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INTRODUCTION s THE PURPOSE OF QUANTITATIVE
MODELS

Model fitting is an important part of all sciences that use
quantitative measurements. Experimenters often explore the
relationships between measures. Two subclasses of relation-
ship problems are as follows:

• Correlation problems: those in which we have a
collection of measures, all of interest in their own right, and
wish to see how and how strongly they are related.

• Regression problems: those in which one of the
measures, thedependentVariable, is of special interest, and
we wish to explore its relationship with the other variables.
These other variables may be called theindependent
Variables, the predictor Variables, or the coVariates. The
dependent variable may be a continuous numeric measure
such as a boiling point or a categorical measure such as a
classification into mutagenic and nonmutagenic.

We should emphasize that using the words ‘correlation
problem’ and ‘regression problem’ is not meant to tie these
problems to any particular statistical methodology. Having
a ‘correlation problem’ does not limit us to conventional
Pearson correlation coefficients. Log-linear models, for
example, measure the relationship between categorical
variables in multiway contingency tables.

Similarly, multiple linear regression is a methodology
useful for regression problems, but so also are nonlinear
regression, neural nets, recursive partitioning andk-nearest
neighbors, logistic regression, support vector machines and
discriminant analysis, to mention a few. All of these methods
aim to quantify the relationship between the predictors and
the dependent variable. We will use the term ‘regression
problem’ in this conceptual form and, when we want to
specialize to multiple linear regression using ordinary least
squares, will describe it as ‘OLS regression’.

Our focus is on regression problems. We will usey as
shorthand for the dependent variable andx for the collection
of predictors available. There are two distinct primary settings
in which we might want to do a regression study:

• Prediction problems:We may want to make predictions
of y for future cases where we knowx but do not knowy.
This for example is the problem faced with the Toxic
Substances Control Act (TSCA) list. This list contains many
tens of thousands of compounds, and there is a need to
identify those on the list that are potentially harmful. Only
a small fraction of the list however has any measured
biological properties, but all of them can be characterized

by chemical descriptors with relative ease. Using quantitative
structure-activity relationships (QSARs) fitted to this small
fraction to predict the toxicities of the much larger collection
is a potentially cost-effective way to try to sort the TSCA
compounds by their potential for harm. Later, we will use a
data set for predicting the boiling point of a set of compounds
on the TSCA list from some molecular descriptors.

• Effect quantification:We may want to gain an under-
standing of how the predictors enter into the relationship that
predicts y. We do not necessarily have candidate future
unknowns that we want to predict, we simply want to know
how each predictor drives the distribution ofy. This is the
setting seen in drug discovery, where the biological activity
y of each in a collection of compounds is measured, along
with molecular descriptorsx. Finding out which descriptors
x are associated with high and which with low biological
activity leads to a recipe for new compounds which are high
in the features associated positively with activity and low in
those associated with inactivity or with adverse side effects.

These two objectives are not always best served by the
same approaches. ‘Feature selection’skeeping those features
associated withy and ignoring those not associated withy
is very commonly a part of an analysis meant for effect
quantification but is not necessarily helpful if the objective
is prediction of future unknowns. For prediction, methods
such as partial least squares (PLS) and ridge regression (RR)
that retain all features but rein in their contributions are often
found to be more effective than those relying on feature
selection.

What Is Overfitting? Occam’s Razor, or the principle
of parsimony, calls for using models and procedures that
contain all that is necessary for the modeling but nothing
more. For example, if a regression model with 2 predictors
is enough to explainy, then no more than these two predictors
should be used. Going further, if the relationship can be
captured by a linear function in these two predictors (which
is described by 3 numberssthe intercept and two slopes),
then using a quadratic violates parsimony.

Overfitting is the use of models or procedures that violate
parsimonysthat is, that include more terms than are neces-
sary or use more complicated approaches than are necessary.
It is helpful to distinguish two types of overfitting:

• Using a model that is more flexible than it needs to be.
For example, a neural net is able to accommodate some
curvilinear relationships and so is more flexible than a simple
linear regression. But if it is used on a data set that conforms
to the linear model, it will add a level of complexity without* Corresponding author e-mail: doug@stat.umn.edu.
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any corresponding benefit in performance or, even worse,
with poorer performance than the simpler model.

• Using a model that includes irrelevant componentssfor
example a polynomial of excessive degree or a multiple linear
regression that has irrelevant as well as the needed predictors.

Overfitting is undesirable for a number of reasons.
• Adding predictors that perform no useful function means

that in future use of the regression to make predictions you
will need to measure and record these predictors so that you
can substitute their values in the model. This not only wastes
resources but also expands the possibilities for undetected
errors in databases to lead to prediction mistakes.

• In a feature selection problem, models that include
unneeded predictors lead to worse decisions. In drug
discovery for example, a mistaken decision to use the number
of NH2 groups in a QSAR model when this number is
actually irrelevant will lead to wrongly ignoring compounds
based on their irrelevant number of NH2 groups. Valuable
leads can be lost in this way.

• Adding irrelevant predictors can make predictions worse
because the coefficients fitted to them add random variation
to the subsequent predictions.

• The choice of model impacts its portability. At one
extreme, a one-predictor linear regression that captures a
relationship with the model is highly portable. Anyone
anywhere can apply your model to their data simply by
knowing two numberssthe values of the regression slope
and intercept. At the other extreme are models that are not
at all portable but can be effectively reproduced only by
reusing the modeler’s software and calibration data. A
fundamental requirement of science is that one experiment-
er’s results can be duplicated by another experimenter in
another location, so it needs no emphasis that where both
are valid more portable models are to be preferred to less
portable.

A Toy Example. To show some of the key issues, we
will use a simple data set, which was drawn to the author’s
attention by R. Dennis Cook. The data set, an oxidation
experiment from Franklin et al.,1 lists several variables; we
will use as dependent the percentage mole conversion of
naphthalene to phthalic anhydride. There are 80 cases. We
will work with a single predictor: the air-to-naphthalene ratio
in the charge.

Figure 1 is a scatterplot of these variables. A glance at
the plot is enough to warn that a simple linear regression
cannot capture the relationship. Modelers who favor linear
regression respond by looking for a transformation ofx and/
or y that might straighten the relationship. A log transforma-
tion of x stretches the scale on the left and compresses it on
the right, as this plot clearly calls for, and might be the first
thing tried. The result is shown in Figure 2, which also has
a fitted regression line for reference.

The log transformation seems fairly successful in making
the plot linear, and we will work with it and from here on
write y for the dependent phthalic hydride conversion fraction
andx for the natural-log-transformed air/naphthalene ratio.
Next, we split the data set into two samples by sorting the
pairs in ascending order ofx and separating out the odd-
numbered and the even-numbered cases. This way of splitting
ensures that the distribution ofx values of the two samples
is much the same.

We fitted various statistical models to the data. Each model
was fitted separately to the odd-number sample and to the
even-number sample, and its fit was assessed by applying it
to both samples. Reapplying the fit to the same data set (the
‘calibration set’) that was used to fit it is called ‘resubsti-
tution’ and is contrasted with ‘holdout’, which is applying
it to the other data set that was not involved in the fitting.

The first fit is a simple linear regression ofy on x. The
intercept and slope and their standard errors and R2 are
below. Also shown are two mean squares of the difference
between the actualy and its prediction. The resubstitution
mean square bases its predictions on the regression fitted to
that sample, and the holdout mean square bases its prediction
on the regression fitted to the other sample.

In both the odd- and even-number samples, the resubstitution
and holdout mean squares are very similar, showing that the

Figure 1.

odd-number
sample

even-number
sample

intercept 58.33 59.19
(s.e.) 2.91 3.06
slope 6.27 6.16
(s.e.) 1.01 1.04
R2 0.5036 0.4787
resubstitution mean square 15.80 18.06
holdout mean square 16.14 18.40
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same-sample and out-of-sample predictions are equally
precise. This is a hallmark of a parsimonious model, though
not a guarantee that the parsimonious model fits well.

Figure 2 showed that the log transformation had removed
much of the curvature but perhaps not all. We now use two
simplistic but illustrative alternative fitting methods to
address this concern. We will evaluate the fit of each with
three prediction mean squaressthe two used above and
augmented by a third:

• The leave-one-out (LOO) cross-validation mean square.
Like the resubstitution mean square, this also reuses the
calibration data as a test sample, but when predicting each
calibration case LOO removes it from the sample and refits
the model on the remaining cases, using the calibration
sample itself to simulate the prediction of future unknowns.

We will put the LOO and holdout measures together under
the label ‘out-of-sample’ measures to reflect the fact that
they are computed using cases that were withheld from the
selection and calibration of the model. This contrasts with
the ‘in-sample’ measure given by resubstitution.

The first more flexible fit is a nearest neighbor approachs
predict the y of any case to be the observedy of the
experiment with closestx and, in the event of tiedx’s, the
closest in time order. The three mean squares calculated using
each of the half-samples are as follows:

Several comments can be made here. The resubstitution error
is zero, since the calibration case most similar to any
calibration case is itself, which predicts it perfectly. While
extreme, this illustrates the general principle that the resub-
stitution estimate of any method overestimates its actual
performance and that the more flexible the method the more
overoptimistic the estimate.

Next, for both samples, the LOO mean square is similar
to but higher than the holdout estimate. This is despite the
fact that LOO is reusing the same data set while the holdout
is not. The reason is that LOO is actually a more stringent
test than holdout since a case’s nearest neighbor in LOO in

its own sample is on average slightly further away than is
its nearest neighbor in the other sample. This illustrates the
point that the LOO (which does not require a separate
validation sample) gives a serviceable and slightly conserva-
tive estimate of precision.

Finally, the holdout mean squares of the nearest neighbor
are both higher than those using the simple linear regres-
sions23.27 vs 16.14 for fitting to the even-number sample
and evaluating using the odd-number and 26.29 vs 18.4 for
fitting to the odd-number sample and evaluating using the
even-number. The nearest-neighbor approach therefore over-
fits the data. In this data set, using this more flexible model
to address concerns about nonlinearity costs more than the
nonlinearity it is meant to cure.

As an example of the other type of overfitting, we fitted
a quintic polynomial by least squares. The coefficients and
the t values testing whether the coefficient might be zero
are as follows:

The coefficients of the even-half fit and the odd-half fit are
utterly different to the point of not even having the same
sign. Further, when fitting the quintic to the odd-number
sample, the fifth power is significant at the 0.9% level, which
would lead many analysts to think that a fifth degree
polynomial fit was justified; fitting to the even-number
sample however gave no significance above the linear term.
This instability of the fitted model is disconcerting, given
the close matching of the two samples it is fitted to.

The three error measures for these fits are as follows:

• The resubstitution mean squares are lower than they were
for the linear regression, illustrating how adding even

Figure 2.

mean square odd-number sample even-number sample

resubstitution 0 0
holdout 23.37 26.29
leave-one-out 25.49 32.89

odd-number sample even-number sample

coeff t coeff t

linear 2921 2.71 -725 -0.56
quadratic -2132 -2.73 540 0.61
cubic 761 2.74 -190 -0.65
quartic -132 -2.75 32 0.68
quintic 9 2.76 -2 -0.70

mean square odd-number sample even-number sample

resubstitution 11.62 16.78
holdout 17.64 42.84
leave-one-out 13.43 18.98
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nonsense terms to a regression improves the apparent fit to
the data used in the calibration.

• The resubstitution and LOO error estimates agree much
better than in the 1-NN case. This is because the quintic
polynomial is less of an overfit than is the 1-NN.

• The holdout mean square for calibrating with the even-
number sample and testing with the odd is 17.64, higher than
was found using simple linear regression, illustrating that
adding unnecessary predictors, while reducing the resubsti-
tution error, can make holdout out-of-sample predictions
worse.

The holdout mean square for fitting with the odds and
verifying with the evens is enormous: 42.84. Most of this
comes from the last two cases. These are extrapolations for
the model calibrated using the odd-numbered cases, and the
terrible predictions are an illustration of the way high degree
polynomials explode outside the range in which they were
fitted.

This toy example illustrates the features of overfittings
the fit as measured by resubstitution of the overfitted model
is better than that of the more parsimonious model, but that
measured by holdout is worse. And while the LOO gave a
good picture of the ability of the model to generalize in five
of the six settings illustrated, it did not capture how the
overfitted regression would behave when used for severe
extrapolation.

It is important not to lose sight of the fact that overfitting
is not an absolute but involves a comparison. One model is
an overfit if its predictions are no better than those of another
simpler model. Thus to decide whether a model is overfitting,
it is necessary to compare it with other simpler models. The
original linear regression looked to be defensible if less than
ideal. Both the 1-NN and the quintic gave worse out-of-
sample predictions, whether measured by the independent
holdout or by LOO cross-validation. This means that both
these methods overfit this data set.

As this illustrates, the greater flexibility of the higher-
degree polynomial and the 1-NN approach is both a blessing
and a curse. It is a blessing in that it allows the fitted model
to capture a richer variety of relationships. It is a curse in
that it makes the fit more dependent on the individual

observations, which adds random variability and can lead
to worse predictions.

Interpolation and Extrapolation. Everyone knows that
extrapolation is dangerous and undesirable. However it is
not always obvious which predictions are extrapolations and
which interpolations and different modeling methods break
down in different ways when used to extrapolate.

To illustrate the first point, it is obvious that we are
extrapolating if any of the predictors is outside the range of
values covered by the calibration data. Extrapolations of this
type are easy to detect. Multivariate extrapolations however
are less easily seen. Figure 3 is a plot of4øPC (axis labeled
‘SPC4) versus5øPC (axis labeled SPC5) for the TSCA boiling
point data set. Note the three points are plotted with asterisks;
even though their4øPC and5øPC are within the range of values
spanned by the data set, they are multivariate extrapolations.
It is not obvious from the plot, but these points are more
than 4 standard deviations from the main cloud of points in
the northwest to southeast direction.

Gnanadesikan2 coined the label ‘Type B multivariate
outliers’ for these extrapolations to contrast them with the
‘Type A multivariate outliers’ that stick out in one or more
of the individual components and so are easily found by
simple range checks on the data. With just two predictors
of course, Type B outliers can easily be found in scatter plots
of the predictors such as Figure 3, but with three or more
predictors this is no longer effective. Numeric measures of
extrapolation are therefore highly valuable.

Different methods incur different kinds of errors in
extrapolation, so the modeling method also figures in the
degree to which extrapolation is dangerous.

When linear modeling methods such as conventional
regression extrapolate, their predictions increase or decrease
without limit and without regard to any physical bounds the
dependent might have. Extrapolations of linear models can
be catastrophically bad. Inverse distance weighted average
methods tend to give extrapolation that move toward the
grand mean of the calibration data. While not as bad as an
unbounded prediction, this is also a poor choice in settings
where there is a strong predictive model. Nearest neighbor
and recursive partitioning predict extrapolated cases using

Figure 3.
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the mean of some nearby calibration cases. This is generally
better than using the grand mean and better than a linear fit
for extreme extrapolation but worse for more moderate
extrapolation.

Assessment of Fit - - Known Statistical Results.While
high-degree polynomials are particularly prone to bad
extrapolation, there is no method that is entirely free of
suspicion when extrapolating. It is therefore helpful to use
measures of multivariate compatibility of the predictions to
recognize extrapolations where there are multiple predictors.

We can get at least a conceptual picture by looking at the
case of a single-predictor linear regression using the ‘nicest’
text-book statistical model

whereâ0 and â1 are the true intercept and slope, and the
true residuale follows a Gaussian distribution with zero mean
and constant varianceσ2. If you calibrate the regression using
a sample of sizen, the ‘unusualness’ of an arbitrary predictor
valuex (which may be thex of one of the cases, or somex
where a future prediction is to be made) is measured by its
‘leverage’

Leverage measures whether you are interpolating or
extrapolating. The minimum possible value ofh is 1/n and
corresponds to the best possible degree of interpolation.
Values ofx that fit comfortably within the calibration set
have small leverage, and those outside the set have large
leverage. The leverageh carries over into the multiple
predictor multiple regression setting with the same general
interpretation but a more complicated formula. If you fit a
multiple regression withp coefficients, the leverage of the
cases in the calibration data set will average to exactlyp/n.
There is a common heuristic to classify a positionx as low
or high leverage according to whether theirh is below or
above 2p/n.

Leverage is highly relevant to assessment of multiple
regression fit because

• The resubstitution fitted residual of one of the cases used
in the calibration will have a varianceσ2(1 - h), whereh is
that case’s leverage.

• Using the fitted regression to predict they of some future
case, or of a holdout case, gives a prediction error with
varianceσ2(1 + h).

This means that high leverage cases in the calibration data
will conform to the fitted regression very (and unrealistically)
well. But if you wish to use the fitted regression to make a
prediction of a future case with that same leverage, the
prediction is likely to be quite poor. Looking at the mean
squared errors of prediction and the properties of the leverage
h, this shows the well-known result that the resubstitution
mean square in multiple regression has an expected value
of σ2(1 - p/n) while with evenly spread cases, the out-of-
sample mean squared error is, to a rough approximation,
σ2(1 + p/n). If p/n is small, the two measures will be quite
similar, but if p/n is large the resubstitution mean square
will be much lower than the LOO. This is shown in the
naphthalene data where the linear regression (p ) 2) had

similar values for the two measures, the ratio of the holdout
to the resubstitution mean square being 1.02, very close to
1, but the quintic polynomial (p ) 6) showed much bigger
differences, the ratio being around 1.15.

Large values ofh are a warning of extrapolation and
unreliable prediction. For example, when fitting the quintic
polynomial to the odd-numbered compounds in the naph-
thalene data set, the largest of the hold-out even-numbered
compounds had a leverage of 15, so it is no surprise that it
was predicted so badly.

While these neat algebraic properties do not carry over to
other modeling methods, the concepts do. Any modeling
method that gives unbiased estimates will give residuals
whose variance is of the formσ2(1 - h), where h is a
function of the case’s position and of the flexibility of the
method. A flexible method adapts well to each case in the
data set. This implies that each case has a high leverageh.
This is illustrated by the nearest neighbor fit to the
naphthalene data. This fits one constant per observation, so
p ) n and the resubstitution errors are all zero.

In general, when we apply a fitted model to some future
case that was not in the calibration data set, the error of
prediction will have a variance that we can conceptualize as
σ2(1 + h) whereh measures the atypicality of the case and
is also a function of the modeling method. In the nearest-
neighbor prediction, all cases haveh ) 1, so the prediction
error variance is 2σ2.

A large difference between the resubstitution error variance
and one obtained by either cross-validation or an independent
holdout sample is a hallmark of a largeh settingsthe ratio
of the number of tunable parameters to the sample size is
large. This is not exactly the same thing as overfitting, though
the two are very close. A model whose resubstitution error
is much smaller than that of a holdout is suspect of being
overfitted, but the converse is not true. An overfitted model
could give quite similar values for the resubstitution and a
holdout error. For example in the naphthalene data regression
using a quadratic does not fit appreciably better than a linear
function and so is an overfit, even though it gives quite
similar resubstitution and holdout error variances.

Yaffe et al.3 describe the use of a classification procedure
to predict aqueous solubility of organic compounds. In a
calibration set of sizen ) 437, the resubstitution errors have
a standard deviation of 0.0045. An independent holdout data
set of size 78 gives prediction errors with a standard deviation
of 0.16, which is larger by a factor of 35. The vast difference
between these two estimates of error is an indication that
the modeling method has close to one parameter per
observation. While this certainly raises the suspicion that the
model overfits, a final judgment would have to be by whether
there was some simpler model that described the data equally
well or whether this high level of model flexibility really
was required.

How To Assess the Fit of a Model.After a model has
been fitted, there is the question of assessing its quality. This
actually involves a number of elements, not all of which are
widely recognized.

• Is the form of the model appropriate?
This issue is illustrated by the naphthalene data, with the

phthalic anhydride as dependent, and the air/naphthalene ratio
as predictor. One could blindly fit a linear regression on the
untransformed scale of air/naphthalene. Fitted to one-half

y ) â0 + â1x + e

h ) 1
n

+
(x - xj)2

∑(xi - xj)2
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and evaluated on the other, this gives mean squared predic-
tion errors of 21.5 for each half. This is well above the figures
we get with the transformedx, illustrating the fact that the
natural scale of the predictor is less effective than the log
scale. But there is a deeper concernsbias. Like the stopped
clock which gives the right time twice a day, the natural
scale regression is unbiased at two levels of air/naphthalene
ratiosat about 5 and 80, but at all other values of the ratio
its predictions are systematically biased.

Note that getting the right scale (natural or transformed)
for a predictor is obviously important in ‘global fit’ methods
such as multiple regression but matters even in more model-
free methods such as the nearest neighbor since a case’s
neighbors on the log scale of a predictor may differ from
those on the natural scale.

Texts on regression modeling like Cook and Weisberg4

stress the value of graphical and numeric checks for
curvature, outliers, extrapolations and the like, and it is a
good idea in any modeling exercise to run graphic checks
such as plots of the residuals versus the predicted values
and the individual predictors to screen problems such as
these.

• What are sensible measures of fit?
There is a tendency to use mean-square-based measures

of fit of models, such as the residual standard deviation or
some form of R2. These measures are not particularly
appropriate if the variability of the data is not constant. So,
for example, if the variance ofy increases with its mean (as
is extremely common) measures involving mean squares
(including R2) tend to be overwhelmed by whatever is
occurring at the high end of they scale. Once again, this
question is best dealt with by some graphical checks, possibly
followed by a transformation. For example, ify has a constant
coefficient of variation, then it may make sense to work with
y on a logarithmic scale.

• Assuming that we have solved problems of model form
and suitability of fit measures, how do we measure the fit?

The common situation is that we want to measure fit using
a mean-squared-based measure such as the residual standard
deviation or perhaps some form of R2. Since prediction of
future unknowns will lead to a prediction error with a
variance of the generic formσ2(1 + h) whereh is some
leverage-like quantity reflecting random variability in the
fitting procedure, it makes logical sense to use a mean square
of prediction error as the measure of fit. Despite having a
number of known deficiencies however, R2 is the most
widely used measure of fit, and so we will concentrate
discussion on assessment using variants of R2 with the
general comment that the broad conclusions apply also to
measures based on variance of prediction.

Let yi be the value of the dependent observed on theith
of some collection of sizem cases (we will call this set the
‘assessment set’) being used to assess the model fit. Write
ŷi for the prediction ofyi given by some model andyj for
the mean of they’s. The sum of squared deviations from
the mean is

The sum of squares of the prediction errors is

We can define a squared correlation by

Several choices of the assessment set come to mind.
• The resubstitution estimate obtained from plugging in

the same data that were used to fit the model.
• Use of an independent holdout test sample that was not

hitherto used in the modeling process.
• Some form of sample reuse in which the same cases are

used both in calibration and as holdout test cases. The best-
known of these methods is ‘leave-one-out’ or LOO cross-
validation.

It has long been known that resubstitution always over-
estimates the quality of the fit and can be abysmal. In the
case of multiple regression, there is enough known theory
to make resubstitution workable: this is done by the standard
degrees of freedom correction of estimating the variance from
SSP/(n-p) and not SSP/n. More generally, in the class of
‘linear smoothers’ (for example splines) in which eachŷi is
a linear combination of the observedy’s it is possible to work
out the divisor for SSP that will remove the bias in the
resubstitution estimate. However outside this very limited
setting the resubstitution error is generally too biased to be
worth using.

The use of an independent holdout sample is intellectually
attractive. If the model was fitted paying no attention to the
holdout sample, and can nevertheless predict the holdouts,
then the model must generalize well and conversely.
However getting reliable information from the independent
holdout sample requires that it be large.

Another Example. A data set on the prediction of the
boiling points of 1037 compounds from the TSCA inventory
using 40 topostructural indices was discussed in Hawkins et
al.5 We will use this data set as a test bed for some
experiments. Of the 40 indices, 10 had the same values in
all but a handful of the compounds, and for purposes of our
experiments we eliminated them from the data set and
continued with the remaining 30. A multiple regression gives
a model that predicts the boiling point with a standard
deviation of 38°C, and R2 ) 0.83. Table 1 shows the fitted
coefficients. Those coefficients that are statistically signifi-
cant at the 0.1% level are highlighted with three stars. These
are predictors that are valuable in predicting boiling point
regardless of what other predictors are used, and if predictors
are to be removed these predictors should not be among
them. The remaining predictors are indeterminate; it may
be that they are irrelevant to predicting BP, or it could be
that they are valuable but that their predictive power dupli-
cates that of other predictors.

This model is better than it might seem. There are many
pairs of compounds with identical values for all predictors;
these different compounds with identical descriptors will
necessarily get identical predicted boiling points whatever
approach is used to set up the prediction. This means that
the variation in boiling points of compounds with the
identical values on all predictors puts a limit on the attainable
predictive accuracy of any and all models. This limit turns

SSD) ∑
i)1

m

(yi - yj)2

SSP) ∑
i)1

m

(yi - ŷi)
2

R2 ) 1 - SSP
SSD
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out to be R2 ) 0.888, a mathematical bound not far above
the 0.83 attained by the multiple regression model.

Regression diagnostics (as outlined in ref 4) show some
concernssthere are a few unusually influential cases and
large residuals, but nothing so striking as to call for a dif-
ferent model. In fact (as shown in previous writing on this
data set) we can get better fits using more sophisticated fitting
methods such as partial least squares or ridge regression,
but the plain multiple regression fits well enough to illustrate
our main points.

Holdout Samples.This model’s explained variance betters
that of many in the literature. Can we recognize its quality
from holdout samples? In view of the large sample size of
1037 compounds relative to the 30 predictors (p/n ) 0.03)
and the use of a rigid modeling method we will assume that
the predicted value given by this full regression gives the
‘true’ value for y and that there is no fitting random
variability to speak of.

Let us then take random samples of various sizes to assess
the model fit. As these are samples taken from the pool of
1037, they are not really holdout samples, but this is not
vital for two reasonssthat they form just a tiny fraction of
the pool and that in any event as partial resubstitutions they
tend to overstate predictive ability.

We used random samples of sizem ) 5, 10, 15, 20 and
50, drawing 1000 samples of each size and computing SSD,
SSP and R2. The box and whisker plot in Figure 4 shows
the spread of the R2 values. The plot has been truncated at
zero; 8% of the R2 for m ) 5 were negative along with a
smattering of those form ) 10 and 15. Another quarter of
the values form ) 5 were higher than the mathematically
maximum attainable value of 0.89.

At all m values there is substantial random variability in
the R2 values, though as expected this reduces substantially
with the size of the validation set.

The true R2 is 0.83; the averages of the estimates from
the different sample sizes are as follows:

This brings out another pointsthat the estimates of R2

from these modest-sized holdout samples are downward
biased.

The conclusion one draws from this is that small inde-
pendent holdout samples are all but worthless in assessing

model fit. They are not reliably able to recognize a good
model when they see one, are substantially biased, and have
large random variability.

Large holdout samples do not have this concern; them )
50 holdouts had quartiles of 0.79 and 0.87 for their R2

estimates, suggesting that using holdout samples at least
this large should generally give acceptably accurate estimates
of R2.

Correct Use of the Holdout Sample.As an aside, a mistake
sometimes made when using holdout samples is the use of
measures of the quality of fit that involve some sort of
postprocessing to match the ‘raw’ predictions coming out
of the model to the actual values of the holdout samples. As
you do not know they value of real future unknowns,
postprocessing of the predictions is impossible and measures
that use postprocessing are invalid. This mistake can be quite
subtle. For example Selwood et al.6 discussed a QSAR to
predict biological activity using 16 compounds to calibrate
and an independent 15 holdout samples to validate. Figure
5 is a plot of the observed versus the predicted values using
their fitted model.

Along with the points, the plot also shows separate
regression lines of the two sets. The regression line for the
calibration data is the 45° line through the origin, but that
for the validation data is much different.

The authors note that three of the validation compounds
are visual outliers and argue that their chemical structure is
different than the remaining compounds and that they can
validly be excluded. This sort of argument is generally
somewhat suspect, in that after the fact it is always easy to
see ways in which some cases differ from the others. It also
begs the question of how we would have known not to apply
the model to these three compounds if this had truly been a
set of future unknowns. However even if we accept that
argument and delete these three cases, the predictions are
quite poor-SSD ) 7.28, SSP) 4.86, R2 ) 0.33. The
paper’s opposite conclusion, that the overall fit is quite good,
rests on a freshly fitted regression line including the
validation compounds. This sort of postprocessing negates
the status of the holdout sample and is invalid.

An extreme form of inappropriate measure is the correla-
tion coefficient between the predicted and observed values
in the validation sample. As the correlation coefficient pre-
supposes that you will fit an intercept and slope to the data
(which is obviously impossible in the prediction setting), this
is an invalid measure that cannot be used. The correct use
of the hold-out validation sample is through raw, untuned
deviations between the observed values and those predicted
by the model.

Sample Reuse Cross-Validation.There are settings in
which one might feel comfortable in holding back 50 or 100
cases as a truly independent test set, but these settings are
not the norm in QSAR work where more commonly sample
sizes are small. This leads to the third possibility, of a sample
reuse. In this, we repeatedly split outm of the cases for
validation and fit the model using the remainingn-mcases.
The overall model fit is then assessed by putting together
the hold-out predictions of the different groups of sizem.
Generally, we cycle through the cases so that each case gets
to be in one of the validation groups. A common example
of reuse is ‘leave-one-out’ (LOO) cross-validation in which
m ) 1, and each sample in turn is left out and predicted

Table 1. Full Regression

term coefficient significance term coefficient significance

constant -1118.28 5ø 61.77
IW

D -682.59 6ø 117.61 ***
Ih D

W -2513.46 3øC -182.33 ***
W 737.39 4øPC -30.21
ID 3908.96 *** 5øPC 5.47
HV 78.17 6øPC 43.89
HD 3554.99 P0 -6503.95 ***
IC 34.89 P1 312.22
O -22.57 *** P2 308.04
M1 1796.82 P3 -53.91
M2 -1292.80 *** P4 -78.57 ***
0ø 2401.96 *** P5 -29.71
1ø 1525.82 P6 -26.79
2ø 297.44 P7 -13.49 ***
3ø 313.56 *** J -32.94
4ø 137.12

m 5 10 15 20 50
mean R2 0.62 0.74 0.78 0.80 0.82
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from a model fitted to the remainingn - 1 cases. Another
common example is 10-fold cross-validation in whichm )
n/10. Here the sample is randomly split into 10 groups. Ten
model fits are performed, omitting each of the 10 groups in
turn and predicting it from the cases in the remaining 9. At
the cost of more computation but leading to intuitively better
results, one can repeat a 10-fold cross-validation several times
making different random splits into the 10 groups.

Leave-One-Out.There is a widespread perception in the
modeling community that cross-validation (and in particular
LOO) is a poor method of verifying the fit of a model. We
can test this empirically using the TSCA boiling point data.
We made a two-part experiment. In one, we repeatedly took
a random calibration sample of 100 compounds and fitted
the linear regression to predict boiling point, assessing the
quality of the fit in the following two ways:

• Using the R2 of an independent holdout sample of size
50

• Using the ‘gold standard’ of applying the fitted regression
to all 937 remaining compounds in the set and calculating
the true R2.

In the second part, we merged the two data sets into a
single data set of size 150 which we used for the calibration
and then tested the fit using LOO cross-validation. The
measures of fit for this step are as follows:

• The q2 of the 150 cases
• The gold standard of applying this fitted regression to

the remaining 937 compounds in the set and calculating the
true R2.

Each random sample therefore gives rise to two fitted
models, each of which is assessed with two measures.

Some details need attention. As we are randomly sampling
quite a small set of calibration compounds, there are probably
going to be large extrapolations, something that linear
regression does not do well. To handle these sensibly, when
a prediction was to be made, the leverage of the predicted
point was calculated. If the leverage was less than 2, then
the regression prediction was used. If the leverage was bigger
than 2, then the average of all calibration data was used as
the prediction.

Using plain least squares multiple regression with this sim-
ple safeguard against wild extrapolation is chosen deliber-

Figure 4.

Figure 5.
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ately, not because it is a cutting-edge technology but because
it is so routine that a similar experiment could be performed
by anyone with basic statistical computation capability.

The results of 300 such random samplings give the
following distribution of the squared multiple correlations:

The main features of this table are as follows:
• That the true R2 of the models fitted using 150

compounds are higher than those fitted using 100 com-
pounds, averaging 0.72 versus 0.61. They are also much less
variable from one random calibration set to another, having
a standard deviation hardly more than half the size. Of course
that you can fit better and more stable models if you use
more data is neither surprising nor new, so this observation
merely confirms what one would expect.

• That both theq2 values and the holdout R2 values average
close to the true quantities that they are estimating. Thus
neither is biased.

• That theq2 values vary substantially less than do the
holdout R2 values going from one random pick of calibration
compounds to another. This is also a sample size issue;
LOO’s holdout sample of size 150 is treble that of the 50
independent holdout cases, so its much lower random
variability is again not surprising.

Whether from the viewpoint of getting a better model or
from that of more reliably assessing the quality of your
model, the conclusion is that if you have 150 compounds
available, you will do better using all of them to fit the model
and then cross-validating to assess fit than if you were to
use 100 of them to fit and hold out 50 to validate. By
maximizing both the sample size used for fitting and that
used for validation, LOO is better by both criteria than
splitting the data into separate calibration and validation sets.

To explore this conclusion in a different setting, we chose
a small (8 predictor) and less predictive set of features whose
multiple regression in the full data set gives R2 ) 0.57 and
repeated the experiment. This gave

This set of runs duplicated all the features seen in the earlier
set, confirming, in this more marginally descriptive multiple
regression, that using all compounds for fitting and using
cross-validation gives better regressions (higher true R2) with
equally reliable self-assessment (q2 centers on the true R2),
and the assessment is more stable than that of the holdout
(standard deviation of 0.077 less than half of 0.169).

k-Nearest Neighbors.The broad conclusions are not
confined to least squares regression. Consider for example
k-nearest neighbor prediction in which the boiling point of
a compound is predicted to be the average of the boiling

points of thek compounds closest to it in predictor space.
There is one explicit parameter to fix ink-NNsthe sizek of
the pool of neighbors to use in the prediction. The bestk is
commonly established using a cross-validation, but good
results can be obtained much more simply by noting that
the random error on predicting an unknown using thek-NN
approach will be the random error in the mean ofk
observations plus the random deviation between the boiling
point of the compound itself and the overall mean boiling
point for a compound of that composition. Standard results
on the variance of a difference then show that the prediction
error has standard deviationσ x1+1/k. Unlessk is 1 or 2,
this standard deviation will be dominated by the leading ‘1+’
term, and largerk will give little improvement in prediction
precision, while greatly adding to the potential for bias from
an overly large neighborhood. We therefore used a fixed
value ofk ) 4 nearest neighbors in simulations of random
calibration subsets of size 150 compounds used to predict
the boiling point. Theq2 and true R2 of 30 random sets gave

As with the least-squares regression modeling, there is no
hint of systematic bias between theq2 and the true R2 values
and no reason to doubt the veracity ofq2 as an indicator of
the R2 of the fitted model.

Use Multiple Regression or k-NN?This is not a methods
comparison paper, but these results invite some comment
on whether the multiple regression or thek-nearest neighbor
is the better modeling method. Each has advantages and
drawbacks. Both are easy to implement. The regression
model wins on portability in that the coefficients of Table 1
allow it to be applied to any future data set, whereas applying
k-NN would require access to the calibration data set. This
simple k-NN matches or exceeds the prediction accuracy
obtained using plain multiple regression, making it competi-
tive as a prediction tool for this data set, particularly in view
of its not needing much checking of model assumptions.
Regression has the advantage of an explicit function relating
the dependent variable to each predictor. In some settingss
for example drug discoverysthis information rather than the
ability to predict future compounds may be the main
objective, and this leads to favoring methods such as
regression or recursive partitioning that assign value to
predictors explicitly. In other settings where the objective is
prediction this benefit may have no value and the simplicity
of k-NN may prevail.

Feature Selection.Feature selection is a step carried out
in many analyses of reducing an initial too-large set of
predictors down to some smaller number that are felt to
include all the predictors that matter. There are two reasons
for doing a feature selection: if the fitted model is to be
interpreted (as for example in drug design problems), then
it is clearly advisable to avoid interpreting nonexistent effects,
and this suggests trying to find and eliminate predictors that
are not paying their way. The other reason is the hope that
better predictions can be made from a model trimmed down
to just the relevant terms. While both these reasons are valid,
their end result is less so. Feature selection inevitably makes
some errors of each typesselecting features that are not

calibrate using

150 cases and
cross-validate

100 cases and validate
with an independent 50

true R2 q2 true R2 holdout R2

mean 0.7213 0.7140 0.6103 0.5968
sd 0.0395 0.0699 0.0713 0.1472

calibrate using

150 cases and
cross-validate

100 cases and validate
with an independent 50

true R2 q2 true R2 holdout R2

mean 0.5073 0.5016 0.4838 0.4614
sd 0.0315 0.0772 0.0454 0.1689

true R2 q2

mean 0.7383 0.7350
sd 0.0196 0.0532
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actually relevant and omitting features that aresand over-
states the value of the features that end up selected. On the
prediction side, methods such as subset regression have fared
poorly7 in comparison with methods such as PLS and ridge
regression that keep all predictors.

However putting this aside and focusing on the validation
of fits, feature selection is a potent source of possible
validation mistakessas illustrated by the widely referenced
Rencher and Pun8sbut one that is often mentioned only in
passing or overlooked altogether in publications.

The TSCA data set can be used to illustrate feature
selection. We repeatedly took random samples of 50 calibra-
tion cases and looked for the best subset of predictors to
use in a multiple regression. This sample size of 50ssmaller
than we used for the earlier experimentsswas chosen
because it is in the small-sample setting that one typically
feels the greatest need to reduce the size of the feature set.

There are too many predictors (30) for ‘all subsets’
regression to be really workable in a repeated resampling
setting, so we used a search with 10 000 random starts
followed by refinement that seeks the best subset of each
size from 3 through 14. While this search is not as reliable
as an all-subsets search, it is much less likely than methods
such as stepwise regression, forward selection or backward
elimination to get trapped in a poor local optimum. We used
as a final model the largest regression all of whose predictors
had absolutet values in excess of 2, imitating common
practice in regression subsetting.

The first five of these regressions all retained 4, 5 or 6
predictors. Their resubstitution R2 and the true R2 given by
applying them to the remainder of the data set were as
follows. Also shown is a ‘naı¨ve q2’ obtained by taking the
features selected by the subset search and then refitting that
regression omitting each case in turn and predicting it from
the rest.

Clearly the resubstitution R2 has a large upward bias. Perhaps
most striking is the last sample, where the resubstitution 0.94
exceeds the 0.888 mathematical upper bound attainable in
this data set. It is also striking that, though the naı¨ve q2 is a
bit smaller than the resubstitution R2 in all five samples, it
is far above the true R2.

This might seem to indicate a failure of the LOO cross-
validation. In fact it is a result of leaving the validation until
too late in the process. Once the optimal variables for a
calibration sample have been selected, most of the optimistic
performance bias has been introduced, and all the cross-
validation can do at that stage is remove the modest bias
caused by tuning the coefficients to the calibration data.

A correct LOO cross-validation can be done by moving
the delete-and-predict stepinsidethe subset search loop. In
other words, we take the sample of sizen, remove one case,
search for the best subset regression on the remainingn-1
cases and apply this subset regression to predict the hold-
out case. Repeat for each of the cases in turn, getting a true
hold-out prediction for each of the cases. Use these holdouts
to measure the fit.

The result of doing this is summarized in Figure 6sa box
and whisker plot obtained from repeating this sampling and
fitting process 20 times. The four boxes are for the
resubstitution R2, the naı¨veq2 obtained by taking the feature
subset as given and just doing the leave-out for the final
stage of fitting the coefficients, the true R2, and the honest
q2 given by omitting the hold-out compound from the feature
selection as well as the regression fitting phase.

The picture is quite clear. The resubstitution estimate of
precision is hopelessly optimistic, and doing LOO without
redoing the feature search hardly improves it. LOO cross-
validation provides an honest picture of the predictive power
of the subset model only when the hold-out step includes a
fresh feature selection search.

As an aside on the errors of thinning out the features, the
multiple regression shown in Table 1 using all the data found
10 highly significant predictors, indicating that regardless
of which of the other predictors might be used, these 10 are
clearly needed. Most of the subset fits ended up using 7 or
fewer features, so that many important features were left out.

Figure 6.

resubstitution R2 true R2 naı̈veq2

0.86 0.73 0.82
0.89 0.74 0.83
0.87 0.72 0.84
0.88 0.72 0.83
0.94 0.69 0.93
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The effect of leaving them out is that features that were
selected and that correlate with the omitted features in this
data set are made to do double duty. Their coefficients reflect
not only their own impact on BP but also a component
coming from their attempt to ‘explain’ any correlated features
that were erroneously left out of the model. The regression
with the highest true R2, 0.77, found in these 20 searches
was

This regression uses only two of the 10 ‘must have’
predictors shown in Table 1, omitting the other eight and
instead including four more marginal ones. Its coefficients
are also substantially different than those seen in the full
regression.

Wrapup on LOO. Statistical theory (summarized in ref
9) predicts that LOO will generally perform well, if
somewhat conservatively in that it is predicted to somewhat
understate the actual predictive performance of the fitted
model. The experiments reported here are consistent with
the theory. It is essential though that the leave-out encompass
the entire model fitting operation and not just the last stage
of fine-tuning coefficients.

LOO does however have two blind spots. If the compound
collection is made up of a few core chemical compositions,
each of which is represented by several compounds of nearly
identical compositionx, then the operation of removing any
single compound will not be sufficient to get its influence
out of the data set, because of the fraternal twin(s) still in
the calibration. Under these circumstances, LOO will over-
state the quality of the fit. This situation is quite common in
drug discovery data sets, where each promising lead com-
pound will be accompanied by a host of others with just
minor differences in molecular structure and with generally
very similar biological activity.

The opposite situation arises if the calibration data set
consists of extreme compounds, each of which is an
extrapolation from the set remaining if it is excluded. Under
these conditions LOO will suggest a poor fit, whereas the
fit may be good. A calibration data set comprising extreme
compounds is in fact exactly what experimental design
criteria such as D optimality or space filling attempt to find.
As a straight line is better determined by points the further
apart they are, using compounds at the edges of descriptor
space makes for better future predictions in that future
compounds are likely to be interpolates of the calibration
set, and D-optimality seeks compounds as far out to the edges
of descriptor space as it can find. However when any of the
D-optimal points is omitted in LOO it is likely to be an
extrapolation from the remaining sample, and the LOO
criterion will suggest unrealistically poor model fit for the
real future unknowns, which will mainly be interpolates.

Leave-Several-Out Cross-Validation.The main concern
with LOO is its potential breakdown if it is applied to a
collection containing two or more close analogues of each
of some basic molecule types. It may also be unattractive in
large data sets because of its computational cost, which is
directly proportional to the sample size. A potential remedy
for both these difficulties is a cross-validation in which not

one but several compounds are left out and predicted using
the remainder of the data.

A popular method of this type is 10-fold cross-validation,
in which the available sample is split into 10 groups of equal
size. A model is fitted to the entire sample, followed by 10
fresh fits. In each of these, one group is omitted, modeling
performed on the other 9, and the holdout group is predicted.
If there is some concern about the randomness involved in
the ten-way split (for example because the sample size is
modest), then the random splitting and fitting can be repeated.

Applying this method to the TSCA boiling point data set,
we generated random data sets of size 150 for use in fitting
and testing the ‘high R2’ and the ‘low R2’ models. In each
run, we split the 150 compounds into 10 groups of size 15
and performed the 10-fold cross-validation. The results were
as follows:

In both settings, the 10-fold cross-validation gives very
similar results, in terms of both the mean and the standard
deviation of the R2, to those given by LOO cross-validation.
This further validates the LOO approach and suggests that,
in the context of this data set, we do not have the problem
of sets of near-identical chemicals that could derail LOO.

CONCLUSION

Overfitting of models is widely recognized as a concern.
It is less recognized however that overfitting is not an
absolute but involves a comparison. A model overfits if it is
more complex than another model that fits equally well. This
means that recognizing overfitting involves not only the
comparison of the simpler and the more complex model but
also the issue of how you measure the fit of a model.

More flexible models with more tunable constants can be
expected to give better resubstitution performance than less
flexible ones, whether or not they give better predictions in
the broader population in which predictions are to be made.
Resubstitution measures of performance therefore have little
value in model comparison since they reflect model com-
plexity rather than model predictive power.

Some sort of out-of-sample prediction is essential in
getting an honest picture of a model’s predictive ability. A
resubstitution error mean squared error much smaller than
the out-of-sample error mean squared error suggests high
model flexibility and is one warning sign of overfitting. A
firm diagnosis or refutation of overfitting though depends
on seeing whether the complex model fits better than do
simpler candidate models.

Where possible there is much to be said for having an
independent holdout validation sample removed at the start
and kept under lock and key to prevent impermissible
peeking. However this independent validation set needs to
be large to be trustworthy, and fitting a model to a minority
of the data makes no intuitive sense. Therefore the full
holdback approach is attractive only when there is a large
sample available. This setting is a luxury that is not often
available in QSAR modeling where usually a sample is
precious and needs to be exploited to the full. Methods such
as LOO and multifold cross-validation use all available

BP ) 287+ 41IC - 514M2 - 1024ø - 2973øC +

786øPC +794P2

high R2 model lower R2 model

mean R2 0.6930 0.4967
sd 0.0784 0.0726
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information for both calibration and validation. They should
be basic tools in model fitting and assessment.

Figure 4 was generated using an independent holdout
sample but is relevant to cross-validation also, using the
sample size as the number of holdout samples. The calcula-
tions in this paper suggested that validating using at least
50 samples gave generally reliable results and that 20 was
perhaps not too bad, but that using fewer samples (such as
5 or 10) was unreliable. This suggests the following
guidelines:

• If no more than 50 samples are available, use all of them
for the modeling and use LOO for validation, taking all
necessary precautions to ensure in the reanalyses to predict
each of the samples that the left-out sample does not in any
way influence the fit.

• As an alternative to the LOO, it may be helpful to do a
number of multifold cross-validationssfor example making
several distinct random ten-way splits and averaging the
results of the 10-fold cross-validations.

• If the sample size is appreciable larger than thissup to
several hundredsthen again use all samples for the calibra-
tion and validate using a multifold (for example 10-fold)
cross-validation.

• If huge samples are available, then the traditional ‘one-
half for calibration and one independent half for validation’
paradigm becomes workable. But even here, it is generally
helpful to do more than one fitsfor example having fitted
to the calibration half and tested on the validation half, to
swap the roles of the two-half-samples and compare the
results. Even here though it is better, absent some contrain-
dication such as severe computational complexity, to use a
multifold cross-validation.

• If the collection of compounds consists of, or includes,
families of close analogues of some smaller number of ‘lead’
compounds, then a sample reuse cross-validation will need
to omit families and not individual compounds.

• If the available sample is much below 50, then realize
that it is impossible to fit or validate incontrovertibly
generalizable models. This does not mean that there is no
value in doing the fitting and cross-validation; just that
appreciable uncertainty will inevitably remain after this is
done. See Figure 4 for some evidence of the impact of
smaller validation sample sizes on the reliability of the
validation.

Returning to the overfitting question, justifying a more
complex modeling approach entails showing that its ad-
ditional complexity is necessary and that the same quality
of fit cannot be obtained by simpler models. What are the
benchmark simpler models? This is not entirely obvious.
When predicting a continuous or a binary dependent variable,
a straightforward least squares multiple regression would be
an obvious choice where the problem is overdetermined, and

perhaps partial least squares (PLS7) makes a natural bench-
mark where the problem is underdetermined. These bench-
marks are helpful because they are standardized and sup-
ported by easily accessible software and therefore are easy
for anyone to replicate as the basic principles of science
require. As implied by the naphthalene data, this is a modest
hurdle to leap, as common transformations such as going to
a log scale may lead to equally simple but better-fitting
models. Conversely however, complex models that cannot
beat these simple ones are hard to justify.

There is also a need for attention to the domain of
applicability of a model. No model can be expected to
extrapolate successfully, yet it is not always obvious what
predictions are extrapolations and what are interpolations.
Simple single-variable range checks cannot do this reliably.
Measures analogous to the leverage are important in multiple
predictor problems.

We have not touched on other concerns such as outliers
and missing data; these would require a full-length paper in
their own right. Another necessary omission is an overview
of useful modeling technologies. Hastie et al.10 discuss the
statistical aspects of a number of modern approaches.
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