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Abstract

On wireless links, the rate of corruption losses can be significant, leading to poor
TCP performance. The performance gets worse when these losses are mistaken for con-
gestion losses, unduly triggering the TCP congestion control algorithms. To avoid this,
techniques to distinguish between corruption and congestion losses without any explicit
information from the network (routers or switches) are of interest.

In the past, several proposals require TCP sender to reduce its window size when
congestion is detected. These schemes use heuristics to detect congestion by using some
simple statistics on round-trip delays and/or throughput.

If the heuristics developed in the past are good (i.e., accurate much of the time), then
one possible mechanism for distinguishing between errors and congestion are as follows:
(a) Use a good heuristic that asks TCP sender to reduce window size when congestion is
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detected. (b) If a packet loss occurs, see what the heuristic said just before the packet
was sent. (c) If the heuristic had said reduce window (because congestion was detected),
assume that the packet loss is due to congestion, otherwise assume that packet loss is
due to transmission error. Take appropriate action depending on the nature of packet
loss.

The above scheme will work well, if the heuristic is very accurate. Unfortunately,
our preliminary measurements suggest that three such heuristics proposed previously do
not perform well in practice. The reason, essentially, is that to a well-behaved TCP
connection, packet losses seem to appear almost random, without much correlation to
the window size or round-trip delays. This is true (and intuitive) when an individual
connection represents only a small fraction of load at a router on the path.
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1 Introduction

The TCP protocol can adapt to very different network bandwidth and conditions. But there
still exists the problem of recovering from losses other than congestion. All losses are all
assumed, by TCP, to be congestion losses [9] and TCP reacts to all losses with congestion
control mechanisms. On wired networks, this assumption is good. But on wireless links, losses
occur more frequently due to corruption or for reasons other than congestion [3, 4]. This can
lead to a very poor performance. Fast Recovery and Fast Retransmait [10, 14] alleviate the
problem but do not solve it completely. It is then natural to try to distinguish congestion
from corruption losses. This can be done by receiving explicit messages from the routers
when congestion occurs or is imminent [12, 8]. This approach has two main drawbacks : first,
there may be an additional message overhead, and second, the explicit scheme is protocol-
dependent. The second approach would be to consider the network as a black box and try to
collect implicit information on the state of the network. There is one fundamental difference
between corruption losses and the congestion losses: a user, at the transport layer, does not
have and cannot have any influence on the losses due to corruption. In other words, a user
may be able to provoke congestion losses, but not corruption losses.

This second approach which considers the network as a black box was introduced by
Jain in the excellent paper [11]. Jain observes the changes in the round trip delay resulting
from changes in the congestion window size. Jain used this approach to develop a congestion
avoidance scheme. But there is a natural extension of this approach to develop a tool to
distinguish a corruption from a congestion loss. The task seems easier in the sense that you
do not have to exactly predict congestion. You have only to diagnose the source of a loss.
The idea is to look at what a congestion avoidance scheme would have done just before the
loss : if the appropriate action was “decrease the window size” then the loss should be with a
high probability a congestion loss. Wang [16] and Brakmo (Vegas) [6] look at changes in the
throughput to detect congestion. We study the criteria developed by these researchers. While
they have pointed out limitations of their schemes under real network conditions, there does



not appear to be any work (that we are aware of) which shows how good or how bad these
criteria behave on a real network.

We measured the changes of congestion losses rate versus congestion window variations
and also evaluated Jain’s, Wang’s and Vegas criteria through measurements on TCP connec-
tions. In Section 2, we present the tools and techniques to perform our measurements and
the parameters measured. The experiments performed are described in Section 3.The results
on the congestion predictors are presented in Section 4 Section 5 is dedicated to the results
obtained. We interpret these results in Section 6.

2 Measurements

The measurements were done using Free BSD. We modified tcp_debug to collect the informa-
tion. This data was processed with a modified version of ¢rpt [14].

2.1 Modifications to tcp_debug and trpt

The main function in tcp_debug is the function tcp_trace.

This function can be called from many other tcp procedures (e.g tcp-input, tcp_output,
tcp_usrreq,..). When called, tcp_trace records the time (in ms), the kind of call (user, input,
output, drop..) and the tcp control block in the array tcp_debug. Since the tcp control block
takes too much space, we log it for all events except when sending. When a packet is sent,
we log a smaller structure which mainly contains the time of transmission (in ms), the packet
sequence number and the congestion window. At the end of a connection, we have in the
memory all information which can then be processed or just stored on disk.

We modified the trpt program to process the information and extract some parameters.

2.2 Parameters measured

o V,.,RTT,, : For each window sent, a packet P,, is monitored. We log the time P,, is
sent and the volume V,,, (in bytes) sent until P, is acknowledged. When packet P, is
acked, we compute the round trip time RTT,, for P,. V,, is most of the time close to
the congestion window. The difference comes from the fact that V,, is always a multiple
of the mss (maximum segment size) while the congestion window is not.

Vim
RTTy,

P,, has to be retransmitted, then we do not log the measurements for it. But, we log the
fact that a packet is lost.

o Thgt,, : Throughput Thgt,, is computed as . Of course, if the monitored packet



o Information log : For every monitored packet, we have then its round trip time RTT,,,
the congestion window size Cwnd,, and the throughput Thgt,,. When a loss occurs, we
log the window size used to send the last unacknowledged packets.

e N; and L; : Since the acks in TCP are cumulative, when a timeout occurs or some
dupacks are received, we do not know exactly the number of packets lost. We know only
that at least one packet is lost. With the data collected, we can count the number of
windows NN; which were sent with a given window of size :. We also know the number of
losses L; which occurred when sending with a given window size 1.

e P, and ¢; : For each window size ¢, we can compute the probability P; that at least one

packet was lost. P; is equal to % If ¢; is the probability of loosing a given packet at
window size ¢, then P; = 1 — (1 — ¢;)*, assuming independent packet losses. Clearly,

packet losses are not independent of each other. However, ¢; does provide a measure to
compare the rate of packet losses for a given window size.

o FDL; : To investigated how congestion loss probability correlates with congestion win-
dow size, we calculated the Frequency Distribution of Losses F'DL;, defined as the frac-
tion of packet losses occurring at congestion window size of ¢ MSS (maximum segment
size) — in fact, the congestion window size Cwnd is not always an integral multiple of
the mss (Maximum Segment Size). For the purpose of calculating F DL;, we consider a

window of size C'wnd to be of size LMJ MSS.

mss

o We also calculated the Frequency Distribution of congestion Window size F DW, defined
as the fraction of windows sent with a size of ¢« MSS.

The FDL and FDW measurements should reveal if losses occur more frequently at a
given window size or for windows larger than some threshold. Besides these measurements, it
is natural to think that when a loss occurs, we can use some criterion developed for congestion
avoidance to diagnose the source of the loss. If these criteria are predicting congestion, we
could then identify the loss as a congestion loss, otherwise, we identify it as a corruption loss.

Jain’s [11], Wang and Crowcroft [16] and Vegas [6] criteria were devised for congestion
avoidance : these schemes try to optimize the network usage while avoiding congestion. These
schemes are based on the idea that there will be some response from the network to a congestion
window size change. The response is measured as a function of round-trip times and/or
throughput. Jain bases his approach on changes in the round trip delay as a response to
congestion window variations. Wang and Crowcroft base their approach on the changes in
throughput as response to congestion window variations.

The idea of monitoring round trip time changes due to window variations was suggested
by Jain [11]. The idea stems from the relation between the load on the network and the
observed throughput. If the load is low, throughput will be low. Suppose that you put
only one packet at a time on the network. In this case, you send a packet and wait for the
acknowledgement. You will spend much of your time waiting. Hence, throughput will be low.
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Figure 1: Throughput and RTT vs Network load

On the other hand, if you put many packets in the network, you could almost spend all of your
time sending without any wait. The throughput will be then high. But, if you put too many
packets, you can overflow some intermediary buffer node, resulting in packet loss. In this case,
you have to retransmit the lost packets. Thus, your throughput decreases .

So, in some interval, if you increase the load, you will get a significant increase in
your throughput. But, at some point, you reach the limit of the network capability (buffers,
computation power of the switches ...). You reach what is called the knee. From this point,
if you increase the load, your gain in throughput is smaller than in the previous phase. If you
continue the load increase, the throughput reaches the cliff where you experience a collapse of
the performance (“severe” congestion).

With the information collected, Jain’s criterion (J), the Wang and Crowcroft’s Normal-
ized Throughput Gradient (NT'G) and the Vegas criteria are computed easily.

Jain’s criterion is as follows [11]:

J = (W; — Wi_,) * (RTT, — RTT,_,)

where W, and W,_; are respectively the current and the previous congestion window sizes.
RTT; and RTT;_; are respectively the current and the previous round trip times. J’s sign is
used to increase or decrease the window size : if J > 0, the congestion window size is decreased,
otherwise it is increased. Jain proved that this approach is valid for deterministic network,
i.e., for networks where service time in the switches is not random. This assumption is not
true for real networks. We did not find any work which evaluates Jain’s criteria under real
network conditions. So it was not clear as to what extent Jain’s criteria is good/bad under
real network conditions.

Wang’s Normalized Throughput Gradient NT'G is defined as [16]:



T(W;) — T(W;)
T(Wh)

where T(W;) = W;/RTT; is the throughput of the connection with the :*" window, whose size
is denoted as W;. Hence, T'(W;) is the throughput with the first window of size one packet. The
congestion avoidance scheme is based on evaluating how much throughput increase is obtained
from a congestion window increase. With this technique, the TCP connection tries to detect
the flattening of throughput increase. Every RTT, the congestion window is increased by one

NTG =

packet. If the difference in the throughput is less than ﬂ?l, then the congestion window is
decreased. Using NTG, if NTG < % then decrease the window size.

In Vegas [6], Brakmo et al. maintain a variable BaseRTT which is the minimum of
RTT’s measured during the connection. BaseRTT allows the authors to compute the EFzpected
Throughput which is given by :

Current Window Size

BaseRTT

Ezxpected throughput =

The Ezpected throughput changes only if a packet experiences a smaller RT'T than the cur-
rent BaseRTT. Every window, Vegas computes the Actual Throughput which is equal to
C“’"’"Cﬁtlﬁgg#ﬁze (one packet per window is monitored). The difference Diff = Ezpected —
Actual is then compared to two thresholds a and 8 with a < 8. If Diff < a then Vegas
increases the congestion window. If Diff > (3, Vegas decreases the congestion window size.

Otherwise, if a < Dif f <  then the congestion window size is left unchanged.

Measurements

To use above criteria as congestion “predictors”, whenever the criterion results in the conclusion
“decrease the congestion window size”, this means that congestion will occur if you continue
to increase the congestion window size. We measured two parameters for each criteria.

o Accuracy of Prediction AP computed by dividing the number of times the predictor said
“decrease the congestion window” just before a loss occurred by the total number of
losses.

o Frequency of Congestion Prediction F'C' P computed by dividing the number of times the
predictor said “decrease the congestion window” by the total number of predictions.

One expects a good predictor to have significantly greater AP, as compared to FCP. That is, a
large accuracy (AP) is not necessarily good, if the predictor always says “decrease the window

size” (i.e., also large FCP).



3 Experiments

We establish two simultaneous connections from two different hosts ravel.cs.tamu.edu and
verdi.cs.tamu.edu to the same discard server (TCP port 9). We run one set of tests with
the host “Daedalus.crosslink.net” as a destination and another set of tests with the host “all-
purpose-gunk.near.net” as a destination. The discard servers on these two machines have a
receive window limited to 32 Kbytes. “Daedalus.crosslink.net” is at 13 hops and “all-purpose-
gunk.near.net” is at 19 hops.

On ravel.cs.tamu.edu, we run TCP-Reno. On verdi.cs.tamu.edu, we run TCP-Reno
with a slight modification in the congestion avoidance algorithm. When TCP-Reno leaves the

m332
cw

where mss is the maximum segment size and cw is the current congestion window size. On

slow-start phase, it increases the congestion window size by after each acknowledgement

verdi.cs.tamu.edu, we modify the rate of increase: we increase by a * ’%‘:'2 with a taking the
values from 0.5, 1, 2, 3, 5 and 10 in different experiments. With the variation of a, we want
to investigate how a more aggressive increase policy affects congestion losses.

For each set of measurements, we establish two simultaneous connections from ravel
and verdi to the same destination and send the same amount of data (1.5 MBytes or 5
MBytes). Each set of measurements consists of 25 connections from “ravel.cs.tamu.edu” and
“verdi.cs.tamu.edu” to the same destination. When the destination is “daedalus.cs.tamu.edu”,
the connections are initiated every two minutes: on the average, a transfer of 5 MBytes takes
less than 1 minute (on the average 40 s). When the destination is “all-purpose-gunk.near.net”,
the connections were initiated every 5 minutes: a transfer of 1.5 MBytes takes less than 5
minutes (on average 3 minutes).

4 Results for the congestion predictors

In this section, we present two sets of measurements with “all-purpose-gunk.near.net” and
“Daedalus.cross.link” as the destinations, respectively. We present the Accuracy of Prediction
(AP) and the Frequency of Congestion Prediction (FCP) for Jain’s, Wang’s and Vegas criteria.
The results presented here are averaged over all runs. Recall that ravel is running normal TCP-
Reno during all connections, while verdi had a different increment of the congestion window
size depending on the parameter a taking the values 0.5, 1, 2, 3, 5 and 10.

We observe that the Accuracy of Prediction (AP) is typically a little higher than the
Frequency of Congestion Prediction (FCP). But, both curves have the same patterns. This
means that higher the frequency of congestion prediction, higher is the accuracy of prediction.

Note that a random predictor (“coin tossing”) with frequency of congestion prediction
of z will give an accuracy of prediction of z. For the three predictors we evaluated, AP is
only marginally better than FCP. Thus, these predictors do not perform much better than a
random predictor.



In Figures 2 through 7 the plot on left(a) corresponds to host ravel, and plot on
right (b) corresponds to host verdi. Figures 2, 3 and 4 present results for Jain, Wang
and Vegas, respectively, with the destination being “all-purpose-gunk.near.net”. Figures 5,
6 and 7 present results for Jain, Wang and Vegas, respectively, with the destination being

“Daedalus.crosslink.net”. For Daedalus, the measurements are averaged overs runs that use a
values 1, 2, 3, 5 and 10.
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5 Results: losses versus window size

Congestion was so low from our hosts to “Daedalus.crosslink.net” (4 losses on the average
for a 5 MBytes transfer) that the frequency distribution of losses can not be used with much
confidence. We present here results only for the connection to “all-purpose-gunk.near.net.
However, the measurements for “daedalus.crosslink.net” also follow the same general pattern
as the measurements for “all-purpose-gunk.near.net”.

Since the connections from ravel.cs.tamu.edu are all using normal TCP-Reno, we aver-
aged all the runs (6 x 25 connections) and present a synthesis of the results in one subsection.
It must be noted that the 6 sets of measurements were taken at different times of the day.
Despite this difference, the results with respect the frequency distribution losses F DL or of
the windows size F DW , or probability of losses versus window size are similar.

For “verdi.cs.tamu.edu”, we present the results for six values of a in a different sub-
sections. Recall that « is the rate of congestion window increase in the congestion avoidance
phase on verdi.cs.tamu.edu.

5.1 Ravel

Figure 8 presents (a) the probabilty of packet loss ¢; for congestion window of size ¢ and, (b)
frequency distribution of window size FDW.
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Figure 8: ¢; and FDW

Observe that, for these connections, probability of packet loss is slightly decreasing
when the congestion window size increases.
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Figure 9: P, and FDL

L;
Ea
windows sent with size ¢ and L; the number of losses detected for windows of size 1. We
computed this probability only when FDW; is greater then 0.02. When FDW,; is too small,

the proportion of losses is not significative because there is not enough data.

In Figure 9, we compute then the probability P, = where N; is the number of

5.2 Verdi: a=0.5

With a = 0.5, verdi host increases the congestion window size slower than ravel host. These
measurements can reveal how a less agressive policy of congestion window increase affects
congestion losses. The performance of ravel was similar to that of verdi, in terms of losses and
overall throughput.

53 Verdi: a=1

With a = 1, verdi host runs TCP-Reno, same as the ravel host. Notice that the verdi curves
are similar to those for ravel, as may be expected.

5.4 Verdil: a=2

With o = 2, verdi host increases the congestion window size faster than ravel host. The
performance of ravel remains similar to that of verdi, in terms of losses and overall throughput.
We start to notice valleys on the frequency distribution curves (see Figure 14). This is due
to the fact the congestion window is increased by larger increments. Hence, some values for
the congestion window are unlikely to happen. We will see that this phenomenon is amplified

12
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when « increases. We must also notice that coincidentaly, we have “irregularities” on the other

curves corresponding with these valleys :

size.
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Figure 15: P; and FDL: a = 2

With a = 3, verdi host increases the congestion window size much faster than ravel host.
The simulataneous performance of ravel remains similar to that of verdi, in terms of losses and

15



overall throughput. We can observe that the valley at window size 6 in Figure 16b is amplified,
and interestingly enough, the distribution of losses in Figure 17 follows the same pattern.
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Figure 17: P; and FDL: a =3

56 Verdi: a=5
With a =5, verdi host increases the congestion window size much faster than ravel host. The

phenomenon of valleys is more amplified. Irregularities on the probability and probabilities
curves coincide with the valleys.

16



| oss

Probabilty of packet

Probability Pi

0. 05
0.045 ¢
0.04 ¢
0. 035

0. 025
0.02
0. 015
0.01
0.005 ¢

Verdi —
Ravel ----

Verdi — |
Ravel ----
] 0.5
0.4 r
E 0.3} N
!/ \\
I \
0.2 r !
//
!
1
0.1 /
!
1 !
/
!
L L O

(a) Probability of packet loss

0.5
0. 45

10 12 14
W ndow Si ze

16 18

Figure 18: ¢; and FDW

6 8 10 12 14 16 18 20 22
W ndow Si ze

(b) Frequency distribution of window

sizes(FDW)

Verdi —
Ravel ----

: 0.6
Verdi —
Ravel ---- ]
0.5
0.4
o 0.3}
0.2
1
I/
!
0.1
/
/
/
/
: 0

8 10 12
W ndow Si ze

(a) Probability P;

14 16

4 6 8 10 12 14 16 18 20 22
W ndow Si ze

(b) Frequency distribution of losses(FDL)

Figure 19: P; and FDL: a =5

17



5.7 Verdi: a=10

With a = 10, verdi host increases the congestion window size much faster than ravel host.
The window size jumps rapidly around size 12 packets without intermediate size. We can still
notice the loss pattern follows the window size distribution.
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Figure 21: P; and FDL: a = 10

6 Interpretation

(This section needs revision.)

18



We must provide an explanation of the results above that the probability of packet loss
slightly decreases with window size, and that the congestion predictors in the literature do not
seem much better than a random predictor.

Let us assume, first, that the congestion losses are random and independent from ONE
user’s action, and , second, that the probability of loosing one packet increases with the time
spent by the outstanding packets on the network. If we accept these two facts then our results
would be justified. We will try to justify these two assumptions and then discuss our results.

Congestion Predictors

For the three congestion predictors, it is easy to see that they are based on functions of the form

f(RTT;— RTT;_,) or g( L

RIT, ~ RIT
time RTT resulting from a change in the congestion window size. But, as the measurements
show, the action of one user is infinitesimally small in comparison to the result of the actions
of all other users. Hence, the change in RTT does not depend on one user’s action. In this
case, the inference from the RT'T cannot be but random. For Wang’s NTG, if you change

). The idea is then to detect the change in the round trip

the threshold from % to some other number, you will get a different Frequency Congestion
Prediction with an almost equal Accuracy of Prediction. For Vegas, you have only to change
the thresholds a and . It is not surprising that there are no implementations based on Jain’s
or Wang’s criterion. For Vegas, which is a TCP implementation, we were puzzled that the
authors [6] claim a throughput enhancement of 40 to 70% and a different team [2] confirmed
an enhancement of at least 20% in throughput over TCP-Reno. But Vegas contains other
enhancements (retransmission schemes) than the congestion avoidance scheme. The authors
do not seem to have evaluated the contribution of the new congestion avoidance schemes to
the performance improvement.

Packet Loss Probability and Window Size

The congestion losses occur as the result of the traffic generated by many users. Let us consider
that the bottleneck stays at the same node during one connection. We can easily argue that :

o the set of users with who we share the bottleneck varies every RTT
o the overall load variation is almost independent of ONE user’s actions

o ONE user’s load variation is negligible in regard to the overall load variation

Since there is no synchronization of the users, congestion losses will occur randomly. In [5],
Bolot reported random losses on his probe packets. Even if we know the exact queue size
at the bottleneck at the time we want to send the packets, the randomness and specifically
the burstiness of the traffic makes it difficult to adjust the window size with some guarantee
to avoid congestion losses. Given a period of time ¢, there is a non null probability that a
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congestion loss will occur on the path. And this probability will increase with duration ¢ of
“observation”.

Now, we can argue that the time for a window of n > 1 packets takes more time to
traverse a network than a single packet. Hence, the probability to loose at least one packet is
larger. But the probability P; increases very lightly with the window size increase due to the
fact that the time to traverse the network for n back to back packets is not proportional with
n. This is due to the pipelining effect.

But why is the probability g¢; of loosing ONE packet slightly decreasing with window

size 7 This comes from the relation between ¢; and P, : ¢ = 1 — (1 — Pi)i_’ and from the
fact that P; increases with the window size very slowly. Suppose that 10% of the windows
experience congestion. But, since the packets are staggered by the network, we do not loose all
of the packets of a window which experiences congestion. Now, suppose we have 100 packets
to send. In a first scenario, we send windows of size 2. In this case, we would loose at least 5
packets on the average. Now, if we send windows of size 10, only one window would experience
losses on the average. 10 back to back packets do not take five times longer to traverse the
network than 2 back to back packets. And since, the packets are staggered, there will be a low
probability that I loose a burst of 5 packets (under the assumption of moderate congestion).
Hence, the probability of loosing one packet is small with windows of size 10 than with size 2.

One can argue also that if the congestion window reaches high values, this means that,
temporarily, the conditions on the network are better (less congestion losses).

7 Conclusion

We investigated the impact of congestion window sizes on the congestion loss rate. For our
connections, we found that the losses almost do not depend on the congestion window size.
Also, the congestion loss rate decreased slightly when the congestion window size increased.
The congestion losses seem independent of ONE user’s actions. Indeed, the traffic generated
by a user is negligible in regard with the total traffic induced by all the users who have to
share the network.

For the congestion predictors, Jain’s criterion, Wang’s criterion and Vegas’s criterion
seem to be inadequate congestion predictors. They cannot be used to “diagnose” a loss.

These results need to be verified with a more exhaustive set of measurements. We
are trying to show analytically the same results. In the meantime, we plan to implement on
top of Reno, the TCP Vegas congestion avoidance scheme alone to verify the impact on the
performance without the retransmissions schemes introduced by Vegas.
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