On-Road Motion Planning
for Autonomous Vehicles

Tianyu Gu* and John M. Dolan**

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, 15213, PA, USA
tianyu@cmu.edu, jmd@cs.cmu.edu

Abstract. We present a motion planner for autonomous on-road driv-
ing, especially on highways. It adapts the idea of a on-road state lattice.
A focused search is performed in the previously identified region in which
the optimal trajectory is most likely to exist. The main contribution of
this paper is a computationally efficient planner which handles dynamic
environments generically. The Dynamic Programming algorithm is used
to explore in spatiotemporal space and find a coarse trajectory solution
first that encodes desirable maneuvers. Then a focused trajectory search
is conducted using the ”generate-and-test” approach, and the best tra-
jectory is selected based on the smoothness of the trajectory. Analysis
shows that our scheme provides a principled way to focus trajectory
sampling, thus greatly reduces the search space. Simulation results show
robust performance in several challenging scenarios.

Keywords: Motion Planning, Dynamic Programming, On-road
Autonomous Driving.

1 Introduction

1.1 Motivation

In the last few decades, both industry and academia have put effort into develop-
ing technologies for autonomous driving. Many believe that autonomous driving
will dramatically enhance driving safety, improve transportation efficiency, and
even revolutionize the entire automobile industry.

Motion Planning (MP) for autonomous on-road driving is a challenging prob-
lem: (1) The optimal solution (trajectory) exists in high-dimensional space, yet
real-time constraints must be met in finding it; (2) Trajectory solutions must
adapt to complex and unpredictable traffic; (3) Perception data, which are crit-
ical to high-speed driving, are partially observed, noisy, and lagging.

* Tianyu Gu is with the Department of Electrical and Computer Engineering.
** John M. Dolan is with Dept. ECE and Robotics Institute, School of Computer
Science.

C.-Y. Su, S. Rakheja, H. Liu (Eds.): ICIRA 2012, Part ITI, LNAI 7508, pp. 588-pJ7] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

On-Road Motion Planning for Autonomous Vehicles 589

1.2 Related Work

Much research has been conducted on motion planning of various robots [9][5].
Dijkstra’s Algorithm, the A* Algorithm and their derivatives[12][8] have been
used intensively for path planning on a grid-like space. The resulting paths,
however, do not satisfy the non-holonomic constraints of a car-like vehicle. To
address this, [I] introduced a non-holonomic path generation method.

To inspire the development of autonomous driving technologies, DARPA or-
ganized the Urban Challenge in 2007. To deal with on-road driving, many teams
[2][3] performed lane-based trajectory generation by rolling out trajectories based
on lateral shifts from the lane centerline. This scheme worked well in the low-
density, low-speed (up to 30 mph) competition environment, but was too naive
for realistic on-road driving in complex dynamic environments.

Several on-road motion planners have used an on-road state lattice. Artifi-
cial heuristics were developed in a few works to narrow down the exploration
region in the lattice. [I3] proposed a method that connected lattice nodes to
generate paths that complied with certain speed heuristics. A directed acyclic
graph search algorithm was used to search for the shortest path on the grid. [6]
proposed an on-road planner that solved optimal lateral and longitudinal con-
trol problems in a Frenet Frame. Different heuristic functionals were devised for
maneuvers like road following and lane merging. The disadvantage of heuristics-
based approaches is that it is unrealistic to find a complete set of heuristics that
are applicable in all cases.

An alternative solution is to exhaustively iterate over all possible solutions
by conducting dense trajectory sampling. [4] proposed a planner that sampled
trajectories on a road lattice. To prevent exponential blowup of trajectories, the
author adopted a scheme to trim trajectories that ended at a similar vehicle
state. Based on this work, [7] reduced the computation by sampling fewer paths
but post-optimizating the trajectories. The disadvantage of sampling-based ap-
proaches is that effort is wasted, since most of the trajectories generated will
eventually be discarded. Our proposed approach addresses these issues. A se-
quence of high-level actions that encrypts desirable maneuvers is found first and
serves as guidance to a focused yet modest amount of trajectory sampling and
search.

The rest of this paper is structured as follows. Section 2 presents a few as-
sumptions to focus our work on motion planning. Section 3 introduces an action-
based coarse trajectory-planning scheme amenable to Dynamic Programming.
Section 4 explains focused trajectory search for fine trajectory planning. Section
5 explains the implementation details and compares our algorithm with state-of-
the-art alternatives. Section 6 presents simulation results in our test scenarios.

2 Assumptions

In order to focus our work on motion planning, we will make the following
assumptions.

590 T. Gu and J.M. Dolan

Assumption 1. Perfect Perception

Perception is perfect in the sense that static obstacles are stable, and dynamic
obstacles can be precisely predicted.

We use the road state lattice for our planer. It is convenient to use a road
coordinate system, so that every interesting point can be indexed by station and
latitude. Moreover, vehicle shape has been convolved to the map, so that we can
plan a trajectory for a fixed point on the car body without evaluating the entire
trajectory for collision checking of the sides and front/rear bumper.

Assumption 2. Perfect Tracker

A low-level tracking module that perfectly executes the planned trajectory is
assumed, so that the safety is guaranteed if the trajectory is safe.

3 Action-Based Coarse Trajectory Planning

A human driver doesn’t have a precise trajectory in mind when driving; instead,
s/he would normally have a rough idea about how to avoid an obstacle, or how
fast to overtake the vehicle in front. Based on this insight, we would like our
planner to find a sequence of actions that describes a rough maneuver first.

Time-dimension discretization naturally gives us stages of the planning pro-
cess at each time increment. The state space (manifold) is defined that describes
the vehicle’s state at every stage. The process now only demands choosing an ac-
tion at each stage. The above two characteristics (staged & action-based) satisfy
the requirements of applying Dynamic Programming (DP) algorithms.

3.1 State and Action Space

The state space includes station (s) and latitude (I) dimensions to represent the
vehicle’s location in road coordinates, Fig.1. Given the discretized centerline,

[e(5) Ye(s) Oc(s) Fe(s)]

the following equations are used to construct the on-road state lattice according
to the centerline:

x(s,1) = xc(s) + 1 - cos(6:(s))

y(s,1) = ye(s) + 1 - sin(0c(s)) (1)
0(s,1) = 0.(1)

ks, 1) = (ke()~H +)7

where s is the station, [is the lateral offset from the centerline.

For highway driving, the longitudinal velocity component dominates the lat-
eral velocity component. We introduce longitudinal velocity (vj.,) as another
dimension in state space. The addition of the velocity dimension diversifies our

On-Road Motion Planning for Autonomous Vehicles 591

Easting (X)

Fig. 1. Cordinates and Parameters

state space, hense The optimization process becomes more informed, since ve-
locity serves as one of the most important indicators of the quality of driving.

Define Mt as a three-dimensional state manifold at stage ¢;, and state X,
where

. 4T . .
Xto= sttt 17, Xt e MY (2)
An action A% is a function of state, A" € U(X"). It leads to a state transition,

ti
represented as T(X', At) 1 Xt 25 xtin

3.2 Cost Functions

For each state transition T'(X ", A*), a cost criterion C'(X", A") is specified to
penalize undesirable action effects. The optimality achieved by the DP algorithm
is with respect to the linear addition of the cost terms in table 1:

C(Xti) Ati) =Cd t+ Coffset T Cupn T Caton T Carar T Cobstacle (3)

A few cost terms are devised to characterize good behavior. The philosophy is
to create as few and as decoupled cost terms as possible so that the tuning can
be intuitive.

3.3 Dynamic Programming Algorithm
The solution to a DP problem is a sequence of actions { A%} that minimize

INyime

> pro(xt, A (4)

t=to
where state transitions are subject to

Xt = T(x" A% 6

592 T. Gu and J.M. Dolan

Table 1. Cost Terms

Description Parameter c Expression
Distance wq - d d = /(zti+1r — gti)2 + (ytitr — yti)2
Lateral Offset Woffset - Of fset of fset = lti“;'lti
Longitudinal Velocity W, * Vion Vion = Vhorizon — “ti+12+“ti
Longitudinal Acceleration Way,,, * Alon Qlon = a't
Lateral Acceleration Wayy, * Alat Aot = "‘ti+12+"“ti . (“tiﬁzﬂti)2
Obstacle Wobstacle - Obstacle obstacle = Status(s'i+1,['i+1)

We find it reasonable to treat planning as a stateless process over time. Again,
taking the human driver as an example, s/he rarely (almost never) plans from
the past, e.g considering the path s/he has travelled. Human drivers always look
at the road in front and plan from the current state into the future.

This means that choosing actions in a given state is completely independent
of the past states. Statelessness (the Markov Property) allows us to exploit
Bellman’s Principle of Optimality to solve our dynamic programming problem.

Define

IN¢ime
Qi =min{ Y BOX' AN} i=0,1,2, .. tN,,. (6)
t=t;
Note that
'QNti'me = /BtNtime C(_XtNti'me , AtNti'me)’ AtNtime is NULL (7)

specifies the cost distribution on the manifold at stage ty,,, .. By assigning a
different distribution, we can specify the most desirable state at the final stage.
The Principle of Optimality tells us,

tNtim,e

0; = min{BHC(X4, A + 30 BO(X!, AN} (8)
t=tit1

=min(B"C(X", A")) + 2,41 (9)

After recursively finding the optimal actions for all state transitions, we can
quickly backtrace a sequence of actions from A% to A'Neime—t by feeding the
inital state.

3.4 Algorithm Features

Tuning parameters to get desirable maneuvers is an iterative learning process.
But with decoupled cost weight terms, this process is very intuitive.

On-Road Motion Planning for Autonomous Vehicles 593

The discount factor § plays an important role in the optimization process. If
the factor is small, so that transition costs from future states are very close to
zero, the trajectory ends very early. The implication is that the future states are
becoming untrustworthy such that the optimization would make no difference
for whether to continue or not. If the factor is close to 1, on the other hand, the
trajectory becomes aggressive.

To mitigate the ” Curse of Dimensionality”, our formulation constructs state
space with relatively low dimensionality and coarse resolution, and also a mod-
est action space. Yet it retains enough diversity to represent desirable on-road
maneuvers.

4 Focused Fine Trajectory Planning

The result of the previous section is a global plan in the form of a sequence of
desirable maneuvers, and a sequence of safe vehicle poses. Once this is given, we
need to generate one dynamically feasible smooth trajectory for the vehicle to
execute.

4.1 Path Generation

A path that satisfies nonholonomic constraints is given by

2(5) = 2(0) + /0 " cos(0(r))dr

y(5) = y(0) + / " sin(0(r))dr (10)
0

0(3) = 0(0) + i (5)

k(3) = po + P15 + p25® + P38 (+pa8* + psi?)

where 5 is the arc-length of the path, and the unknown parameters pg...ps and
sf. To solve the unknowns, we use the method proposed in [IJ.

[11] proved that quintic polynomial curvature guarantees the continuity of
both the curvature’s rate of change and its derivative, which leads to smooth
robot motions. While quintic polynomial paths are suitable for high-speed tra-
jectories, cubic polynomials are sufficient, even ideal, for low-speed trajectories
in that they will result in paths that are quicker in turning [10].

4.2 Velocity Profile Generation

Instead of using linear velocity profiles, as do many prior works, we use a cubic
function of time, which is smoother.

o(t) = qo + qut + qot® + gst® (11)

This relation naturally gives us analytical expressions for both acceleration and
length by differentiation and integration respectively. Given the travel time ¢y,
start velocity vo, start acceleration ag, end velocity vy and path length sy, we
can analytically express the remaining unknowns.

594 T. Gu and J.M. Dolan

4.3 Focused Trajectory Sampling and Evaluation

Unlike prior work [4][7], we don’t want to generate a large number of trajectories
that eventually will be discarded, nor do we want to generate trajectories that
are too long, and will not have the chance to be executed, since the planner is
replanning very fast.

A sampling center that guides the focused trajectory sampling must be deter-
mined. A sampling center is chosen as any of the states in the sequence of state
transitions solved by previous planning. We have two rules in choosing:

(1) The trajectory should last at least T seconds. T should be greater than
the planner’s replanning period, so that we will always have a safe trajectory.
We pick T = 1sec.

(2) The trajectory should be at least S meters long. S should be long enough
so that the path does not have undesirable features, e.g. the curvature and the
derivative of curvature may increase dramatically in the middle of a too-short
path. We pick S = bm.

Once the sampling center is picked, we conduct a random path and velocity pro-
file sampling and evaluation within this small region, and pick the best trajectory
with the minimum integral of the squared jerk.

5 Implementation and Analysis

5.1 Implementation

As explained in section 3, the states contain three components: station, lateral
offset and speed.

States are discretized to adapt the need for mimicking on-road driving maneu-
vers. AT, AS, AL, AV, are the units of our system discretization. Their values
need to be carefully specified. Starting with AT, we believe a second-level dis-
cretization will be enough for a coarse on-road trajectory plan, AT = 1s. AV
is the minimum speed difference of sampled speeds. Any v, = n - AV, where
integer n € [0, Ny). The finer AV is, the more accurate speed we can express.
For our purpose, we found that AV = 3m/s is a reasonable value. To decide
AS, we notice that for any vlt;n =ny - AV, vltmtl = ng - AV, where ni,ng are
integers. the difference ||vlt;;1 | = ||[n1 — no| - AV is always a multiple of
AV. Thus the minimum traversing station (other than zero) between two stages
is AS = AVQ'AT = 1.5m. For on-road driving, the lateral speed is much smaller
than the longitudinal component. We assume the maximum lateral velocity to
be 0.5m/s, thus set AL =0.5- AT = 0.5m.

The details are listed in Table 2.

An action on states takes effect on all three components. Particularly, a;
affects longitudinal velocity, as lateral offset, and a3 longitudinal velocity.

T (v A") 2 g0 = 013, + a3y - AT

on
T(1', A%) 1 = 1% 4 af - AT (12)
T(s', Al) : sttt = st pali - AT

ti
~ Vion

On-Road Motion Planning for Autonomous Vehicles 595

Table 2. Dimension Discretization List

Dimensions Time(s) Station(m) Lattitude(m) Velocity(m/s)

Horizon Hr =10 Hg =60 Hp, =5 Hy =27
Discretization AT =1 AS=1.5 AL =0.5 AV =3
Increments Np =10 Ng =40 N =10 Ny =10

To constrain the action space, we let a'ii =n ﬁ‘;, where integer ny € [—2,1]

tit1 t;
t; AL . ti _ Vion TVion
and ay = ng 47, where integer ny € [~1,1] and a3’ = “ton e,

Let P represent the number of possible state transitions from each state. We
use approximate equality, since these actions are not available to all states.

P =~ num(ny) - num(ng) = 12 (13)

5.2 Analysis

For the heuristics-based approaches [I3][6], it is hard to perform a direct compar-
ison on computation, since the authors did not provide a detailed computation
cost. On the other hand, we can compare to the sampling-based approaches [4]
[7], since the authors have provided the number of trajectories they evaluated
for each planning cycle.

Typically, trajectory evaluation is conducted in the following steps: (1) sample
on the trajectory; (2) perform collision checking for each sampled point; (3)
calculate the cost for each of the sampled points; (4) accumulate the cost for each
of the sampled points. For a fair comparison, we assume the same discretization
resolution, and suppose a realistic 10 points/trajectory sampling.

[7] specified the full search space at every cycle, thus suffered the ”Curse of
Dimensionality” with our resolution: 1,000,000 trajectories/cycle = 10,000,000
points/cycle.

[4] used a clever trimming scheme that constrains the search space while the
search proceeds, so that the search space does not blow up. Still, the author
had to maintain a complex data structure and had to evaluate about: 400,000
trajectories/cycle = 4,000,000 points/cycle.

For our approach, the focused fine planning only selects a fixed and small
number of trajectory samples (about 100), which is a trivial overhead. The major
computation occurs in calculating state transition in the action-based coarse
planning. The number of state transitions is given by [(Ns - N - Ny) - P| - Nt
= 480,000 transitions/cycle.

The computation required to calculate a state transition is similar to that of
conducting collision checking and calculating cost for a point. Comparing to [4]
and [7], we have a 8.3X and 20.8X speed-up respectively.

596 T. Gu and J.M. Dolan

Actually, it is nearly as efficient as if we were doing trajectory evaluation with
only one sample point, that is saving ~ N 1.100% computations for each trajectory
evaluation, where NV stands for the number of sampling points. In this sense, our
approach obviously wins out over the brute force sampling approaches.

6 Simulation Result

Four on-road situations were tested in simulation (Fig. 2).

Road Blockage: The car can reach a full stop just in time to avoid collision
with the blocking obstacle.

Static Obstacle Avoidance: The car will slightly nudge to the left, and de-
crease the speed a little bit to avoid collision.

Oncoming Vehicle Avoidance: The car will veer slightly to the right, and
meanwhile decrease the speed until the oncoming vehicle drives away.

Aggressive Merging Vehicle Avoidance: This scenario shows a rogue vehicle
trying to cross our lane. Our car comes to a stop smoothly, and gets back to
on-road driving when the moving vehicle is out of the way.

All sub-figures in Fig. 2 came from the same setting of the cost weights and
discount parameter.

= [l ==
— 2 -) .
- - -
(a) Road blockage (b) Static obstacle avoidance
2 5 S = o=
(¢) Oncoming vehicle avoidance (d) Aggressive merging vehicle avoidance

Fig. 2. Simulation Results with Time Steps Indicated

7 Conclusion

Most prior on-road motion planners have wasted a large amount of computa-
tion on arbitrary and unfocused sampling of trajectories. We provide a two-step
scheme that plans coarsely first, attempting to capture the gist of how human
drivers drive, namely not knowing the precise plan, but having a global sense of

On-Road Motion Planning for Autonomous Vehicles 597

how they should drive. Simulation has shown that our method can robustly han-
dle different dynamic on-road driving scenarios, some of which are challenging
even to human drivers.

Our immediate next step is to implement and test our planner on a real vehi-

cle, then robustify the scheme by making it capable of handling more complex
and realistic scenarios, for example, planning lane changes.

References

10.

11.

12.
13.

. Kelly, A., et al.: Reactive nonholonomic trajectory generation via parametric op-

timal control. International Journal of Robotics Research 22(7), 583-601 (2003)
Urmson, C., et al.: Autonomous driving in urban environments: Boss and the urban
challenge. J. Field Robotics 25(8), 425-466 (2008)

Montemerlo, M., et al.: Junior: The stanford entry in the urban challenge. J. Field
Robotics 25(9), 569-597 (2008)

McNaughton, M., et al.: Motion Planning for Autonomous Driving with a Confor-
mal Spatiotemporal Lattice. In: IEEE International Conference on Robotics and
Automation, vol. 1, pp. 4889-4895 (2011)

Pivtoraiko, M., et al.: Differentially constrained mobile robot motion planning in
state lattices. Journal of Field Robotics 26(3), 308-333 (2009)

. Werling, M., et al.: Optimal trajectory generation for dynamic street scenarios in

a frenét frame. In: ICRA, pp. 987-993 (2010)

Xu, W., et al.: A real-time motion planner with trajectory optimization for au-
tonomous vehicles. In: ICRA (2012)

Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning a*. Artif. Intell. 155(1-2),
93-146 (2004)

LaValle, S.M.: Planning algorithms. Cambridge University Press, Cambridge
(2006), http://planning.cs.uiuc.edu/

McNaughton, M.: Parallel algorithms for real-time motion planning. Ph.D. thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (July 2011)
Piazzi, A., Bianco, C.G.L.: Quintic G2-splines for trajectory planning of au-
tonomous vehicles. In: IEEE Intelligent Vehicles Symposium (2000)

Stentz, A.: The focussed d* algorithm for real-time replanning (1995)

Ziegler, J., Stiller, C.: Spatiotemporal state lattices for fast trajectory planning in
dynamic on-road driving scenarios. In: The International Conference on Intelligent
Robots and Systems (2009)

http://planning.cs.uiuc.edu/

	On-Road Motion Planning
for Autonomous Vehicles
	Introduction
	Motivation
	Related Work

	Assumptions
	Action-Based Coarse Trajectory Planning
	State and Action Space
	Cost Functions
	Dynamic Programming Algorithm
	Algorithm Features

	Focused Fine Trajectory Planning
	Path Generation
	Velocity Profile Generation
	Focused Trajectory Sampling and Evaluation

	Implementation and Analysis
	Implementation
	Analysis

	Simulation Result
	Conclusion
	References

