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Abstract

A new robust stability condition for uncertain discrete-time systems with convex polytopic uncertainty is given. It enables
to check stability using parameter-dependent Lyapunov functions which are derived from LMI conditions. It is shown that
this new condition provides better results than the classical quadratic stability. Besides the use of a parameter-dependent
Lyapunov function, this condition exhibits a kind of decoupling between the Lyapunov and the system matrices which may
be explored for control synthesis purposes. A numerical example illustrates the results. c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The domain of robust analysis and robust control
synthesis for uncertain linear systems has been thor-
oughly investigated in the last 15 years. Important re-
sults are scattered in the vast literature related to this
area which addresses interesting practical topics for
control synthesis. These statements are supported by
a number of recent books as [4,2,11] and their refer-
ences, to mention a few.
This paper focuses on the robust analysis problem

in an attempt to answer the following question: “Given
a compact matrix set, decide whether each element of
this set is asymptotically stable in the discrete-time
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setting, i.e. each matrix element has its eigenvalues
with magnitude less than one, or not”. In fact, in most
cases, robust analysis is performed for convex, gener-
ally bounded, uncertainty domains.
Among di�erent robust stability tests, we can �rst

quote frequency domain oriented ones, such as �
analysis [5]. Being fairly general, these approaches
address real parametric as well as dynamic complex
uncertainties. However, from a numerical point of
view, they are quite involved and generally make
intensive use of scaling factors or multipliers to get
precise results. It is also worth to mention some al-
gebraic approaches which followed the seminal work
of Kharitonov. Applicable only to the real parametric
uncertainty case, they su�er from being di�cult to
apply to matrix polytopic analysis and being almost
of no use for synthesis problems [1]. Finally, the last
approach to be mentioned is the Lyapunov one, the
class of methods to which this paper belongs. The
basic approach is termed “quadratic stability”. In its
simplest version, its main drawback comes from the
fact that it is based on the use of a single Lyapunov
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quadratic function (i.e. it uses a single Lyapunov ma-
trix) for testing stability over the whole uncertainty
domain [3,8]. There have been also a few attempts to
imply parameter-dependent Lyapunov matrices in a
will to reduce the conservativeness of the quadratic
framework [6,7], most of them in the continuous-time
domain. In the discrete-time domain we can mention
some works on Lur’e like systems using the passivity
and real-positiveness approaches [9,10].
The scope of this paper is robust stability of un-

certain discrete-time systems with polytopic convex
uncertainty domain. It is shown how to expand the
discrete Lyapunov condition for stability analysis
by introducing a new matrix variable. The new ex-
tended matrix inequality is linear with respect to the
variable, in fact a linear matrix inequality (LMI),
and does not involve any product of the Lyapunov
matrix and the system dynamic matrix. This enables
us to derive a su�cient condition for robust stability
which encompasses the basic quadratic results and
provides a new way for practical determination of
parameter-dependent Lyapunov functions by solv-
ing LMI problems. We claim that due to the above
decoupling between the Lyapunov matrix and the
system dynamic matrix this condition may be of use
in the solution of many di�cult control synthesis
problems. This fact is illustrated by the simple state
feedback robust stabilizability control problem. Of
course, such a discrete-time condition is of some use
for continuous-time systems when considering the
pole location in a disk. Considering a disk tangent to
the imaginary axis at the origin with a large radius
would, certainly, result in a quite accurate robust
stability condition in the continuous time domain.
The paper is organized as follows. In Section 2

the robust analysis problem is presented along with
well-known results on quadratic stability. Section 3
presents the main results, namely a new robust stabil-
ity condition and a new state feedback stabilizability
LMI problem based on this condition. Numerical ex-
periments are provided in Section 4 with a comparison
with existing results. Finally, a conclusion and some
perspectives are given in the end.

2. The robust analysis problem

Let the linear discrete-time uncertain system be

xk+1 = A(�)xk ; (1)

where the dynamic matrix A(�) belongs to a convex
polytopic set de�ned as

A:=

{
A(�): A(�) =

N∑
i=1

�iAi;
N∑
i=1

�i = 1; �i¿0

}
:

(2)

We begin our discussion by de�ning robust stabil-
ity with respect to system (1) and the structured un-
certainty model (2).

De�nition 1. System (1) is robustly stable in the un-
certainty domain (2) if all eigenvalues of matrix A(�)
have magnitude less than one for all values of � such
that A(�) ∈ A.

Using Lyapunov stability it is possible to convert
this de�nition into the equivalent condition given in
the following lemma.

Lemma 1. System (1) is robustly stable in the uncer-
tainty domain (2) if; and only if; there exits a matrix
P(�) = P(�)′¿ 0 such that

A(�)′P(�)A(�)− P(�)¡ 0 (3)

for all � such that A(�) ∈ A.

To the authors knowledge, there is no general and
systematic way to formally determine P(�) as a func-
tion of the uncertain parameter �. Such a matrix P(·) is
called a parameter-dependent Lyapunov matrix. Based
on an equivalent structured uncertainty description,
the search for P(�) may be performed with respect to
a �rst-order series expansion in terms of the uncer-
tain parameter, which enables to establish su�cient
conditions for robust stability in the continuous-time
domain [6,7]. Another e�ective way of addressing
such problem is to look for a single Lyapunov ma-
trix P(�) = P which solves inequality (3). Unfortu-
nately, this approach generally provides quite conser-
vative results. However, it constitutes one of the �rst
results in the quadratic approach: the stability assess-
ment over compact set (2) may be determined by test-
ing the discrete, enumerable and bounded set of the
vertices of the polyhedron (2). Then a single matrix P
which satis�es the condition given in Lemma 1 may
be found by the use of now standard e�cient LMI
tools. The test for this kind of stability also known as a
quadratic stability test is summarized in the following
lemma.
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Lemma 2. Uncertain system (1) is robustly stable in
uncertainty domain (2) if

A′iPAi − P¡ 0 (4)

for all i = 1; : : : ; N .

3. The main result

We begin this section by stating the following
equivalence.

Theorem 1. The following conditions are equivalent:
(i) There exists a symmetric matrix P¿ 0 such

that

A′PA− P¡ 0: (5)

(ii)There exist a symmetric matrix P and a matrix
G such that[
P A′G′

GA G + G′ − P
]
¿ 0: (6)

Proof. We prove this theorem by noticing that if we
apply Schur complement with respect to the block
(2; 2) in (6) we recover (5) by choosing G = G′ =
P¿ 0, hence (i) implies (ii). On the other hand, from
the �rst block of (6) we have P¿ 0. Then multiplying
(6) by T :=[I −A′] on the left and by T ′ on the right
we get (5) which establishes that (ii) implies (i) and
concludes this proof.

Condition (ii) appears as a direct expansion of
condition (i) via its “Schur complement” formulation
where, with the introduction of a new additional ma-
trix G, we obtain a linear matrix inequality in which
the Lyapunov matrix P is not involved in any prod-
uct with the dynamic matrix A. This feature enables
one to write a new robust stability condition which,
although su�cient, is assumed not too conservative
due to the presence of the extra degree of freedom
provided by the introduction of matrix G (see the
numerical example). Note that this extra matrix is not
even constrained to be symmetric. The condition is
given in the following theorem.

Theorem 2. Uncertain system (1) is robustly stable
in uncertainty domain (2) if there exist symmetric
matrices Pi and a matrix G such that[
Pi A′iG

′

GAi G + G′ − Pi
]
¿ 0 (7)

for all i = 1; : : : ; N .

By following the same lines as in the proof of The-
orem 1 it is possible to show that if (7) holds then
there exits a parameter-dependent Lyapunov matrix

P(�) =
N∑
i=1

�iPi (8)

which is positive de�nite for all values of � such that
A(�) ∈ A. Since inequality (7) is linear on Pi and
Ai, robust stability may be once again established by
LMI tests over the discrete, enumerable and bounded
set of the polytope vertices which de�ne the uncer-
tainty domain (2). Hence, the determination of feasi-
ble matrices Pi; i=1; : : : ; N and G may be also easily
performed using standard LMI solvers. It is clear that
this result encompasses the well-known quadratic sta-
bility test since if (7) holds for a single matrix Pi =P
then necessity with respect to Lemma 2 can be proved
by imposing G = G′ = P as in Theorem 1.
Perhaps the most interesting aspect of the given

stability condition is that it can be easily extended to
cope with the stabilizability problem in the following
way. Let us consider the linear discrete-time system

xk+1 = A(�)xk + B(�)uk ; (9)

where the dynamic matrix A(�) belongs to A as de-
�ned in (2) and B(�) is in the convex polytope de�ned
by

B:=

{
B(�): B(�) =

M∑
i=1

�iBi;
M∑
i=1

�i = 1; �i¿0

}
:

(10)

We look for a single state feedback gain K such
that A(�) + B(�)K is asymptotically stable for every
A(�) ∈ A and B(�) ∈ B. A new su�cient condition
is stated in the following theorem.

Theorem 3. Uncertain system (9) is robustly stable
in uncertainty domains (2) and (10) if there exist
symmetric matrices Pij and a matrix G such that[

Pij AiG + BjL
G′A′i + L

′B′j G + G′ − Pij
]
¿ 0 (11)

for all i = 1; : : : ; N; j = 1; : : : ; M . If (11) is feasible
then a robust state feedback control is given by

K = LG−1: (12)

Proof. This theorem is proved by using a transposed
version of Theorem 2, i.e., by transposing Ai and G,
along with the change of variable L=KG. Notice that
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the regularity of G is implied by the diagonal blocks
of (11) since G′ + G¿Pij ¿ 0.

Hence it is possible to deal with the state
feedback robust stabilizability problem by �nding a
feasible solution to a �nite set of linear matrices in-
equalities. It is interesting to notice that, in contrast
with the quadratic stability synthesis, the determi-
nation of the control (12) does not directly depend
on the Lyapunov matrices Pij which may be used to
build a parameter-dependent Lyapunov matrix

P(�; �) =
N∑
i=1

�i


 M∑
j=1

�jPij


 : (13)

We conjecture that such a property can be explored in
several ways in control design. Notice that the extra
degree of freedom introduced represented by matrix
G, which is not even constrained to be symmetric, is
fully incorporated in the control gain variable transfor-
mation. The application of this kind of conditions to
other di�cult control synthesis problems is currently
under investigation.

4. Numerical example

In order to illustrate the results of this paper we
consider the example given in [10]. The problem to
be solved is to �nd the largest value of the scalar 

such that matrix

A(�) =



0:8 −0:25 0 1
1 0 0 0
0 0 0:2 0:03
0 0 1 0




+�



0
0
1
0


 [ 0:8 −0:5 0 1 ];

is robustly stable for all |�|¡
. The stability bounds
given by several known conditions are in Table 1. In
this table the exact maximum value was found itera-
tively by root-locus. Notice that in this case we were
able to get to the maximum bound even constraining
G to be symmetric. Also notice that with the results
in [10] we were also able to �nd the maximum value
of 
. This method however, which tests stability with
the help of two free parameters, is not amenable to
synthesis.

Table 1
Stability bounds




Method Analysis Synthesis

Exact maximum value 0:4619 —
Theorem 2 0:4619 0:8892
Theorem 2 with G = G′ 0:4619 0:8878
Theorem 3 in [10] 0:4619 —
Quadratic Stability 0:4279 0:5282
RH∞ 0:2956 —

In the third column of this same table we give sta-
bility bounds achieved under state feedback for a sys-
tem in the form (9) with input matrix

B(�) = �



0
0
1
0


+ (1− �)



1
0
0
0


 ; 06�61:

In this case, only quadratic stability and Theorem 3
enable us to synthesize a robust state feedback gain
by solving LMI problems. Also notice that in the syn-
thesis problem, even with the additional symmetric
constraint over G it was possible to �nd an stabil-
ity bound which is very close to the one achieved
with G nonsymmetric and which is much better than
the closed-loop stability bound given by the standard
quadratic approach.

5. Conclusion

A new robust su�cient stability condition for un-
certain discrete-time systems has been given. Stated
as a set of linear matrix inequalities, this condition en-
ables the determination of parameter-dependent Lya-
punov matrices and encompasses quadratic stability
as a particular case.
We conjecture that the proposed approach will pro-

vide solution to several control design problems which
have not been given a de�nitive answer. This claim is
supported by the fact that using the given controller
parametrization the control gain does not directly de-
pend on the Lyapunov matrix. This point will be the
subject of future research.
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