
Evolving the Browser Towards a Standard User Interface Architecture

Michael J. Rees

School of Information Technology, Bond University
Gold Coast, Qld 4229, Australia

mrees@bond, edu. au

Abstract

If current trends continue, it is likely that the web browser will
become the only widely used user interface. Web applications
will become the predominant software. Should this happen, user
interface design, implementation and evaluation skills can
become more focussed and effective. Some of the benefits
current browser user interfaces provide are discussed in the
context of web application tools produced by the author and
supported by examples. The software architecture of the Web
brings special HCI demands, and the user design experts of the
future will require training in this architecture. This evolution is
scrutinised in terms of the new web services that will become
available. Recent trends in this direction are presented, and
future trends explored, with supporting evidence taken from a
range of applications. The influence of the Web, with now a
long history of user experience, can bring benefits to user
interface design in the future, t

Keywords: browser user interface, user interface standards,
XML, user interface markup language

1 Introduction

It is over a decade since the first web browser was written
by Tim Berners-Lee. As described in [1] and [2] this
browser was written in Object ive-C running on
NeXTStep, and was a complete browser/editor using the
powerful built-in text editing classes. Thus all users could
publish as well as read web pages. The need to port the
browser to other platforms without built-on text editing
forced the browser to become display-only.

Over the intervening 10 years there have been various
add-on technologies introduced to make the browser user
interface fully interactive once more. Java Applets,
ActiveX controls and a plethora of add-ins now provide
interactive facilities at all levels. However, the web page
author can never rely on the necessary facilities being
present in all browsers. A standard set of features is
needed in all b rowsers - -a universal browser user
interface for interactive web applications. The remainder
of this paper reviews whether the browsers of today
match up to this requirement, and if and how they might
evolve towards such a standard.

Copyright © 2001, Australian Computer Society Inc. This paper
appeared at the Third Australasian User Interfaces Conference
(AUIC2002), Melbourne, Australia. Conferences in Research
and Practice in Information Technology, Vol. 7. John Grundy
and Paul Calder, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

2 Prior Work

That the web browser user interface has become a prime
candidate to be nominated as a universal user interface
has already occurred to the Netscape software engineers.
Their Gecko architecture [3] is designed for user interface
expression and implementation. Not only has Netscape
used Gecko in version 6 of Netscape Navigator for
displaying the web page content, they have adopted it for
the whole user interface, menus, toolbars and dialogue
box contents, and so on. This has been repeated with all
the other applications in the Netscape Communicator
suite.

There can be general agreement that the architectures,
notations and models that modern browsers must support
make the needs of their user interface design quite
generic. Content notations such as XHTML [4] and XML
[6] are becoming widely-adopted standards. The HTTP
protocol is becoming endemic, primarily because it
passes through most firewalls easily. Upon this protocol
are based SOAP (Simple Object Access Protocol) and
UDDI (Unified Distributed Data Interchange). The World
Wide Web Consortium (W3C) dynamic HTML DOM
(Document Object Model) [7] must be supported by all
conforming web browsers, manipulated by standard
ECMAScript [8] executable components (scripts).
Dynamic hyperlinks form the glue between different user
interface components and different views of the web
application.

Set against this impressive list of advantages there is a
downside. The built-in user interface controls in dynamic
HTML are small in number, and certainly do not match
the sophistication of the proprietary user interface
libraries in Windows, Mac OSX and Unix/Linux
platforms. User interfaces built with the DOM and
ECMAScript are not easily transportable between pages
(applications), and the user interface behaviours are very
difficult to replicate across the various platforms.

Another effort at standardising the user interface
specification and rendering in a browser environment is
User Interface Markup Language (UIML) [4] from
Harmonica Inc. UIML is a useful start to definition of
device-independent user interfaces, and employs a three-
step approach to user interface definition. The three
stages in UIML are:

1. Device independent user interface elements

2 . Whole-of- interface device-dependent style
def'mitions for user interface classes

3. A content database for specific user interface
elements which allow for internationalisation
and specific rendering environments

XML is used at all levels to describe the elements of each
stage• The specifications for UIML are at version 2.0 and
a commercial tool, LiquidUI TM, supports UIML for a
number of rendering environments• Definitions of UIML
vocabularies for HTML, Java, VoiceXML, and WML are
now available. Unfortunately, many of the attribute
values for user interface elements are taken from the Java
user interface classes AWT and Swing. Nevertheless, the
mechanisms for XML expression and the device-
independence of the first stage show the way for
universal user interface definition in general•

3 Web browser number one

The very first web browser was developed in Objective-C
running on NeXTStep by Tim Berners-Lee in 1990, [1]
Using the powerful built-in text editing classes, he
effectively built a word processor for web pages. This
application could create pages, browse them, and allow
any user viewing the page to edit a new version. Thus
from the start Web pages were fully collaborative• These
capabilities are described further at length by Gillies and
Cailliau in [2]

As the browser was ported to the prevalent operating
systems platforms of the day, there was no easy-to-use
equivalent of the NeXTStep editing classes, and so, to our
detriment, the vast majority of browsers became display-
only. The collaborative editing facilities were lost.

4 Browser user interfaces of today

For over half a decade, many efforts have expended to
bring back the collaboration and editing facilities into
web pages. The working group in this area [9] at the W3C
have coordinated many research, commercial and
shareware browser add-ns and other sof tware
mechanisms. All unfortunately use differing approaches
to user interface within a web page.

One of the earliest papers to foresee the emergence of a
powerful interactive user interface within a web page is
that by Rice et al [I0] . They addressed deep issues such
support for naive and power users, multiple browsers and
hyperlink click minimisation. The implementation,
however, like all in that time, was restricted by the CGI
scripting mechanism and the need for server round-trips
on nearly every user interaction with their user interface
within the web page.

Around this time, the work of the author was instigated
by the insightful paper by Chang [11] at the WWW7
conference in 1998, where he described the Sparrow
project from Xerox PARC. The Pardalote project [12] has
produced a lightweight editing tool that is easy to install,
responsive and effective in allowing a team of
collaborators to evolve the content of web pages in a
controlled manner. Pardalote is a significant improvement
on the PARC work. Instead of traditional CGI scripts,
Pardalote uses the DHTML DOM to achieve immediate
in-memory editing. At a point chosen by the user, a final
web page update triggers a server round-trip.

The editor tool from the Pardaiote project has been
renamed dotEdit [13] and is available for distribution [14]
• dotEdit allows the users sharing the web page to edit
nominated sections directly in the browser. Moreover,
dotEdit has been designed to allow the original page
author to use favourite, standard web publishing tools,
and does not need special HTML tags to be inserted like
other competitive software.

,~§ XblL§

NML at ZDnst
W3C XML schema
Free Ace Tool from Sire Suite
Microsoft eLearn
LRN and the LRN 2,0 Toolkit
IMS Global Leamino Consortium

Ugt.:lh~://m s dn.micr0soft co~/etrtic~esba'n' !

, ~nk~e~t:lUOD!.Ss~z!ceScrip!!ng , . . , .

OPML 1,O Sharine ideas in a safe way
XML tutorial
)~MLSOFTWARE
×mlhack, a news site for XML develooers
Use XML to Transfer Data with reoular exoressions
Cafe con Leche XML News
NewsML
USP, ADO and XML I;o ,~hut?de data from one d~tabase to another

dot~Jnks Hyperlink Category List ~'I J'a127 22:1 7:43 UTC+IO00 2001

Figure 1. dotLinks Hvperlinks Page with dotEdit.

The versatility in user interface design comes to the fore
when each web page can be treated as a separate user
interface element• A recent tool built by the author called
dotLinks [14] exploits this mechanism by generating web
pages containing the I-grain editable components
provided by dotEdit, the hyperlink 1-grain in this case.

dotLinks provides a simple hyperlink repository
accessible and updateable anywhere on the Web. A
simple list element in the dotLinks home page gives
access to categories of hyperlinks. Each category consists
of a dotEdit page containing the list of hyperlink I-grains.
All hyperlink I-grains are editable and movable within the
lists. Figure 1 shows one of the dotLinks generated pages
with the user editing one of the dotEdit hyperlink I-
grains• Once the page has been created, users in the team
sharing the hyperlink repository can continue to add,
modify, delete and move the hyperlinks.

While a useful tool, dotEdit provides only raw text
editing of the content o f the 1-grains. Styles may be
applied to I-grains to affect font family, font size, colour,
and so on, to make the 1-grain presentation acceptable.
Many more features are needed if the browser is to
support user interfaces in general.

5 Direct manipulation in the browser

While the DHTML DOM makes real-time changes to the
web page possible, one of the most urgent requirements is
to support drag-and-drop direct manipulation. The set of
event types provided by the DOM is rich enough to
support this requirement•

C o ~ Mapl ~ deslgfl~d ~ a)lo~ y ~ to ~swm~bfe i leal, f~ougl'~l, 4a~d fr!gm~fds

~ x ~ ~ c ~ ?

m + . . . + , c .+ + , , , . , . . ++ .+.~:,': ++++~+ ,

- + ~n * ++\+++++~+++~; + -
8 X m I ~ m c o ~ ? ",) i i r i
. , , . . . - , . . I

I
~ao NO)I~I ta • ha. polka ~ing ~a ~, oo~nino bet. ¢ ~ l ~ilt ~ . ~ , l • t +, 1,0, Pa*n.+ t.* ~• . . n ~ to p~*l,.

• IOm ~ end salem 'mew
• ~s ;~ ~ t ~ by # I g Q ~ ~ the ~ . r t ~ l bar. flotelat', A new Notel~t

PP at th
~ ~0 Ovldep order u ~ ~ e e m w keys in the oNer, P ~ i~on'

t ". ,:+ !.;:+ ;,+'~ ~ I~+wi+

Figure 2. Concept Map in the dotNotelets Tool.

The versatility of browser drag-and-drop was investigated
in a rumple concept map tool called dotNotelets [14] .
Rectangular notelets similar in appearance to Post-IT
Notes rM can be created, resized and dragged around the
browser window. The contents o f each notelet can be
edited directly, and the relative z-order of the notelets
changed. Each notelet represents an idea, remark,
comment or a small fact in text form. A collection of
sample notelets is shown in Figure 2. Using the top
Notelet bar in each notelet, the user can drag the notelet
to a new position. Dragging the bottom Resize bar of a
notelet allows it to be resized within sensible limits.
Clicking the save icon in the toolbar just beneath the
Notelet bar saves any changes made to the notelet size,
position and contents.

The top left position of each notelet is significant. When
the text is serialised for export to other tools the notelet
text is output in vertical then horizontal order. All these
features fit naturally into the event handling of the
DHTML DOM and can be realised using simple
scripting. The browser interface takes one further step
forward to becoming a generally useful user interface
standard.

6 Rich Edi t ing

Next the ability to offer more than simple text editing
must be addressed. Largely unheralded, there has been a
significant DHTML editing capability incorporated into
Internet Explorer 4 and beyond. Initially, access to this
rich editing was, and still can be, via an ActiveX control.
In Internet Explorer 5, every displayable tag in the web
page can be edited simply by setting the contentEditable
attribute value to 'true'.

Figure 3 shows a notelet is more detail. Note that the text
within the notelet contains simple typeface changes.
These are all accomplished without the aid of a toolbar
using simple and Windows standard short keys. There is
even a mechanism to create hyperlinks using the Ctrl/K
keyboard shortcut.

The dotNotelets tool stores each notelet in an XML file
with DHTML embedded within it. Every notelet carries
its own GUID so that it can be uniquely identified.
Further development of dotNotelets will extend the

notelet XML repository with features for searching,
importing and exporting notelet XML files. Extensions
into mind maps and topic maps are easily possible.

X 144 4) • C o l o r ?
Ed i t i ng milch keys

Text may be edited with key shortcuts
like copy, paste and cut. Typeface
changes like bo ld , i ta l ic and underl ine
are the normal key shortcuts.

Hyperlink$

Hyperl inks can be inserted with the
Ctr l /K combination,

Search

i k ¸ ~i

Ctr l /F searches the current notelet.

The usual navigat ion ke

J,, J

Figure 3. A notelet uses the DHTML Editor.

To make full use of the DHMTL editor in Internet
Explorer additional toolbars must be added to the user
interface in the page. Exploration of these sophisticated
editing capabilities was undertaken within the dotXShow
tool shown in Figure 4.

d o t X S h o w S l i d e S h o w E d i t o r

Sl ide s h o w name: A U I C 2 0 0 2

~..ll: T'~e Slide ~ i a ~ q ~ usinga~ut t~,r~e,,~, " 1"1
3:..g.l= su,,., Slid. ='~'e'~ ~ "+1 "- Emp~ Body.o tog°
4 Image Only S de ~.~. +.!.~ d! +'l IEmpty Body
5: Two~olum, Slide ~ ~ I d ~ 0 P I lOne Column Pkl= Image No Logo

. Zw9 ~ m r ~ NO LOgO

Presentation Topics
• Introduction
• First browser
• On-the-Dot Tools
• Self-evolving Uls
• Universal browser user interface

M Kees August 200:1 Bond LJnlvel~ i ty

Figure 4. DHTML Editor used in dotXShow Tool.

The dotXShow tool is a browser-based slide presentation
manager. It generates slide presentations in XML files
containing a series of slides. Apart from a small amount
of fixed information like a slide title, each slide's contents
are completely arbitrary. In preparation mode the slide
contents are represented in a single <div> tag in the web
page. This <div> has the contentEditable attribute set to

allow full DHTML editing. Special Cascading Style
Sheets with larger font sizes are used to make the slide
contents more suitable for projection.

As can be seen in Figure 4 the slide author is presented
with a toolbar not unlike that seen in Microsoft Word or
FrontPage. There is therefore no limit to the content of
each slide in terms of text layout, fonts, foreground and
background colours, hyperlinks, and so on. Even tables
are supported although not shown in the example. A
series of pre-built slide layout templates are available as
shown in the list in the top right of Figure 4.

DHTML generated by the editor component within the
web page is embedded in the XML file representing the
whole slide show. A simple slide show presentation page
allows the presenter to show individual slides in sequence
or to jump to any slide in the show. Listings of all slides
in a show are easily implemented by applying an XLST
style sheet to generate all slides on one HTML page in a
suitable layout. The browser print facility then provides a
printed listing, dotXShow is a good example of the types
of simple-to-implement web applications using XML and
the standard browser user interface.

The dot* tools are just part of a large international effort
in providing live editing in web pages. A good summary
of US efforts is presented by Jon Udell in [15] . In a
follow-up article he also mentions this author's tools and
several others. Many of these tools make use of the
DHTML editing component in Internet Explorer.

7 B r o w s e r User I n t e r f a c e Usabi l i ty

Much research into user interface usability has been
performed over the life o f the HCI discipline. Jakob
Nielsen in [15] specialises in applying standard graphical
user interface usability guidelines to the design of web
pages. This approach is particularly sensible where the
page is acting as an interactive graphical user interface in
its own right. A similar approach is adopted by the author
and his co-authors in [18] where the well-understood
principles of HCI are introduced, then applied to user
interfaces including web pages.

Nevertheless there are some significant points o f
difference to be aware of when designing web pages as
user interfaces:

• Knowing the exact URL of a page allows a user
to jump straight to it, circumventing introductory
material that the user may need to see; this means
the user interface of each page must stand alone.

• There is a huge diversity in display size; make the
page user interface easily resizable, where
possible, or use a strategy of information
reduction.

• Older browsers lack interface features like
scripting, Iframes and so on; build rendering
forgiveness into the user interface design.

Examples of web page user interfaces abound; the Web
as a whole acts as a global, ever-available usability
laboratory. This is an aspect of the Web which is
extremely valuable and under-rated.

8 Users con t ro l l ing c o n t e n t a n d l a y o u t

Mention has already been made of the ease with which
browser user interfaces can be self-generating by the
simple expedient of creating or modifying the HTML
within web pages. Several tools now exist that allow web
page readers, to generate related page collections and to
specify content for these pages in a more or less
constrained manner. This allows a group of users to
evolve a set of web pages to meet their needs without
resorting to traditional web publishing packages that
require substantial training.

A recent example o f such a tool is the Microsoft
SharePoint Team Services (SPTS) [19] feature that runs
in the Internet Information Server environment. SPTS
offers:

• An authenticated site with a self-defining user
group

• T e a m - m a n a g e d web pages wi thout any
knowledge of HTML

• A web site user interface that constantly changes
to meet current user needs

• Information content in the form of standard and
customisable lists (database tables) tailored at
will

• Auto-notification of changes to document and list
content

• Any number of shared document libraries with
discussions at the document level

• Information-specific discussions created by the
users

. •
eLear~,n~ Team '~h~b

H o m e

q ~ d , t a = ~ a ,

I .
e~c~

• t e l ~ i t s ~ ~ n * * m t h . i ¢ ~ ; n ~ a o r ~ 1 - - -
' a ~ u * D r * j i m .

: O e m u t a # i n - e l d ~ i g ~ l ~ ~ u b } e ~ s a n ~ r n t

,,~. ~ ~o., , . .* in~ ,~..~ S h a r e P o i n t

me;. l r IrS*~ L i nks ; de ~.~* ~.r:

6 . ~ a

: Add ell ~a. i e~ d~me~ ira0 ~e~ t~panment a,ob,,ta

' r[~me ~ngr f o r lm'r m ~

0 t z ~ t .~o0 m ~,~.,~ c.~d;~.~ i::; Z"" '"~;, ' ; 7""'~i;;7~ ;;'~'i::: X Z ~ g ~ ; ~ ~:."
w~ have ~ finish the

= pro~ect a t hla~t a week N~ ~ I~ " , ~ ~ ~

$~on~ ~ to pmp~o ~h~tr, aQar ~a l~k8 ~b~am4g~ ;u~ .b ond .o~u ~u

5 o r t ~ H q d l a ~ l ~
, ~, s,~.~ ~ w~t,'zoot ~o,~ ~. s~2p:ed O ~ u m e . n t ~::~,~.~..~t,/r~!

We ~u ld not f ind ¥0~ d i l ~$~on . 3 of us r i b r4~m¢ r.l:.dlh< Cl [~7
; added few dis~$sion$ on ~e conr , ,padl~ t i ~ ~,l~¢~?~zl,t7 ~, ~;,~.; ~h~r~o l r~ A,hwio L~ I I

* O ~ n ~ and ~ ~u ld ~ee ~ ot~e,,'s ; ~em ~ r~xs Oirrers ~m
d l$~ss i~s b~ nn sign of y~ r dis~ssion Sh~r~P~i~t p ,~ l ~e~?¢r

~ne I t yt*~ can ~d my I~_.~ ~¢~ie c¢ plan r~e~lCed A~h~in 8~gl°

' l have added e d i l ~ l l i ~ n ~t~m on lh l ~ ; ' ~ ' ~ o t s r ~ o . n l ~ ~4 S t , ~ r * r~ I'~a d~linl~"~ ~ r

Figure 5. Home Page of SharePoint Team Services Site.

In essence, SPTS allows users of a collection of web
pages to compose their own user interfaces that reference
the i r i n f o r m a t i o n (d o c u m e n t s) , d i s cus s ions ,
announcements, and list of all kinds. Figure 5 shows the
basic tiled nature of the user interface. Apart from the
basic navigation structure at the top of the page, most
page content is composed of lists of various kinds. Most
list contents contain hyperlinks to take the user to the
detail of each list entry. Shared document libraries are list
of documents that can be accessed and opened directly
from the web page.

The SPTS software is remarkable in that the
administration of the team site is incorporated into the
same user interface. A set of five prebuilt roles is
included with the ability to define new ones. Site users
are managed with Windows 2000 local accounts for fully-
authenticated access control. An SPTS site administrator
requires no knowledge of Windows 2000 administration
or of HTML. A typical administration page is shown in
Figure 6.

e ~ ~ w , ~ re*m w*b s ~
Si te S e t t i n g s

Web Si te SetUngs

w~ t , . ~ ,~ !?~ !~ ! , ~ ,~ ..

~ ? ~ ' _ . ! ~ f ? ~ . ~ ' ~ ..

• Mod l l~ Slt(I co,ee~y ...

Figure 6. SharePoint Team Services Site Settings Page.

From this page, a user assigned the Administrator role
can customise settings for the whole team site such as site
name and layout of the home page. Other users can be
added, deleted and their roles changed. Subwebs of the
main site web can be created, where each subweb
becomes a self-contained team site with the same features
as the top-level site. Finally, lists of information can be
created, modified and deleted, including the ability to
define complex customised lists. All list content is stored
in a database automatically created for each SPTS site.
One of the most useful built-in lists is the survey. Each
team site member can complete the survey, and survey
results pages can be accessible to all users or just the
survey author. Survey results can be downloaded into
Excel 2002 for analysis with pivot tables.

Users with Office XP installed on their machines gain
additional facilities, but only a standard Internet Explorer
or Netscape browser is needed to access over 95% of the
SPTS features.

An even more sophisticated tool for building powerful
browser user interfaces is the Digital Dashboard
technology [20] from Microsoft. A digital dashboard
takes user interface definition to a more formal
architecture employing well-defined interface building
blocks, each block being a web page in its own right.

These blocks are referred to as web parts, and are
represented in a series of XML files. Each dashboard is
composed of a number of web parts displayed in a
customisable tiled grid. Again the user interface layout is
massaged into a grid, not unlike many user interface
layout manager libraries over several platforms. The
original Java AWT gridBag layout manager is infamous,
because of the vast number of parameters needed to give
a flexible layout. User interface designers and

implementers will be better served when the grid layout is
given over for a more flexible architecture. One can gain
insight into what this architecture might be when
considering the <iframe> tag in HTML 4.0. with banners
that occupy the full page width at the top and bottom of
the page. Nevertheless, quite complicated user interface
designs can be built. The web parts themselves are
intended to contain sophisticated components--indeed
any object that can be presented in a web page. These
components act as middleware and allow access to a wide
variety of network services and services on the local
machine.

Example web parts provided by Microsoft include access
to email inbox, address book, task list and instant
messaging communications. A third-party web part
production industry is already in existence. This
mechanism starts to point the way to a universal user
interface design and building capability. The sample
dashboard in Figure 7 shows the grid-like nature of the
layout. The inbox web part appears at the centre left side
with a calendar web part beneath it. In the centre and
lower right appear web parts containing the dotNotelets
tool and dotLinks tool pages respectively.

~ . . ~ . ~'~!~ ~ 1 ...

Figure 7. Sample Digital Dashboard.

One of the benefits of a formal architecture where user
interfaces are built with web pages is that the refresh
times of individual pages can be specified. The collection
of dot* tools mentioned in this paper are collaborative,
and an individual user must refresh the page at intervals
to see the changes made by others in the collaborative
group. Digital dashboard web parts have a refresh setting
defined in one of the XML files. This refresh setting can
be tailored to the expected activity on the shared web
page. The refresh time for the dotNotelets tool in the
centre of Figure 7 is set at about 5 minutes.

Although it slows performance somewhat, another benefit
of digital dashboards is that the web parts are assembled
into the layout dynamically each time. This allows
components within the web parts to make changes to the
layout information so that the look and feel o f the
dashboard can alter over time.

9 Web Services and Universality

At a more fundamental so ,ware architecture level, the
recently-introduced web services model promises to bring

the concept o f a universal browser user interface a step
closer. Microsoft's web services [21] address the issues
of application integration that must of necessity include
user interfaces. The goal is to produce applications
running on different operating systems built with
different object models using different programming
languages and turning them into easy-to-build and easy-
to-use web applications. The web services use open Web
standards such as HTTP, XML, XMLDOM, SOAP and
UDDI mentioned in Section 2 of this paper. Figure 8
shows the architecture with the Internet at its heart.
Applications on the left using web services on right are
connected to the users via the devices and/or browsers at
the top of the figure. Notice that service contracts are a
major part of this architecture.

Web services promise to revolutionise the methodology
for building web applications. Both document-centric and
remote procedure call-centric models are supported by
the SOAP protocol. Thus web services can act like
distributed applications or pass whole XML documents
around in a data storage paradigm. Web pages become
the natural glue in this architecture, and hence the
browser user interface will take on greater importance.

One can easily imagine each user interface control being
represented as a web service, with design-time and run-
time service members. This will support both the user
interface design and implementation phases. The user
interface designs can be represented in a UIML-iike XML
notation, but most of the less elegant device-dependencies
of UIML can be eliminated. The final rendering will be

_t-"

- Web Service Conlxsct

Figure 8. XML Web Services.

supported by the DHTML DOM and maybe other
extensions like the XForms specification. This is the
combination of technologies that the author perceives as
leading to the universal browser user interface.

The foregoing discussion has demonstrated that tools
already exist that allow the browser to support most of the
business and organisational user interfaces. The challenge
is to evolve the browser user interface using web services
to cover a much wider range of user interface types such
a s :

• Scientific data display and analysis

• Multi-dimensional

• Multimedia

• Real-time control

A good test of whether a browser user interface can
support the Greenberg Notification Collage [22] that uses
a wide array of static and real-time components. The
Notification Collage, shown in Figure 9, is a groupware
system where team members post media elements onto a

Figure 9. Greenberg at al Notification Collage.

shared, real-time collaborative surface. This surface must
contain many different, refreshable user interfaces, and
will be a good test of the capabilities of the universal
browser user interface.

Another good example of a web-related user interface
design requirement is the trail marker mentioned by
Hochheiser and Shneiderman in [23] . This idea lays the
foundation for universal usability by incorporating
markers into the user interface for all classes of users of
that application (web page). Once again we see the
influence of web page design make a major change to
traditional user interface design.

Given that the delivery mechanisms for a universal user
interface are in place, the designers and implementers
need a model to guide them. At the Australasian User
Interface Conference 2001 held at Bond University, the
keynote speaker, Harold Thimbleby, was reminiscing
with the author about the Apple HyperCard package [24]

Both in the conversat ion had used HyperCard
extensively in the past. Speculation began on how to
implement a HyperCard-like technology using today's
web browsers. The author has tentatively named this
WebCard and suggested that this technology:

• uses the HyperCard architecture from Apple

• treats web pages as a stack of index cards

• employs ECMAScript instead of HyperScript

• utilises the built-in event handling

• provides a user interface control tool palette that
is extensible with third-party user interface
controls

• Use design-time user interface controls supported
by web services

The WebCard page model, shown in outline in Figure 10,
would treat each page as a card, with each card having a
background page, potentially shared between cards. Card
pages and backgrounds would be grouped into page

stacks, following the original ideas of the HyperCard
authors. Within the DHTML DOM, cards and
backgrounds could be implemented using overlapping
<div> tags with the stack master user interface items
being contained in an <iframe> tag.

Card Background Stack

=:;oo-1
I I
J

Figure 10. WebCard User Interface Architecture.

10 Summary

This paper attempted to demonstrate the evolution of the
browser user interface, and extrapolate the trend towards
a future user interface standard. There is much evidence
for the rise of the browser, with the constraint of
supporting international standards, to the pinnacle of the
universal user interface. It is asserted this will be a thin-
client, browser-independent application supporting the
DHTML DOM, XML, XMLDOM, XSLT, SOAP and
UDDI. The user interface controls will be served at both
design time and run time using distributed XML web
services. A fundamental user interface architecture will
be needed, and the yet-to-be-implemented WebCard
model offers simplicity and a proven track record in
HyperCard. Such a combination offers a way out from the
plethora of user interface architectures of today.

11 References

[1] Berners-Lee, T, Weaving the Web, Orion Business
Books, 1999, ISBN: 0-75282-090-7.

[2] Gillies, J. & Cailliau, R., How the Web was Born,
Oxford University Press, 2000, ISBN: 0-19-286207-
3.

[3] DevEdge Online - Gecko Developer Central.
[O n l i n e] A v a i l a b l e
http://developer.netscape.com/tech/gecko.

[4] UIML.org. [Online] Available http://www.uiml.org.
[5] HTML Home Page. [Online] Available

http://www.w3.org/MarkUp/.
[6] Extensible Markup Language (XML). [Online]

Available http://www.w3.org/XML/.
[7] World Wide World Consortium Document Object

Model DOM. [Onl ine] A v a i l a b l e
http://www.w3.org/DOM.

[8] Standard ECMA-262 ECMAScript Language
Specification. [O n I i n e] A v a i I a b I e
http://www.ecma.ch/ecma 1/stand/ecma-262.htm.

[9] Collaboration, Knowledge Representation and
Automatability Working Group. [Online] Available
http://www.w3.org/Collaboration/.

[10] Rice, J., Farquar, A. Piernot, P. & Gruber, T.,
"Using the Web Instead of a Window System",
Proceedings of CHI'96, Vancouver, Canada, 1996.

[11] Chang, B-W, 'In-Place Editing of Web Pages:
Sparrow Community-Shared Documents', WWW7
C o n f e r e n c e , B r i s b a n e , 1 9 9 8 ,
http://www7.conf.au/programme/fullpapers/1929/co
m 1929.htm.

[12] Rees, M J, "Implementing Responsive Lightweight
In-page Editing", Proceedings of AusWeb 2000,
Caims, June, 2000, pp 134-142.

[13] Rees, M J, "Implementing Shared Document
Preparation with Lightweight Editing", Proceedings
Fifth Australasian Document Computing
Symposium (ADCS), December 2000, Twin Waters
Resort, Sunshine Coast, pp 25-33.

[14] Rees, M. J. On-The-Dot Software. [Online]
Available http://comet.it.bond.edu.au/dot/.

[15] Udell, J. The Universal Canvas. [Online] Available
http://www.byte.com/documents/s=705/BYT200106
08 S0001/index.htm.

[16]Udell, J. The Universal Canvas Revisited:
Approaches To Live Editing of Web Pages. [Online]
Available
http://www.byte.com/documents/s= 1113/byt200108
06s0004/20010806 udell.html.

[17] Nielsen, J., Designing Web Usability, New Riders,
2000.

[18] Rees, M. J., White, B. & White A., Designing Web
Interfaces, Prentice-Hall, 2001.

[19] SharePoint Team Services. [Online] Available
http://www.microsoft.com/frontpage/sharepoint.

[20] Digital Dashboard on Microsoft Business. [Online]
Available http://www.microsoft.com/business/dd.

[21] Mary Kirtland, "The Programmable Web: Web
Services Provides Building Blocks for the Microsott
.NET Framework", MSDN Magazine, September
2 0 0 0 . [O n l i n e] A v a i l a b l e
http://msdn.microsoft.com/msdnmag/issues/0900/W
ebPlatform/WebPlatform.asp.

[22] Greenberg, S. & Rounding, M, "The Notification
Collage: Posting Information to Public and Personal
Displays", Proceedings of SIGCHI'01, Seattle,
2001, pp 514-521.

[23] Hochheiser, H. & Shneiderman, B, "Universal
Usability Statements: Marking the Trail for All
Users", ACM Interactions, March + April 2001, pp
16-18.

[24] Colouris, G. & Thimbleby, H., HyperProgramming:
Building Interactive Programs with HyperCard,
Addison-Wesley, 1993.

Stefano
[10]

Stefano
Rice, J., Farquar, A. Piernot, P. & Gruber, T.,

Stefano
"Using the Web Instead of a Window System",

Stefano
Proceedings of CHI'96, Vancouver, Canada, 1996.

Stefano
[9]

Stefano
Collaboration, Knowledge Representation and

Stefano
Automatability Working Group. [Online] Available

Stefano
http://www.w3.org/Collaboration/.

Stefano
[2]

Stefano
Gillies, J. & Cailliau, R., How the Web was Born,

Stefano
Oxford University Press, 2000, ISBN: 0-19-286207-

Stefano
3.

