COROLLARY 3.3: Given Assumptions A.I, B.2, B.3(a) orB.3(b), A.4 and A.S, the conclusions

of Theorem 3.2 hold. .

Thus. recunent back-propagation in the Jordan or Elman nets converges in the precise sense esta-

blished by Theorem 3.2, provided that netWork weights are s~ently restricted as to ensure a

contraction mapping property for network recunence.

4. SUMMARY AND CONQ..UDING REMARKS

We have applied a result of Kuan and White (1990b) to establish the almost sure

convergence of reCUlTent back-propagation for Jordan and Elman nets. Other recurrent structures

are readily handled by applying KW's result, for example, recurrent networks with several hid-

den layers feeding back into one another in various ways. The key condition is that network

recurrence have a contraction mapping propeny. We also draw ane~on to the learning rate

restriction of Assumption A.4(ii).

For simplicity, we did not permit control or manipulation of the system generating

the data; however KW's results apply directly to this case also. Specifically. the present conver-

gence results extend to sittlations in which a reCUITent netWork. is learning while controlling an

unknown system with internal feedback and output subject to exogenous noise. Some interesting

difficulties arise in this context due to the netWork's ignorance of the recurren"ce snucture of the

system. In particular. the convergence is no longer necessarily to a locally mean square optimal

approximation to expected system behavior. The interested reader is referred to KW for addi-

tional detail.
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