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A compressive sensing (CS) based method for ISAR imaging with a
stepped-frequency chirp signal (SFCS) is presented. It is outlined
that by using the CS technique, the data rate has been remarkably
reduced in bandwidth synthesis processing for SFCS to achieve a
high range resolution. Imaging results of a moving train demonstrate
the effectiveness of the proposed method.

Introduction: It is well known that high range resolution can be
achieved by using a train of sub-pulses and each sub-pulse has a relatively
narrow bandwidth but increased central frequencies, i.e. stepped-
frequency chirp signal (SFCS) [1], so only a low-speed A/D converter
is needed. Although the application of SFCS can reduce the requirement
on the A/D converter, it cannot decrease the total data rate of radar high
resolution imaging. Over the past few years, compressive sensing (CS)
theory and techniques have introduced a new approach for reducing the
number of data samples beyond the Nyquist theorem, while perfect
reconstruction of the original signal can be obtained by signal processing
[2]. Several approaches have been carried out for the applying CS tech-
nique to high-resolution radar imaging [3]. To achieve high range resol-
ution ISAR imaging with fewer data samples of SCFS, we propose a
phase-preserving range compression algorithm based on the compres-
sive sensing (CS) technique. Based on this range compression algor-
ithm, a scheme of 2D ISAR imaging with SFCS is presented. In this
scheme the range compression is completed using the CS technique,
and the azimuth compression is completed using an ordinary method.

Compressive sensing: CS is a new theory that enables sampling below
the Nyquist rate, while the quality of reconstruction is guaranteed [2].
Consider a time-domain signal x [ CN×1, which has a representation
in some basis C = [c1|c2| · · · |cN ],

x =
∑N

k=1
ckak = Ca (1)

where a is N × 1 column vector of weighting coefficients ak = kx,ck l.
If there is only K(K,,N) of the ak coefficients are nonzero, x is called
sparse in C domain with K sparsity. If the measurement of x is acquired
in the time domain also, that is,

y = Fx + n (2)

where F [ CM×N is the observation matrix, y [ CM×1 is the measure-
ment, and n [ CM×1 is the measurement noise. Since M , N, x cannot
be recovered directly from y. But by substituting x with (1), y can be
written as,

y = Fx + n = FCa+ n = Qa+ n (3)

Because a in (3) is K sparsity, and K , M , N, sparsity coefficient a
could be solved from a optimisation problem,

min
a

‖a‖lp s.t. ‖y −Qa‖2 ≤ 1 (4)

Thus signal x is also reconstructed. Problem (4) can be solved with
different kinds of methods. To guarantee that a can be reconstructed
from M = O(K log(N/K)) measurements y, the observation matrix
should obey what is known as a uniform uncertainty principle (UUP),
which can be expressed by the following inequation,

C1
M

N
≤ ‖Fx‖

‖x‖ ≤ C2
M

N

where C1 ≤ 1 ≤ C2.

De-chirping and CS based range compression: The chirp signal can be
expressed as follows:

s(t) = rect[(t − nTr)/Tp] exp j2pfc t+jpKr(t−nTr)2

where rect[] denotes the rectangular function, fc is the carrier frequency,
Kr = B/Tp is the chirp rate, Tp represents the pulse width, B is the band-
width and Tr is the pulse repetition interval (PRI) of the chirp signal.
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Assume a point target positions at a distance of r from the radar, so
the radar echo from the target can be expressed as:

se(t) = As(t − 2r/c)

The de-chirping reference function is, correspondingly, to be:

sref (t) = rect[(t − nTr − 2r0/c)/Tref ]

× exp−j2pfc(t−2r0/c)−jpKr(t−nTr−2r0/c)2

where Tref is the time duration of the de-chirping reference function, and
r0 is the referenced range. After the de-chirping operation (usually
realised by hardware), the signal becomes to be:

sdc(t) = se(t) ⊗ sref (t)

= Arect[(t − nTr − 2r/c)/Tp] exp−j4pKr(t−nTr)(r−r0)/c

× exp−j4pfc(r−r0)/c−j4pKr (r2−r2
0 )/c2

(5)

where ⊗ denotes de-chirping or the mixing operation. After transform-
ing (5) into the frequency domain, the signal can be expressed as
follows:

Sdc( f ) = ATp exp jFdc sin c{Tp[ f + 2Kr(r − r0)/c} (6)

where Fdc = −4p[fr/c + fc(r − r0)/c + Kr(r2 − r2
0)/c2]. If the sinc

function in (6) is approximated by a Dirac delta, that is

Sdc( f ) ≃ ATp exp jFdc d[( f + 2Kr(r − r0)/c] (7)

Thus, the de-chirped echo has sparse representation in the frequency
domain. At the same time, the peak position fdc = −2Kr(r − r0)/c,
amplitude information Adc = ATp and phase information Fdc in (6)
are all reserved.

Based on the above analysis, we choose the Fourier basis as sparsity
basis C, and propose a CS based range compression algorithm, which is
composed of measurement and reconstruction processes. In the
measurement process, de-chirped echo sdc(t) is processed by an AIC
[4] and we get measurement y directly. The echo is demodulated by a
pseudorandom wideband signal p(t), and then filtered by a lowpass
filter h(t), sampled at sub-Nyquist rate using a traditional ADC finally.
So the observation matrix F in (3) comprises a downsampling matrix
D, a filter matrix H and a random matrix P, that is:

F = DHP

where H and P are built based on h(t) and p(t), respectively. In the recon-
struction process, we choose sparse Bayesian learning [5] as the solution
method of (4), and recover the Fourier coefficients a of Sdc( f ). Thus we
get the range profile from the measurement y.

Bandwidth synthesis and 2D imaging with SFCS: SFCS is realised by
transmitting a sequence of chirp sub pulses with a step of increased
carrier frequency, and the key step in imaging processing of stepped-
chirp ISAR is how to compress the pulses in a burst to get a much
larger bandwidth and much higher range resolution than that achieved
with a single chirp. Here, we modify the measurement process based
on the algorithm proposed in [6].

In the following, we briefly outline the process. Assume that
fmc = fc + mDf (m = 0, 1, . . . ,M − 1) denotes the carrier frequency
of the nth sub pulse, and Df is the frequency step. Then, the mth sub-
pulse in one SFCS burst can be expressed as

sm(t) = rect[(t − mTsr)/Tsp] exp j2pfmct+jpKr(t−mTsr)2 (8)

By de-chirping the echo of each subpulse, we get

smdc(t) = Arect[(t − mTsr − 2r/c)/Tsp]

× exp−j4pKr(t−mTsr)(r−r0)/c exp−j4pKr (r2−r2
0 )/c2

× exp−j4p( fc+mDf )(r−r0)/c

(9)

Equation (9) shows that there is a time-shift decided by Df /Kr between
any two successive sub-pulses in a burst. If we select appropriate Df and
sampling frequency fs to let Tsp = Df /Kr, and fs × Tsp is a integer,
obviously, the phases of any two successive sub-pulses after de-chirping
will be continuous. If we delay the received echo of the later sub pulse to
Df /Kr , and then combine the successive echoes together, it means that
we can get longer observation time for each target. Combined with the
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above process, we can get measurements of the bandwidth-synthesised
range profile and get higher resolution after reconstruction.

From (7) we can find that the CS based range compression algorithm
reserves the phase information of the point target. The reserved phase
information enables us to perform azimuth compression using traditional
techniques, including SAR or the ISAR imaging method. Thus, 2D
radar imaging with SFCS based on CS method is achieved.

Experimental results: The primary aims of our experiment are to verify
the proposed range compression method with SFCS and to obtain high
resolution ISAR images of a moving train. The de-chirped echo data is
acquired by a ground stationary Ka-band radar system with 2 GHz band-
width which is obtained by synthesising 20 sub-pulses with carrier fre-
quencies starting from 33 to 34.9 GHz at 100 MHz frequency steps and
the bandwidth of each sub-pulse is 120 MHz. Detailed information
about the system is described in [6]. In our experiment, CS based
range compression is carried on the acquired data with a downsampling
rate of 50.

To verify the proposed algorithm, we compare the ISAR images of the
train got by the CS and FFT methods. After performing CS based range
compression and azimuth compression on the de-chirped echo data, we
finally get a high-resolution ISAR image of the moving train as shown in
Fig. 1. The ISAR image of the train got by the FFT method and the
optical picture of the train is given in Figs. 2 and 3 for reference.
Both Figs. 1 and 2 clearly show the train has a six-section structure,
and the ventilator of the air-conditioner of each compartment is very
easy to identify. Besides the ventilators, the windows, doors, connec-
tions between compartments, and the upper body of the train are
together shown as a ‘straight line’. Comparing with Fig. 3, we see
that the CS method represents the same detailed information of
the train on azimuth as the FFT method, and sidelobes on the range
are much suppressed.
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Fig. 1 ISAR image of train obtained by CS method
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Fig. 2 ISAR image of train obtained by FFT method
ELECT
Fig. 3 Optical picture of train

Conclusion: A CS based imaging algorithm with SFCS is proposed and
tested by experiment of radar imaging of a moving train. It is shown that
only 1/50 of the data used by the FFT based method is required to
get almost the same image.
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