
TCP Servers: Offloading TCP Processingin Inter net Servers. Design,
Implementation, and Performance

Murali Rangarajan,AniruddhaBohra,KalpanaBanerjee,
EnriqueV. Carrera, RicardoBianchini

Departmentof ComputerScience
RutgersUniversity, Piscataway, NJ 08854-8019�

muralir, bohra, kalpanab,vinicio, ricardob��� cs.rutgers.edu

Liviu Iftode
Departmentof ComputerScience

University of Maryland,CollegePark, MD 20742
iftode� cs.umd.edu

Willy Zwaenepoel
Departmentof ComputerScience

RiceUniversity, Houston, TX 77005
willy@cs.rice.edu

Abstract

TCP Serveris a systemarchitecture aiming to offload
network processingfrom the host(s)running an Internet
server. The TCP Servercan be executedon a dedicated
processor, node, or intelligentnetworkinterfaceusinglow-
overhead, non-intrusivecommunication betweenit andthe
host(s)running theserverapplication.

In this paper, we presentandevaluate two implementa-
tions of the TCP Serverarchitecture: (1) usingdedicated
networkprocessors on a symmetricmultiprocessor(SMP)
server and (2) using dedicatednodeson a cluster-based
serverbuilt arounda memory-mappedcommunication in-
terconnect.

We havequantified the impactof offloading on theper-
formanceof network servers for thesetwo TCP Server
implementations, using server applications with realistic
workloads.We were able to achieveperformance gains of
up to 30% with our SMP-basedas well as cluster-based
implementations for the scenarios we studied. Basedon
our experienceand results, we conclude that offloading
the network processingfrom the host processorusing a
TCPServer architectureis beneficial to serverperformance
whenthe server is overloaded. A completeoffloading of
the TCP/IP processingrequiressubstantial computing re-
sourceson the TCP server. Depending on the application
workload,either thehostprocessoror theTCPservercan
becomethe bottleneck, stressingthe needfor an adaptive
schemeto balance the load betweenthehostandtheTCP
server.

1 Intr oduction

With increasing processing power, the two main
performancebottlenecks in web servers are the stor-
ageandnetwork subsystems.A significant reduction
of the impactof disk I/O on performanceis possible
by caching, combined with server clustering and re-
questdistribution techniqueslikeLARD [25]. This re-
sults in removing disk accessesfrom the critical path
of requestprocessing. However, the sameis not true
for thenetwork subsystem,whereevery outgoing data
bytehasto go throughthesameprocessing pathin the
protocol stackdown to thenetwork device.

In a traditional system architecture, performance
improvementsin network processing can comeonly
from optimizations in theprotocol processingpath[1,
12, 15, 21]. As aresult, increasing servicedemandson
today’s network serverscanno longer be satisfiedby
conventional TCP/IPprotocol processingwithout sig-
nificant performanceor scalability degradation. Fac-
toring out disk I/O through caching, TCP/IPprotocol
processing can becomethe dominant overhead com-
pared to applicationprocessing andothersystemover-
heads [20, 33]. Furthermore,with gigabit-per-second
networking technologies,protocol andnetwork inter-
ruptprocessing overheadscanquickly saturatethehost
processorathigh loads,thuslimiting thepotential gain
in network bandwidth [4].

Two solutions have beenrecently proposed to al-
leviate theoverheadsinvolved in TCP/IPnetworking:
(i) offloading some(or all) of the TCP/IPprocessing



to intelligent network interface cards (I-NIC) capa-
ble of speeding up the commonpath of the protocol
[3, 9, 10, 14, 17, 32] and (ii) replacing the expensive
TCP/IPprocessingwith amoreefficient transportpro-
tocol [11], over a SystemAreaNetwork (SAN), based
on user-level memory-mapped communication such
as VIA [13] and Infiniband [16]. The first approach
alleviatesthe overheads associatedwith conventional
host-basednetwork processing, while the second one
exploits thebenefits of theSAN for intra-server com-
munication. Otherwork hasbeendone on confining
execution of the TCP/IP protocol, system calls, and
network interrupts to a dedicatedprocessorof a mul-
tiprocessor server, but limited results have beenre-
ported [24].

We propose a generic architecture called TCP
Server, that offloads TCP/IP processing from the
server hostto a dedicatedprocessor/node.We call the
dedicatedprocessor/nodewhich executes the TCP/IP
processing, aTCPserver. Theperformanceof theTCP
Server solution depends on two factors: (i) the effi-
ciency of the TCP server implementation itself, and
(ii) the efficiency of the communication betweenthe
hostandtheTCPserver. ThelattermeansthatTCP/IP
offloading must be implemented with low-overhead,
non-intrusive communication.

In this paper, we present and evaluate two imple-
mentations of the TCP Server architecture. The first
implementationusesoneor morededicatedprocessors
to perform TCP/IPprocessing in a SymmetricMulti-
processor(SMP)server. In this case,thenon-intrusive
communication betweenthe host and the dedicated
processor(s) is achieved using shared memory, with
minimal overhead. We evaluate the server perfor-
manceasa function of thenumber of processors ded-
icated for network processingandthe amount of pro-
cessing offloadedto them.We alsostudythetradeoffs
betweenpolling andinterruptsfor eventnotificationin
this environment.

In our second implementation, we offload the net-
work processing to dedicated node(s) in a cluster-
based server. In this case,thehostandtheTCPserver
communicateusing memory-mappedcommunication
over a high-speed interconnect [13, 16]. We inves-
tigate the design spaceof TCP Servers for clusters
with memory-mappedcommunication using a user-
level implementation over VIA andtwo socket inter-
faces: a conventional socket interfaceandour Mem-
Net API [28]. The Memory-Mapped Networking

(MemNet)API is a memory-mappedsocket interface
between the applicationandTCPserver with support
for zero-copy asynchronous communication. Mem-
Net’suseof memory-mappedcommunication for TCP
server accessis analogousto the way this technique
is exploited by theDirect AccessFile System(DAFS)
standardfor remotefile server access[18].

This paper representsthefirst study to evaluate the
benefitsof offloading TCP/IPprocessing in a compre-
hensive manner. We have quantified the impactof of-
floading ontheperformanceof network serversfor two
TCP Server implementations, using server applica-
tionswith realisticworkloads.Wewereableto achieve
performancegainsof up to 30%with our SMP-based
aswell ascluster-based implementations for the sce-
narios we studied. Basedon our experienceand re-
sults, we conclude that offloading the network pro-
cessing from the host processorusing a TCP Server
architecture is beneficial to server performancewhen
theserver is overloaded.A complete offloading of the
TCP/IPprocessing requires substantial computing re-
sourceson the TCP server. Depending on the appli-
cation workload, eitherthehostprocessoror theTCP
server can become the bottleneckstressing the need
for an adaptive schemeto balancethe load between
thehostandtheTCPserver.

Theremainderof thispaper is organizedasfollows.
Section 2 describesourmotivation for this work in de-
tail. Section3 providesanoverview of theTCPServer
architecture. Sections 4, 5 and 6 describe the de-
tails of eacharchitecture andevaluatethem.Section 7
presentsthe related work. Finally, Section8 presents
our conclusions.

2 Moti vation

In traditional network servers,theTCP/IPprotocol
processing oftendominatesthecostincurredfrom ap-
plicationprocessingandother system overheads. Un-
derheavy loadconditions, network serverssuffer from
host CPU saturation as a result of protocol process-
ing andfrequentinterruptionsfrom asynchronousnet-
work events. In this section, we briefly explain the
TCP/IPprotocol processing pathfor varioussocket op-
erationsandpresentexperimentalresults in support of
theabovestatements,suggestinganeedto offloadnet-
working functionality from a host.

2



2.1 Conventional TCP/IP Processing

In what follows, we describeconventional network
processingusing the Linux TCP/IP implementation.
First, we describe the processing involved for the
send andrecv system calls on a stream socket in
theTCP/IPstack.

� sendprocessing: Whentheapplication performs
asend systemcall, theOScopiesthedatato ker-
nel buffers, to prevent it from being overwritten
before being sentout, andreturns to theapplica-
tion. This is followed by the TCP send,which
makes another copy to allow retransmission of
the data in caseof an error. Further sendpro-
cessing includesdispatching of thedatafrom the
kernel buffers to theNIC.

� receive processing: As soon as a packet is re-
ceived on the NIC, an interrupt is raised. At the
end of the interrupt processing, the bottom half
executes, which takescareof checksummingthe
packet, anddemultiplexing the packet according
to the protocol. This is followed by IP receive
processingandTCPreceiveprocessingwherethe
system demultiplexesthedatafor thedestination
socket andqueuesthe received data into the re-
ceive buffers of the socket. The data is finally
copied into the application buffers whenthe ap-
plication postsa receive.

Weidentify fivedistinct componentsof TCP/IPpro-
cessing below:

� C1 - interrupt processing: interrupt processing
includesthe time to service NIC interrupts and
setupDMA transfers.

� C2 - receive bottom: receive processingexclud-
ing thecopy into theapplicationbufferat thetime
of therecv system call.

� C3 - send bottom: sendprocessingdoneafter
copying thedatato kernel buffers.

� C4 - receive upper: receive processing which
copies thedatainto theapplicationbuffers.

� C5 - sendupper: sendprocessingwhich copies
thedatafrom theapplication buffers to thesocket
buffers inside thekernel.

Figure 1. ApacheExecution TimeBreakdown

2.2 TCP/IP Overhead

Wehavequantified thetime allotedto network pro-
cessing from theexecution timeof anApache(apache-
1.3.20) webserver. In this experiment, we useda syn-
thetic workloadof repeatedrequestsfor a 16 KB file
cachedin memory. Figure1 shows theexecution time
breakdown on a dual Pentium 300MHz system with
512 MB RAM and256 KB L2 cache,running Linux
2.4.16. We instrumented theLinux kernel to measure
the time spent in every function inside the kernel in
theexecution pathof send andrecv system calls,as
well asthetime spent in interrupt processing.

The results show that the web server spends only
20%of its execution time in userspace. C1 accounts
for 8%of thetime. Theportionof C2 immediately af-
ter theinterrupt processing combinedwith theportion
of C3 which involvesdispatching of datafrom theker-
nel buffers to the NIC take up 12% of the time. The
remainderof C2 takesup 7% of the time. C5 andthe
remainder of C3 account for 44% of the time. C4 is
a hidden costaccountedwith othersystem calls (9� ).
Altogether, network processingtakesabout71� of the
total execution time.

In addition to thedirect effect of “stealing” proces-
sor cycles from the application, network processing
alsoaffects the server performanceindirectly. Asyn-
chronous interrupt processing and frequent context
switching contribute to the overheadsdue to effects
like cacheandTLB pollution.

We conclude that offloading TCP/IP processing
from the hostprocessorto a dedicatedprocessor can
improve server performancein two ways: (i) by free-
ing up host processorcycles for the application, and
(ii) by eliminating the harmful effects of OS intru-

3



KERNEL

USER

KERNEL

USER
CLIENT SERVER

KERNEL

USER

CLIENT Application HostTCP Server

FAST
COMMUNICATION

TCP/IP

TCP/IP

SERVER

a)

b)

Figure 2. TCPServerArchitecture

sion [23] on theapplicationexecution.
Although other operating systemshave optimized

TCP/IPprotocol processing, we chose Linux for prac-
tical reasons: (i) it is open source,which makesit eas-
ier to implementtheTCPServer architecture, and(ii)
it hasdriversto support memory-mappedcommunica-
tion overVIA. However, giventhat TCP/IPprocessing
remainsthemajoroverhead for anetwork serverunder
any operatingsystem,our conclusions on TCPServer
arefairly general although theperformancebenefits of
variousTCPServeroptimizationsmaybedifferentfor
differentoperatingsystems.

3 TCP Server Ar chitecture

TCP Server is a system architecture for offloading
network processing from theapplicationhosts to ded-
icated processors, nodes,or intelligent devices. This
separation improves server performanceby isolating
theapplication from OSnetworking andby removing
the harmful effect of co-habitation of various OSser-
vices. Figure2 presentstwo architecturesfor network
servers: (a) a conventional server architectureand(b)
anarchitecture based on TCPServers. In theconven-
tional architecture, TCP/IPprocessing is done in the
OSkernel of thenodewhichexecutestheserverappli-
cation. In theTCPServer architecture, theapplication
host avoids TCP processingby tunneling the socket
I/O calls to the TCPserver using fast communication
channels. In effect, TCP tunneling transformssocket
calls into lightweight remote procedurecalls.

A TCPserver canexecutethe entire TCPprocess-
ing or it cansplit the TCP/IP processing with the ap-
plication hosts. Fromour discussion in Section 2, it is
possible to offloadcomponentsC1, C2 andC3 to the
TCP server. We do not focus on offloading C4 since
we expect the benefits to be insignificant for network
serversin whichthereceivedatavolumeis muchlower

thanthesendvolume. OffloadingC5 requiresmodifi-
cations to the socket API andcan be achieved using
theoptimizations discussedbelow.

The performanceof the TCP Server solution de-
pends on two factors: (i) the efficiency of the TCP
server implementation, and (ii) the efficiency of the
communicationbetweenthe host andthe TCPserver.
As thegoalof TCP/IP offloading is to reducenetwork
processing overhead at the host, using a faster and
lighter communicationchannel for tunneling is essen-
tial. Server performanceusing the TCPServer archi-
tecturecanbeadditionally improvedby optimizations
that improve (i) and (ii) . In what follows, we briefly
discusstheseoptimizations, their impact on theappli-
cation programminginterfaceandperformance.

Thefirst setof optimizations target theefficiency of
theTCPserver implementation.

� S1: Avoiding interr upts. Sincethe TCPserver
performs only the TCP/IPprocessing, interrupts
can be easily and beneficially replaced with
polling. However, the frequency of polling must
becarefully controlled, asa very high ratewould
leadto buscongestion anda very low ratewould
result in inability to handle all events. Theprob-
lem is aggravated by thehigher layers in theTCP
stackhaving unpredictable turnaroundtimesand
by multiple network interfaces.

� S2: Processing ahead. Idle cycles at the TCP
Server canbeusedto perform certain operations
ahead of time (before they areactually requested
by theapplication). Theoperationsthatcanbeea-
gerly performedaretheaccept andreceive
systemcalls.

� S3: Eliminating buffering at the TCP server.
The TCP server buffers data received from the
application before sending it out to the network
interface. It is possible to eliminate this extra
buffering by having theTCPserver senddata out
directly from thebuffersused for communication
with theapplication host.

Next, we present the optimizations to improve the
efficiency of the interaction betweenthe host andthe
TCPserver.

� H1: Bypassingthe hostkernel. To achievegood
performance, the application should communi-
catewith theTCPserver from user-spacedirectly,

4



without involving thehostOSkernel in thecom-
mon case. This canbe done without sacrificing
protection by establishing a direct socket channel
betweenthe application and the TCP server for
eachopensocket. This is a one-time operation
performedwhenthe socket is created,hence the
socket call remainsasystemcall in order to guar-
anteeprotectedcommunication.

� H2: Asynchronoussocket API. By usingasyn-
chronoussocket calls, theapplicationcanexploit
the TCP Server architecture to avoid the cost
of blocking and rescheduling. Using the asyn-
chronousAPI allows the application to hide the
latency of a socket operation by overlapping it
with useful computation.

� H3: Avoiding data copies at the host. To
achievethis,theapplication musttoleratethewait
for end-to-end completionof thesend, i.e.,when
thedatahasbeensuccessfully receivedat thedes-
tination. If this is acceptable, theTCPserver can
completely avoid datacopying on a sendoper-
ation. For retransmission, the TCP server may
have to readthe dataagainfrom the application
sendbuffer using non-intrusive communication.
Pinning application buffers to physical memory
maybe necessaryin orderto implement this op-
timization.

� H4: Dynamic load balancing. Depending onthe
applicationworkload,eithertheTCPserveror the
application host can get saturated. An adaptive
schemeto balancetheloador resourceallocation
betweentheapplication andTCPserver will help
server performance.

4 TCP Server Implementations

In this section, we present two implementations of
theTCPServer architecture:

� Onaprocessordedicatedto TCP/IP processingin
a symmetricmultiprocessor (SMP)server.

� On a nodededicatedto TCP/IPprocessingin a
cluster-basedserver.

Commonto both implementations is a fast, low-
overhead memory-mapped communication architec-
turebetweentheapplicationhostandtheTCPServer.
The second implementation can have multiple in-
carnations, ranging from a front-end computer in a

KERNEL

USER

CLIENT

KERNEL

Application HostTCP Server

TCP/IP

SERVER

Shared
Memory

USER

dedicated host

Figure 3. TCPServer in anSMP-basedserver

Implementation C1C2C3H1H2H3H4S1S2S3
SMP base
SMP C1C2 x x
SMP C1C2S1 x x x
SMP C1C2C3 x x x
SMP C1C2C3S1x x x x

Table 1. SMP-basedimplementationsof TCPServer

VIA-based multi-tier network server, to an intelligent
network interface connected to an Infiniband-based
server.

4.1 TCP Server in SMP-basedServers

We partition thesetof processors in anSMP-based
server into host and dedicatedprocessors. The ded-
icated processors are used exclusively by the TCP
server for TCP/IP processing. Thecommunicationbe-
tweenthe application and the TCP server is through
queuesin shared memoryasshown in Figure3.

4.1.1 SystemOverview

Network generatedinterruptsarerouted exclusively to
the dedicatedprocessors. The TCPserver executes a
tight loop in thekernel context on eachdedicatedpro-
cessor. On a socket send,thedata to besentis copied
from the application to a kernel buffer. This buffer is
partof thesharedmemoryqueue, from wheretheTCP
server dequeuesthe offloading request and performs
C3. TheTCPserverfinally setsupaDMA to theNIC.

The receive events, which are asynchronous, are
routedto theTCPserver, which performsC1 andC2.
Onareceivecall from theapplication,C4 is performed
on thehostprocessor.

In Table 1, we present the different implementa-
tions, the functionality mappedto theTCPserver and
the optimizations used in each of these implemen-
tations. SMP baserefers to the unmodified Linux
TCP/IPimplementation ontheSMPsystem.In eachof
the otherimplementations, the interruptsandthe bot-
tom half processingareexecuted on the TCP server.

5



Figure 4. Organization of the TCP Server in an
SMP-basedservershowing thedifferent modulesand
their interaction with eachother

Our architecture, where network processing is lim-
ited to the dedicatedprocessors,allows us to poll on
thenetwork interfacefrequentlywithoutslowing other
tasksdown. We studypolling in thededicatedproces-
sor as an alternative way to handle the eventsat the
network interface.

4.1.2 Implementation Details

WemodifiedtheLinux-2.4.16kernel to implement the
TCPServer architectureon anSMP-basedserver. The
TCPserverexecutes in thekernel context oneachded-
icated processorwherenoapplicationprocessing takes
place. This is doneby executing akernel threadwhich
never yields to the user level programs. Moreover,
all interrupts, except for the system clock interrupt,
are routed away from the dedicatedprocessorsusing
theexternal IO/APIC routing mechanism. Thekernel
thread runstheTCPserverdispatcherwhichschedules
theother componentsof thesystem. Theorganization
of anSMP-basedTCPserveris shown in Figure4. The
different components of a TCP server are: (i) the re-
quest distributor, (ii) the queue monitor, (iii) the send
requesthandler, (iv) thereceiverequesthandler, (v) the
asynchronouseventhandler, and(vi) theshared queue.

The shared queueis a circular queue of sendre-
quests with referencesto the process,socket, andthe
databuffers associatedwith eachrequest. We canalso
assign priorities to thesendrequeststo ensureanorder
in which therequestsareserviced. Thedefault policy
is FIFO.

Thedispatcher schedulestherequestdistributor pe-
riodically. It can also be scheduled after an asyn-
chronousevent or on a trigger from the monitor. The
requestdistributor checkstheshared queueandsignals
thepresenceof a requestto thedispatcher, which then

calls the send requesthandler to carry out the neces-
saryprocessing.

Thereceive request handler is executed by the dis-
patcher upon a receive event, signalled to it by the
asynchronousevent handler. The interaction between
theTCPserver andthenetwork interfacecardis han-
dled by the asynchronous event handler. The asyn-
chronousevent handler canbe implemented asan in-
terrupt service routine or asa polling handler. In the
first case,it is automatically calledin caseof aninter-
rupt. For thesecond case, thedispatchermustexecute
thehandler sothatnetworking eventsarenotmissedin
caseof delayedprocessing. We usea Soft-Timers[6]
like mechanism by using the clock interrupt handler
to guaranteethe execution of the asynchronous event
handler at every clock interrupt.

Eachcomponent above is added asa loadableker-
nel module. Somemodules suchasthe send request
handler areoptional, asin thecaseof SMP C1C2and
SMP C1C2S1,no sendprocessing is carried out in
the dedicated processor, making the module unnec-
essary. The minimal set of modules required for the
TCPserver execution arethedispatcherandtheasyn-
chronouseventhandler.

To identify the existing modulesin the systemand
to notify thedispatcherof aneventpending for acom-
ponent,weuseamechanismsimilar to theLinux soft-
ware interrupt handlers. Thereis a list of registered
components, alongwith thehandler for eachof them.
This providesa mechanism to dynamically addor re-
move componentsof theTCPserver.

TheSMP-basedimplementationincludessupport to
dynamically increaseor reducethesizeof theproces-
sor setallocatedto the TCPserver. At systeminitial-
ization, the kernel threads arestarted on all available
processors in the system. A subsetof thesesleep, al-
lowing applicationprocessingto take place.In caseof
high volume of send requests,the monitor canwake
up thesethreads, which thenexecute the TCP server
till the monitor signals them to sleepagain. For the
purposeof load balancing and book-keeping needed
for dynamic reconfiguration of the system, the dis-
patcherperiodically calls themonitor, which triggersa
reconfiguration based onthecurrent stateof theshared
queue,theloadon thesystem or any otherpolicy. The
default policy monitors the length of the queue and
maintains the low andhigh watermarks to trigger re-
configuration.

6



KERNEL

USER

CLIENT

KERNEL

USER
Application HostTCP Server

SAN

TCP/IP

SERVER

Figure 5. TCPServer in cluster-basedservers

4.2 TCP Server in Cluster-basedServers

In a cluster-based server, the application host and
the TCP server are PCs connectedby a VIA-based
SAN asshown in Figure5. TheTCPserveractsasthe
network endpoint for theoutside world. Network data
is tunneled betweenthe applicationhostandthe TCP
server across the SAN using low latency memory-
mappedcommunication.

4.2.1 SystemOverview

Thesocketcall interfaceis implementedasauser-level
communication library on the application host. The
library manages and maintains VIs on the host and
communicateswith theTCPserverusing VI channels.
The mappingfrom a socket to a VI channel is estab-
lished at the time of the first operation on the socket.
With this library, a socket call is tunneledthrough a
VI channel to the TCP server. On the TCP server, a
socket provider moduleinterpretsthe socket call and
performsthe corresponding socket operation. There-
sultsarereturned to the application host after the op-
eration completes.

In Table 2, we present the different implementa-
tions, the functionality mappedto theTCPserver and
the optimizations usedin eachof theseimplementa-
tions. Cluster baserefers to thestandalonehost-based
Linux TCP/IP implementationonthesystem.Sinceall
thesocket operations areoffloadedto theTCPserver,
C1, C2 andC3 areoffloadedto theTCPserver by de-
fault. Implementingthe cluster-based TCP Server in
user-spacemakesit possible for usto implementopti-
mizationsH1, H2 andH3. Wealsoimplementedopti-
mization S2asfollows:

� EagerReceive is anoptimization for thenetwork
receive processing. TheTCPserver eagerly per-
formsreceiveoperationsonbehalf of thehost and
when the application issues a receive call, data
is transferred from the TCP server to the appli-
cation host. The TCP server postsreceive for a

number of bytes,andcontinueswith further ea-
ger receive processingdepending on the rate of
dataconsumedby the host. The socket provider
usesthepoll system call to verify if any datais
ready to be readfrom that socket before issuing
an eagerrecv. The socket provider keeps the
received dataon the TCP server and transfers it
directly into theapplication bufferswhentheap-
plication invokesa receive.

� Eager Accept is an optimization to the connec-
tion processing. A dedicatedthread of the TCP
server eagerly accepts connections upto a pre-
determinedmaximum. Whenthe application is-
suesanaccept, oneof thepreviously accepted
connectionsis returned.

4.2.2 Implementation Details

Eachsocket usedby the application is mapped to a
VI channel and hasa corresponding socket endpoint
on theTCPserver. Thesystemassociatesa registered
memoryregionwith eachVI channelwhich is usedin-
ternally by thesystem. Sincethemapping of a socket
to a VI and its associatedmemory regions is main-
tainedfor thelifetime of thesocket, thesememoryre-
gions can be usedby the system to perform RDMA
transfersof control information anddatabetweenthe
application and the TCP server. Thesememory re-
gions includethe sendandreceive buffers associated
with eachsocket. An RDMA-basedsignalling scheme
is usedfor flow control betweenthe application and
the TCPserver, for using the socket sendandreceive
buffers.

As creating VIs andconnecting themareexpensive
operations, the socket library on the application host
createsapoolof VIs andrequestsconnectionsonthem
from the TCPserver at the time of initialization. The
TCP server is implementedasa multi-threaded user-
level process running on the network-dedicatednode.
The main thread of the TCP server accepts or rejects
VI connectionrequestsfrom thehostdependingon its
existing load. On accepting a VI connection request,
themain thread thenhandsover this VI connection to
aworker threadwhich is thenresponsiblefor handling
all datatransferson that VI.

ServerapplicationsusetheMemNetAPI [28] to ac-
cessthe networking subsystemin our prototype. The
MemNetAPI allowsapplicationsto performsendsand
receivesbothsynchronously andasynchronously. The

7



Implementation C1C2C3H1H2H3H4S1S2S3
Clusterbase
ClusterC1C2C3H1 x x x x
ClusterC1C2C3H1H3 x x x x x
ClusterC1C2C3H1H2H3 x x x x x x
ClusterC1C2C3H1H2H3S2x x x x x x x

Table 2. Cluster-basedimplementationsof TCPServer

Application TCP Server

WAN send

Client

send

ACK

Kernel

a) traditional system

WAN send

send

ACK

done done

ClientApplication

b) sync_send

TCP Server

WAN send

send

ACK

notify

ClientApplication

c) async_send

SERVER SERVERSERVER

SAN SAN

Figure 6. Comparisonof thesend operationin a traditional systemwith sync send andasyncsend

send/receive primitivesprovidedby the MemNetAPI
allow data to be transferreddirectly to and from ap-
plication buffers. In orderto achieve this, theapplica-
tion needsto register its communication buffers with
the system. The register mem and deregis-
ter mem primitivesenable theapplication to register
andderegistermemorywith thesystem.

The sync send/sync recv primitives return
to the application only after the send/receive op-
eration is offloaded to the TCP server. The
async send/async recv primitivesimmediately
return job descriptors to the application. The job de-
scriptors canbe used by the application to checkthe
completion status of asynchronous operations. The
application hasthe option of usingthejob wait or
job done primitivesto wait or poll respectively, for
completion of theasynchronousoperationspecified in
the job descriptor. To guaranteecorrectness, the sys-
temassumesthatapplicationsdonot overwritebuffers
specified aspartof anasynchronousoperation,before
theoperation completes.

Thesocket provider usesthestandardLinux socket
implementationin ourprototype.Thisguaranteesreli-
able transmission of dataonce a socket sendis per-
formed on the TCP server. In sync send, con-
trol returns to the application only after the entire
buffer is sentusing the TCP/IP socket provider. In
async send, control returns to the application as
soonas the sendis posted on the VI channel corre-
sponding to the socket. The application hasto avoid
overwriting buffers used in asynchronoussendsuntil
theoperationcompletes.Figure6 comparesthesend

in a traditional system with the sync send and the
async send. In the figure, the dottedarrow indi-
cates the returnof control to theapplication. Thegap
in theapplication processingindicatesthedurationfor
which the application is blocked on thesend opera-
tion.

5 Experimental Setup

For the SMP-basedimplementation, we usedtwo
configurations: (i) a ���	� MHz Intel Xeon-based4-way
SMP system with 
 GB DRAM and 
 MB L2 cache.
(ii) a �	��� MHz Intel Pentium-based2-way SMP sys-
temwith ��
� MB DRAM and ���� KB L2 cache. Both
configurations useda 3Com996-BT gigabit Ethernet
adapter. For the cluster-basedTCPserver implemen-
tation, we usedtwo 300 MHz PentiumII PCs that
communicateover 32-bit 33 MHz Emulex cLAN in-
terfacesandan8-port Emulex switch. TheTCPServer
was installed with a 3Com 996B-T Gigabit Ethernet
adapter. All thesystemsranLinux- �������
�� kernels.

For the 4-way SMP basedTCP server evaluation,
we used the Apache 
	������	� web server [5] as the
server application. The requests were generatedus-
ing sclients1 [7] drivenby threedifferent tracesshown
in Table3

Currently, thesocketlibrary in ourcluster-basedim-
plementation doesnotsupport primitiveslikeselect
on the socket descriptors. This preventsus from us-
ing web server applications like Apache which uses

1Weusedsclientsinsteadof httperfin thiscaseashttperfcould
not generateenough loadto saturatethe4-way SMPsystem.

8



select extensively. We built a multithreadedweb
server which serviceshttp requestsfrom clients with-
out using select. We usedour custom built web
server to study the performanceof both implementa-
tionsof theTCPServer, with a uniform workload. We
usedthe2-way SMPconfiguration for theSMP-based
implementation. Therequestsfor thefiles weregener-
atedby a client with httperf [22] usingbothHTTP/1.0
andHTTP/1.1protocols. The client useda synthetic
trace, in which16KBytefilesarerepeatedly requested.

6 TCP Server Evaluation

In this section,we present anevaluationof theper-
formance impact of the TCP Server architecture for
bothSMP-basedandcluster-basedservers.

6.1 Evaluation of SMP-based Implementations

In this section, we evaluateseveralalternative TCP
Server implementationsfor theSMPsystem. We vary
thenumberof processorsdedicatedto thenetwork pro-
cessing,theamountof processing offloaded to theded-
icated processors, and the event notification mecha-
nismfor thesystem.

We study the performanceof a server system for
eachof the above implementations, comparing them
against the unmodifieduniprocessor andmultiproces-
sorkernels. We alsostudy theeffect of thenumberof
dedicatednetwork processorson the performanceof
theserver system.

To study the behaviour of SMP-basedTCP server
implementations, we first describe the performance
evaluation for the4-way SMPsystem.

6.1.1 Resultsfor 4-way SMP

We usedthreetraces to drive our experiments:Forth,
Rutgers, andSynthetic. Forth is from theFORTH In-
stitute in Greece.Rutgers contains theaccessesmade
to themainserver at theDepartmentof Computer Sci-
enceatRutgersUniversity in thefirst 25daysof March
2000. Synthetic is asynthetic tracein which16-KByte
files arerequested.Table3 describesthemaincharac-
teristics of thesetraces.

Thr oughput: In Figure7, we show thethroughput
attainedby the different SMP-basedTCP Server im-
plementations at saturation. For eachof the ten con-
figurations, we plot the performanceusing the three
traces. For the sake of clarity, we present only the

Logs # filesAvg file size# requestsAvg reqsize
Forth 11931 19.3KB 400335 8.8KB
Rutgers 18370 27.3KB 498646 19.0KB
Synthetic 128 16.0KB 500000 16.0KB

Table 3. Main characteristicsof WWW server traces

Figure 7. Throughput at saturationfor Apacheon a
4-WaySMPServer.

throughput at which eachof the configurations satu-
rates.

Thefirst interestingobservationwe canmake from
thisfigureis thatthedifferenttracesleadto similar per-
formance trends, even though their average requested
file sizesaredifferent.Another interesting observation
is that dedicating two processorsto network process-
ing is better than dedicating only one. Dedicating a
processorto theTCP/IPprocessingis beneficial in all
the cases. We alsoobserve that dedicating morethan
oneprocessorsis helpful in furtherimproving theper-
formance of the system. Finally, configurations that
usepolling instead of interrupts consistently outper-
form the ones using interrupts. However, offloading
thesendprocessingandpolling(SMP C1C2C3S1),are
morebeneficial whentwo processorsarededicatedto
the network processing. Overall, we canseethat of-
floading thenetwork processingcanachieve improve-
mentsin throughputof up to 25-30% in the casesof
Rutgers andSynthetic with two dedicated processors
and polling. This result demonstrates that this TCP
server architecture canindeedprovidesignificant per-
formancegains.

CPU Utilizat ion: Figure 8 provides more insight
into theseresults. The figure depicts the breakdown
of the average CPU utilization of the application and
network processorsfor thedifferentconfigurationswe
study, using the Synthetic trace. Eachbar is broken
into user, system, andidle times.

9



Figure 8. CPU usageat saturationfor Apacheon a
4-WaySMPServer. Thesuffix A denotesapplication
processorsandD denotesdedicatedprocessors.The
timesareaveragedover theentiresetof processors.

The figure shows that, whenonly oneprocessoris
dedicatedto thenetwork processing, thenetwork pro-
cessor becomesabottleneckand,consequently, theap-
plication processor is not full y utilized and has idle
time. Sincethe network processoris already a bot-
tleneck, it is clear that loading it further with send
operationswill only degrade performance. With two
network processors,thereis enoughprocessing power
to handle the network processing, and the applica-
tion processorbecomesthe bottleneck. In this case,
offloading the send operations to the network pro-
cessors is beneficial, as shown in the figure. (Note:
Our implementations using polling (SMP C1C2S1
and SMP C1C2C3S1)with two network processors,
do not show any idle time for thenetwork processors.
The reasonis that we categorizetheir polling time as
system time, ratherthan idle time). Overall, these re-
sultsclearly indicatethatthebestsystem wouldbeone
in which the division of labor betweenthe network
andapplication processorsis more flexible, allowing
for somemeasure of loadbalancing. We arecurrently
evaluating an implementation thatperformssuchload
balancing.

Our experiments reveal that using an SMP-based
TCP Server implementation, the performanceof a
a typical web server improves by up to 28%. We
observed that dedicating processors to asynchronous
event handling improves the performaceof a typical
web server. Using polling instead of interruptsasthe
asynchronous event notification mechanism also im-
provestheperformanceof thesystem. Ourresults also
indicate that the number of dedicatedprocessorsre-
quired dependson theapplication workload.

Figure 9. Throughput for a simplewebserver on a
2-WaySMPsystemusingHTTP/1.0.

6.1.2 Resultsfor 2-way SMP

We describe theperformanceevaluationfor the2-way
SMPsystemto present a uniform workload acrossthe
SMP-basedandcluster-based implementations of the
TCPServer. We studied the performanceof our sim-
ple multithreadedwebserver on a 2-way SMPsystem
running different implementations of the TCP server,
described in Table1. We varied the rate of requests
and measured the rate of succesful HTTP replies as
the throughput of the web server. We used both
HTTP/1.0andHTTP/1.1 protocolsto measureserver
performancewith this synthetic workload.

Thr oughput: Figure 9 shows the throughput for
the simple web server for different kernel configu-
rations using the HTTP/ 
	��� protocol and Figure 10
showsthe throughput using HTTP/ 
	��
 protocol. For
the HTTP/ 
	��
 protocol, we sendrequestsfor six files
on every openconnection in burstsof three.

In both cases, we seethat offloading TCPprocess-
ing to dedicatedprocessors improvestheperformance
of thesystem.In thecaseof HTTP/1.0,weseethatthe
performanceof theserver increasedby up to 
���� us-
ing theTCPServer implementation. Even in the case
of a moreefficient protocol (HTTP/1.1), with features
aimedat reducing networking overheads for applica-
tion servers, we seethat our system is able to pro-
vide improvement of about ��� . In both cases, the
major performancebenefit is due to the removal of
asynchronousnetwork eventsfrom thehost processor.
We canalsoseethattheoffloading of sendprocessing
helps only to a limited extent. This behaviour is due
to the dedicatedprocessorsaturating before the host
processorandbecomingthebottleneck in thesystem.

10



Figure 10. Throughput for a simplewebserverona
2-WaySMPsystemusingHTTP1.1

Figure 11. Throughput for a simplewebserverona
cluster-basedTCPServerusingHTTP/1.0

6.2 Evaluation of Cluster-basedImplementation

We studied the performanceof a simple multi-
threadedweb server on the four cluster-based imple-
mentationsof theTCPserver, describedin Table2.

6.2.1 Results

We evaluate the cluster-based TCP Server archi-
tecture by analyzing the performance of a sim-
ple multi-threaded web server. We compare
the performance of the web server using the
traditional socket API in our prototype (Clus-
ter C1C2C3H1) and using the primitives provided
by the MemNet API (Cluster C1C2C3H1H3 and
ClusterC1C2C3H1H2H3)which require buffers used
in communication to be pre-registered. In Clus-
ter C1C2C3H1H3, the web server implementa-
tion uses the sync send primitive and in Clus-
ter C1C2C3H1H2H3,it uses theasync send prim-
itive. We also present the performanceof the web

Figure 12. CPU utilization for a simplewebserver
onacluster-basedTCPServerusingHTTP/1.0

server usinga standalone Linux host-based socket im-
plementation Clusterbasefor comparison.

Thr oughput with HTTP/1.0: Figure 11 shows
the throughput of the web server as a function of
the offered load in requests/second. All systemsare
able to satisfy the offered load at low request rates.
At high request rates, we see a difference in per-
formance when Clusterbase saturatesat an offered
load of 700 requests/second. The web server shows
an improvementof 15% in performancewith Clus-
ter C1C2C3H1over Clusterbase. Using the syn-
chronousprimitives(Cluster C1C2C3H1H3),theweb
server is able to achieve a performance improve-
mentof 22%. Cluster C1C2C3H1H2H3shows a per-
formance gain of about 30% with the web server
using asynchronous primitives like async send.
Cluster C1C2C3H1H2H3allows a better pipelining
of network sends and helps the application over-
lap the latency of offloading the sendprimitive over
the SAN with computation at the host. Clus-
ter C1C2C3H1H2H3S2,which includes the Eager
Acceptoptimization,providednoadditionalgainsince
it is not theconnectiontime,but theactual requestpro-
cessing time thatdominatesthenetwork processing.

For optimization S2,we alsoobserved that theEa-
ger Receiveoptimization(not presented) doesnotcon-
tributeto any performancegain. In theEager Receive
implementation, the TCP server usesthe poll sys-
temcall to verify if datahasarrivedon a givensocket.
This leadsto a slight performancedegradationat high
request ratesby taking up someCPU time when the
TCPserver is already saturated.

CPU Utiliza tion with HTTP/1.0: In Figure 12,
we present theCPUutilizationon theapplication host
(Host)andTCPserver (TCPS)for thefour implemen-

11



tations, for the load at which Clusterbasesaturates.
At this load, the hostCPU saturates for Clusterbase
whereasthe ClusterC1C2C3H1H3(Host)and Clus-
ter C1C2C3H1H2H3(Host)haveabout 40%idle time.
With ClusterC1C2C3H1,since the web server uses
only the traditional socket based API, it does not pre-
register buffers usedin communication. As a result,
copies take up CPU time andreduce the idle time in
ClusterC1C2C3H1(Host) to 29%. The CPU utili za-
tion on theTCPserver (TCPS)shows that theTCP/IP
processingoverheadhasbeenshiftedto theTCPserver
in theoffloading-basedimplementations. Wehavealso
observed that at higher loads, the network processing
at theTCPserverprovesto bethebottleneckandeven-
tually saturatesthe processoron the TCPserver. It is
interestingto notethat the hostprocessorincurshigh
system time overhead(about 50%)evenafteroffload-
ing TCP/IPprocessingto theTCPserver. Weobserved
that on our system, a simple ping-pong utility (tvia)
providedwith the VIA implementation from Emulex
hasa system time overhead of 30%whenusing 16KB
packetson a single VIA connection. Taking into ac-
count the file system overhead (roughly 10%) for the
webserver, we canaccount for the systemtime over-
headon thehostprocessor. We arecurrently trying to
understandthesystemtime overheadarising from the
VIA implementation to seehow this canbeavoided.

Thr oughput with HTTP/1.1: HTTP/1.1includes
features to alleviate someof the TCP/IP processing
overheads. The use of persistent connections en-
ables reuse of a TCP connection for multiple re-
quests and amortizes the cost of connection setup
and teardown over several requests. HTTP/1.1 also
allows for pipelining of requests on a connection.
The workload used for this study is the same as
that usedfor HTTP/1.0. However, multiple requests
(six) weresentover eachsocket connection, in bursts
of three. Figure 13 shows the web server through-
put in this case. The performancegain achieved by
ClusterC1C2C3H1H3is about 12%, and by Clus-
ter C1C2C3H1H2H3 is 20%, over that of Clus-
ter base. Theseperformancegains, are lower than
those achieved with HTTP/1.0. However, they show
thatoursystemis ableto providesubstantial gainsover
thatof a traditional networking system,evenwhile us-
ing HTTP/1.1 featuresaimedat reducing networking
overheadsfor application servers.

Greatergainsare not possible with this workload
because the TCP server node becomes the bottle-

Figure 13. Throughput for a simplewebserverona
cluster-basedTCPServerusingHTTP/1.1

neck at high loads. In fact, this explains why our
optimizations of Eager Receive and Eager Accept
(S2),do not improve throughput beyond thatof Clus-
ter C1C2C3H1H2H3. Theseoptimizations are in-
tended to improve the performanceof the hostappli-
cationat thecostof moreprocessingat theTCPserver
node. However, speeding up the hostdoes not really
help overall performancebecause,at somepoint, the
performancebecomeslimited by theTCPservernode.
Thisproblemcanbealleviatedin threedifferentways:
by adaptively balancing the loadbetween theapplica-
tion hostandTCPserver, by usingafaster TCPserver,
or by usingmultipleTCPserversperapplicationnode.
We arecurrently investigatingtheseapproaches.

7 RelatedWork

OS mechanisms and policies specifically tailored
for servershave beenproposedin [8, 12, 26]. How-
ever, they do not study the effect of separating the
application processing from network processing or
shielding theapplication from OSintrusion.

An important factor in the performanceof a server
is its ability to handle extremely high volume of re-
ceive requests.Undersuchconditions, thesystemen-
ters a receive livelock [20]. Several researcherssug-
gest the useof polling on the system to prevent re-
ceive livelock andfor high performance[6, 19, 30]. In
Piglet [24], the application is isolatedfrom the asyn-
chronouseventhandling using adedicatedpolling pro-
cessor in anSMP.

In the Communication Services Platform
(CSP) [29] project, the authors suggest a system

12



architecture for scalable cluster-basedservers, using
dedicatednetwork nodesand a VIA-based SAN to
tunnel TCP/IPpacketsinside thecluster. CSPwasan
architecture aimedto offload the network processing
to dedicatednodes. However, their results are very
preliminary and their goal was limited to using
dedicatednodesfor network processingin a multi-tier
datacenter architecture.

Recently released network interface cards have
been equipped with hardware support to offload
TCP/IPprocessing from thehost[2, 3, 10, 14, 17,32].
Someof these cardsalso provide support to offload
networking protocol processing for network attached
storagedevices including iSCSI,from softwareon the
hostprocessorto dedicatedhardware on theadapter.

QPIP[9] is anattempt to providea lightweightpro-
tocol for applicationswhichoffloadsnetwork process-
ing to the Network Interface Card (NIC). However,
they implementonly a subset of TCP/IPon the NIC.
QPIPsuggestsanalternativeinterfaceto thetraditional
socketsAPI but doesnot definea programminginter-
facethat can be exploited by applications to achieve
better performance. Moreover, performanceevalua-
tion presentedin [9] waslimited to communicationbe-
tweenQP-awareapplications over a SAN.

Sockets Direct Protocol (SDP) [27] originally de-
veloped to support server-clustering applicationsover
VI architecture,hasbeenadoptedaspartof theInfini-
Bandspecification. The SDPinterfacemakes useof
InfiniBand capabilities and acceleration, while emu-
lating a standardsocket interfacefor applications.

Voltairehasproposeda TCPTermination Architec-
ture [31] with thegoals of solving thebandwidth and
CPU bottlenecks which occur when other solutions
suchasIP Tunneling or bridging areusedto connect
InfiniBandFabricsto TCP/IPnetworks.

Direct AccessTransport (DAT) [11] is an initi ative
to provide a transport exploiting remotememoryca-
pabilities of interconnect technologies[13, 16]. How-
ever, theobjective of DAT is to exposethebenefitsof
remotememorysemantics only to intra-server com-
munication.

We proposeandevaluate the TCPServer architec-
ture to offload TCP/IPprocessingin different scenar-
iosfor network servers. Weextendthis line of research
andexploretheseparation of functionality in asystem.
We study theimpactof separationof functionality not
only for a bus-based multiprocessor system,but also
for a switch-basedcluster of dedicatedprocessors.

8 Conclusions

In this paper, we introducedanetwork serverarchi-
tecturebasedonoffloading network processingto ded-
icatedTCPservers. We have implementedandevalu-
atedTCPServersin two differentarchitectural scenar-
ios: using adedicatednetwork processorin asymmet-
ric multiprocessor (SMP)serverandusingadedicated
nodeon acluster-basedserver built aroundamemory-
mapped communication interconnect. Usingour eval-
uations,we have quantified the impact of TCP/IPof-
floading on theperformanceof network servers.

Basedon our experienceandresults, we draw sev-
eral conclusions: (i) offloading TCP/IPprocessingis
beneficial to overall systemperformancewhen the
server is overloaded(performancegainsof upto 30%
were achieved in the scenarios we studied) (ii) TCP
servers require substantial computing resources for
completeoffloading. (iii ) the type of workload plays
a significant role in theefficiency of TCPservers.We
observedthat, depending on theapplicationworkload,
either the host processoror the TCP Server can be-
comethe bottleneck. Hence,a schemeto balancethe
load betweenthe host and the TCP Server would be
beneficial for server performance.

We are in the process of performing more exper-
imentswith each implementation, implementing dy-
namicload balancingbetween processors of different
classesandimplementing anoptimized TCPServerfor
thecluster-basedimplementation.

References

[1] M. B. Abbott andL. L. Peterson.Increasingnetwork
throughput by integrating protocol layers.IEEE/ACM
TransactionsonNetworking, 1(5):600–610,1993.

[2] Adaptec ASA-7211 and ANA-7711.
http://www.adaptec.com.

[3] Alacritech Storage and Network Acceleration.
http://www.alacritech.com.

[4] D. C. Anderson,J.S.Chase,S.Gadde,A. J.Gallatin,
K. G. Yocum,andM. J.Feeley. CheatingtheI/O bot-
tleneck: Network storagewith Trapeze/Myrinet. In
Proceedings of the 1998 USENIXTechnical Confer-
ence, pages 143–154,June1998.

[5] Apache http server reference manual.
http://httpd.apache.org/docs.

[6] M. Aron andP. Druschel. Soft timers: Efficient mi-
crosecond software timer support for network pro-
cessing. ACM Transactionson Computer Systems,
18(3):197–228, 2000.

13



[7] G. Bangaand P. Druschel. Measuring the capacity
of a web server. In USENIXSymposiumon Internet
TechnologiesandSystems, 1997.

[8] G. Banga,P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resourcemanagement
in server systems.In Operating SystemsDesignand
Implementation, pages45–58, 1999.

[9] P. Buonadonna andD. Culler. Queue-Pair IP: A Hy-
brid Architecture for SystemAreaNetworks. In Pro-
ceedingsof the29thAnnual Symposium onComputer
Architecture, May 2002.

[10] CycloneIntelligent I/O. http://www.cyclone.com.
[11] The DAT Collaborative.

http://www.datcollaborative.org.
[12] P. Druschel andG. Banga. Lazy Receiver Processing

(LRP):A Network SubsystemArchitecture for Server
Systems.In OperatingSystemsDesignandImplemen-
tation, pages261–275, 1996.

[13] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,
B. Shubert,F. Berry, A. M. Merritt, E. Gronke, and
C. Dodd. The Virtual InterfaceArchitecture. IEEE
Micro, 18(2), 1998.

[14] Emulex, Inc. http://www.emulex.com.
[15] H. K. Jerry Chu. Zero-Copy TCP in Solaris. In

USENIX Annual Technical Conference, pages253–
264, 1996.

[16] The Infiniband Trade Association.
http://www.infinibandta.org, August2000.

[17] Intel Server Adapters. http://www.intel.com.
[18] J. Katcherand S. Kleiman. An Introduction to the

DirectAccessFile System,6 2000.
[19] K. Langendoen, J.Romein,R.Bhoedjang,andH. Bal.

Integrating polling, interrupts, and threadmanage-
ment. In Proceedings of the 6th Symposiumon the
Frontiersof MassivelyParallel Computation, October
1996.

[20] J.C.Mogul andK. K. Ramakrishnan.Eliminating Re-
ceive Livelock in anInterrupt-drivenKernel. In Pro-
ceedings of the USENIX1996 annual technical con-
ference:January 22–26, 1996, SanDiego,California,
USA, pages99–111,Berkeley, CA, USA, Jan.1996.

[21] A. B. Montz,D. Mosberger, S.W. O’Malley, L. L. Pe-
terson,T. A. Proebsting, andJ.H. Hartman.Scout:A
communications-orientedoperatingsystem(abstract).
In Operating SystemsDesign and Implementation,
page200,1994.

[22] D. MosbergerandT. Jin. httperf – a tool for measure-
ing webserverperformance,1998.

[23] S.Muir andJ.Smith.AsyMOS- An Asymetric Multi-
processorOperating System.In Proceedingsof Open
Architectures and NetworkProgramming, SanFran-
cisco,CA, April 1998.

[24] S. Muir and J. Smith. Functional divisions in the
Piglet multiprocessoroperating system. In Eighth
ACM SIGOPSEuropeanWorkshop, September1998.

[25] V. Pai, M. Aron, G. Banga,M. Svendsen,P. Druschel,
W. Zwaenepoel, andE. Nahum. Locality-AwareRe-
questDistribution in Cluster-basedNetwork Servers.

In Proceedings of the 8th International Conference
onArchitectural Support for ProgrammingLanguages
andOperatingSystems, 1998.

[26] V. S.Pai,P. Druschel, andW. Zwaenepoel. IO-Lite: A
unifiedI/O bufferingandcachingsystem.ACMTrans-
actionsonComputerSystems, 18(1):37–66,2000.

[27] J.Pinkerton. SDP:SocketsDirect Protocol. In Infini-
bandDevelopers Conference, Fall 2001.

[28] M. Rangarajan,K. Banerjee,andL. Iftode. MemNet:
Memory-Mapped Networking for Servers. Submit-
ted for publication, RutgersUniversity, Department
of ComputerScienceTechnical Report,DCS-TR-485,
May 2002.

[29] H. V. Shah,D. B. Minturn, A. Foong,G.L. McAlpine,
andR. S.Madukkarumukumana.CSP:A Novel Sys-
temArchitecture for ScalableInternet andCommuni-
cationServices.In Proc. of 3rd USENIXSymposium
onInternetTechnologiesandSystems, March2001.

[30] J. M. Smith andC. B. S. Traw. Giving Applications
Accessto Gb/sNetworking. IEEE Network, 7(4):44–
52,July1993.

[31] Voltaire TCP Termination Architecture.
http://www.voltaire.com/pdf/Breaking through
thebottleneck.pdf.

[32] Tornado for Intelligent Network Acceleration.
http://www.windriver.com.

[33] Q.Y. Yiming Hu,AshwiniNanda.Measurementanal-
ysisandperformanceimprovement of theapacheweb
server. Technical Report1097-0001, University of
RhodeIsland,Department of ElectricalandComputer
Engineering,October1997.

14


