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Abstract

MRI scans provide exceptionally detailed information on how the human brain changes throughout childhood,
adolescence, and into old age. We describe several approaches for understanding developmental changes in brain
structures based on MRI. Atlas-based “parcellation” methods, for example, measure volumes of brain
substructures, revealing how they change with age. Growth curves for different brain structures can be compiled,
describing the expected trajectories of normal development. Additional computational anatomy techniques can be
used to map spatial patterns of brain growth and tissue loss in individual children. Changes in cortical features,
such as gray matter thickness, asymmetry, and complexity, can also be mapped. Individual maps can then be
combined across subjects to make statistical maps or dynamic “time-lapse movies” that reveal systematic features
of brain development in population subgroups, while retaining information on their variance. We review several
large-scale studies of brain development, including longitudinal studies in which children were scanned
repeatedly with structural MRI at 2-year intervals for periods of up to ten years. Image processing algorithms
were then applied to recover detailed information from the resulting image databases. We describe the approaches
necessary to compare brain MRI data across groups differing in age, covaried with gender, developmental
disorders, or genotype. These methods reveal unsuspected links between development and cognition, and can help
discover genetic and environmental factors that affect development. These brain maps also chart the anatomical
sequence of healthy brain maturation and visualize how it is derailed in neuropsychiatric disorders such as
schizophrenia, autism, fetal alcohol syndrome, and Williams syndrome.

1. Introduction

The quest to understand how the human brain develops is one of the most fascinating challenges in modern
science. Brain cells proliferate in early embryonic life, in a carefully orchestrated sequence of neural cell
migration and maturation. This leads to a human brain with around 100 billion neurons at birth. A newborn
child’s brain is only a fifth of its adult volume, and it continues to grow and specialize according to a precise
genetic program, with modifications driven by environmental influences, both positive and negative. Negative
environmental influences, such as malnutrition, maternal drug abuse, or viral infection, can impair or delay brain
development. With stimulation and experience, the dendritic branching of neurons greatly increases, as do the
numbers of synaptic connections. As layers of insulating lipids are laid down on axons through the process of
myelination, the conduction speed of fibers that interconnect different brain regions also increases a hundredfold.
This exuberant increase in brain connections is followed by an enigmatic process of dendritic ‘pruning’ and
synapse elimination, which is thought to lead to a more efficient set of connections that are continuously
remodeled throughout life.

MRI scanning of the brain can document these large-scale processes of brain development in detail. It enables
insight into the sequence and timing of these developmental processes, documenting how they occur in living
subjects. Individual brain scans provide exquisitely detailed maps of the brain’s anatomy, while functional and
metabolic scans (e.g. functional MRI and PET scans) provide complementary information on brain activation and
physiology, as these change and mature.

In the 1990s, databases began to be assembled containing brain scans from hundreds of children scanned
repeatedly over time (Jernigan et al., 1991; Reiss et al., 1996; Gogtay et al., 2004; Giedd et al., 2005). Repeated
scanning of the same individual at different times during brain development makes it possible to capture
“snapshots” of these growth processes, and reconstruct dynamic maps that describe how they play out in time.
This wealth of anatomical data has in turn fueled the development of sophisticated image processing techniques
that measure growth rates for different brain structures (Lange et al., 1997; Giedd et al., 1999; Thompson et al.,
2000). These developmental patterns vary during adolescence and over the adult lifespan (Sowell et al., 1999,
2003, 2004), and they differ in clinical populations with developmental disorders (Rapoport et al., 1999; Gogtay



et al., 2005). More recently, time-lapse movies have been reconstructed to describe the dynamic sequence of
cortical development (Gogtay et al., 2004, 2005). They show shifting patterns of tissue growth and loss, even in
healthy children. These processes are thought to be exaggerated or derailed in those with early-onset
schizophrenia and bipolar illness (Thompson et al., 2001, 2003; Gogtay et al., 2004). Finally statistics have been
developed to capture how growth rates differ among brain substructures. With this normative data in hand, brain
deficits in a variety of developmental disorders can be more readily distinguished from changes within the normal
range.

At the cutting edge of these neuroimaging projects are worldwide efforts to identify factors that affect brain
development positively or negatively. Quantitative genetic maps of the brain can clarify how genes and
environmental factors (such as family upbringing, skill acquisition and learning) and impact development, as well
as cognition and intelligence (Thompson et al., 2001; Gray and Thompson et al., 2004; Cannon et al., 2005).
Other brain mapping efforts are discovering how neurological or psychiatric disorders affect the brain and how,
and where in the brain, medications prevent or retard these changes. As such, MRI data is a witness to the
sequence of brain development. Some of the observed changes correlate strongly with clinical, behavioral and
cognitive differences, but in other cases, the cellular basis for the changes is not yet completely understood
(Bartzokis et al., 2004).

In this chapter, we review imaging advances that have revealed new information on brain development. Although
the imaging technologies themselves are maturing (e.g. functional MRI and diffusion imaging of fiber pathways),
a quiet revolution is occurring in the analysis techniques to obtain information from the resulting brain images. In
some respects, progress in the image analysis arena has vastly improved the power of MRI. Here we focus on the
new information that these image analysis techniques offer, what they have revealed about normal brain
development, and what they have found in a variety of childhood brain disorders (e.g., early-onset schizophrenia,
autism, fetal alcohol syndrome, and genetic disorders such as Williams syndrome).

We first summarize some basic information on brain MRI and the structural development of the brain. We then
analyze these changes in more detail with brain maps and time-lapse movies.

2. MRI Scanning and Image Analysis

3D Anatomical Scanning By the early 1990s, MRI was gradually replacing CT (computed
tomography, or CAT scanning) as the technique of choice to image brain structure. Based on nuclear magnetic
resonance (Bloch, 1946, Lauterbur, 1973), MRI scanning requires no ionizing radiation (i.e., no radioactive
tracers or exposure to X-rays), so it is safe for use in developmental studies of children, and for repeated image
acquisitions over time. A detailed description of MRI physics is provided elsewhere (Elster, 1994). Briefly, the
subject is placed in a strong magnetic field created by a superconducting magnet surrounding the bore of a
scanner. The subject, lying in the scanner, is exposed to brief pulses of radio-frequency radiation from a
transmission coil around the subject’s head. The energy of a radio-frequency signal transmitted into the brain
tissue can be absorbed by the nuclei of its constituent hydrogen atoms. This energy is then released, and the rate at
which it is released (magnetic ‘relaxation’) depends on the local molecular environment (differing, for example,
in gray and white matter). Gray and white matter, as well as other tissues, can therefore be distinguished with
MRI.

MRI scanners are also programmed to create spatial gradients in the underlying magnetic field. The spatial
location of tissues with different molecular content is retained using Fourier encoding, creating an MR image. A
typical MR image is shown in Fig. 1(a). Note the clear intensity contrast between gray matter structures (such as
the cortex and basal ganglia) and the intervening white matter (consisting of myelinated fiber pathways that
interconnect brain structures). The quantity of gray and white matter in the brain, as well as cerebro-spinal fluid
(CSF) in the ventricles and cortical sulci, can therefore be computed and compared across subjects and over time.
To create maps of tissue types (Fig. 1(b)), tissue classification (or “segmentation’) algorithms can be used. These



computer programs typically model the intensities in the image as arising from a set of Gaussian functions. By
estimating the parameters of these functions, the programs infer how likely it is that each pixel in the image is
primarily made up of gray matter, white matter, CSF, or a background class (e.g. consisting of dura and
meningeal tissue, or air surrounding the head). Once the 3D maps of these tissue classes are determined, their
volumes are measured. They may also be subdivided into smaller regions to determine the amount of each tissue
type in each lobe (see e.g. Fig. 1(c)).

Types of MRI Analysis. ~ Regional volumes of brain structures can be analyzed statistically. Most commonly,
total brain volumes and regional volumes are computed for gray and white matter in specific lobes of the brain, as
well as volumes for deep gray matter nuclei, such as the basal ganglia and hippocampus (Jernigan et al., 1991;
Kennedy et al., 1998). MRI analysis methods have advanced significantly in recent years. We discuss three such
methods (with increasing complexity) that have each yielded considerable information about brain development.
These are:

1. Parcellation methods. In these, an image analyst uses a formalized anatomical protocol (usually based on a
brain atlas or rules agreed on by anatomists) to trace the boundaries of individual structures in cross-sections from
each MRI scan. In a more automated version of this approach, a standard anatomical brain dataset, such as a
digital brain atlas, is labeled by hand, and is elastically deformed or ‘warped’ onto the MRI datasets, adapting to
variations in individual anatomy (Collins et al., 1995; see Thompson and Toga, 2003 for a review of these
“deformable atlas™ approaches). By transferring the labels from the digital atlas to the MRI scan of the individual
aligned with it, 3D models of the structure in each individual are then reconstructed. Depending on how well the
atlas anatomy fits that of the individual, this process may be automated, or the structure models may be treated as
approximate and adjusted later by hand. The measured volumes can then be analyzed statistically, e.g. with
multiple regression or analysis of variance, to assess the magnitude and significance of any changes with age (Fig.
2), or gender differences. Group differences in brain structure can also be assessed, and factors can be identified
that correlate with regional brain volumes, such as gender (Fig. 3), genotype, or disease, or clinical measures
obtained from the subjects in the study. See Chapter 1 (this volume) for a more detailed description.

2. Anatomical Mapping Methods. Rather than splitting the brain up into components, these methods provide 3D
statistical maps of anatomy for different groups of subjects, or subjects of different ages. Group average maps of
anatomy can be computed and compared, to identify where differences in brain structure can be detected. Maps of
statistics are compiled showing brain regions with statistical differences in structure across groups. Regions can
also be identified that show significant changes in specific tissue parameters (e.g. gray matter thickness,
hemispheric asymmetry) over time. Before brain maps can be created, multiple brain MRI datasets are first
aligned into a common 3D coordinate space, so that anatomy can be indexed using 3D coordinates. Geometrical
models of structures are then reconstructed for each individual, often by hand, or with the aid of automated
software. These models are sometimes represented as geometrical surfaces in 3D, and their shape can be averaged
across subjects to provide a composite or ‘average’ representation of anatomy for a group. Quantitative maps and
models can then be made to show shape changes, as well as growth and atrophy in specific structures such as the
hippocampus (Csernansky et al., 1999; Narr et al., 2000; Thompson et al., 2004), corpus callosum (Sowell et al.,
2001a), or basal ganglia (Thompson et al., 2000). The cortical surface provides unique challenges when trying to
find consistent and systematic patterns of change during development. Because gyral patterns of the cortex differ
markedly across individuals, more complex methods are required to average and compare cortical data across
subjects and groups. One such approach is called cortical pattern matching, which we describe below (Fig. 4;
Thompson et al., 2004).

3. Time-Lapse Movies. Anatomical modeling methods can be used to create static statistical maps of anatomy,
and the same idea can be extended to create dynamic representations, illustrated as time-lapse movies. These
animations reveal how specific features of the brain (e.g. gray matter thickness, or cortical shape) change with
age, over the entire human lifespan, or in specific diseases. So far these movies have been used to track shifting




processes of cortical development in childhood and adolescence (Gogtay et al., 2004), subtle changes with normal
aging (Sowell et al., 2003), and progressive brain deficits in schizophrenia (Thompson et al., 2001) and
Alzheimer’s disease (Thompson et al., 2003). Time-lapse movies can be made for any brain structure (Thompson
et al., 2004 for an example mapping the hippocampus and ventricles). Cortical time-lapse movies can be made by
combining cortical pattern matching methods with statistical models that describe how different attributes of the
cortex change over time.

3. Growth Curves for Different Brain Regions.

To illustrate the application of these methods, we describe data from an ongoing longitudinal pediatric brain MRI
study at the Child Psychiatry Branch of the National Institute of Mental Health. To date over 1000 scans have
been analyzed, and Fig. 2 shows data on total brain volume from 224 girls and 287 boys. These children are
evaluated with MRI and neurocognitive testing at approximately 2-year intervals, and the images are analyzed
with a combination of manual and automated tracing techniques in collaboration with imaging centers throughout
the world. Data on regional brain volumes were obtained in collaboration with the Montreal Neurological
Institute, and brain maps and movies were created in collaboration with the UCLA School of Medicine.

Fig. 2 shows that brain volume is about 90% of its final adult volume by age 6, and girls’ brains are on average
around 12% smaller than boys’. This gender difference is explained largely by differences in height and is not
thought, in itself, to account for any gender differences in cognitive domains (see Kimura, 1999, for a review of
these differences). Despite this overall gender difference in brain volume, it is worth noting that it would be hard
to distinguish the brain MRI scan of a boy or a girl on the basis of brain volume or any other MRI parameter
given the large inter-subject variability as illustrated in Fig. 2.

Gray Matter in Each Lobe of the Brain.  The earliest pediatric brain MRI studies suggested that gray matter
(GM) volumes generally declined after age 5, perhaps because the advancement of white matter myelination
throughout childhood began to overtake the overall rate of brain volume expansion, causing a net decrement in
the amount of tissue appearing gray (or unmyelinated) on MRI. The distinction of gray and white matter in the
neonate brain is somewhat artificial as axonal fiber tracts are not sufficiently myelinated at birth to appear brighter
(i.e. hyperintense) on T1-weighted MRI. Later longitudinal studies found that cortical gray matter volume
increased throughout childhood, peaking in early or late adolescence, and falling thereafter. Giedd et al. (1999)
compiled normative growth curves for each of the lobes of the brain, demonstrating the hetrochronous nature of
brain development, in which the different lobes develop at different rates. Parietal, frontal and temporal GM
volumes peaked at ages 11.8, 12.1, 16.2 in boys, and at ages 10.2, 11.0, 16.7 years in girls.

Modeling Developmental Trajectories with Mixed Models. The trajectories plotted in Figure 2 are computed
using mixed models, or random effects models, a statistical technique that allows both longitudinal and cross-
sectional data to be combined to compute a single average trajectory of development for a specific brain measure.
It is worth describing how these curves are actually computed. For the ith individual’s jth measure we have:

Y;=f(Agei,p) + & (1)

Here Y is the outcome measure derived from the brain scan, such as a tissue volume for a particular lobe, f{) is a
constant, linear, quadratic, cubic, or other function of the individual’s age for that scan and the
regression/ANOVA coefficients to be estimated are included in a vector, . In studies with multiple scans over
time, it is usual to fit a random effects model with correlated errors:

Y= ou+ flAge;,B) + & (2)



Here the model is the same as the General Linear Model except for the a; term, which is called a random effect
(Davidian and Giltinan, 1995; Verbeke and Molenberghs, 1997). ¢; and ¢, (k not equal to j) are assumed
correlated, and the correlation is a function of the time that has elapsed between the two measurements. In our
own work, we typically use the SAS nonlinear ‘PROC MIXED’ function to develop equations that model each
brain variable as a quadratic function of age, incorporating random person effects for the intercept terms, and
employing SAS MIXED’s capacity to model spatial covariance between the repeated measures as a function of
the time span between the two measurements for each participant (Thompson et al., 2004). We usually implement
the simpler models directly in C and validate them against SAS. Our general strategy is to model growth curves
using mixed model analyses including covariates and interaction terms to test hypothesized differences among
various strata (e.g. gender differences or disease effects; Gogtay et al., 2005).

Trajectories in Large Samples of Subjects. Fig. 3 shows the plots obtained by fitting a cubic model to age-related
changes in total cerebral volume, total gray and white matter, frontal gray matter, and the volume of a particular
substructure, the cerebellum (data from Giedd et al., 2005). In this largest MRI study of brain development to date
(224 females, 287 males), the total volume of the brain rose gently until puberty in boys and girls (with a higher
and later peak in boys), and then followed a very gradual decline. When these changes are split into white matter
and gray matter components, the white matter volume continued to increase rapidly throughout the teenage years,
increasing both in absolute terms, and as a proportion of brain volume, well after puberty and into adulthood. In
Sowell et al., 2003, we were able to fit a quadratic model to whole brain white matter volumes over the lifespan.
This cross-sectional study evaluated 176 healthy subjects between the ages of 7 and 87. In agreement with earlier
reports by Bartzokis et al. (2003) and others, the white matter volume appeared to peak in the mid-forties, and its
overall trajectory was well-described by a quadratic (inverted ‘U’) profile, despite considerable individual
variation.

Mechanisms. It is tempting to try to break down these changes into several hypothetical processes that might
lead to gray and white matter gain and reduction, and relate them to those that are known to occur on a cellular
level. The white matter volume expansion is not attributed to the emergence of additional axonal fibers. Instead
myelination increases the volume of the insulating sheaths surrounding axonal fibers and bulks up the volume of
the white matter compartment. This process can also be seen as increased white matter diffusion anisotropy with
diffusion tensor imaging (DTI), as greater myelin deposition increasingly constrains the diffusion of water within
axons. By mid-life (40’s), white matter breakdown overtakes the process of increased myelination and the net
effect is a white matter volume decline. Age-related myelin breakdown can be readily visualized with electron
microscopy. It consists primarily of splits in the lamellae of the myelin sheaths or ballooned sheaths in the
absence of neuronal or synaptic loss (Peters et al. 2000; Nielsen and Peters, 2000). This myelin degeneration
creates microscopic fluid filled spaces, and increases in MR-detectable water, and thus decreases in the
relaxometric parameter, R, (Englund et al. 1987; Kamman et al. 1988; Bartzokis et al., 2002). Complementary to
assessing volumes of tissues on MRI, MR relaxometry describes quantitative changes in the MRI signal itself,
using parameters that assess tissue integrity such as transverse relaxation rates (R,; R, is defined as 1/7,, where T
is the transverse relaxation time). Work by Bartzokis and others has shown a decline in frontal lobe white matter
(FLWM) R, that begins in the late 30's (peak at age 38) and markedly accelerates after about age 60. These data
are consistent with the view that myelin breakdown may be a major factor in higher cognitive functions declining
with age and may be accompanied by breakdown in white matter connectivity (Davatzikos et al., 2003).
Histologic studies demonstrate that neuronal loss is minimal in normal aging (Terry et al., 1987), making
Wallerian (axonal) degeneration an unlikely explanation for the white matter loss.

A precipitous decline in gray matter volume also occurs in both sexes after puberty (Fig. 3). The cellular basis of
this change is more contentious, but it likely reflects reductions in dendritic arborization, dendritic length, synapse
loss and other neuronal parameters. Earlier cross-sectional studies of normative brain maturation during childhood
and adolescence have lead researchers to conclude that gray matter loss does occur as part of the ultimate
sculpting of the brain into the fully functioning adult nervous system (Jernigan et al., 1991; Pfefferbaum et al.,
1994; Reiss et al., 1996; Sowell et al., 1999, 2003). Gray matter loss has been observed consistently with



longitudinal MRI in late childhood and adolescence (Jernigan et al., 2001; Gogtay et al., 2004; Sowell et al.,
2004). This loss is usually attributed to neuropil pruning seen histologically. The neuronal origin of these changes
is supported, to some degree, by a general developmental decline in metabolites such as N-acetylaspartate, which
are localized primarily in neurons, and can be observed in vivo using MR spectroscopy. It is also important to
note here that the “loss” of gray matter observed with MRI during childhood and adolescence may also be
associated with increases in myelination. Unmyelinated axonal and dendritic fibers presumably have an MRI
signal value which is indistinguishable from that of gray matter. Thus, tissue in the peripheral neuropil that has a
signal value like gray matter in the young child may continue to myelinate, resulting in a white matter signal
value in the same individual as an adolescent. This hypothesis is further supported by recent evidence showing
brain growth which spatially and temporally coincides with regional patterns of gray matter density reduction
between childhood and young adulthood (Sowell et al., 2001b). If, in fact, gray matter “loss” was associated
solely with regressive changes such as reductions in synaptic density, it is not likely that we would see continued
brain growth in the same regions. Further studies using DTI may help disambiguate the potential cellular
processes which contribute to the further sculpting of cortical structures during childhood.

To understand the anatomical sequence of these developmental brain changes, we now turn to a second method,
cortical mapping. This method creates maps of gray matter changes in the cortex. By contrast with methods that
measure regional volumes of brain tissues, cortical maps offer the ability to localize brain changes relative to the
underlying gyral anatomy and visualize them in the form of statistical maps that reveal the topography of group
differences.

4. Cortical Mapping

Mapping the Cortex. Figure 4 shows a general image analysis process, known as cortical pattern matching, that
we developed for understanding how development and disease affect the cortex (Thompson et al., 2004). These
methods have been used to reveal the profile of structural brain deficits childhood and adult-onset schizophrenia
(Thompson et al., 2001; Cannon et al., 2002; Narr et al., 2004), attention-deficit/hyperactivity disorder (Sowell et
al., 2003), fetal alcohol syndrome (Sowell et al., 2002), Tourette syndrome (Sowell et al., 2004), bipolar disorder
(Gogtay et al., 2005), and Williams syndrome (Thompson et al., 2005). Below we describe some examples
selected to illustrate the concepts.

The goal of cortical mapping is to create group average maps of cortical features of interest such as gray matter
thickness, gray matter density, cortical shape, average sulcal patterning, and hemispheric asymmetries in these
measures, all of which change during development. Next, statistics are defined that help localize group differences
in these measures, such as brain structure differences between healthy children and those with neuropsychiatric
disorders like schizophrenia or bipolar illness, or genetic disorders of brain development such as Williams
syndrome. The resulting maps can reveal where in the brain differences are detected, how significant they are, and
whether they are stable or progressive. Many variations on the basic mapping approach are possible. Any
observed structural differences can also be correlated with measures such as medication or genotype, to
investigate their origin and the potential effects of intervention. The same mapping techniques maps have also
been used to assess functional differences in the cerebral and cerebellar cortex with functional MRI (see Rasser et
al., 2004a,b; Zeineh et al., 2003 for examples).

The cortical mapping process is described in detail in Thompson et al., 2004, so we review it only briefly here. As
shown in Fig. 4, brain MRI volumes pass through a number of preprocessing steps using several manual and
automated procedures. First, we create an intracranial mask of the brain using a brain surface extraction algorithm
tool (BSE) that is based on a combination of non-linear smoothing, edge detection and morphologic processing
(Shattuck and Leahy, 2002). Any small errors in the masks are corrected manually to separate intracranial regions
from surrounding extra-cranial tissue. Using these modified brain masks, all extra-cerebral tissues are removed
from the image volumes. Brain masks and anatomical images are corrected for head alignment and individual
differences in brain size by using an automatic 9-parameter linear registration (Woods et al., 1998) to transform



each brain volume into the target space of the ICBM-305 average brain created by the International Consortium
for Brain Mapping (Mazziotta et al., 2001; Figure 4, step 1). After applying radiofrequency (RF) bias field
corrections to eliminate intensity drifts due to magnetic field inhomogeneities in the scanner, each image volume
is segmented into different tissue types by classifying voxels based on their signal intensity values (Shattuck et al.,
2001; figure 4, step 2), followed by manually separating the left hemisphere from the right.

Next, cortical pattern matching methods (Thompson et al., 2004; Fig. 4, steps 3-7) are used to spatially relate
homologous regions of cortex between subjects in order to permit the inter-individual comparison of cortical
features, such as local cortical thickness, in equivalent surface locations. For that purpose, we create 3D cortical
surface models for each hemisphere based on automatically generated mesh surfaces that are continuously
deformed to fit a threshold intensity value that best differentiates extra-cortical cerebrospinal fluid from
underlying cortical gray matter (MacDonald et al., 1998). The idea of this deformation process is to use a starting
mesh which is deformed until its borders fit to a given intensity threshold of the respective image. As a result of
the linear transformation procedure, the generated 3D cortical surface models correspond globally in size,
orientation, and parameter space coordinates. Nevertheless, the same parameter space coordinates, within each
cortical surface model, do not yet index the same anatomy across all subjects. Therefore, the cortical surface
models from each individual are used to identify and manually outline the major cortical sulci on the brain
surface. Detailed anatomic protocols for delineating cortical anatomy are available at
http://www .loni.ucla.edu/~esowell/edevel/proto.html and have been previously validated, and their inter- and
intra-rater reliability have been reported (Narr et al., 2001; Blanton et al., 2000; Sowell et al., 2002).

The manually derived sulcal landmarks are then used as anchors to drive the surrounding cortical surface anatomy
of each individual into correspondence. During the surface-warping procedures, the algorithm computes a 3D
vector deformation field that records the amount of x, y, and z coordinate shift (or deformation) associating the
same cortical surface locations in each subject with reference to the average anatomical pattern of the entire study
group (Thompson et al., 2004).

Tissue classified brain volumes are resampled to 0.33mm cubic voxels to improve the precision of subsequent
thickness measurements. Cortical thickness — defined as the 3D distance (in mm) between inner gray matter/white
matter border and the closest point on the outer surface (CSF/gray matter border) — is calculated using the Eikonal
fire equation (Thompson et al., 2004) applied to voxels classified as gray matter. Cortical thickness is estimated
voxel by voxel and projected as a local value (mm) onto the cortical surface. To increase detection sensitivity for
group differences (i.e. signal to noise), a smoothing kernel is used to average thickness measures within a 15mm
sphere at each cortical surface point (Figure 4, step 9).

Statistical Analysis. The mean values for cortical thickness (or any other cortical measure obtained at each
cortical surface point) can be computed to provide maps of average cortical thickness across the entire cortical
surface. Analysis of variance or multiple regression is then performed at each 3D cortical surface location to
assess covariates of interest, such as possible effects of disease, gender and hemisphere and their potential
interactions for cortical thickness. Uncorrected two-tailed probability values (p<0.05) from these tests are mapped
directly onto the average cortical surface model of the entire sample providing detailed and spatially accurate
maps of local thickness differences between groups. Regions where correlations exist between cortical thickness
and symptoms or cognitive test scores can also be mapped (Figure 4, step 10), as can links with genotype, or even
medication. Finally, permutation testing is employed to assign an overall significance value to the observed
pattern of differences in the map (Thompson et al., 2004). For permutation testing, subjects are randomly assigned
to groups, and a new statistical test is performed at each cortical surface point for each random assignment. The
number of significant results from these randomizations is then compared to the number of significant results in
the true assignment to produce a corrected overall significance value for the uncorrected statistical maps. The
statistical validity of the findings can then be verified even in the presence of multiple comparisons and spatial
correlations in the neuroimaging data.



Figure 5 shows some examples of cortical pattern matching applied to several developmental populations. We
highlight examples of work on developmental disorders that are environmental in origin (e.g., fetal alcohol
syndrome, which results from high maternal alcohol intake during embryonic development) as well as those that
are primarily genetic in origin (e.g., Williams syndrome, which results from a chromosomal anomaly). The brain
is most fragile during development, and anomalies of maturation can result from perturbations in genetic or
environmental factors.

ii.

iii.

Developing Brain Asymmetries. The lateralization of brain function is of great interest in neuroscience
as it provides vital information on the specialization of brain systems and the communication of
information between brain hemispheres (see Toga and Thompson, 2003, for a review). Asymmetry is also
of interest developmentally, as a number of disorders have been hypothesized to be associated with
failures of the lateralization process, from dyslexia to schizophrenia (see Narr et al., 2004 for a study of
schizophrenia using these methods). Cortical pattern matching provides a particularly attractive method to
evaluate the magnitude and development of structural brain asymmetries. The pattern of asymmetries in
sulcal patterning and gray matter thickness can be plotted spatially and related to chronological age or
diagnosis. Figure 5(i)-(p) show some interesting maps of brain asymmetry in populations of different
ages. In Thompson et al., 2001, we developed a general approach to map the mean profile of asymmetry
in the gyral pattern, and assess its statistical significance, essentially by creating digital models of 3D
curves representing sulci on the brain surface, and averaging their geometrical shapes across subjects.
Regions can be distinguished that exhibit structural asymmetries that exceed the normal within-
hemisphere variation in gyral patterning, and the anatomy of the right hemisphere can be seen to be
shifted forwards by around 5-10 mm relative to the left. This asymmetry can be plotted on the mean
sulcal pattern using a color code to emphasize regions where brain asymmetry is greatest. Sylvian fissures
and superior temporal gyri exhibit the greatest asymmetries in the brain, with greatest values at their most
posterior limits. Figure 5(i)-(k) show the mean pattern of asymmetry in groups of children, teenagers, and
adults (data from Sowell et al., 2002). By computing mean geometric models of the cortical sulci, the
models from one hemisphere can be ‘mirrored’ or reflected so that they can be compared with
corresponding features in the opposite hemisphere. Then a 3D deformation map, or vector field, can be
computed to express how much deformation would be required to force the left hemisphere mean sulcal
pattern to match the right hemisphere sulcal pattern (see arrows in Fig. 5(I) and (m)). In elderly subjects,
the gyral pattern asymmetry approaches 20 mm and is highly significant (Thompson et al., 2001; Fig.
5(n),(p)). The dynamic emergence of asymmetry in the developing human brain is yet one more feature
for which normative statistical data has been established. This helps to delimit the range of normal
variations in brain structure and distinguish them from variants outside of the normal range.

Fetal Alcohol Syndrome. Intriguingly, very similar gray matter excesses in perisylvian zones were also
observed in a recent study of fetal alcohol syndrome (FAS; Sowell et al., 2002). FAS subjects exhibited a
15% increase in gray matter density in the perisylvian and inferior parietal cortices bilaterally (p < 0.001,
L and R hems.). Language systems may be especially vulnerable to alcohol neurotoxicity during cortical
maturation, and excess cortical gray matter is most likely due to a failure of cortical formation during
gyrogenesis, or a concomitant failure or delay in myelination, perhaps specifically in subcortical U-fibers
(these two possibilities cannot be distinguished with conventional MRI).

Heritability and Brain Structure. In the quest to understand what factors contribute to the trajectory of
brain development, genetic and imaging methods can be combined to answer questions about the
influence of genes and environment on brain structure. These methods are of two major types. The first of
these methods uses twin or family designs to assess the proportion of genetic and environmental
contribution to the observed variance in specific brain measures. By comparing the resemblance of
relatives with different degrees of genetic relatedness, variance attributable to additive genetic, shared and
unique environment can be established. The second approach also uses quantitative genetic modeling, but
is based on modifying the concept of transmission disequilibrium to images. As a result, it is possible to



assess the effects of individual polymorphic markers on brain structure (Cannon et al., 2005). This
provides enormous potential for relating developmental trajectories to information on normal and
abnormal genetic variations.

The heritability of brain structure (i.e. proportion of observed variance explained by genetic variation in a
population) can also be visualized in the form of a map. Figure 5 (panels g-t) shows several examples of
maps identifying the degree to which genetic variations influence brain structure (Thompson et al., 2001,
2002). Essentially, MRI scans of identical and fraternal twins are compared and the degree of structural
similarity is computed for a range of structural features - in this case cortical gray matter density - a
measure related to cortical gray matter thickness (Thompson et al., 2004). Identical twins, who share all
their genes, resembled each other more closely in brain structure than fraternal twins, who share only half
their genes on average. This genetic control can be estimated quantitatively by examining intraclass
correlations in brain measures between pairs of twins of each zygosity (i.e. identical or fraternal). The
covariance of genetic affinity and structural affinity was highest for the volume of frontal gray matter in
the brain, which, perhaps surprisingly, is almost entirely determined by genetic factors. In other words,
the fact that each twin was exposed to different experiences throughout life made almost no difference to
the quantity of gray matter. The quantity of frontal gray matter is moderately correlated with general
cognitive ability as measured with standardized tests of intellectual function (or 1Q), and IQ is also highly
heritable (Thompson et al., 2001; Gray and Thompson, 2004; this link was replicated by Postuma et al.,
2002). It is important to be aware of misinterpretations and misuses of heritability data, which have led to
erroneous conclusions on the sources of individual and group differences in brain structure and cognition,
and have led to a vitriolic debate (reviewed in Gray and Thompson, 2004). Because there can be strong
gene by environment correlations, the proportion of genetic variance is not necessarily independent of, or
at the expense of, environmental contributions to variance. The fact that a feature is heritable does not
mean that it cannot be affected or manipulated by changes in the environment (see Gray and Thompson,
2004 for a discussion).

The almost complete genetic determination of gray matter volumes contrasts with the observed variation
in sulcal and gyral patterns, which are less genetically constrained (Lohmann et al., 1999; see Thompson
et al.,, 2001, 2003 for a review of neuroimaging studies of genetic influences on brain structure).
Cerebellar volume exhibits almost zero heritability, despite the high heritability of cerebral volumes
(Giedd et al., 2001). The search for heritable or genetically-mediated variations in brain structure is
important as it can help identify features in images that are associated with imminent disease onset or
liability for disorders such as schizophrenia (Cannon et al., 2002). Brain maps that link genes and
structure can also better define the mechanisms and molecular pathways that lead to the organization of
brain structure and deficits that imaging can identify. They also can be used to identify commonalities and
unique signatures for specific developmental disorders, including systems where functional deficits may
overlap in disorders with differing etiologies (Thompson et al., 2005, for an example on fetal alcohol and
Williams syndrome).

iv. Williams Syndrome. Williams syndrome is an enigmatic developmental disorder associated with a
deletion in the 7q11.23 chromosomal region (Korenberg et al., 2000). WS subjects have disrupted cortical
development and mild to moderate mental retardation, but have relative proficiencies in language skills,
social drive, and musical ability (Bellugi et al., 2000). Progress in understanding how this genetic
anomaly impacts brain structure and behavior is impaired by the lack of detailed maps establishing the
scope and anatomic extent of brain anomalies in WS. Figure 5 shows a series of maps that reveal that the
cortical thickness in Williams syndrome is systematically increased in the perisylvian language area (data
from Thompson et al., 2005). Based on MRI scans of 42 WS subjects and 40 matched controls, maps of
individual cortical thickness were made (Figure 5(a)-(d)), and mean thickness maps compared between
Williams syndrome patients (panel e) and controls (panel f). In WS, cortical thickness was significantly



increased (by 5-10%) in a discrete sector (panel g), encompassing perisylvian regions important for
language function, specifically language comprehension. Against a backdrop of widespread brain tissue
deficits, the perisylvian cortex was thicker than in controls, and this may partly account for the WS
subjects’ verbal strengths and unusually expressive language. Nonetheless the structural alterations in this
study were not correlated with behavioral or cognitive measures so any links between structural and
functional disturbances require further study to elucidate.

5. Time-Lapse Maps of Brain Change

An exciting extension of the maps described so far is the computation of time-lapse maps of brain structure. These
show, using animation, spreading waves of cortical maturation in the developing brain, in spatial and temporal
detail. Before introducing these dynamic maps, we review some of the major brain changes observable with MRI
as healthy subjects age. Brain changes with aging can be viewed as a continuation of development, and the
assessment of large imaging databases across the human lifespan can shed light on the waxing and waning of
brain tissue volumes, with different trajectories for different regions of the brain.

Several studies have measured or mapped brain changes in children and adolescents scanned repeatedly during
childhood and adolescence (Giedd et al., 1999; Thompson et al., 2000, 2001; Chung et al., 2001; Sowell et al.,
1999, 2001, 2002, 2004; Gogtay et al., 2004). The dynamics of brain change across the adult human life span
are highly nonlinear (Jernigan et al., 1991; Sowell et al., 2003). To help understand these changes, we recently
developed a set of statistical mapping approaches to estimate nonlinear (quadratic) effects of aging on brain
structure.

1. Gray Matter Changes Over the Lifespan. In a recent study (Sowell et al., 2003; Fig. 6(b) and (e)), we
used MRI and cortical matching algorithms to map gray matter density (GMD) in 176 normal individuals aged
7 to 87 years. GMD declined nonlinearly with age, most rapidly between ages 7-60, over dorsal frontal and
parietal association cortices, on both the lateral and interhemispheric surfaces. Age effects were inverted in the
left posterior temporal region, where GMD gain continued up to age 30, and then rapidly declined. This was the
first study to differentiate the trajectory of maturational and aging effects as they vary over the cortex. Visual,
auditory and limbic cortices, which myelinate early, showed a more linear pattern of aging than the frontal and
parietal neocortices, which continue myelination into adulthood. Posterior temporal cortices, primarily in the
left hemisphere, which typically support language functions, have a more protracted course of maturation than
any other cortical region, and myelination is the putative cause driving these changes.

2. Time-Lapse Maps of Developmerinother developmental study (Gogtay et al., 2004) created a
quantitative time-lapse map of human cortical development, reconstructed from serial brain MRI scans of 13
children aged 4-21. Dynamic video maps localizing brain changes were derived using high-dimensional elastic
deformation mappings to match gyral anatomy across subjects and time. A quadratic statistical model, with
random effects, was fitted to the profile of gray matter density against time, at each of the 65,536 cortical points
(Fig. 6(c)). The resulting trajectory was animated to create a time-lapse movie [specific frames are shown in
(d)]. This revealed a shifting pattern of gray matter loss, appearing first in dorsal parietal and primary
sensorimotor regions near the interhemispheric margin, and spreading laterally and caudally into temporal
cortices and anteriorly into dorsolateral prefrontal areas. This also supports findings of earlier studies (Giedd et
al., 1999; Sowell et al., 1999), with a long-term longitudinal sample. The shifting profile of these changes is
observed in a set of video sequences (see URL, http://www.loni.ucla.edu/~thompson/DEVEL/dynamic.html for
several of these time-lapse movies).

3. Brain-Behavior Relationships. Changes in cortical thickness also relate to cognitive changes as children
and adolescents mature. Sowell et al. (2004) found that cortical thinning in the left dorsal frontal and parietal
lobes was correlated with improved performance on a test of general verbal intellectual functioning. To



establish this, cortical thickness in millimeters was computed from structural MR images of 45 children
scanned twice (two years apart) between ages 5 and 11. Local brain growth progressed at a rate of
approximately 0.4 to 1.5 mm per year, most prominently in frontal and occipital regions. Gray matter thinning
coupled with cortical expansion was highly significant in right frontal and bilateral parieto-occipital regions.
Forty-two of the studied children completed the Vocabulary subtest of the Wechsler Intelligence Scale for
Children — Revised (Wechsler, 1991) at both scanning sessions. Negative correlations were observed primarily
in the left hemisphere between the change scores and cortical thinning. Specifically, greater gray matter
thinning was associated with improved performance on the Vocabulary subtest. Permutation analyses
confirmed the significance of relationships between gray matter thinning and improved Vocabulary scores in
the left lateral dorsal frontal (p = 0.045) and the left lateral parietal (p = 0.030) regions.

4. Childhood-Onset Schizophrenia. In developing time-lapse maps for clinical studies, there is a particular
interest in modeling atrophic or developmental processes that speed up or slow down. Diseases may accelerate, or
they may be slowed down by therapy. Among the most intriguing findings has been the observation of a
progressively spreading wave of gray matter (GM) loss in subjects with childhood onset schizophrenia (COS;
Thompson et al., 2001; Vidal et al., 2005; Figure 7). This medication-controlled study followed 12 subjects with
COS every 2.5 years for 5 years, 12 matched healthy controls, and 10 medication-matched psychiatric controls,
with serial MRI. As seen in Fig. 7 (left panels), healthy subjects lost gray matter at a subtle rate of 1-2% per year
in parietal cortices. By contrast, the COS patients showed a more rapid progressive loss of GM in superior frontal
and temporal cortices, reaching 3-4% per year in some local regions. The same pattern was replicated in both boys
and girls, and agreed with early findings of progressive GM loss when the volumes of brain tissue in each of the
lobes were assessed over time (Rapoport et al., 1999). Subtraction of the mean GM map in COS from the
corresponding map for controls, at each time point, revealed a dynamic wave of gray matter loss in the COS
patients (Fig. 7; top right panels). Early deficits in parietal brain regions that support language and associative
thinking progressed anteriorly to temporal lobes, supplementary motor cortices and frontal eye fields. The deficits
spread anatomically over a period of 5 years, consistent with the characteristic neuromotor, sensory and visual
search impairments in the disease. In temporal cortices, including primary auditory regions, severe gray matter
loss was absent at disease onset but became pervasive later in the disease. The spreading deficits are shown in a
set of animation sequences (see URL, http://www.loni.ucla.edu/~thompson/MOVIES/SZ/sz.html ). Several
aspects of this study are noteworthy. First, as time-lapse maps of normal development are expanded to larger
samples (Gogtay et al., 2004), it will be possible to assess whether the changes represent an acceleration of
normally occurring brain changes (Gogtay et al., 2004), or a separate process entirely that begins in the adolescent
years.

These time-lapse maps of COS may offer support or counterevidence when evaluating neurobiological models of
the onset and progression of schizophrenia. The spreading patterns of deficits corroborate the idea that the normal
process of dendritic and synaptic pruning may be abnormally accelerated or derailed in schizophrenia (Feinberg
and Guazzelli, 1999). Nonetheless, the spreading deficits are quite different than those seen in neurodegenerative
diseases, for example. Schizophrenia is not thought to be a neurodegenerative disorder due to the lack of gliosis in
autopsy tissue from patients. Empirical studies also show that the degenerative sequence of dementia is
anatomically selective, and quite different from that seen in schizophrenia. Figure 7 (bottom right column) shows
the pattern of GM loss in a group of 12 patients with mild to moderate Alzheimer’s disease, compared to 14
matched healthy elderly subjects (data from Thompson et al., 2003). Both cohorts were scanned longitudinally,
and a time-lapse movie was created. Over a two-year period, the Alzheimer’s patients exhibited a spreading wave
of GM loss beginning in limbic and entorhinal cortices, spreading to frontal cortices, and sparing sensorimotor
cortices. This is, in some respects, the opposite of the sequence of cortical maturation during development, in the
sense that the primary sensory cortices mature first and degenerate last. Some have suggested that limbic regions
have high neuronal plasticity throughout life and the resulting turnover of cellular metabolites makes them
especially vulnerable to neurodegenerative disease (Mesulam et al., 2000).



The cellular basis of the progressive changes in COS is not clear. Progressive loss of frontal and temporal GM has
been seen in first-episode adult-onset patients, and there is some evidence that it may be resisted, at least in adults,
by atypical antipsychotics such as olanzapine (Keefe et al., 2004; Lieberman J., pers. commun.). Some histologic
studies support the notion of decreased neuropil in schizophrenia, but autopsy material is relatively scarce in
adolescent-onset populations and findings are inconsistent. This has led some to speculate that the cortical
changes may be vascular or glial in origin, rather than purely neuronal (Weinberger and McClure, 2002).
Intracortical contrast may also be affected by changes in myelination, and by changes in lipid metabolism during
the use of atypical antipsychotics (Bartzokis et al., 2003). Second, the rate of GM loss may be unusually high in
these severe, early onset cases, and may not be typical of schizophrenia in general. The loss rate would be
expected to decelerate or plateau over a period of several years after the onset of psychosis.

With these caveats, time-lapse maps may still offer a biological marker of disease progression for medication
trials. The gray matter differences have been found to correlate with fMRI measures in tasks that recruit the
frontal lobes (Rasser et al., 2005). Frontal GM deficits have been observed in genetically at-risk relatives of
patients (Cannon et al., 2002). Their magnitude may also provide a measure of imminent risk for disease.
Progressive GM deficits have been seen in subjects in the prodromal phase of the illness, i.e., even before the first
psychotic episode (Pantelis et al., 2003).

6. Mapping Brain Growth

A final question is whether these brain mapping techniques are applicable to mapping brain growth in individual
children. In the examples presented so far, data from multiple subjects has been averaged together to create group
average maps or time-lapse movies, and statistical maps have been computed to identify differences between
groups of subjects. An interesting variation of these approaches is to compute maps of brain growth in an
individual subject, using serial images to identify the region and rate of maximal growth in the brain.

Tensor Maps.  One such approach for mapping brain growth, in an individual, is known as tensor mapping
(Thompson et al., 2000), or tensor-based morphometry (Ashburner et al., 1998; Chung et al., 2001; Leow et al.,
2005). This method essentially compares two scans of the same individual over time by elastically warping the
earlier scan to match the later one. A high dimensional elastic deformation, or warping field, is calculated,
typically with millions of degrees of freedom, which drives the baseline image to match its shape in a later scan
(see Fig. 8). [These tensors have nothing to do with those that are mapped using diffusion imaging, which
measure fiber orientation based on the directional properties and orientation of water diffusion in the brain]. The
tensor that is mapped, in this context, is the gradient of the deformation field that warps the baseline to the later
anatomy; mathematically it is equivalent to a 3x3 matrix attached to each point in the anatomy, which describes
the principal directions of deformation at that point. The determinant of this matrix, called the Jacobian, is often
used to summarize the transformation; this single number represents the local expansion factor (plotted in color in
Fig. 8), and can be converted into a growth rate based on the time interval between scans. A notable feature of
tensors, by contrast with displacement vectors, is that they distinguish intrinsic volumetric changes from bulk
shifts in anatomy: unlike displacement vectors, tensors are invariant to translational shifts of a structure in
stereotaxic space, but they are still sensitive to intrinsic volumetric changes. This distinction can help in studying
developmental changes, as intrinsic changes in some structures may cause other structures to shift translationally.
These two types of change usually will not be distinguished by voxel based methods, unless structures are
perfectly aligned using high dimensional registration (Bookstein, 2001).

Corpus Callosum Growth. Fig. 8 shows typical results of a tensor mapping approach we developed to map
growth of the corpus callosum (shown in Fig. 8, panel (a)) and basal ganglia in young children. We used it to
detect an anterior-to-posterior wave of growth in the brains of children scanned repeatedly between the ages of 3
and 15 (Thompson et al., 2000). Parametric surface meshes were built to represent anatomical structures in a
series of scans over time, and these were matched using a fully volumetric deformation. Dilation and contraction
rates, and even the principal directions of growth, can be derived by examining the eigenvectors of the



deformation gradient tensor, or the local Jacobian matrix of the transform that maps the earlier anatomy onto the
later one (Fig. 8). By analyzing the deformation fields, fensor maps can be created to reflect the magnitude and
principal directions of tissue dilation or contraction. This mapping process is illustrated in Fig. 8. The validity of
the approach can also be assessed by visualizing ‘null maps’ of brain change over short intervals. The increased
spatial detail afforded by these mapping approaches makes them of particular interest for assessing fine-scale
changes in anatomy during development.

Tensor-BasedMorphometry in Autistic Children Tensor maps may also be used to identify structural
brain differences between two groups of subjects. Rather than warp the subject’s anatomy at baseline onto a
follow-up image from the same subject, all subjects’ images are warped to match a common template. Highly
flexible elastic or fluid transformations are used to deform the anatomy of each subject so it matches a template
exactly. A measure of the dilation or contraction applied during this transformation (the Jacobian determinant) is
an index of the local shape differences in anatomy across groups. Once registered across subjects, the resulting
Jacobian determinant images may be analyzed using voxel based methods, an approach known as tensor based
morphometry (TBM; Davatzikos et al., 1996; Chung et al., 2001; Ashburner et al., 1998). Recently, we used this
method to identify white matter reductions in the corpus callosum of autistic children (Leow et al., 2005). Figure
8(d) and (e), respectively, show the average compression factor required to map normal children and autistic
children to an average corpus callosum shape, and Figure 8(f) shows regions where these are different. White
matter regions of the splenium were significantly reduced in autistic children. One benefit of this approach, as
with the other mapping approaches, is that it does not require a priori specification of the regions in which
differences are expected to occur. Regions can be searched for differences and multiple comparison corrections
can be applied to make sure that any effects that are found are genuine.

7. Conclusion

In this chapter, we reviewed several of the major morphometric methods for mapping developmental changes in
brain structure. As image analyses become increasingly automated, and as the scope and power of brain imaging
studies expands to larger and more complex studies, substantial benefits will accrue. For developmental research
in particular, key information is likely to come from the large-scale analysis of neuroimaging data, especially
from children scanned longitudinally with MRI. Image analysis tools can now make time-lapse maps of
developmental trajectories, as well as growth curves for individual structures. Future work will likely reveal
factors that affect these developmental trajectories, both genetic and environmental. There is rapid progress in
fusing genetic and neuroimaging methods for this purpose (Cannon et al., 2005).

This chapter has focused on mapping changes in brain structure with conventional MRI, but advances in other
MRI techniques are now beginning to offer additional perspectives on the functional development of the brain.
Functional MRI studies are now becoming more routine in young children, as are fiber mapping studies using
diffusion tensor imaging, which previously required lengthy scanning protocols. Some of the more enigmatic
changes in the cortex, described in this chapter, are likely to be ultimately understood by combining conventional
imaging with spectroscopy and DTI, as each is sensitive to different aspects of cellular maturation.

As has been noted numerous times, the real power of these methods lies in identifying subtle developmental
changes that would go unnoticed in individual images. No matter how large existing MRI databases become,
specialized mathematics are still required to derive the most information from them. For example, mapping gene
and medication effects on development is now within reach. Scan databases are only just now becoming large
enough to stratify these cohorts by symptom profiles, therapeutic response, and currently identified risk factors.
These studies are likely to help us better understand the links between neuroimaging markers and normal brain
development, as well as the clinical course of developmental illnesses.



Figures

MRI Scan Tissue Classification Parcellation into Lobes

Figure 1. Typical Processing Steps in an Analysis of MRI Brain Scans. (a) shows a typical coronal section from a T1-
weighted MRI scan of the brain. (b) is the result of applying a tissue classification approach to classify image voxels as gray
matter (green colors), white matter (blue colors), or cerebrospinal fluid (CSF; red colors). Non-brain tissues such as scalp and
meninges surrounding the brain have also been digitally edited from the image. (c) shows a parcellation of the brain into frontal
lobe (shown in blue), parietal lobe (green), occipital lobe (red), and temporal lobe (yellow). This subdivision of anatomy is done
with the aid of a cortical suface model on which sulcal landmarks separating the lobes can be reliably identified. Once
partitioned in this way, the volumes of each tissue type in the major lobes can be computed and growth curves established for
each major lobe.

Figures 2 and 3 are removed from the web version of this chapter, as they are under review for a peer-reviewed journal.
Please check back later for an update of this chapter.
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Figure 4. Image Analysis Steps for Detecting Developmental Changes and Group Differences in Cortical Anatomy. An image analysis
pipeline is shown here. It can be used to create maps that reveal group differences and age-related changes in cortical thickness, gray matter
density, gyral patterning, and asymmetries in these features. In general, 3D MRI scans from patients and controls are aligned (1) with an
average brain template based on a population (here the ICBM template is used, developed by the International Consortium for Brain
Mapping; Mazziotta et al., 2001). Tissue classification algorithms then generate maps of gray matter, white matter and CSF (2). In a simple
analysis, these tissue maps can be parcellated into lobes (2a) and their volumes assessed with analysis of variance or other simple statistics
(2b). Or, to compare cortical features from subjects whose anatomy differs, sulcal patterns can be traced onto individual cortical models, and
used to guide the alignment of data from one subject to another. Individual sulcal curves and the surrounding cortical surfaces can then be
flattened (3b, 3c) and aligned with a group average gyral pattern (4). If a color code indexing 3D cortical locations is flowed along with the
same deformation field (5), a crisp group average model of the cortex can be made (6). Relative to this average, individual gyral pattern
differences (7), measures of cortical complexity (7b), or cortical pattern asymmetry (8) can be computed. Once individual gyral patterns are
aligned to the mean template, differences in gray matter density or thickness (9) can be mapped, after pooling data across subjects from
homologous regions of cortex. Correlations can be identified between differences in gray matter density or cortical thickness and genetic risk
factors (10). Maps may also be generated visualizing regions in which linkages are detected between structural deficits and clinical
symptoms, cognitive scores, and medication effects, as well as changes in these parameters with age.
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Figure 5. Statistical Maps of Cortical Structure. A variety of maps can be made that describe different aspects of cortical anatomy. These
include maps of cortical thickness [(a)-(h)], gyral pattern asymmetry [(1)-(p)], and heritability of brain structure [(q)-(t)]. Explanations of these
features are in the main text. Briefly, panels (a)-(d) show steps involved in measuring cortical thickness (for related work, see Jones et al.,
2000; Annese et al., 2000; Fischl and Dale, 2000; Miller et al., 2000; Kruggel et al., 2001; Yezzi and Prince, 2001). In our approach, the MRI
scan (a) is classified into gray matter, white matter, CSF, and a background class [respectively represented by green, red, black and white
colors in (b)]. To quantify cortical gray matter thickness, we use the 3D distance measured from the cortical white-gray matter boundary in
the tissue classified brain volumes to the cortical surface (gray-CSF boundary) in each subject (c). (d) shows the mean cortical thickness in a
group of 40 healthy young adults, ranging from low values in primary sensorimotor and visual cortices (2-3 mm, yellow colors) to highest
values on the medial wall in cingulate areas (up to 6 mm, purple colors). The regional variations in these maps agree with those found in the
classical cortical thickness maps derived post mortem by von Economo (Sowell et al., 2004). (e) shows the profile of mean cortical thickness
in Williams syndrome and healthy controls, and (g) shows the group difference expressed as a percentage of the control mean. Panels (i,j,k)
show the increasing gyral pattern asymmetry in groups of children, adolescents, and adults (data from Sowell et al., 2002), computed from the
3D deformation fields (I,m) required to align the mean left hemisphere sulcal pattern to match a reflected version of the mean right
hemisphere sulcal pattern. Asymmetry measures can also be extended to rest of the cortical surface (n,p) and expressed in millimeters. Panels
(q) and (r) show intraclass correlations in gray matter density g;.(x) for groups of identical and fraternal twins, after cortical pattern matching
(giving maps ry(¢,8) and rp(9,8)). An estimate of gray matter heritability 4° (panel (r)) can be defined as 2(ry;z-rpz), with standard error:
S_E_z(hz):4[((1_erz) Z/IIMZ) + ((l-rDzz) Z/IIDZ)]. Regions in which significant genetic influences on brain structure are detected are shown in
the significance map (panel (1)), p[4°(¢,8)]. Genetic influences on brain structure are pronounced in some frontal and temporal lobe regions,
including the dorsolateral prefrontal cortex and temporal poles (denoted by DLPFC and T in (5s)).
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Figure 6. Mapping Brain Change over Time. The ability to resolve brain changes over time relies on fitting appropriate time-dependent
statistical models to data collected from subjects cross sectionally, longitudinally, or both. Nonlinear or and/or mixed statistical models are
fitted to brain maps collected at different ages to estimate the effects of brain aging or development on the cortex. As illustrated in (a),
measures (Y;) are defined that can be obtained longitudinally (green dots) or once only (red dots) in a group of subjects at different ages.
These measures might be gray matter density or cortical thickness, for example. Fitting of statistical models to these data (Statistical Model,
lower right) produces estimates of significance values, or statistical parameters such as rates of change, or effects of drug treatment or risk
genes. These parameters are then plotted onto the cortex using a color code. (b) and (e) show the trajectory of gray matter loss over the human
lifespan, based on a cohort of 176 subjects aged between 7 and 87 (Sowell et al., 2003). (c) and (d) show the trajectory of cortical gray matter
density in 13 children scanned longitudinally every 2 years for 8 years (Gogtay et al., 2004). [Data reproduced, with permission, from Gogtay
et al., Proceedings of the National Academy of Sciences, 2004 [panels (c) and (d)], and from Sowell et al., Nature Neuroscience, 2003 [panels
(b) and (e)]].
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Figure 7. Rates of Brain Change in Childhood-Onset Schizophrenia and in Alzheimer’s Disease. (left column): Average maps of gray
matter loss rates are shown for healthy boys (fop row), girls (middle row), and both genders pooled (bottom row), scanned longitudinally
over 5 years. Also shown are maps of the considerably faster loss rates in age- and gender-matched subjects with childhood-onset
schizophrenia (COS) also scanned at the same ages and intervals. The frontal cortex underwent a selective rapid loss of gray matter (up to
3-4% per year faster in patients than controls). Subtraction maps contrasting patients with controls revealed early deficits in parietal regions
(red colors; right column, top row) that spread forwards into the rest of the cortex at follow-up [(right column, second row); superior
temporal gyrus (STG) and the dorsolateral prefrontal cortex (DLPFC) are indicated with arrows]. These changes may be, in some respects,
an exaggeration of changes that normally occur in adolescence (Rapoport et al., 1999; Thompson et al., 2001). By contrast, deficits
occurring as Alzheimer’s Disease (AD) progresses are show (right column, bottom two rows) by comparing average profiles of gray matter
density between 12 AD patients (age: 68.4+1.9 yrs.) and 14 elderly matched controls (age: 71.4+0.9 yrs.; data from Thompson et al., 2003).
Patients and controls are subtracted at their first scan (when mean Mini-Mental State Exam (MMSE) score=18 for the patients; (right
column, third row)) and at their follow-up scan 1.5 years later (mean MMSE=13; (right column, fourth row)). In AD, gray matter loss
sweeps forward in the brain from limbic to frontal cortices in concert with cognitive decline, but in the schizophrenia patients, the frontal
cortices lose gray matter the fastest.
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Figure 8. Tensor-Based Morphometry. (a) shows the corpus callosum of a healthy 3 year old girl (indicated by a green box) in a sagittal
section from a 3D MRI scan. (b): Using a follow-up scan acquired 3 years later, an elastic deformation field is computed that digitally
aligns, or warps, the anatomy of the earlier time-point to match its shape at the later time point. The amount of local stretching of the
anatomy is coded in color in (b), indicating fastest growth rates (red colors) in the anterior corpus callosum. Mathematically, the growth
rates are derived by evaluating the determinant (dilation factor) of the spatial gradient of the deformation vector field, which is a symmetric
positive definite tensor field (c). In a related approach, maps can be compiled to represent the average expansion factor required to
elastically deform an average corpus callosum shape onto each subject in a set of healthy children (d) and matched autistic children (e).
When the logarithm of these expansion factors is taken (color coded in (d) and (e)), values below 0 denote contraction relative to the
average. This logarithm transform is applied to reduce the skew in the Jacobian null distribution. Student’s ¢ tests (or other statistical
models, such as the general linear model) may then be computed at each voxel in the expansion maps to localize group differences in
structure. (f) shows in blue colors regions of the splenium (S) and rostrum (R) of the corpus callosum in which the cross sectional area is
significantly reduced in the autistic children (data in (a)-(c) are adapted from Thompson et al., 2000, and data in (d)-(f) are adapted from
from Leow et al., 2005).
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